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Characterization of the Leaf Microbiome

from Whole-Genome Sequencing Data of
the 3000 Rice Genomes Project

Veronica Roman-Reyna1,2*†, Dale Pinili1†, Frances N. Borja1, Ian L. Quibod1, Simon C. Groen3, Nickolai Alexandrov1,
Ramil Mauleon1 and Ricardo Oliva1*
Abstract

Background: The crop microbial communities are shaped by interactions between the host, microbes and the
environment, however, their relative contribution is beginning to be understood. Here, we explore these
interactions in the leaf bacterial community across 3024 rice accessions.

Findings: By using unmapped DNA sequencing reads as microbial reads, we characterized the structure of the rice
bacterial microbiome. We identified central bacteria taxa that emerge as microbial “hubs” and may have an
influence on the network of host-microbe interactions. We found regions in the rice genome that might control
the assembly of these microbial hubs. To our knowledge this is one of the first studies that uses raw data from
plant genome sequencing projects to characterize the leaf bacterial communities.

Conclusion: We showed, that the structure of the rice leaf microbiome is modulated by multiple interactions
among host, microbes, and environment. Our data provide insight into the factors influencing microbial
assemblage in the rice leaf and also opens the door for future initiatives to modulate rice consortia for crop
improvement efforts.

Keywords: Oryza sativa, Leaf microbiome, Abundance network, GWAS, Functional profile
Findings
Plant colonization of terrestrial and aquatic habitats ig-
nited the formation of biodiverse systems, termed phyto-
biomes. In phytobiomes, plants are in constant
interaction with microbial communities that adapted to
colonize plant tissues, termed microbiomes (Hassani
et al. 2018). Microbial communities that live in associ-
ation with plants carry a great diversity of metabolic cap-
abilities and often influence broad aspects of plant
biology. In agricultural environments, the composition
of these communities affects overall crop performance
by contributing to important plant functions such as
© The Author(s). 2021 Open Access This article
which permits use, sharing, adaptation, distribu
appropriate credit to the original author(s) and
changes were made. The images or other third
licence, unless indicated otherwise in a credit l
licence and your intended use is not permitted
permission directly from the copyright holder.

* Correspondence: r.oliva@irri.org; roman-reyna.1@osu.edu
†Veronica Roman-Reyna and Dale Pinili contributed equally to this work.
1Rice Breeding Platform, International Rice Research Institute, DAPO Box
7777, Metro Manila, Philippines
Full list of author information is available at the end of the article
nutrient uptake, environmental responses, and host de-
velopment (Klein et al. 2012; Naylor et al. 2017; Edwards
et al. 2018). For instance, rice seeds studies showed the
microbiome as a potential source of plant beneficial bac-
teria and a source of microbes that could be vertically
transmitted (Cottyn et al. 2009; Eyre et al. 2019). For
roots and paddy soil microbiomes, several studies identi-
fied microbial clusters involved in methane metabolism
and nitrogen fixation (Butler et al. 2003; Sessitsch et al.
2011; Bao et al. 2014). Reports on rice rhizosphere
microbiome demonstrated associations with vegetative
and reproductive host stages and as potential source of
biocontrol agents (Spence et al. 2014; Edwards et al.
2015, 2018). Most rice microbiome studies use rRNA
gene sequencing and a small sample size. This approach
introduces a bias towards diversity and abundance of
microorganisms. It also limited statistical power to
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identify the importance of factors that shape host-
microbe interactions (Louca et al. 2018). An alternative
to rRNA gene sequencing is shotgun sequencing with
large-scale databases. This approach provides more in-
formation about the composition and structure of
microbiome and also increases confidence about correla-
tions among microbes, environment, and host.
As part of the 3000 Rice Genomes Project (3 K-RGP),

3024 rice accessions were sequenced (The 3000 rice ge-
nomes project 2014; Wang et al. 2018). The 3 K-RGP
panel has been successfully used to identify the rice gen-
etic architecture underlying several complex morpho-
logical and phenological traits (Wang et al. 2018). These
whole-genome-shotgun sequenced reads capture rice
reads and also total DNA of resident microbial commu-
nities. The use of non-plant reads provides access to an
impressive microbiome dataset in which one can system-
atically probe the role of environment vs. genotype in
dictating microbial abundance. Based on that hypothesis,
we extracted non-plant sequences from the 3 K-RGP
raw sequence data to characterize the rice leaf micro-
biome (Additional file 1: Figure S1 and Additional file 2).
Fig. 1 Composition of leaf bacterial community in the 3 K rice genome proje
curves (b) in 3024 rice genome accessions. The shade on the curve represent
all rice accessions. In the violin plots, the black box plot indicates the 75th and
abundance at phylum and genera level. The inner position of the sunburst ch
chart shows average relative abundance higher than 1% across all samples
We used bacterial and archaea reads since it constitutes
86% of the total reads.

Diversity of the Rice Leaf Microbiome
We were able to capture and classify Bacterial and Ar-
chaea reads from the 3 K-RGP raw database (Add-
itional file 3: Table S1). On average rice leaves of each
accession harbor 212 + 111 genera (Fig. 1a). The accu-
mulation curve indicated that unmapped reads captured
most of the expected taxa. The accumulation curve
reached a plateau around 520 bacteria after the first 100
rice accessions (Fig. 1b). The average Shannon index
was 3.64 + 1.2 similar to seed and root rice microbiome
(Edwards et al. 2015; Eyre et al. 2019) (Fig. 1c).
We assessed the taxonomic composition at phylum and

Genus levels. We found nine Phyla and 23 genera with an
abundance higher than 1% (Fig. 1d). The phylum Proteo-
bacteria, common in other leaf microbiomes, was the
most abundant group (Rastogi et al. 2012; Bodenhausen
et al. 2013; Wallace et al. 2018). Interestingly, the phylum
Euryarchaeota, which includes methanogenic Archaea,
was marginally present in the aerobic phyllosphere (Knief
ct. a, b total leaf bacterial and archaea genera (a) and accumulation
s the confidence interval of two in the curve points. c Shannon index in
35th percentile. The white dot represents the media. d Relative
art represents phylum and the outer position represents Genus. The
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et al. 2012; Edwards et al. 2015) (Fig. 1d). The aerobic con-
ditions in the phyllosphere could also explain why we did
not detect members of taxa commonly found in the soil
or rice rhizosphere (Bao et al. 2014; Edwards et al. 2015).
The genera Pseudomonas, Xanthomonas, Mycoplasma,
and Burkholderia were the most abundant bacteria in the
leaf microbiome (Fig. 1d). Pseudomonas, Xanthomonas,
and Burkholderia have rice pathogenic species. This could
indicate that the rice microbiome has a mixture of com-
mensals, beneficial and pathogenic species (Klein et al.
2012). The presence ofMycoplasma and other four genera
associate with human or animal hosts might be explained
by animal and human interaction with the rice cultivation
(Additional file 3: Table S2). These interactions should be
consider as a way of microbial horizontal acquisition
(Sasaki et al. 1999; Cottyn et al. 2009; Campisano et al.
2014).
The 3 K-RGP contained accessions grown in the

Philippines (agPh) and in China (agCh). To further dis-
sect the microbial community composition, we assessed
taxa richness in each location. We found that the Shan-
non index for agCh was 4.08 while for agPh the index
was 3.39 (Additional file 1: Figure S2). For genus rich-
ness, we found that that agCh contains on average 186
genera while agPh contained 152 genera. Then we com-
pared the relative abundance of Bacteria and Archaea at
different taxonomical levels. The differences between lo-
cations were mainly explained by genera. Forty-eight
genera contributed to 70% of the differences between lo-
cations; 25 of them had a relative abundance higher than
1% (Additional file 3: Table S3). Other studies have
shown that environmental variation appears to be the
major driver of microbiome diversity (Peiffer et al. 2013;
Okubo et al. 2014; Copeland et al. 2015; Edwards et al.
2015, 2018; Wagner et al. 2016; Moronta-Barrios et al.
2018). Thus, it is likely that the differences between
agCh and agPh might be associated with the exposed to
an distinct array of microbes.
We were aware that the manipulation of samples dur-

ing gDNA extraction or sequencing might include bac-
teria not commonly present in rice. To rule out that
abundant genera were not artificially introduced during
sample collection, we used qPCR to detect 11 highly
abundant genera in 17 rice accessions from our 3 K-RGP
panel (Additional file 2 and Additional file 3: Table S4).
We used new plants with the idea that the genera we
found in 3 K panel are common members of the rice leaf
microbiome. We were able to quantify the presence of
all taxa and observed a similar distribution across acces-
sions (Additional file 3: Table S4). Similar to our previ-
ous findings, the genera Pseudomonas, Xanthomonas,
and Mycoplasma were the most abundant genera, ruling
out that highly abundant genera were introduced artifi-
cially. Overall, our data showed that environmental
variation play a key role in determining variation in mi-
crobial community composition (Hartmann et al. 2015).

The Functional Profile of the Leaf Microbiome
Networks of interactions among microbes further shape
the establishment and maintenance of the microbial
community (Horton et al. 2014; Layeghifard et al. 2017;
Hassani et al. 2018). In those networks, highly connected
genera or “hubs” play an important ecological role in the
establishment of the community and the regulation of
microbial assembly (Agler et al. 2016; Layeghifard et al.
2017; Hassani et al. 2018). To determine the structure of
the rice leaf microbiome, we inferred microbial co-
occurrence networks and identified critical hubs (Add-
itional file 2). The criteria to select the hubs was based
on a combination of the network properties such as
weighted degree, betweenness centrality, modularity
class, clustering, and eigen-centrality (Additional file 3:
Table S5). We found that the rice microbe network can
be defined by 12 hubs: Clostridium, Mycoplasma, Bacil-
lus, Buchnera, Prochlorococcus, Helicobacter, Methylo-
bacterium, Chamaesiphon, Azotobacter, Kineococcus,
Acidovorax, and Pseudomonas (Fig. 2a, Additional file 3:
Table S5). Interestingly, connectivity of a genus within
the network did not correlate with their abundance. For
example, the highly abundant genera Xanthomonas and
Burkholderia were not identified as hubs. The genera
Kineococcus or Helicobacter, with less than 1% abun-
dance, played a role in shaping the network of interac-
tions (Agler et al. 2016).
The hubs Methylobacterium, Pseudomonas, Bacillus,

Kineococcus, Azotobacter, Acidovorax, and Clostridium
have also been reported as commensal, beneficials, or
pathogens in other plants (Cottyn et al. 2009; Bian et al.
2012; Horino et al. 2015; Chen et al. 2018; Lai and Huang
2018). The hubs Chamaesiphon and Prochlorococcus
could be part of the rice microbiome, as the paddy field
conditions like shallow water and sunlight could create an
ideal environment for algae growth. The hub Buchnera,
could be part of aphids and rice interaction, as Buchnera
is an aphid endosymbiont. The hubs Mycoplasma and
Helicobacter, associated with human diseases, have not
been associated with plant microbiomes. We hypothesized
that these bacteria, generally present in animals and
humans, are hubs in the rice microbiome due to a strong
influence of agricultural practices, like irrigation water or
crop-human interaction.
The networks can be further sub-structured into mod-

ules, which represent a group of organisms that has
more interactions within the group than with other
members of the network (Layeghifard et al. 2017). We
found seven modules. Based on the bacterial compos-
ition of some modules, microbial genetic ancestry or
ecological niche seems to shape them (Fig. 2a,



Fig. 2 Structure and functional profile of the rice leaf bacterial communities. a Microbial ecological network from the 3 K microbiome with
abundant genera present in at least 50% of all samples. The colors represent the seven modules in the network. Each node represents a genus
and the circle size indicates betweenness centrality increment. For the network analysis the genus counts were center-log-transformed. b KEGG
pathways entries with more than 1% relative abundance in all rice accessions. The inner circle indicates KEGG class 1 pathways and the external
circle indicates classes 2 or 3

Roman-Reyna et al. Rice           (2020) 13:72 Page 4 of 8
Additional file 3: Table S6). For example, one module
was enriched with Cyanobacteria, another module had
bacteria associated to animals and other modules mainly
had Alphaproteobacteria or Betaproteobacteria associ-
ated with plants or soils (Additional file 3: Table S6).
Overall, taxonomy status or ecological niche rather than
the abundance of individual taxa appears to define the
interactions within the microbial community. Moreover
the number of modules in the network suggested a
highly stable network since a microbial community ap-
pears to reach an equilibrium when its network of inter-
actions had a small number of modules (Layeghifard
et al. 2017).
The functional and nutritional capacities of the mi-

crobes partly define the networks of interactions among
microbes (Agler et al. 2016; Layeghifard et al. 2017;
Hassani et al. 2018). To understand if biological func-
tions in the bacterial communities associate to the eco-
logical network, we predicted functional categories for
the microbial taxa (Additional file 2). We found 85 pre-
dicted KEGG functional categories, where 28 had more
than 1% abundance (Fig. 2b, Additional file 3: Table S7).
Transcription, translation, primary metabolism, flagellar
assembly, environmental adaptation (ECM receptor
interaction) and secondary metabolism (terpenoids, anti-
biotics, and xenobiotics) were the most abundant path-
ways. The enrichment of these KEGG pathways linked
with the abundant genera as well as the bacterial hubs.
For example, the enrichment of pathways related to hu-
man diseases reflected the presence of animal pathogens
in the rice microbiome. Moreover, Pseudomonas, facul-
tative anaerobes, methanogenic bacteria, and some
gram-positive bacteria, like Bacillus and Streptomyces,
have the capacity to metabolize xenobiotic, terpenoids
and antibiotics compounds (Additional file 3: Table S2).
The xenobiotics metabolism KEGG category suggested
an adaptation of the bacterial to an environment where
chemicals, like pesticides, might be applied to crop fields
(Tipayno et al. 2017). The presence of functional cat-
egories common to other leaf microbiomes, restated the
idea that functions and communities are not random
(Delmotte et al. 2009; Xiao et al. 2017). Moreover, our
results aligned with the idea that metabolic functions
and interaction within the microbiome regulate the es-
tablishment of the community (Agler et al. 2016; Louca
et al. 2017).
We then determined the microbial co-occurrence net-

works and functional categories for each agCh and agPh
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dataset. Interestingly, agCh and agPh assembled net-
works with similar average degree and modularity
(Additional file 1: Figure S3A). We identified seven
highly connected hubs in each dataset, five of which
were common to agCh and agPh networks (Additional
file 1: Figure S3A, Fig. 2). Furthermore, we found no
significant differences between agCh and AgPh func-
tional profiles, where both datasets shared 22 of 24
KEGG level pathways (Additional file 1: Figure S3B).
The data suggest that rice leaf microbiome assemble
communities with similar structure, independently from
the available microbial diversity. Overall, the similarity
of the network structures and the functional redundancy
of the leaf microbiome dataset supported the idea that
key microbial groups might regulate the establishment
by providing essential functions in the community
(Hassani et al. 2018). This result also aligned with other
studies where core biological functions of the micro-
biome are associated to different plant tissues or plant
substrates (Vorholt 2012; Agler et al. 2016; Louca et al.
2017; Xiao et al. 2017).
Fig. 3 Rice metabolic pathways are associated with the microbiome struct
simultaneously using a multivariate linear mixed model with GEMMA softw
major peaks (significant SNPs) distributed across six chromosomes, associat
quartile plot for expected versus observed −log(P) values. P-values were ad
(blue line). b the significant SNPs found in this study co-localized with a nu
with resistance or tolerance; morphological trait; and physiological trait
Rice Genetic Associations with the Leaf
Microbiome Composition
The interactions of environment, microbes, and hosts
modulate the assembly of the microbial community
(Layeghifard et al. 2017; Hassani et al. 2018; Wallace
et al. 2018). The host might play a key role, as genetic
control on the microbiome assembly has been reported
in Arabidopsis and Nicotiana benthamiana (Long et al.
2010; Lebeis et al. 2015). To identify rice genetic factors
that control the recruitment and establishment of spe-
cific microbial players, we conducted a genome-wide as-
sociation study (GWAS) on 3024 rice accessions, using
the genomic information from 6.5 million SNPs and the
relative abundance of the 12 hubs (Additional file 2). To
avoid association bias due to lack of information for
most of the Chinese accessions, we kept agCh and agPh
together for the analysis.
Overall, we found 22 significant SNPs shared among the

12 hubs abundance (P-value <1E-16, ci = 0.95), distributed
across six chromosomes (Fig. 3a). Twenty of the 22 SNPs
located within 11 annotated rice genes (Additional file 3:
ure. a Genome-wide association for the 12 microbial hubs
are. Left panel, Manhattan plot, using the rice dataset, indicated the
ed with microbial abundance of the 12 hubs. Right panel, Quartile–
justed with FDR and values lower than 1E-15 were consider significant
mber of agronomic QTLs retrieved from Q-TARO database, associated
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Table S7). Seven genes had at least one SNPs with a mis-
sense effect. The seven genes were catalase isozyme A,
malate synthase, inorganic H+ pyrophosphatase, endo-1,4-
beta-xylanase, similar to ClpC, similar to ATP-dependent
Clp protease, and 5-methyltetrahydropteroyltriglutamate--
homocysteine methyltransferase. Most of the seven genes
had annotations for stress responses, carbon metabolism
and regulation of gene expression (Additional file 3: Table
S8). We then determined the relationships between signifi-
cant SNPs and hubs abundance (Additional file 2). The
average of the 12 hub abundances (centered log-ratio nor-
malized) showed significant differences in four haplotypes,
Chr4–32,927,447, Chr5–14,856,070, Chr5–14,856,078, and
Chr5–25,806,324 (Additional file 1: Figure S4A). The SNPs
related to chromosome five were the genes endo-1,4-beta-
xylanase and a heat shock protein (Additional file 3: Table
S8). We also looked at the relationship between significant
SNPs and the hubs with higher betweenness centrality,
Mycoplasma, Clostridium and Bacillus. The three bacteria
had significant differences for the SNP Chr4–32,927,447.
Mycoplasma had significant differences with 18 more hap-
lotypes. Clostridium with one more and Bacillus two more.
Based on the 22 significant SNPs and the differences found
with hub abundances, it seems the regulation of the micro-
bial community could be associated with less toxic or
carbon-enriched host environments.
From the 22 SNPs, we identified 12 haplotype blocks

spanning 120 candidate genes using linkage disequilib-
rium analysis (Additional file 2 and Additional file 3:
Table S8). Gene ontology (GO) enrichment analysis,
with the 120 genes, indicated physiological process,
intracellular, membrane-bound organelle and catalytic
activity as the most abundant (> 50%) GO terms (Add-
itional file 1: Figure S5 and Additional file 2) (Liu et al.
2013). To explore if the 120 gene were enriched and pre-
viously described to be associated with rice agronomic
traits, we used the rice quantitative trait locus (QTL)
database, Q-TARO. Overall, the 120 candidate genes
mapped to 42 QTLs distributed in different categories:
resistance or tolerance (15 QTLs), morphological traits
(16 QTLs), and physiological traits (11 QTLs) (Fig. 3b,
Additional file 3: Table S9). Drought tolerance was the
most abundant trait in resistance or tolerance QTL. The
presence of drought QTL followed by other traits related
to abiotic stimuli validated the idea that host responses
to the environment can be associated with the micro-
biome composition (Long et al. 2010; Lebeis et al. 2015;
Naylor et al. 2017). The morphological traits Culm/leaf,
Panicle/flower, and seed traits were equally abundant.
The traits associated with different plant tissues validate
the idea of a dynamic microbiome that shifts in different
host tissue or developmental conditions, like vegetative
or reproductive (Edwards et al. 2018). The seeds trait,
the eating quality as physiological trait, and the QTL
associated with grain chalkiness, suggested that seeds
quality are a key factor in the vertical transmission and
shaping of the microbiome (Cottyn et al. 2009; Eyre
et al. 2019). Similar to other studies, we found that host
responses to stress, primary pathways, and plant tissue
morphology, are perhaps, common host genetic factors
related to leaf microbiome assembly (Horton et al. 2014;
Wallace et al. 2018). In that scenario, is likely that allelic
variation of certain rice genes influences the compos-
ition of plant microbiome or of particular groups.

Conclusions
Our study explored the idea that information about the
composition of leaf microbial communities of rice plants
can be extracted from the raw host genome sequence
data. Using the 3 K-RGP dataset, we were able to de-
scribe the composition and structure of the rice leaf
microbiome. We validated the idea that microbiomes do
not assemble randomly but that their formation is gov-
erned by complex interactions among microbes, host,
and environment. Given the scale of the 3 K-RGP data-
set, we took the first steps in unearthing the factors be-
hind rice leaf microbiome assembly by using GWAS and
microbiome abundance as a trait. The next steps will be
to understand how the microbiome from roots, soil,
seeds, and leaves transmit among tissues and the inter-
action with fungal and virus microbiome. This study
leaves open questions on the benefit of these hubs but
also on the host mechanisms that can be used to modu-
late the community for crop improvement purposes.
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GWAS: Genome-wide association studies; rRNA: Ribosomal ribonucleic acid;
3 K-RGP: 3000 Rice Genomes Project; qPCR: Real-time polymerase chain
reaction; SNPs: Single-nucleotide polymorphisms; QTL: Quantitative trait
locus; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: False
discovery rate; GO: Gene ontology
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Additional file 1: Figure S1. Generation of 3000 rice genomes dataset
and pipeline for collecting the leaf microbiome. Figure S2. Growing
location shapes the rice leaf microbiome diversity and composition. A-B
Richness and Shannon index comparisons between accessions grown in
China and Philippines; *P-value < 0.001. Kruskal-Wallis test. C Leaf micro-
biome composition of rice accessions grown in China and Philippines.
The inner position of the sunburst chart represents taxonomic hierarchy
phylum and the outer position represents Genus. The chart shows abun-
dance higher than 1% determined as the relative abundance across all
samples. The black line highlights the unique genera for each environ-
ment. The figure showed the average relative abundance across all acces-
sions from each location using only the classified reads. Figure S3. Leaf
microbiome network and functional profile is conserved across growing
locations. A Microbial ecological network from China and the Philippines
with abundant genera present in at least 50% of all samples. The colors
represent the seven modules of each network. Each node represents a
genus and the circle size indicates betweenness centrality increment. The
key microbial hubs are Clostridium (Clo), Mycoplasma (My) and

https://doi.org/10.1186/s12284-020-00432-1
https://doi.org/10.1186/s12284-020-00432-1


Roman-Reyna et al. Rice           (2020) 13:72 Page 7 of 8
Helicobacter (H). Other hubs in China are Spiroplasma (Sa), Azospirillum
(Am), Prochlorococcus (Pr), Sphingobium (Sm). For the Philippines, import-
ant hubs are Bacillus (Ba), Pseudomonas (P), and Azotobacter (A). The prop-
erties of the network are number of edges, number of nodes or genera,
average degree and modularity. Only for the network analysis the genus
counts were center-log-transformed. B KEGG level 2 pathways with more
than 1% relative abundance in accessions grown in China and the
Philippines. NS no significant, Wilcoxon rank-sum test = 6869, P-value =
0.421. Figure S4. Relationships between significant SNPs and hubs abun-
dances represented as box plots. A significant difference using the aver-
age of the 12 hubs abundances. B Significant differences using the hubs
Mycoplasma, Clostridium and Bacillus abundances. All box plots have an
FDR adjusted p-value < 0.05 using a pairwise Wilcoxon test. SNPs nomen-
clature are chromosome and position. Figure S5. Gene ontology enrich-
ment analysis with the genes from the haploblocks. Bars indicate the
frequency of the three GO categories was calculated over the 120 genes.
The colors in the bars indicate the -log(p-value) for each GO term.

Additional file 2. Methods.

Additional file 3: Table S1. List of 3 K-RGP rice accessions with number
of reads that did not map to the rice genomes (unmapped reads). Table
S2. Phyla and genera composition of the 3 K RGP microbiome. Table S3.
Significant genera that contribute to the differences between accessions
grown in China and accessions grown in Philippines. Table S4. Quantita-
tive PCR validation of metagenomic analysis using 17 rice accessions
from the 3 K-RGP project. The table indicate the genera used for the ex-
periments, followed by the primer sequences, the reference for the
primers, the qPCR results (delta Ct and standard deviation). Then the list
of the 17 accessions and their groups are indicated. Table S5. Co-
abundance network values for the most abundant genera in the 3KRGP
microbiome. Table S6. Co-abundance network modules with the most
connected microbes. Table S7. Metabolic pathways predicted by Viko-
dak based on KEGG levels 1 and 3. Table S8. Significant signals from the
genome wide association analysis (GWAS). Table S9. Description of
haplotype blocks for each significant SNP, number of associated candi-
date genes and the QTLs that match to the same region.
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