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Sharing Storage in a Smart Grid: A Coalitional
Game Approach

Pratyush Chakraborty∗, Enrique Baeyens∗, Kameshwar Poolla, Pramod P. Khargonekar, and Pravin Varaiya

Abstract—Sharing economy is a transformative socio-economic
phenomenon built around the idea of sharing underused re-
sources and services, e.g. transportation and housing, thereby
reducing costs and extracting value. Anticipating continued
reduction in the cost of electricity storage, we look into the
potential opportunity in electrical power system where consumers
share storage with each other. We consider two different sce-
narios. In the first scenario, consumers are assumed to already
have individual storage devices and they explore cooperation
to minimize the realized electricity consumption cost. In the
second scenario, a group of consumers is interested to invest in
joint storage capacity and operate it cooperatively. The resulting

system problems are modeled using cooperative game theory. In
both cases, the cooperative games are shown to have non-empty
cores and we develop efficient cost allocations in the core with
analytical expressions. Thus, sharing of storage in cooperative
manner is shown to be very effective for the electric power system.

Index Terms—Storage Sharing, Cooperative Game Theory,
Cost Allocation

I. INTRODUCTION

A. Motivation

The sharing economy is disruptive and transformative socio-

economic trend that has already impacted transportation and

housing [1]. People rent out (rooms in) their houses and

use their cars to provide transportation services. The business

model of sharing economy leverages under utilized resources.

Like these sectors, many of the resources in electricity grid

is also under-utilized or under-exploited. There is potential

benefit in sharing the excess generation by rooftop solar

panels, sharing flexible demand, sharing unused capacity in

the storage services, etc. Motivated by the recent studies [2]

predicting a fast drop in battery storage prices, we focus on

sharing electric energy storage among consumers.

B. Literature Review

Storage prices are projected to decrease by more than 30%
by 2020. The arbitrage value and welfare effects of storage in
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electricity markets has been explored in literature. In [3], the

value of storage arbitrage was studied in deregulated markets.

In [4], the authors studied the role of storage in wholesale

electricity markets. The economic viability of the storage

elements through price arbitrage was examined in [5]. Agent-

based models to explore the tariff arbitrage opportunities for

residential storage systems were introduced in [6]. In [7], [8],

authors address the optimal control and coordination of energy

storage. All these works explore the economic value of storage

to an individual, not for shared services. Sharing of storage

among firms has been analyzed using non-cooperative game

theory in [9]. But the framework needs a spot market among

the consumers and also coordination is needed among the firms

that are originally strategic.

In this paper, we explore sharing storage in a cooperative

manner among consumers. Cooperative game theory has sig-

nificant potential to model resource sharing effectively [10].

Cooperation and aggregation of renewable energy sources

bidding in a two settlement market to maximize expected

and realized profit has been analyzed using cooperative game

theory in [11]–[13]. Under a cooperative set-up, the cost

allocation to all the agents is a crucial task. A framework

for allocating cost in a fair and stable way was introduced

in [14]. Cooperative game theoretic analysis of multiple de-

mand response aggregators in a virtual power plant and their

cost allocation has been tackled in [15]. In [16], sharing op-

portunities of photovoltaic systems (PV) under various billing

mechanisms were explored using cooperative game theory.

C. Contributions and Paper Organization

In this paper, we investigate the sharing of storage systems

in a time of use (TOU) price set-up using cooperative game

theory. We consider two scenarios. In the first one, a group of

consumers already own storage systems and they are willing to

operate all together to minimize their electricity consumption

cost. In a second scenario, a group of consumers wish to

invest in a shared common storage system and get benefit

for long term operation in a cooperative manner. We model

both the cases using cooperative game theory. We prove that

the resulting games developed have non-empty cores, i.e.,

cooperation is shown to be beneficial in both the cases. We also

derive closed-form and easy to compute expressions for cost

allocations in the core in both the cases. Our results suggest

that sharing of electricity storage in a cooperative manner is

an effective way to amortize storage costs and to increase

its utilization. In addition, it can be very much helpful for

consumers and at the same time to integrate renewables in the

http://arxiv.org/abs/1712.02909v1
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Fig. 1. Configuration of three consumers in the two analyzed scenarios

system, because off-peak periods correspond to large presence

of renewables that can be stored for consumption during peak

periods.

The remainder of the paper is organized as follows. In

Section II, we formulate the cooperative storage problems. A

brief review of cooperative game theory is presented in Section

III. In Section IV, we state and explain our main results. A

case study illustrating our results using real data from Pecan

St. Project is presented in Section VI. Finally, we conclude

the paper in Section VII.

II. PROBLEM FORMULATION

A. System Model

We consider a set of consumers indexed by i ∈ N :=
{1, 2, . . . , N}. The consumers invest in storage. The con-

sumers cooperate and share their storage with each other. We

consider two scenarios here. In the scenario I, the consumers

already have storage and they operate with storage devices

connected to each other. In the scenario II, the consumers

wish to invest in a common storage. There is a single meter

for this group of consumers. We assume that there is necessary

electrical connection between all the consumers for effective

sharing. We ignore here the capacity constraints, topology

or losses in the connecting network. The configuration of

the scenarios with three consumers are depicted in Figure 1.

Examples of the situations considered here include consumers

in an industrial park, office buildings on a campus, or homes

in a residential complex.

B. Cost of Storage

Each day is divided into two periods –peak and off-peak.

There is a time-of-use pricing. The peak and off-peak period

prices are denoted by πh and πℓ respectively. The prices are

fixed and known to all the consumers.

Let πi be the daily capital cost of storage of the consumer

i ∈ N amortized over its life span. Let the arbitrage price be

defined by

πδ := πh − πℓ (1)

and define the arbitrage constant γi as follows:

γi :=
πδ − πi
πδ

(2)

In order to have a viable arbitrage opportunity, we need

πi ≤ πδ (3)

which corresponds to γi ∈ [0, 1]. The consumers discharge

their storage during peak hours and charge them during off-

peak hours.

The daily cost of storage of a consumer i ∈ N for the peak

period consumption xi depends on the capacity investment Ci

and is given by

J(xi, Ci) = πiCi + πh(xi − Ci)
+ + πℓ min{Ci,xi}, (4)

where πiCi is the capital cost of acquiring Ci units of storage

capacity, πh(xi − Ci)
+ is the daily cost of the electricity

purchase during peak price period, and πℓ min{xi, Ci} is the

daily cost of the electricity purchase during off-peak period to

be stored for consumption during the peak period. We ignore

the off-peak period electricity consumption of the consumer

from the expression of J as its expression is independent of

the storage capacity. The daily peak consumption of electricity

is not known in advance and we assume it to be a random

variable. Let F be the joint cumulative distribution function

(CDF) of the collection of random variables {xi : i ∈ N} that

represents the consumptions of the consumers in N . If S ⊆ N
is a subset of consumers, then xS denotes the aggregated peak

consumption of S and its CDF is FS .

The daily cost of storage of a group of consumers S ⊆ N
with aggregated peak consumption xS =

∑

i∈S xi and joint

storage capacity CS is

J(xS , CS) = πSCS + πh(xS − CS)
+ + πℓ min{CS ,xS}

(5)

where πS is the daily capital cost of aggregated storage of the

group amortized during its life span. Note that the individual

storage costs (4) are obtained from (5) for the singleton sets

S = {i}.

The daily cost of storage given by (4) and (5) are random

variables with expected values

JS(CS) = EJS(xS , CS), S ⊆ N . (6)

In the sequel, we will distinguish between the random vari-

ables and their realized values by using bold face fonts xS for

the random variables and normal fonts xS for their realized

values.

C. Quantifying the Benefit of Cooperation Benefit

We are interested in studying and quantifying the benefit of

cooperation in the two scenarios. In the first scenario, the con-

sumers already have installed storage capacity {Ci : i ∈ N}
that they acquired in the past. Each of the consumers can have

a different storage technology that was acquired at a different

time compared to the other consumers. Consequently, each

consumer has a different daily capital cost πi. The consumers

aggregate their storage capacities and they operate using the

same strategy, they use the aggregated storage capacity to store

energy during off-peak periods that they will later use during

peak periods. By aggregating storage devices, the unused

capacity of some consumers is used by others producing

cost savings for the group. We analyze this scenario using

cooperative game theory and develop an efficient allocation
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rule of the daily storage cost that is satisfactory for every

consumer.

In the second scenario, we consider a group of consumers

that join to buy storage capacity that they want to use in a

cooperative way. First, the group of consumers have to make

a decision about how much storage capacity they need to

acquire and then they have to share the expected cost among

the group participants. The decision problem is modeled as an

optimization problem where the group of consumers minimize

the expected cost of daily storage. The problem of sharing the

expected cost is modeled using cooperative game theory. We

quantify the reduction in the expected cost of storage for the

group and develop a mechanism to allocate the expected cost

among the participants that is satisfactory for all of them.

III. BACKGROUND: COALITIONAL GAME THEORY FOR

COST SHARING

Game theory deals with rational behavior of economic

agents in a mutually interactive setting [17]. Broadly speaking,

there are two major categories of games: non-cooperative

games and cooperative games. Cooperative games (or coali-

tional games) have been used extensively in diverse disciplines

such as social science, economics, philosophy, psychology

and communication networks [10], [18]. Here, we focus on

cooperative games for cost sharing [19].

Let N := {1, 2, . . . , N} denote a finite collection of

players. In a cooperative game for cost sharing, the players

want to minimize their joint cost and share the resulting cost

cooperatively.

Definition 1 (Coalition): A coalition is any subset S ⊆ N .

The number of players in a coalition S is denoted by its

cardinality, |S|. The set of all possible coalitions is defined

as the power set 2N of N . The grand coalition is the set of

all players, N .

Definition 2 (Game and Value): A cooperative game is

defined by a pair (N , v) where v : 2N → R is the value

function that assigns a real value to each coalition S ⊆ N .

Hence, the value of coalition S is given by v(S). For the cost

sharing game, v(S) is the total cost of the coalition.

Definition 3 (Subadditive Game): A cooperative game

(N , v) is subadditive if, for any pair of disjoint coalitions

S, T ⊂ N with S∩T = ∅, we have v(S)+v(T ) ≥ v(S∪T ).
Here we consider the value of the coalition v(S) is trans-

ferable among players. The central question for a subadditive

cost sharing game with transferrable value is how to fairly

distribute the coalition value among the coalition members.

Definition 4 (Cost Allocation): A cost allocation for the

coalition S ⊆ N is a vector x ∈ R
N whose entry xi represents

the allocation to member i ∈ S (xi = 0, i /∈ S).

For any coalition S ⊆ N , let xS denote the sum of cost

allocations for every coalition member, i.e. xS =
∑

i∈S xi.
Definition 5 (Imputation): A cost allocation x for the grand

coalition N is said to be an imputation if it is simultaneously

efficient –i.e. v(N ) = xN , and individually rational –i.e.

v(i) ≥ xi, ∀i ∈ N . Let I denote the set of all imputations.

The fundamental solution concept for cooperative games is

the core [17].

Definition 6 (The Core): The core C for the cooperative

game (N , v) with transferable cost is defined as the set of

cost allocations such that no coalition can have cost which is

lower than the sum of the members current costs under the

given allocation.

C :=
{

x ∈ I : v(S) ≥ xS , ∀S ∈ 2N
}

. (7)

A classical result in cooperative game theory, known as

Bondareva-Shapley theorem, gives a necessary and sufficient

condition for a game to have nonempty core. To state this

theorem, we need the following definition.

Definition 7 (Balanced Game and Balanced Map): A co-

operative game (N , v) for cost sharing is balanced if for any

balanced map α,
∑

S∈2N
α(S)v(S) ≥ v(N ) where the map

α : 2N → [0, 1] is said to be balanced if for all i ∈ N ,

we have
∑

S∈2N
α(S)1S (i) = 1, where 1S is the indicator

function of the set S, i.e. 1S(i) = 1 if i ∈ S and 1S(i) = 0
if i 6∈ S.

Next we state the Bondareva-Shapley theorem.

Theorem 1 (Bondareva-Shapley Theorem [10]): A coali-

tional game has a nonempty core if and only if it is balanced.

If a game is balanced, the nucleolus [18] is a solution that

is always in the core.

IV. MAIN RESULTS

A. Scenario I: Realized Cost Minimization with Already Pro-

cured Storage Elements

Our first concern is to study if there is some benefit in

cooperation of the consumers by sharing the storage capacity

that they already have. To analyze this scenario we shall

formulate our problem as a coalitional game.

1) Coalitional Game and Its Properties: The players of the

cooperative game are the consumers that share their storage

and want to reduce their realized joint storage investment cost.

For any coalition S ⊆ N , the cost of the coalition is u(S)
which is the realized cost of the joint storage investment CS =
∑

i∈S Ci. Each consumer may have a different daily capital

cost of storage {πi : i ∈ N}, because they did not necessarily

their storage systems at the same time or at the same price for

KW. The realized cost of the joint storage for the peak period

consumption xS =
∑

i∈S xi is given by

u(S) = J(xS , CS) (8)

where J was defined in (5). Since we are using the realized

value of the aggregated peak consumption xS , J(xS , CS) is

not longer a random variable.

In order to show that cooperation is advantageous for the

members of the group, we have to prove that the game

is subadditive. In such a case, the joint daily investment

cost of the consumers is never greater that the sum of the

individual daily investment costs. Subadditivity of the cost

sharing coalitional game is established in Theorem 2.

Theorem 2: The cooperative game for storage investment

cost sharing (N , u) with the cost function u defined in (8) is

subadditive.
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Proof: See appendix.

However, subadditivity is not enough to provide satisfaction

of the coalition members. We need a stabilizing allocation

mechanism of the aggregated cost. Under a stabilizing cost

sharing mechanism no member in the coalition is impelled

to break up the coalition. Such a mechanism exists if the cost

sharing coalitional game is balanced. Balancedness of the cost

sharing coalitional game is established in Theorem 3.

Theorem 3: The cooperative game for storage investment

cost sharing (N , u) with the cost function u defined in (8) is

balanced.

Proof: See the appendix.

2) Sharing of Realized Cost: Since the cost sharing cooper-

ative game (N , u) is balanced, its core is nonempty and there

always exist cost allocations that stabilize the grand coalition.

One of this coalitions is the nucleolus while another one is the

allocation that minimizes the worst case excess [12]. However,

computing these allocations requires solving linear programs

with a number of constraints that grows exponentially with

the cardinality of the grand coalition and they can be only

applied for coalitions of moderate size. As an alternative to

these computationally intensive cost allocations, we propose

the following cost allocation.

Allocation 1: Define the cost allocation {ξi : i ∈ N} as

follows:

ξi :=

{

πiCi + πh(xi − Ci) + πℓCi, if xN ≥ CN

πiCi + πℓxi, if xN < CN
(9)

for all i ∈ N .

We establish in Theorem 4, this cost allocation belongs to

the core of the cost sharing cooperative game.

Theorem 4: The cost allocation {ξi : i ∈ N} defined in

Allocation 1 belongs to the core of the cost sharing cooperative

game (N , u).
Proof: See appendix.

Unlike the nucleolus or the cost allocation minimizing the

worst-case excess, Allocation 1 has an analytical expression

and can be easily obtained without any costly computation.

Thus, we have developed a strategy such that consumers

that independently invested in storage, and are subject to a

two period (peak and off-peak) TOU pricing mechanism can

reduce their costs by sharing their storage devices. Moreover,

we have proposed a cost sharing allocation rule that stabilizes

the grand coalition. This strategy can be considered a weak

cooperation because each consumer acquired its storage ca-

pacity independently of each other, but they agree to share the

joint storage capacity.

In the next section we consider a stronger cooperation

problem, where a group of consumers decide to invest jointly

in storage capacity.

B. Scenario II: Expected Cost Minimization for Joint Storage

Investment

In this scenario, we consider a group of consumers indexed

by i ∈ N , that decide to jointly invest in storage capacity.

We are interested in studying whether cooperation provides a

benefit for the coalition members for the long term.

1) Coalitional Game and Its Properties: Similar to the

previous case, only the peak consumption is relevant in the

investment decision. Let xi denote the daily peak period

consumption of consumer i ∈ N . Unlike the previous sce-

nario, here xi is a random variable with marginal cumulative

distribution function (CDF) Fi. The daily cost of the consumer

i ∈ N depends on the storage capacity investment of the

consumer as per (4). This cost is also a random variable. If

the consumer is risk neutral, it acquires the storage capacity

C∗
i that minimizes the expected value of the daily cost

C∗
i = arg min

Ci≥0
Ji(Ci), (10)

where

Ji(Ci) = EJ(xi, Ci), (11)

and πS is the daily capital cost of storage amortized over its

lifespan that in this case is the same for each of the consumers

–i.e. πi = πS for all i ∈ N , because we assume that they buy

storage devices of the same technology at the same time. This

problem has been previously solved in [9] and its solution is

given by Theorem 5.
Theorem 5 ( [9]): The storage capacity of a consumer i ∈ N

that minimizes its daily expected cost is C∗
i , where

Fi(C
∗
i ) =

πδ − πS
πδ

= γS

and the resulting optimal cost is

J∗
i = Ji(C

∗
i ) = πℓE[xi] + πSE[xi | xi ≥ C∗

i ]. (12)

Let us consider a group of consumers S ⊆ N that decide

to join to invest in joint storage capacity. The joint peak

consumption of the coalition is xS =
∑

i∈S xi with CDF

FS . We also assume that the joint CDF of all the agent’s

peak consumptions F is known or can be estimated from

historical data. By applying Theorem 5, the optimal investment

in storage capacity of the coalition S ⊆ N is C∗
S such that

FS(C
∗
S) = γS and the optimal cost is

J∗
S = JS(C

∗
S) = πℓE[xS ] + πSE[xS | xS ≥ C∗

S ]. (13)

Consider the cost sharing cooperative game (N , v) where

the cost function v : 2N → R is defined as follows

v(S) = J∗
S = arg min

CS≥0
JS(CS), (14)

where J∗
S was defined in (13).

Similar to the case of consumers that already own storage

capacity and decide to join to reduce their costs, here we prove

that the cooperative game is subadditive so that the consumer

obtain a reduction of cost. This is the result in Theorem 6.
Theorem 6: The cooperative game for storage investment

cost sharing (N , v) with the cost function v defined in (14) is

subadditive.
Proof: See appendix.

We also need a cost allocation rule that is stabilizing.

Theorem 7 establishes that the game is balanced and has a

stabilizing allocation.
Theorem 7: The cooperative game for storage investment

cost sharing (N , v) with the cost function v defined in (14) is

balanced.
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Proof: See appendix.

2) Stable Sharing of Expected Cost: Similar to the previous

scenario, we were able to develop a cost allocation rule that is

in the core. This cost allocation rule has an analytical formula

and can be efficiently computed. This allocation rule is defined

as follows.

Allocation 2: Define the cost allocation {ζi : i ∈ N} as

follows:

ζi := πℓE[xi] + πSE[xi | xN ≥ C∗
N ], i ∈ N . (15)

In the next theorem, we prove that Allocation 2 provides

a sharing mechanism of the expected daily storage cost of a

coalition of agents that is in the core of the cooperative game.

Theorem 8: The cost allocation {ζi : i ∈ N} defined in

Allocation 2 belongs to the core of the cost sharing cooperative

game (N , v).
Proof: See appendix.

3) Sharing of Realized Cost: Based on the above results,

the consumers can invest on joint storage and they will make

savings for long term. But the cost allocation ζi defined by

(15) is in expectation. The realized allocation will be different

due to the randomness of the daily consumption. Here we

develop a daily cost allocation for the k-th day as

ρki = βiπ
k
N , (16)

where πk
N is the realized cost for the grand coalition on the

k-th day and βi =
ζi∑
N

i=1
ζi

.

As
∑N

i=1
βi = 1,

∑N

i=1
ρki = πk

N and the cost allocation

is budget balanced. Also using strong law of large numbers,
1

K

∑K
k=1

ρki → ζi as K → ∞ and the realized allocation is

strongly consistent with the fixed allocation ζi.

V. BENEFIT OF COOPERATION

A. Scenario I

The benefit of cooperation by joint operation of storage

reflected in the total reduction of cost is given by
∑

i∈S

Ji − JS = πh(
∑

i∈S

(xi − Ci)
+ − (xS − CS)

+)+

πℓ(
∑

i∈S

min{Ci, xi} −min{CS , xS}), (17)

where the reduction for individual agent with cost allocation

(9) is

Ji − ζi :=

{

πδ(Ci − xi)
+, if xN ≥ CN

πδ(xi − Ci)
+, if xN < CN

(18)

B. Scenario II

The benefit of cooperation given by the reduction in the

expected cost that the coalition S obtains by jointly acquiring

and exploiting the storage is
∑

i∈S

J∗
i − J∗

S =

πS
∑

i∈S

E[xi | xi ≥ C∗
i ]− πSE[xS | xS ≥ C∗

S ], (19)

Fig. 2. Estimated CDFs of the peak consumption of the five households and
their aggregated consumption

TABLE I
CORRELATION COEFFICIENTS FOR THE FIVE HOUSEHOLDS

1 2 3 4 5
1 1.000000 0.363586 0.297733 0.292073 0.486665
2 0.363586 1.000000 0.132320 0.453056 0.157210
3 0.297733 0.132320 1.000000 0.085868 0.365212
4 0.292073 0.453056 0.085869 1.000000 -0.056696
5 0.486665 0.157210 0.365212 -0.056696 1.000000

and the reduction in expected cost of each participant assuming

that the expected cost of the coalition is split using cost

allocation (15) is

J∗
i − ζi = πSE[xi | xi ≥ C∗

i ]− πSE[xi | xS ≥ C∗
S ]. (20)

VI. CASE STUDY

We develop a case study to illustrate our results. For this

case study, we used data from the Pecan St project [20]. We

consider a two-period ToU tariff with πh = 55¢/KWh, and

πℓ = 20¢/KWh. Electricity storage is currently expensive. The

amortized cost of Tesla’s Powerwall Lithium-ion battery is

around 25¢/KWh per day. But storage prize is projected to

reduce by 30% by 2020 [21]. Keeping in mind this projection,

we consider πS = 15¢/KWh.

A group of five household decide to join to acquire storage.

Using historical data of 2016, we estimate the individual CDFs

of their daily peak consumptions and the CDF of the daily

joint peak consumption. Peak consumption period in Texas

corresponds to non-holidays and non-weekends from 7h to

23h. The estimated CDFs for peak consumption are depicted

in Figure 2. From this figure, we can see that the shape of the

CDFs are quite similar for the five households. The correlation

coefficients of these five households are given in Table I.

Although the shape of the CDFs are very similar, the peak

consumptions are not completely dependent. This means that

there is room for reduction in cost by making a coalition.

The optimal investments in storage for the five households

and for the grand coalition are given in Table II. Also in

this table, we show the allocation of the expected storage

cost given by (15). The reduction in cost for the consumers

coalition is about 5%, however those with less correlation with

the other, have a larger reduction. Consumers 3 and 4 have

cost reductions higher than 7%, while consumer 1, whose

consumption is more correlated with the other, have about

2.4% of cost reduction.
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TABLE II
OPTIMAL STORAGE CAPACITY INVESTMENTS (IN KWH), MINIMAL

EXPECTED STORAGE COST (IN $) AND EXPECTED COST ALLOCATION OF

THE GRAND COALITION (IN $)

1 2 3 4 5 N

C∗
i

22.98 14.09 12.64 13.21 29.82 95.58
J∗
i

899.76 579.79 600.88 525.51 1189.41 3604.13
ζi 882.45 543.10 550.02 488.20 1140.35 3604.13

TABLE III
ALLOCATION OF THE REALIZED COST FOR SCENARIO I FOR THE FIRST

TEN DAYS OF THE YEAR (IN $)

Day ξ1 ξ2 ξ3 ξ4 ξ5
1 492.66 612.83 436.88 549.61 904.69
2 464.89 624.96 343.61 567.21 947.27
3 541.21 482.61 299.84 541.40 820.46
4 675.74 373.95 377.64 418.01 734.10
5 761.41 403.49 405.52 371.64 799.23
6 646.05 516.53 404.89 573.17 812.54
7 654.47 760.99 387.80 536.92 797.46
8 583.59 411.25 533.00 455.56 831.97
9 640.46 394.04 482.85 483.24 787.20

10 604.49 446.14 475.46 310.22 791.60

Now, we assume that the five households buy storage inde-

pendently and then decide to cooperate by sharing their storage

to reduce the realized cost. This corresponds to Scenario I.

For simplicity of computation and comparison with scenario

II, we consider πi = πS for all i. The realized cost is allocated

using (9). In Table III, we show the allocation of the realized

aggregated cost for the ten first days of 2016, assuming that

the households have storage capacities {C∗
i : i ∈ N}.

Finally, in Figure 3, we depict the evolution of the average

allocation of the realized cost of storage to each household for

the 2016 year. The average allocation for D days is given by

ξ̄i(D) =
1

D

D
∑

i=1

ξi, i ∈ N , (21)

where D is the number of days. The average cost allocation is

compared to the optimal expected costs J∗
i . Assuming station-

arity of the peak consumptions random variables, the expected

allocation converge to some values ξ∞i = limD→∞ ξ̄i(D) ≤
J∗
i for i ∈ N , as it is shown in Figure 3.

VII. CONCLUSIONS

In this paper, we explored sharing opportunities of elec-

tricity storage elements among a group of consumers. We

Fig. 3. Average allocation of the realized storage cost

used cooperative game theory as a tool for modeling. Our

results prove that cooperation is beneficial for agents that

either already have storage capacity or want to acquire storage

capacity. In the first scenario, the different agents only need

the infrastructure to share their storage devices. In such a case

the operative scheme is really simple, because each agent only

has to storage at off-peak periods as much as possible energy

that they will consume during peak periods. At the end of the

day, the realized cost is shared among the participants. In the

second scenario, the coalition members can take an optimal

decision about how much capacity they jointly acquire by

minimizing the expected daily storage cost. We showed that

the cooperative games in both the cases are balanced. We also

developed allocation rules with analytical formulas in both

the cases. Thus, our results suggest that sharing of storage in

a cooperative way is very much useful for all the agents and

the society.
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control of end-user energy storage,” IEEE Transactions on Smart Grid,
vol. 4, no. 2, pp. 789–797, 2013.

[9] C. Wu, D. Kalathil, K. Poolla, and P. Varaiya, “Sharing electricity
storage,” in Decision and Control (CDC), 2016 IEEE 55th Conference

on. IEEE, 2016, pp. 813–820.
[10] W. Saad, Z. Han, M. Debbah, A. Hjørungnes, and T. Başar, “Coalitional
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APPENDIX

A. Proof of Theorem 2

We shall prove that J defined by (4) is a subadditive

function. For any nonnegative real numbers xS , xT , CS , CT ,

we define JS = J(xS , CS), JT = J(xT , CT ), JS∪T =
J(xS + xT , CS + CT ), then

JS =
∑

i∈S

πiCi + πh(xS − CS)
+ + πℓ min{CS , xS},

JT =
∑

i∈T

πiCi + πh(xT − CT )
+ + πℓ min{CT , xT },

JS∪T =
∑

i∈S∪T

πiCi + πh(xS + xT − CS − CT )
++

πℓ{CS + CT , xS + xT }.

We can distinguish four cases1: (a) xS ≥ CS and xT ≥ CT ,

(b) xS ≥ CS , xT < CT and xS + xT ≥ CS + CT , (c)

xS ≥ CS , xT < CT and xS + xT < CS + CT , and (d)

xS < CS and xT < CT . Using simple algebra it is easy to

see that for all of these cases, JS∪T ≤ JS+JT or equivalently,

J(xS + xT , CS + CT ) ≤ J(xS , CS) + J(xT , CT ), (22)

and this proves subadditivity of J . Since the storage cost

function u(S) = J(xS , CS), the cost sharing cooperative

game (N , u) is subadditive. �

B. Proof of Theorem 3

We notice that the function J is positive homogeneous,

i.e, for any α ≥ 0, J(αxS , αCS) = αJ(xS , CS). J is also

subadditive as per Theorem 2. Thus for any arbitrary balanced

map α : 2N → [0, 1]
∑

S∈2N

α(S)u(S)

=
∑

S∈2N

α(S)J(xS , CS)

=
∑

S∈2N

J(α(S)xS , α(S)CS ) [positive homogeneity]

≥ J(
∑

S∈2N

α(S)xS ,
∑

S∈2N

α(S)CS ) [subadditivity]

= J(
∑

i∈N

∑

S∈2N

α(S)1S(i)xS ,
∑

i∈N

∑

S∈2N

α(S)1S (i)CS)

= J(xN , CN ) = u(N ).

and this proves that the cost sharing game (N , u) is balanced.

�

1Since xS , xT , CS and, CT are arbitrary nonnegative real numbers,
any other possible case can be easily recast as one of these four cases by
interchanging S and T .

C. Proof of Theorem 4

We begin by proving that the cost allocation (9) is an

imputation, i.e. ξ ∈ I. An imputation is a cost allocation

satisfying budget balance and individual rationality.

If xN ≥ CN :
∑

i∈N

ξi =
∑

i∈N

πiCi + πh(xN − CN ) + πℓCN = u(N ).

If xN < CN :
∑

i∈N

πiCi + πℓxN = u(N ).

Thus,
∑

i∈N ξi = u(N ) and the cost allocation {ξi : i ∈ N}
satisfies budget balance.

The individual cost is:

u({i}) =

{

πiCi + πh(xi − Ci) + πℓCi xi ≥ Ci

πiCi + πℓxi xi < Ci

If xN ≥ CN :

ξi = πiCi + πh(xi − Ci) + πℓCi

= πiCi + πℓxi − πδ(Ci − xi)

= u({i})− πδ(Ci − xi)
+.

If xN < CN :

ξi = πiCi + πℓxi

= u({i})− πδ(xi − Ci)
+.

Thus, ξi ≤ v({i}) for all i ∈ N , and the cost allocation ξ is

individually rational. Since it is also budget balanced, it is an

imputation, i.e. ξ ∈ I.

Finally, to prove that the cost allocation ξ belongs to the

core of the cooperative game, we have to prove that
∑

i∈S ξi ≤
u(S) for any coalition S ⊆ N .

If xN ≥ CN :
∑

i∈S

ξi =
∑

i∈S

πiCi + πh(xS − CS) + πℓCS

=
∑

i∈S

πiCi + πℓxS − πδ(CS − xS)

= u(S)− πδ(CS − xS)
+.

If xN < CN :
∑

i∈S

ξi =
∑

i∈S

πSCS + πℓxS

= u(S)− πδ(xS − CS)
+.

Thus,
∑

i∈S ξi ≤ u(S) for any S ⊆ N and the cost allocation

ξ is in the core of the cooperative game (N , u). �

D. Proof of Theorem 6

Let S and T two arbitrary nonempty disjoint coalitions, i.e.

S, T ⊆ N such that S ∩ T = ∅. Define

Φ(xS) = min
CS≥0

EJ(CS ,xS). (23)

We shall prove that Φ(xS) is a subbadditive function.

http://www.pecanstreet.org/
http://rameznaam.com/2015/10/14/how-cheap-can-energy-storage-get/
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From the definition of J given in (4),

J(xS , C
∗
S) + J(xT , C

∗
T ) ≥ J(xS + xT , C

∗
S + C∗

T ).

Taking expectations on both sides,

Φ(xS) + Φ(xT ) ≥ EJ(xS + xT , C
∗
S + C∗

T )

≥ min
C≥0

EJ(xS + xT , C)

= Φ(xS ,xT ),

and this proves subadditivity of Φ.
Subadditivity of the cost sharing cooperative game (N , v)

is a consequence of the subadditivity of Φ because v(S) =
Φ(xS) for any S ⊆ N . �

E. Proof of Theorem 7

First, we prove that the function Φ defined by (23) is

positive homogeneous. Observe that if a random variable z
has CDF F , then the scaled random variable αz with α > 0
has CDF: Fα(θ) = P{αz ≤ θ} = F (θ/α). Then, for any

α ≥ 0 and γ ∈ [0, 1], γ = F (C) if and only if γ = Fα(αC).
This means that if CS is such that Φ(xS) = EJ(xS , C

∗
S), then

Φ(αxS) = EJ(αxS , αC
∗
S).

For any α ≥ 0, and from the definition of the daily storage

cost J (4), J(αxS , αC
∗
S) = αJ(xS , C

∗
S). Taking expectations

on both sides, Φ(αxS) = αΦ(xS), and this proves positive

homogeneity of Φ.
Now, balancedness of the cost sharing cooperative game

(N , v) is a consequence of the properties of function Φ
∑

S∈2N

α(S)v(S) =
∑

S∈2N

α(S)Φ(xS )

=
∑

S∈2N

Φ(α(S)xS ) [positive homogeneity]

≥ Φ(
∑

S∈2N

α(S)xS ) [subadditivity]

= Φ(
∑

i∈N

∑

S∈2N

α(S)1S(i)xS)

= Φ(xN ) = v(N ).

F. Proof of Theorem 8

We begin by proving that the cost allocation given by (9)

satisfies budget balance,
∑

i∈N

ζi =
∑

i∈N

πℓE[xi] +
∑

i∈N

πSE[xi | xN ≥ C∗
N ]

= πℓE

[

∑

i∈N

xi

]

+ πSE

[

∑

i∈N

xi | xN ≥ C∗
N

]

= πℓE[xN ] + πhE[xN | xN ≥ C∗
N ]

= v(N ).

The cost allocation is in the core if we prove that v(S) ≥
∑

i∈S ζi for any coalition S ⊂ N . Please note that individual

rationality is included in the previous condition.
The storage cost for a coalition S ⊂ N is

v(S) = πℓE[xS ] + πSE[xS | xS ≥ C∗
S ]

= πSC
∗
S + πhE[(xS − C∗

S)
+] + πℓE[min{C∗

S ,xS}].

Note that

πh(xS − C∗
S)

+ + πℓ min{C∗
S ,xS} ≥ πh(xS − C∗

S) + πℓC
∗
S .

and therefore,

πSC
∗
S + πhE[(xS − C∗

S)
+] + πℓE[min{C∗

S ,xS}]

≥ πSC
∗
S + πhE[(xS − C∗

S)] + πℓC
∗
S .

Let us define the sets A+ = {xN ∈ R+ | xN ≥ CN },

A− = R+\A+, and the auxiliary function ψ(xN ) as follows

ψ(xN ) =

{

πh if xN ∈ A+

πℓ if xN ∈ A−

Let F (xS ,xN ) be the joint distribution function of the peak

consumptions (xS ,xN ), then

E[ψ(xN )(xN − C∗
N )]

= πℓ

∫

R+

∫

A−

(xS − C0
S)dF (xS ,xN )+

πh

∫

R+

∫

A+

(xS − C∗
S)dF (xS ,xN )

≤ πh

∫

R+

∫

A+∪A−

(xS − C∗
S)dF (xS ,xN )

= πh

∫

R+

(xS − C∗
S)dF (xS ,xN )

= E[(xS − C∗
S ],

and consequently,

πSC
∗
S + πhE[(xS − C∗

S)] + πℓC
∗
S

≥ πSC
∗
S + E[πα(xS − C∗

S)] + πℓC
∗
S

Now, we prove that the right hand side of the previous

expression equals
∑

i∈S ζi

πSC
∗
S + E[ψ(xN )(xS − C∗

S)] + πℓC
∗
S

= πSC
∗
S +

∫

R+

∫

R+

ψ(xN )(xi − C0
i )dF (xS ,xN ) + πℓC

∗
S

= πSC
∗
S + πℓ

∫

R+

∫

A−∪A+

(xS − C∗
S)dF (xS ,xN )+

(πh − πℓ)

∫

R+

∫

A+

(xS − C∗
S)dF (xS ,xN ) + πℓC

∗
S

= πSC
∗
S + πδ

∫

R+

∫

A+

(xS − Ci
S)dF (xS ,xN ) + πℓE[xi]

= πSC
∗
S +

πS
1− γS

∫

R+

∫

A+

(xS − C∗
S)dF (xS ,xN ) + πℓE[xi]

= πS
1

P{xN ≥ CN }

∫

R+

∫

A+

xSdF (xS ,xN ) + πℓE[xi]

=
∑

i∈S

ζi

Thus,
∑

i∈S ζi ≤ v(S) and the cost allocation {ζi : i ∈ N}
is an imputation in the core.
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