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ARTICLE

Host methylation predicts SARS-CoV-2 infection
and clinical outcome
Iain R. Konigsberg1,7, Bret Barnes2,7, Monica Campbell1, Elizabeth Davidson1, Yingfei Zhen1, Olivia Pallisard1,

Meher Preethi Boorgula1, Corey Cox1, Debmalya Nandy3, Souvik Seal3, Kristy Crooks1, Evan Sticca1,

Genelle F. Harrison1, Andrew Hopkinson 1, Alexis Vest1, Cosby G. Arnold1, Michael G. Kahn 1,

David P. Kao 1, Brett R. Peterson1, Stephen J. Wicks1, Debashis Ghosh3, Steve Horvath 4, Wanding Zhou5,

Rasika A. Mathias 1,6, Paul J. Norman1, Rishi Porecha2, Ivana V. Yang1,8, Christopher R. Gignoux1,8,

Andrew A. Monte1,8, Alem Taye2,8 & Kathleen C. Barnes 1,8✉

Abstract

Background Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused

on RT-PCR1. Host epigenome manipulation post coronavirus infection2–4 suggests that DNA

methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected

individuals, and help predict COVID-19 disease severity, even at initial presentation.

Methods We customized Illumina’s Infinium MethylationEPIC array to enhance immune

response detection and profiled peripheral blood samples from 164 COVID-19 patients with

longitudinal measurements of disease severity and 296 patient controls.

Results Epigenome-wide association analysis revealed 13,033 genome-wide significant

methylation sites for case-vs-control status. Genes and pathways involved in interferon

signaling and viral response were significantly enriched among differentially methylated sites.

We observe highly significant associations at genes previously reported in genetic association

studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse

regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for

case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and

progression to death, respectively.

Conclusions In summary, the strong COVID-19-specific epigenetic signature in peripheral

blood driven by key immune-related pathways related to infection status, disease severity,

and clinical deterioration provides insights useful for diagnosis and prognosis of patients with

viral infections.

https://doi.org/10.1038/s43856-021-00042-y OPEN

1 School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 2 Illumina, Inc., San Diego, CA, USA. 3 Colorado School of Public
Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 4University of California Los Angeles, Los Angeles, CA, USA. 5 The Children’s
Hospital of Philadelphia, Philadelphia, PA, USA. 6 Johns Hopkins University, Baltimore, MD, USA. 7These authors contributed equally: Iain R. Konigsberg, Bret
Barnes. 8These authors jointly supervised this work: Ivana V. Yang, Christopher R. Gignoux, Andrew A. Monte, Alem Taye, Kathleen C. Barnes.
✉email: kathleen.barnes@cuanschutz.edu

Plain language summary
Viral infections affect the body in

many ways, including via changes to

the epigenome, the sum of chemical

modifications to an individual’s col-

lection of genes that affect gene

activity. Here, we analyzed the epi-

genome in blood samples from peo-

ple with and without COVID-19 to

determine whether we could find

changes consistent with SARS-CoV-2

infection. Using a combination of

statistical and machine learning

techniques, we identify markers of

SARS-CoV-2 infection as well as of

severity and progression of COVID-

19 disease. These signals of disease

progression were present from the

initial blood draw when first walking

into the hospital. Together, these

approaches demonstrate the poten-

tial of measuring the epigenome for

monitoring SARS-CoV-2 status and

severity.
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Coronaviruses (CoV) comprise a large group of human and
animal pathogens, including the novel enveloped RNA
betacoronavirus referred to as severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2)5. This pathogen is asso-
ciated with coronavirus disease 2019 (COVID-19) first identified
in Wuhan, China in 20196 and declared a pandemic on March 11,
20207. Since the onset of the pandemic, multiple tests for diag-
nosing COVID-19 have been launched, including real-time
reverse transcriptase–polymerase chain reaction (RT-PCR), spe-
cific antibody detection, and next-generation sequencing assays
that query for current or past infections1. With the exception of
next-generation sequencing, which can discern viral subtypes,
most diagnostic tests are viral strain dependent, can carry a high
false negative rate, do not discern if the virus is viable and
replicating, and do not predict clinical outcomes of infection1,8,9.
For example, pre-symptomatic patients may test negative10,11

while patients who have recovered may continue to test positive
though they are no longer infectious12. Accurate diagnostics are
urgently required to control continued communal spread, to
better understand host response, and for the development of
vaccines and antivirals13.

Individuals infected with SARS-CoV-2 have a variable course
of infection, ranging from asymptomatic to death. Although the
fatality rate varies tremendously according to demographic
characteristics and co-morbidities14, the U.S. ranks as one of the
countries with the highest COVID-19 mortality rates15. Identifi-
cation of which SARS-CoV-2-infected patients are most likely to
develop severe disease would enable clinicians to triage patients
via augmented clinical decision support. Having more informa-
tion on disease severity has recently become critical due to
widespread lack of hospital and intensive care unit (ICU) capa-
city, necessitating difficult decisions about resource triage. To our
knowledge, no test can predict COVID-19 clinical course or
severity, although work on cytokine abundance ratios after hos-
pitalization has been proposed as a prognostic indicator of severe
outcomes16.

There is considerable evidence that enveloped RNA viruses
such as CoV can manipulate the host’s epigenome via evolved
functions that antagonize and regulate the host innate immune
antiviral defense processes2,3, specifically via DNA methylation.
Viral-mediated antagonism of antigen-presentation gene expres-
sion in the case of Middle East respiratory syndrome coronavirus
(MERS-CoV) was shown to occur via DNA methylation4. DNA
methylation changes at cytosine-phosphate-guanine (CpG) sites
have been increasingly leveraged in the emerging field of clinical
epigenetics to characterize unique epigenetic signatures that
diagnose disease. To date, considerable success has been
demonstrated in developing highly accurate and robust machine
learning (ML)-based disease classifiers using DNA methylation
patterns to differentiate Mendelian disorders17, behavior
disorders18, coronary artery disease19, and some cancers20–22.
Consequently integration of a methylation-based disease classi-
fication can result in relevant improvement in clinical
practice23,24.

With a goal to leverage Illumina’s Infinium MethylationEPIC
Array to classify differential methylation signatures of SARS-
CoV-2-positive (hereafter referred to as SARS-CoV-2+, regard-
less of additional symptoms) and control peripheral blood DNA
samples (either confirmed SARS-CoV-2 negative or samples
collected prior to the SARS-CoV-2 pandemic), we conducted this
study to determine whether DNA methylation patterns could
differentiate SARS-CoV-2-infected patients from non-infected
patients from whole blood obtained from patients. Our secondary
objective was to determine whether DNA methylation patterns
could differentiate patients with SARS-CoV-2 infection who go
on to develop severe disease. In this study, we identified a strong

COVID-19-specific epigenetic signature in peripheral blood dri-
ven by key immune-related pathways related to SARS-CoV-2
infection status, disease severity, and clinical deterioration.

Methods
Source of data. This protocol was reviewed and approved by the
Colorado Multiple Institutional Review Board (COMIRB) and the
research adheres to the ethical principles of research outlined in
the U.S. Federal Policy for the Protection of Human Subjects.
SARS-CoV-2+ were defined as those patients who tested positive
for SARS-CoV-2 infection via a routine diagnostic RT-PCR assay
in the Biobank at the Colorado Center for Personalized Medicine
(Thermo Fisher Scientific, Waltham, MA) or in the UCHealth
University of Colorado Hospital Clinical Laboratory (Roche
Diagnostics, Indianapolis, IN) of a nasopharyngeal swab collected
in viral transport media; controls were defined as those who tested
negative. Peripheral blood DNA samples were collected in EDTA
tubes from patients seen at the UCHealth University of Colorado
Hospital and tested for SARS-CoV-2 epigenetic signatures starting
on March 1, 2020. Blood specimens were collected from patients
consented to the University of Colorado COVID-19 Biorepository
(https://research.cuanschutz.edu/university-research/covid-19-
clinical-research/covid-19-biobank-specimen-repository) or the
University of Colorado Emergency Medicine Specimen Bank
(EMSB)25. Control subjects included patients from each study
who tested negative for SARS-CoV-2 infection during the index
visit. Through the University of Colorado COVID-19 Bior-
epository and the EMSB, patients tested were consented for blood
collection and data abstraction from their electronic health record
(EHR). Data obtained from EHR abstraction included demo-
graphics, past medical history, laboratory testing (including SARS-
CoV-2), treatments, vital signs, hospital disposition, and clinical
outcomes. In addition, previously collected samples from patients
with acute upper respiratory viral infections (SARS-CoV-2 nega-
tive/pan-negative for upper respiratory viral infections/positive for
non-SARS-CoV-2 upper respiratory viral infections) between
February 5, 2018 and January 1, 2020 were obtained through the
EMSB as SARS-CoV-2-negative controls. Additional biospeci-
mens included discarded clinical samples from patients not
approached for biorepository enrollment through the UCHealth
University of Colorado Hospital Clinical Laboratory. Discarded
samples were linked to a limited EHR dataset through the Col-
orado Center for Personalized Medicine’s health data warehouse,
Health Data Compass, and then deidentified. The limited dataset
included age, gender, race, ethnicity, viral test status (SARS-CoV-2
and other upper respiratory viruses), and clinical outcomes. The
use of discarded samples and accompanying limited datasets was
determined to be exempt from Institutional Review Board
approval and the need for informed consent by COMIRB. All
samples were frozen at −20 °C after collection prior to processing
for methylation analyses.

Customization of the Infinium MethylationEPIC Array. Fol-
lowing a literature review of known epigenetic associations with
respiratory viral infections from recent CoV outbreaks, we
selected additional content to enrich Illumina’s Infinium
MethylationEPIC Array26. We specifically enriched for known
HLA alleles accounting for known genomic variation27 as well as
multiple alternative haplotypes and unpublished reference
sequences spanning the major histocompatibility complex geno-
mic region, the natural killer cell immunoreceptor, and other
immunogenetic loci (e.g., cytokines, interferon response genes), to
enhance the sensitivity of immune response detection. The cus-
tom panel targeted 262 genes with 7831 additional probes. While
the majority of the additional probes targeted unique sequences
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within the genome, a number of probes were intentionally
designed to target genomic sequences with a limited degree of
repetitiveness. The list of genes and the Illumina IDs for the
probes that target these genes are given in Supplementary Data 1.

Methylation array and quality assessment
DNA extraction. Biospecimens were accessioned and tracked via
the Colorado Anschutz Research Genetics Organization
(CARGO) laboratory information management system (LIMS).
Genomic DNA was extracted from SARS-CoV-2+ peripheral
blood on the bead-based, automated extraction Maxwell(R) RSC
System (Promega) in a biological safety cabinet in compliance
with CDC safety guidelines and procedures for handling SARS-
CoV-2 biospecimens (biospecimens from SARS-CoV-2+ cases)
and from controls on the Autogen FlexSTAR+ using the Auto-
gen’s FlexiGene Blood Extraction Kit (Holliston, MA). All DNA
samples were quantified using both absorbance (NanoDrop 2000;
Thermo Fisher Scientific, Waltham, MA) and fluorescence-based
methods (Qubit; Thermo Fisher Scientific, Waltham, MA) using
standard dyes selective for double-stranded DNA, minimizing the
effects of contaminants that affect the quantitation. DNA quality
was assessed using an Agilent TapeStation (Agilent, Santa Clara,
CA). Samples were then uploaded to CARGO’s LIMS, barcoded,
and labeled.

Bisulfite conversion and amplification. Purified DNA samples
were processed using the Zymo EZ-96 DNA Methylation bisulfite
conversion kits (Zymo, Irvine, CA) as described previously28. The
product of this process contains cytosine converted to uracil if it
was previously unmethylated. The bisulfite-treated DNA was
subjected to whole-genome amplification via random hexamer
priming and Phi29 DNA polymerase, and the amplification
products were then enzymatically fragmented, purified from
dNTPs, primers, and enzymes, and applied to the Illumina chip
as described elsewhere29.

Hybridization and single-base extension. The bisulfite-
converted amplified DNA products were denatured into single
strands and hybridized to the customized Infinium 850K Bead-
Chip (EPIC+; Illumina Inc., San Diego, CA) via allele-specific
annealing to either the methylation-specific probe or the non-
methylation probe. Hybridization to the chip was followed by
single-base extension with labeled di-deoxynucleotides according
to Illumina’s Infinium protocol at the CARGO laboratory28.

Fluorescence staining and scanning of chip. The hybridized
BeadChips were stained, washed, and scanned to show the
intensities of the un-methylated and methylated bead types using
Illumina’s iScan System.

Data processing and quality control (QC). IDAT files were
processed, filtered, and normalized using the SeSAMe R
package30. Type I probe channel was empirically determined
from signal intensities. Probe detection P values (representing the
ability to differentiate true signal from background fluorescence)
were calculated for each color channel using pOOBAH, which
leverages the fluorescence of out-of-band (OOB) probes. Nor-
malization was performed using noob, which uses OOB probes to
perform a normal-exponential deconvolution of fluorescent
intensities31. Finally, a common dye bias that results in greater
intensities in the red color channel was corrected to ensure that
the distribution of intensities in the two color channels were
equal. Probes with detection P values >0.05 were removed, as well
as probes overlapping single-nucleotide polymorphisms with
global minor allele frequency >1% in dbSNP, probes with poor

mapping, and probes containing non-unique sequence according
to Zhou et al.32. Beta values were logit-transformed into M values
for modeling. Probes with >25% missingness were removed.
Remaining missing values were then imputed with mean probe
M value.

Selection of discovery/training and testing cohorts and con-
trols. Case–control analyses were performed using the entire
genotyped dataset passing epigenetics QC, with SARS-CoV-2
infection status determined as described above (see Fig. 1 for a
summary of the workflow). Analyses were repeated including and
excluding controls with other upper respiratory infections vali-
dated by clinical respiratory panels. Measurements of disease
severity and progression (e.g., hospitalization, ICU admittance,
ventilator use) were extracted from chart review within the
UCHealth EHR.

Control for batch effect and robustness of the identified epi-
genetic signatures. To minimize possible batch effects and other
sources of variability, samples were split into SARS-CoV-2+ and
SARS-CoV-2-negative control sets, randomized within sets to
account for unavailable phenotypes, and then distributed across
chips. To reduce batch and plating effects a minimum of two
SARS-CoV-2+ and two SARS-CoV-2-negative control samples
were run on each chip (12 chips per plate, 8 samples each) and
positive/negative status was randomized across the chip.

Epigenome-wide association study (EWAS) with COVID-19
disease status. Preprocessing was performed using the GLINT33

package for association testing and estimating components to
adjust for population structure (EPISTRUCTURE34) and we used
ReFACTor35 to account for cell-type proportions. We chose
ReFACTor to account for cell proportion information in a data-
driven fashion. The linear mixed-effects model in GLINT was fit
to each probe, testing for differences based on COVID-19 disease
status while correcting for age, sex, chip position, 6 ReFACTor
components, 1 EPISTRUCTURE component, and a variance
component representing individual covariance36. Enrichment of
top hits in common databases was performed using enrichR37.
Probes were sorted by adjusted P value and the top 800 genes to
which differentially methylated probes map were used as input to
perform overrepresentation enrichment analysis within Gene
Ontology (GO) categories, Kyoto Encyclopedia of Genes and
Genomes pathways (KEGG), BioPlanet, and WikiPathways38–41.
Probes were annotated to CpG island and genic regions using
annotatr42.

Clinical outcome stratification. Clinical data were abstracted via
detailed chart review for all EMSB patients. COVID-19 disease
severity was determined by an ordered severity score of (1) dis-
charged from emergency department; (2) admitted to inpatient
care; (3) progressed to ICU; and (4) death. We also determined a
hospital duration variable, where individuals without a measured
hospital stay (i.e., discharged from the emergency department)
were assigned 0 and individuals who died were removed from the
cohort for length of stay analysis to minimize bias associated with
timing of decisions to withdraw care.

Construction and validation of a prediction model. Predictive
modeling was performed using the Lasso43 and Elastic Net44

algorithms for sparse penalized regression modeling available in
the glmnet software package45. For each prediction model, only
autosomal methylation probes passing QC were included, to
remove potential confounding from sex-linked chromosomes. No
demographic, clinical, or cell count variables were included in the
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predictive models, requiring the algorithm to pick CpG sites with
strong enough associations to surpass the level of penalization of
the hyperparameters across the entire least angle regression path.
For each trait of interest, a separate model was created and best-
fitting parameters were chosen after tenfold cross-validation
either by maximizing area under the receiver-operator char-
acteristic curve (AUC for dichotomous traits) or minimizing
mean-squared error (MSE for quantitative traits). Each was fit
across a grid of parameters representing various strengths of
penalization and combination of L1 and L2 penalties under the
weighted elastic net model. Both the days of hospitalization and
case severity were modeled as continuous outcomes. To assess
performance for quantitative traits in a manner comparable to
dichotomous traits, we swept across potential cutpoints to esti-
mate AUCs for this newly derived dichotomous variable. While
case–control status was the primary phenotype of interest, mea-
sures of severity were assessed in SARS-CoV-2+ cases only.

To estimate stability of estimation in parameters, we performed
100 iterations of model training and testing. Within each iteration
for case–control and severity outcomes, we employed tenfold
cross-validation to derive the model and a held-out set of 30%
removed from train/test to gauge out-of-sample performance of
the best-fitting model. Our train/test and validation splits were
created within each stratum to preserve representation across all
outcomes and reflect the distribution across the total dataset. For
hospitalization duration, the train/test/validation models had
instability in convergence and so we reverted to a train/test model
using the tenfold cross-validation within the default cv.glmnet()
function. We assessed overall performance for the dichotomous
COVID+/COVID− case–control status using out-of-sample
AUC, the F1 score (a measure of the relationship between
precision and recall), the distribution of best-fit λ penalty via
cross-validation, and the number of probes chosen in the final
model. For the quantitative outcomes, we assessed overall
performance using out-of-sample R2, the slope of the model,
and λ number of probes. Finally, these were stratified each across

the elastic net weights (α) from 0.01 to 1, representing the
proportion of ridge (L2) vs Lasso (L1) penalty to choose a final
model. All models included nonzero λ to encourage sparsity (a
L2-only model would include prediction from the entire array).
Final models described in results were chosen based on best-
performing (maximum R2 or AUC) vs median values for each
chosen set of hyperparameters. The final, out-of-sample best-fit
prediction for each outcome was considered the “methylation
score” used in downstream modeling, characterization of
association, and determination of potential confounding with
demographic and blood cell proportion characteristics.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Study cohort. We identified 675 patients tested for either SARS-
CoV-2 or other acute upper respiratory infections. Of these, 164
were SARS-CoV-2+ by RT-PCR, 58 historical EMSB patients had
positive (non-SARS-CoV-2) acute upper respiratory viral RT-
PCR tests, 7 had positive (non-SARS-CoV-2) acute upper
respiratory viral RT-PCR tests during the pandemic, and 296
were negative for all viral infections and thus served as controls.
We excluded 32 samples from the dataset as these were derived
from a run with failed hybridization and removed 8 duplicates,
resulting in a final cohort of 525 (Fig. 1). Supplementary Table 1
summarizes the demographics and clinical outcomes of patients
tested, including proportion of patients with other acute upper
respiratory infections. Incidences of non-SARS-CoV-2 respira-
tory infections are displayed in Supplementary Table 2. The
median time from sample collection to hospital admission was
0 days (interquartile range (IQR): 0, 1). In all, 83.4% of samples
were collected on the day of admission and only 8.7% were col-
lected >5 days after hospital admission. Samples from patients

Current Enrollment

Existing Samples

Samples with unknown
infection status

(N=572) Previously collected
Respiratory infection+

(N=69)

Samples with known
respiratory infections

(N=7)

DNA Methylation
(N=644)

3 failed extractions
1 failed bisulfite

conversion
}

Exclusions (N=11)
9 Duplicates
2 No SARS-CoV-2 results

QC failed (N=108)
77 Methylation failures
31 Low mean intensity

Samples Analyzed
(N=525)

Other respiratory
infections

(N=65)

SARS-CoV-2-Positive
(N=164)

SARS-CoV-2-Negative
(N=296)

Study Sample Flow

Fig. 1 Flowchart of the study sample collection. Six hundred and forty-eight samples were collected for analysis, of which 644 were processed on
MethylationEPIC arrays. Five hundred and twenty-five arrays passed quality control and were included in the final analysis.
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who were SARS-CoV-2 positive were drawn with the first blood
sample in the emergency department 83% (median blood draw:
0 days, IQR: 0, 1 days) of the time; other samples drawn later in
the hospital admission in this group were from patients who
developed COVID while admitted to the hospital. Samples from
two SARS-CoV-2-positive patients were obtained 6 and 9 days
prior to hospital admission. Samples from SARS-CoV-2-negative
patients were drawn with the first blood sample in the emergency
department 80% (median blood draw: 0 days, IQR: 0, 2 days) of
the time and 95% were drawn within 7 days of hospital admis-
sion. No samples were obtained on days before hospital admis-
sion in the SARS-CoV-2-negative patients.

Disease-specific DNA methylation signature and differentially
methylated probes. We first performed an EWAS to identify
biological signals associated with COVID-19 disease status. After
adjustment for age, sex, array position (batch effect), cell propor-
tions via ReFACTor and ancestry via EPISTRUCTURE

components, EWAS of COVID-19 disease status in 164 SARS-
CoV-2+ compared to 296 controls yielded 13,033 significant CpGs
mapping to 6117 unique genes at false discovery rate (FDR)-
adjusted P value < 0.05 (Fig. 2 and Supplementary Data 2), with
moderate inflation that is typical of EWAS46 (Supplementary
Fig. 1). In total, we observed 35 probes with an unadjusted P value
< 10−20, and 183 with an unadjusted P value < 10−10. Significant
probes overlap 1625 CpG islands and 1001 FANTOM547 enhancers
(Supplementary Fig. 2). We observed that 52.1% of all significant
probes are hypermethylated; however, 78% of the top 100 probes
sorted by adjusted P value are hypomethylated (Fisher’s Exact Test
P value= 9.46 × 10−8). Custom probes on the EPIC+ chip are
enriched in significant EWAS results (P value= 9.94 × 10−7, Fish-
er’s Exact Test): specifically, 1.72% of EPIC probes are significant as
opposed to 2.51% of custom probes. Principal component analysis
of top associations reveals clustering by COVID-19 disease status
(Supplementary Fig. 3). Because of concerns that population
admixture may confound results, the COVID-19 disease status
EWAS was repeated with EHR-defined race and ethnicity as

a

b

-lo
g 1

0
)eulav

p
detsujda(

-lo
g 1

0
)eulav

pjda(
-lo

g 1
0

)eulav
pjda(

Change in % methyla�on

Fig. 2 Differentially methylated CpGs associated with SARS-CoV-2 infection. a Miami plot (top panel) of hypermethylated (top) and hypomethylated
(bottom) probes in SARS-CoV-2+ compared to control samples. Significance lines represent FDR-adjusted P value <0.05 threshold. b Volcano plot of
significant (red; FDR-adjusted P value <0.05) CpG sites (blue CpG sites have FDR-adjusted P value >0.05). Change in percentage methylation on the x axis
represents the difference in average beta value at a site between cases and controls. Probes for intergenic CpG sites do not have gene annotations. Data
used to plot this figure are available as Supplementary Data 5.
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additional covariates beyond that modeled via EPISTRUCTURE
and mixed-effects modeling. This had a minimal effect on results.

Top hypomethylated CpG sites show strong enrichment for
interferon and viral response-related pathways including Type I
Interferon Signaling Pathway (KEGG, adjusted P value=
7.40 × 10−10) and Negative Regulation of Viral Genome Replication
(GO:BP, adjusted P value= 1.93 × 10−6; Supplementary Fig. 4a).
Hypermethylated CpG sites also show enrichment for relevant
biological processes such as Focal Adhesion (GO:CC, adjusted P
value= 0.0187; Supplementary Fig. 4b). cg17114584, the third most
significant probe with an adjusted P value of 1.78 × 10−43, shows
16.9% hypomethylation in cases. This CpG is located in exon 6 of the
interferon regulatory factor 7 (IRF7). IRF7 encodes a transcription
factor that regulates the expression of interferon a and b, as well as
interferon-stimulated genes. Other top CpGs are in genes relevant to
viral response: OAS1 (2’-5’-oligoadenylate synthetase 1) is interferon-
induced and activates RNase L, which degrades viral (and cellular)
RNA (adjusted P value 1.05 × 10−21, 3.8% methylation change).MX1
encodes an interferon-induced GTPase that inhibits viral replication.
DTX3L and PARP9 form a complex that is involved in interferon-
mediated antiviral defenses. This complex has also been shown to
promote M1 polarization in macrophages by preventing STAT1
phosphorylation48. IFIT3 encodes another interferon-induced anti-
viral protein. Overall, we observe strong hypomethylation of
interferon- and viral response-related pathways, which is expected
as these pathways are activated transcriptionally in SARS-CoV-2+
individuals49.

Specificity of the COVID-19 disease signature from other
respiratory infections. We next compared 164 SARS-CoV-2+
samples to 65 samples with other upper respiratory infections to
determine the specificity of the methylation signature to SARS-
CoV-2. This analysis yielded 1501 significant CpGs (adjusted P
value < 0.05) (Supplementary Data 3), of which 780 (52%) were
present in the SARS-CoV-2+ compared to controls analysis
(Fig. 3). Comparison of 65 other (non-SARS-CoV-2) upper
respiratory infection samples to controls yielded 516 significant
CpGs (Supplementary Data 4), of which 116 (22%) were present
in the SARS-CoV-2+ compared to controls analysis. Further-
more, examination of the strength of the signal demonstrates that
the shared probes in the SARS-CoV-2+ vs control and SARS-
CoV-2+ vs other upper respiratory infections analysis have low P

values and high effect sizes, whereas this is not the case for probes
shared by SARS-CoV-2+ vs control and other upper respiratory
infections vs control analyses (Supplementary Fig. 5a). These
comparisons suggest high specificity of the COVID-19 disease
epigenetic signature. To further investigate this, we examined the
significant CpGs from our COVID-19 disease signature com-
pared to control EWAS. We observe the same trend of high
correlation of effect sizes (methylation change) in SARS-CoV-2+
compared to control and SARS-CoV-2+ compared to other
respiratory infections (Pearson R= 0.87; P < 2.2 × 10−16) and
very low correlations of effect sizes in SARS-CoV-2+ compared
to control and other upper respiratory infections compared to
control analyses (Pearson R=−0.027; P= 0.0022) (Supplemen-
tary Fig. 5b). While we do not have sufficient power to examine
the specific viruses (other CoV, influenza, etc.), these results
strongly point to the specificity of our COVID-19 disease epige-
netic signature to detect SARS-CoV-2 infection.

Development and validation of a classification model for pre-
diction of disease classes and disease severity. To combine
methylation data across the genome into a single predictor, we
employed ML models of sparse regression trained via cross-
validated glmnet45 as described in “Methods.” To determine the
sensitivity of our model, 460 subjects (SARS-CoV-2+ vs controls)
from the testing cohort were supplied to the classification model,
with prediction optimized after the approach defined in “Meth-
ods.” Only methylation probes were used in feature selection. All
models showed relative stability across iterations (Supplementary
Fig. 6) and yielded sparse results. Details of each top model are
available in Supplementary Table 3. The best-fitting model has a
performance of 93.6% in cross-validation for detecting SARS-
CoV-2 infection (Fig. 4a, b). Model performance was similar in
females and males (93.7 and 93.5%, respectively). In addition,
model performance on older individuals and younger individuals
(median age= 56 years) was comparable: 94.4 and 92.8%,
respectively. Similarly, race/ethnicity information was not sig-
nificantly correlated with case–control score (all groups P > 0.05).
When age and race/ethnicity categories were included in a mul-
tivariable model along with our prediction score, no additional
covariates significantly predicted COVID-19 disease status (all
other P > 0.4). Similarly, BMI was not associated (P ~ 0.4).

To determine the direct association of methylation with clinical
outcomes, an additional logistic regression was performed for the
subset of individuals with complete blood cell count (CBC) data
(341 individuals total). The inclusion of additional blood cell
count data did not impact the association between the
methylation score and outcome (P value < 2 × 10−16 with or
without adjustment), and in the larger CBC model (including
total hematocrit, white blood cell count, platelets, neutrophils,
lymphocytes, monocytes, eosinophils, and basophils), only
hematocrit (P ~ 0.05) approached nominal significance. The
inclusion of hematocrit moderately improved Akaike information
criterion in logistic regression but with limited performance
increase in multivariable modeling AUC (93.6 vs 94.1%).

Severity analysis focused on hospital length of stay (median
duration: 6 days, IQR 3–11, max 53 days), as well as across the
spectrum of severity (34 discharged from emergency room, 84
hospitalized, 35 admitted to ICU, and 11 deaths). The best-fitting
model for hospital duration had a cutpoint at 20 days, yielding an
AUC of 79.6% with 14 individuals with longer stays vs 135 with
shorter stays (or 0 days in hospital) (Fig. 4c). Dichotomizing the
best-fit severity measurements yields AUCs of 79.1, 80.8, and 84.4
for hospital admission vs discharge, floor hospital admission vs
ICU, and survival vs death, respectively (Fig. 4d).
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Discussion
Here we report DNA methylation profiling in conjunction with
analysis using ML techniques to identify a SARS-CoV-2-specific
epigenetic signature in peripheral blood from a large cohort of
individuals tested using conventional RT-PCR technology. We
also describe the development of a classification algorithm that
has high sensitivity and specificity in predicting infection and in-
hospital clinical deterioration and that confidently rejects the
probability of healthy individuals to be affected by SARS-CoV-2
infection. While any predictive signal invites concern of potential
confounding, the methylation signature (derived solely from
CpGs, not including any clinical or demographic information) we
observe is not driven by confounding either from demographics
or typical laboratory measurements (e.g., blood cell counts, BMI).
Our findings suggest that measurement of methylation signals
that arise during and after SARS-CoV-2 infection may provide
clinicians the ability to detect viral infection as well as predict
patient clinical course after viral challenge. Unlike sequencing,
RT-PCR, and antibody tests, the methylation array is able to
predict the severity of SARS-CoV-2 infection and ultimately
could provide clinicians with information on how to manage
patients infected with SARS-CoV-2.

Our results support the hypothesis that the host epigenome, as
measured in peripheral blood, is modified by infection from
SARS-CoV-2 and can be used to identify novel biology and it is
useful for clinical diagnosis, prognosis, and triage. Despite being a
heterogeneous tissue, we relied on peripheral blood as the target
tissue because it has proven to be a reliable source for generating
epigenetic signatures and disease classifiers in other settings50–56.
In this study, we observed many methylation changes that are, on
average, >10% differentially methylated in the SARS-CoV-2+
group, including IRF7 and MX1 interferon-related genes. These

are much larger effect sizes than typically observed in EWAS in
peripheral blood57 and similar to the clinical utility of epigenetics
observed in cancer22. We did not observe confounding by cell
proportions, measured by CBC from the EHR, providing strong
support for the epigenetic signature of SARS-CoV-2. Although
cell-type heterogeneity can be a strong confounder in epigenetic
studies58–60, we did not pursue adjustment for cell proportions
beyond adjustment for cell-type proportions using ReFACTor35

because our primary objective is to develop a COVID-19 disease-
specific diagnostic methylation platform, rather than interrogate
the underlying pathology.

To validate the customized EPIC methylation platform as a
reliable tool for the clinical diagnosis of COVID-19 disease, we
performed an EWAS with SARS-CoV-2 infection status. We
observed that the epigenetic signature of SARS-CoV-2 infection is
enriched for pathways related to host viral response, and speci-
fically for Type I Interferon signaling that is a hallmark of host
response to this virus61. Our findings of altered DNA methylation
in interferon response genes are in concordance with published
results of changes in the expression of interferon response genes
by SARS-CoV and MERS-CoV viruses through changes in his-
tone modifications2,3. One of the most significant probes
(adjusted P= 1.77 × 10−43, 16.9% hypomethylation) is located in
the gene encoding IRF7; loss-of-function variants in 13 genes
including IRF7 were recently found to be associated with life-
threatening COVID-19-associated pneumonia62. Another
interferon-induced gene, OAS1, was similarly significant (adjus-
ted P value 1.05 × 10−21, 3.8% methylation change). In a recent
GWAS on critical illness due to SARS-CoV-2, significant asso-
ciations and replication were observed for variants in the OAS
gene cluster, which includes OAS163, for which variants had
previously been associated in candidate gene studies of SARS-
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CoV infection61,64. Also, in a Mendelian randomization study it
was recently shown that increased circulating OAS1 proteins were
associated with reduced SARS-CoV-2 susceptibility and disease
severity65. Collectively, published genomics studies support sev-
eral of the strongest associations observed in our study.

Previous work also demonstrated that viruses that cause severe
disease (e.g., MERS-CoV, H5N1) alter host response by changing
methylation landscape of antigen-presenting genes in the HLA
region4. While we did not observe genome-wide significant sig-
nals at classical HLA alleles, we observed six FDR q < 0.05 probes
in the region, in HLA-V, DOA, DQA1, DQA2, and DRA, albeit
with attenuated significance compared to top CpGs (minimum
q ~ 0.0109), suggesting that the mechanism of host manipulation
by SARS-CoV-2 may be different. However, these results should
be interpreted with caution as interrogation of the HLA region is
complex; HLA-V for example is a pseudogene66.

As the signatures identified in this study appear to be reactive
to the disease, aspects of the disease process are expected to
impact these results. Namely, we anticipate these changes to be
time-sensitive, as the infection will need to have spread enough to
induce methylation changes. Similarly, our case–control variables
were defined by RT-PCR, which can carry a high false negative
rate depending on the stage of infection and timing of sample
collection9, and may have reduced the classification accuracy.
However, we have follow-up EHR information for the patients in
this cohort, which minimizes the risk of misclassification bias. We
do not expect this potential confounder to affect the measures of
severity used in this study as these were determined directly from
chart review, but we acknowledge that, for the initial analysis, the
numbers of cases may have limited the statistical power and
prognostic ability of ML. With additional cases that account for
inherent genetic variability within the population, methylation
patterns will become more refined and the AUC of these ML
models to predict disease severity is likely to increase. While
“duration of hospital stay” may not be as immediately actionable
as predicting ICU admittance or ventilator use, and it is con-
founded by pre-existing frailty, social support (or lack of), socio-
economic status, and need for ongoing care once the acute illness
has receded, the increased variability in the continuous outcome
provides improved signal as observed both in our EWAS and our
ML modeling. For this analysis, the 11 individuals who died were
removed from duration analyses, as their length of stay would be
difficult to compare to those who survived. Although the emer-
ging field of epigenetics has demonstrated actionable classification
with much smaller sample sizes in contrast to traditional GWAS
in other common disease domains67, we recognize that additional
cases, and in particular understanding the less-severe end of the
spectrum (which are likely to be under-reported in data from
health systems), will improve our understanding of outcomes
across the spectrum of disease severity. We note that, even in our
limited sample sizes, the AUCs for ICU admittance still indicate
there is signal that can be resolved through future collections.
Another limitation of our work is the specificity of the epigenetic
signature to SARS-CoV-2 over other respiratory infections. Initial
targeted epigenetic analyses demonstrate a trend toward differ-
ential methylation, though these findings are limited by low
numbers. Currently, we are targeting the collection of biospeci-
mens from patients with respiratory infections other than SARS-
CoV-2 for these follow-up studies.

Researchers have previously compared the robustness of DNA
methylation profiling vs RNA transcriptome profiling in devel-
oping classifiers for different disease states24,68–70. One of the
advantages of DNA methylation analysis compared to RNA
analysis arises from the relative stability of deoxyribonucleic acid
over ribonucleic acid9,71. The inherent instability of RNA, due to
its 2’-OH group and the ubiquitous presence of ribonucleases,

requires the use of plasticware, buffers, and processing reagents
that are devoid of chemical and enzymatic species that stimulate
RNA hydrolysis. Contamination even with a small amount of
ribonuclease can degrade RNA samples to the degree where they
cannot be analyzed.

The strong signature of viral-driven epigenetic changes may
have the ability to detect SARS-CoV-2 infection in patients who
never develop symptoms (asymptomatic) and in patients who are
not yet symptomatic (pre-symptomatic)72. While asymptomatic
testing following exposure has increased in recent months, the
current testing strategy in the U.S. still predominantly targets
symptomatic patients despite estimates that asymptomatic
patients represent 40–45% of infected individuals10,72. Trans-
mission during the incubation period has been reported, and the
viral load of symptomatic and asymptomatic patients is
similar73–76. The relationship between SARS-CoV-2 viral shed-
ding and risk of transmission is unclear, and the percentage of
transmission attributable to asymptomatic or pre-symptomatic
infection of SARS-CoV-2 is unknown77. We believe that the
epigenetics platform may efficiently identify asymptomatic and
pre-symptomatic infections, which may, if applied broadly, aid in
limiting the spread of SARS-CoV-2.

Due to the widespread occurrence of SARS-CoV-2 and pro-
gression to COVID-19 disease, there is the need for scalable
testing technologies that can deployed on the national level for
surveillance, screening, and prognosis for those infected. The
purpose of this study was to identify high-confidence host
methylation biomarkers that are able to indicate SARS-CoV-2
infection and predict clinical course of the viral disease in a given
patient. This study is a first step toward selecting biomarkers for
inclusion on a high-throughput methylation beadchip array
specifically for the clinical diagnosis of COVID-19 disease that is
also cost-effective given the added value of predicting subsequent
clinical outcomes. To that end, we focused on sparse predictive
models. Notably, these models are not significantly confounded
by demographics or blood cell count information, denoting their
specificity to the current infection of the patient, and reducing
concern of overfitting to one patient sub-population. These bio-
markers can also be used in risk stratification of SARS-CoV-2-
infected patients, an unmet need given that none of the existing
testing modalities (nucleic acid amplification tests, antigen tests,
serology/antibody tests) can achieve this level of specificity. By
identifying DNA methylation patterns associated with critical
illness, we contend that a methylation test will provide patient-
specific treatment targets before critical illness ensues. Pre-
emptive dexamethasone11,78, anticoagulation12, or new pharma-
cologic targets may prevent mortality, guided by these epigenetics
patterns. Although our findings must be complemented with
further clinical assessment, our model has shown its capacity to
leverage methylation quantification as an innovative strategy to
generate epigenetic signatures that assess host response to SARS-
CoV-2, which is scalable and may have the ability to confirm
positive tests in asymptomatic patients and entire communities,
and may ultimately differentially diagnose other viruses causing
similar symptoms all within in a comprehensive high-throughput
manner.

Data availability
The datasets generated during the current study are available in the Gene Expression
Omnibus repository (accession GSE167202) and include original .idat array files and the
final processed data matrix for DNA methylation analyses. Source data used to generate
Figs. 2 and 4 are available as Supplementary Data 5 and 6.

Code availability
Raw array data were processed using SeSAMe 1.7.6 in R 4.0.1. EWAS was carried out
using GLINT 1.0.4 on the command line. Machine learning analyses were done using
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Glmnet v2.0-18 and Data.table v1.11.4 in R 3.5.1. Plotting and consolidation was done in
R 4.1.0 using ggplot2 v2_3.3.3 and Data.table v1.14.0. All packages are available through
CRAN and Bioconductor.
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