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Chapter 1

The Complex Ginzburg-Landau

Equation

1.1 Background

It is the goal of this thesis to investigate some of the unusual and spectacular
propérties near the transition to turbulence in a two-dimensional field of limit-cycle
oscillators. Of particular interest are the dynamics of topological defects (vortices)

associated with the onset of turbulence.

- The complex Ginzburg-Landau equation describes an extended reaction-diffu-

sion system close to the bifurcation of a steady state into a stable, periodic orbit.

. In the jargon of nonlinear dynamics, it is the amplitude equation corresponding to

- a Hopf bifurcation. Because of the generality of the assumptions under which it

is derived, the complex Ginzburg-Landau equation describes systems in contexts
other than chemical reactions with diffusion. Examples include Rayleigh-Bénard

convection and the phase fields of multimode lasers. The reaction-diffusion model
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is, however, a sufﬁciently general model to frame our discussion.
A reaction-diﬁusion system, strictly speaking, is a set of ordinary differential
‘equations coupled by diffusion terms. In the continuum limit, one speaks of a-
reaction-diffusion ﬁeld, where the total system is viewed as a large number of iden-
tical, lpcal systems diffusively coupled. Oscillating chemical reactions, like the
Belousov-Zhabotinskii reaction [1, 2, 3, 4, 5], are prime examples — even a small,
spatially-isolated part of the solution is observed to oscillate in a well-defined limit
cycle. An analogy to statistical mechanical models of critical phenomena is tempt-
ing, especially to the Landau picture of a coarse-grained local order parameter.
However, there are important differencés. In the reaction-diffusion oscillator field,
small regions can persist in states far from equilibrium, thereby forming spatiotem-
poral patierns. Such patterns include waves, kinks, vortices, domain walls, cellular
structures, and percolation clusters of activation [6, 7, 8]. Turbulence, i.e. rapid
and irregular spatial and temporal dynamics, is another dramatic example of the
wide range of order-disorder phenomena exhibited by these excitable media. |

Let us start with a general nonlinear reaction-diffusion equation

oX

= =f(Xn) +DVX (1.1)

where 4 is a tunable control parameter, and D a matrix of diffusion constants (often
diagonal). In the case of ‘a chemical reaction, X is a set of chemical concentrations,
and p the rate of inflowing chemicals. As a function of u, the éystem may move
from a homogeneoqs time-independent state to a homogeneous time;per'iodic state
beyond a critical value p.. Figure 1.1 displays the generic phase portraits below and
above kc. The development of a stable periodic orbit from a stable steady state of

an evolution equation is called a Hopf bifurcation, after a famous theorem of E. Hopf
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Figure 1.1: Typical subcritical (a) and supercritical (b) phase trajectories.



[9]‘ guaranteeing the existence of a oné-pararneter family of stable, periodié solutions -
under a: set of fairly geﬁeral. conditions. Generically, 4 can be used to parametrize -
this family of periodic orbits [10]. In the present study, we éoncentrate on the
order and disorder in a field of these limit-cycle oscillators. Of ‘course, over the
space of all oscillator fields, many properties of the dyﬁamics vary from system to
system; nevertheless, there exists a universal behavior close to the Hopf bifurcation.
The universal equation is called the complex Ginzburg-Landau equation, aftef its

similarity to the order parameter equation of superconductivity and superfluidity.

1.2 Near the Hopf bifurcation
1.2.1 Taylor expansions

Let Xo(u) be a stationary, homogeneous sélution of (1.1), -
f(Xo,u) = 0. . - (12)

The expansion of (1.1) in a Taylor series, in terms of the deviation from the steady
state, u(i',t) =X — X, reads

| % = (L+DV?u +h.o.t., - (1.3)

- where L is the Jacobian Of (Xo0)/0X. Of the higher-order terms in (1.3), the first

two are (using the summation convention)

18 (Xo) » |
Muu = §—an8XkuJuk, - (1.4)
: 1 83f(X0) ’
N = e gy . .
uuu 63Xj3Xk3X1u]ukul (1.5)

For the moment, we ignore the spatial degrees of freedom coming from the

Laplacian in (1.3). Assume, that up to u. = 0, Xy is stable to small perturbations,
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and unstable for ¢ > 0. The stability of Xy depends. on the conﬁguration of

eigenvalues A given by

 Lu=)u . (1.6)

If any eigenvalue of L has a positive real part, there exist perturbations which
increase exponentially as t — oo, i.e. Xg becomes unstable. Qur assumption is that

just one eigenvalue Ao, or just one pair of complex conjugate eigenvalues (Aoy A3),

first crosses the imaginary axis, from the left half plane, when p = 0. The Hopf

theorem requires two hypothéses on L [10, 11]. The first Hopf assumption is that
the critical (4 = 0) eigenvalues are purely imaginary, that is if A = o(u) % iw(p),
then o(0) = 0,w(0) = wo. The second Hopf condition is that the two imaginary
eigenvalues cross f_he irﬁaginary axis with finite velocity as p goes through zero;
in other words, o’(0) > 0. A hypothetical critical configuration of eigenvalues is

plotted in Fig. 1.2.

Allowing, now, the influence of the diffusive coupling.in (1.3), i.e. non-uniform
perturbations, spatial modes and the inﬂuenée of systemv size come into play. For
large systemns, t.h_e eigenvalue spectrum obtained from (13) is almost continuous.
Each eigenvalue of L is extended into an entire branch, as shbwn schematically
in Fig. 1.3. The rﬁn'ge of applicability of the Hopf theorem is thus restricted to
arbitrarily sméll neighborhoods around g.. Spatial variations are therefore essential
to the question of the stability of the bifurcated solution, and more generally, any
reduced version of Eq. (1.3) must necessarily take into account spatial as well as

temporal degreés of freedom.
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Figure 1.2: Hypothetical distribution of eigenvalues at p = p..
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Figure 1.3: Critical distribution of eigenvalues for an extended system, in corre-

spondence with Fig. 1.2



1.2.2 Rescaling space and time

Near 'cfiticality; the Jacobian (and second and third derivatives), eigenvector and

eigenvalue may be self-consistently expanded in powers of u:

L = Lo+pLy+p’La+--- | (1.7)
M = Mo+ uM; + u*Mg +--- (1.8)
N = No+uN;+g?Na+ - . (1.9)
u = u1/2u1+pu2+p3/ZU3+--- (1.10)
A ='/\o+./,t'/\1+u2/\2+-:.-- o (1.11)

where \; = o7 + 1w, A2 = 02 + tw,, and so on.

We now wish to derive a contracted form of (1.1), which admits slow modulations -
(in space and timé) of the periodic orbit. In the last section, based on the nearly -
continuous family of eigenvalues, we argued that.in the limit 4 — 0 only the
uniform mode survivéd. However, if we are dealing with an infinite system, then no
neighborhood of :tz';uo is small enough to apply the Hopf ideas. Reversihg the limits,
by taking the system size L to infinity for fixed values of u, should admit many
non-uniform modes into our fixed neighborhood. On dimensional grounds, once L
becomes larger than 1/,/z, a number of modes will have time scales comparablé
to wo!, and should be treated with equal weight, sirnce all modes in the critical>
‘neighborhood also share similar growth and decay ratés.

It is clear that we must somehow “get inside” the neighborhood around the
critical mode, and Qe do this by rescaling our space and time variables. Since A (a

frequency) has real part of order g, time is naturally rescaled so that

T = ut. : (1.12)
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Allowing a slow spatial dependence of u, rescaling of space takes the form

s=./ur. | (1.13)

The eigenvector u can now be considered a function of the three variables ¢, 7 and s.
Physiéally, this is equivalent to dealing with the long-time, long-wévelength modes

in their “natural” variables 7 and s, and reserving ¢ for the overall periodic orbit.

1.2.3 Amplitude equation

To first order, the substitutions in Section 1.2.2 lead to an eigenfunction in lowest-
harmonic form [12],

ui(s, 7,t) = A(s, 7)uge + c.c. = A(s, T)uge™* + c.c., (1.14)

where A(s, 7) is some complex amplitude (to be determined), and ug is the eigen-
vector of Lg corresponding to Ao. .By further rné.tching powers of 4, up can be
expressed in terms of u; and the higher-brder derivatives in Eq. .(1.3).

Matching the third-order terms in this way [12, 13], yields a closed-form expres-

sion for A(s, ), the complez G’inzburg-Landau equation,

A ) '
g—T = MA — g|A’A + RV2A (1.15)

(valid in this form for p > 0). Here the complex constants ¢ and A hide some of

- the messy details of the intermediate calculation [13]. Explicitly,

g = 4ﬁ0M0U0L0_1M(quUQ' + - ,, . (1.16)
‘ZﬁoMouO*(LQ\— 2inI)’IMououg — 3ugNougugug”

h = {eDuo, | | o



- where ug™ is the complex conjugate of ug, and Qg is the left eigenvector of Ly. (The
operators M and N for heterogeneous operands can be read off from Eqgs. (1.4,1.5).)
Without sacrificing generality, Eq. (1.15) can be further rescaled to simplify the

three complex coefficients A, g, and h. A scale transformation, and rotation (of

A),
r = +/o1/Re(h)s, ' (1.18)
t = oy, ) (1.19)
A = \/[Re /oy e A, ©(1.20)

yields a complex Ginzburg-Landau equation of the form (dropping the prime on A)

aa_’: = A= (1+ia)|APA+(1+i8)V2A, )
where a :--,Im('g)/Re(g) and B = Im(h)/Re(h). This particular form clearly reveals
the two-dimensional nature of the real parameter space (a, 8), with o controlhng
the nonhnear term and B the diffusional term. Henceforth by complex szburg-

Landau” (or CGL) we refer to this two-parameter equation (1.21), which, in our

context, can be considered the simplest field of nonlinear oscillators.

1.3 Coupled-map formulation

1.3.1  Basic idea

As first noted by Oono and Puri {14], an efficient way to study Ginzburg-Landau
models nurherically is by simulating a lattice of dynamical maps which interact

through a diffusive coupling. Such a coupled-map lattice is constructed to mimic

10



a set of partial differential equations, like (1..21). Although we focus on the two-
dimensional s;quare‘ lattice in this work, the methods described here are applicable
to any lattice. The idea [15, 16] is to integrate (1.21) in two distinct operations: a
local map A, = F(A,) which takes care of the A — (1 +ia)|A]*A part of (1.21),
and a nonlocal operator which represents the Laplacian term (1 + iﬂ)VQA._ This
nonlocal operator will be seen to be the product of an arbitrary number of Laplace-
operator terms (‘c.f. Section 1.3.3). The coupled-rﬁap algorithm is well-suited to the

Single-Invstruction Multiple-Data (SIMD) architecture of the Connection Machine

2, and our numerical work takes full advantage of this.

1.3.2 Timescales

The local and nonlocal pieces are updated separately, so two distinct time steps 7
and 7o are introduced. To see what. this separation implies for our particular fo;rh

of the CGL, we write the time update for the whole equation,
Any1 = An + 7o[An — (1 +ia)|AL P4, + (1 + iB)V2A,). (1.22)

Reserving 7 for the Laplacian term, we define a time step 7 for the local terms by

7o = a7 (a < 1), and simultaneously rescale A: A, = A /\/a. Dropping the prime

on A,, the result is
Ans1 = An + 7[aAn — (1 +10)|An* An] + 1o(1 +iB)V2A,. (1.23)

The unit coefficient of the A, term in (1.22) is here rescaled by the factor a = 75/7.
The new time derivative An41 — A, is now taken to be 7 parts local and 7, parts
nonlocal. Under this scheme, a rescaled “canonical” CGL equation should also have

this effective coefficient. By convention, the coefficient is denoted x (= 7o/7) in the

11



new equation,

0A

7 = HA- (1 +120)|A]PA + (1 +:8)V3A, . (1.24)

since, like the control parameter in Section 1.2.1 its change of sign marks the lo-
cation of the Hopf bifurcation. For the purposes of simul;‘a.tion,'Eq. (‘1.24) replaces

Eq. (1.21) as our canonical model.

1.3.3 Nonlocal map

We first consider the nonlocal part of (1.24), the complex heat equation

0A

S = (L+if)v?A. )

Using the time step 7o, we write the formal sdluvtion to (1.25),
A(r,t + o) = eIV 4(r 1), | _ v | (1.26) |

We approxir_r_la,té this solﬁtion by a nonlocal map
A=1+= (1+zﬂ)V2) (1.27)

where V2 now denotes the discrete Laplacian formed by summing over the nearest

neighbors r’ to site r,

V24 Z(A (r',t) = A(r, 1)), (1.28)

and m is chosen sufficiently large. Simulational experience has shown that m = 5
is large enough so that short-wavelength instabilities are avoided - larger values of

m had no appreciable effect on the observed dynamics.

12



1.3.4 Local map

The local map F(A) is constructed by omitting the Laplacian from Eq. (1.24). Let

A = Re*, then the local equation becomes

R = uR-R3 (1.29)

é = —aR? - v (1.30)

Integration over a time interval 7 renders the above as

- JER(1) ..
R T) = .
(t+71) N PERTESYOE | (1.31)

g(t+7) = ¢(t) — raR(t)’ (1.32)

(where X = e=2#7), and these comprise the map F(A). The iterative coupled-map

system is obtained by combining the local and nonlocal parts,
A(r,t+1) = F(A'(r,t)), (1.33)

with the parameter values 7 = I,m = 5,7 = 0.2, 4 = 70/7 = 0.2, which we use

throughoxllt'.‘ The lattices used are of sizes 128 x 128 through 1024 x 1024.

1.4 Homogeneous solution

1.4.1 Linear stability

The supercritical homogeneous (i.e. spatially uniform) solutions of the CGL equa-

tion (1.24), are just A = 0 and

Aty = peTes. | (1.34)



The latter is Hopi s bifurcated limit cycle. While the zero solutlon is unstable, the
Hopf theorem only guarantees the stability of (1. 34) when uis 1nﬁn1te51mally close
to ue = 0. For practical uses, a finite value of Iz 1s requlred e.g. the value p=02
preferred in the present numerical study. To' extend the analysis to finite y, it is
necessary to exarﬁine the evolution ef weak perturbations about the solution (1.34).
in space and time. For clarity, our discussion uses the simple, canonical form (-1;24),
) father than the full numerical scheme based on coupled maps. .

We consider weak perturbations of.amplitude (n) and phase (0) of the form
12, 16]

A = (VI +n(x,1))eiomtioten - (1.35)

Substituting (1.35) into the CGL equation ‘(1.24), and .separat_ing the result into

real and imaginary parts, yields two coupled time-evolution equations for n and 0:

o= =2un+Vin-B(/u+n)VH0~ (1.36)
28V - V0 = 3En® = (Vi +n)|[VO]? - 7
(VE+m)0 = (VE+n)V?0 = 2apun + BV + (1.37)

2V - V6~ 3ay/in® — B(\/E + m)|V8I* — an®.
Linearizing the above in 7 and 8 results in the linear equation

(=B (1.38)

with ( = " and

V-2 =B /uV? |
B= . vE . (1.39)

g
L2205
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- Transforming to momentum space leads to the eigenvalue equation
B( = iw(, | (1.40)

where | v

k? 4+ 2u —B/1 k?
8 12 , <
\/—El”2 + 20/ k?

The resulting dispersion relation reduces to

B=- (1.41)

N o
w(k) = i(p + k%) (%) (1+ aB) ' o (1.42)

for small k. From (1._40)~, we see that if Im(w) < 0 then the small-k (long-
wavelength) modes are exponentially enhanced, i.e. the solution (1.34) is unstable.
Likewise, for Im(w) > 0, the long-wavelength modes decay exponentially. The sign

of the quantity‘.(l + af3) therefore marks the instability. When
l1+af <0, (1.43)

even the uniform limit-cycle oscillation loses its stability. This condition for long-
wavelength instability is known as the Benjamin-Feir stability limit [17].

1.4.2 Benjamin-Feir and o - 3 svpace

Exactly the same analysis can be peffbrmed for our coupled-map lattice model. The
discreteness of that rnQdel results in a numerical shift in the analogous condition
for instability; namely,

: v+aB <0, ‘ | C(L.44)
‘where v = (1= 1)/2u7 and X is defined after Egs. (1.31,1.32). Note that as ur — 0,

the discrete Benjamin-Feir condition (1.44) reduces to the continuum version (1.43).

15




Figure 1.4: o — f phase diagram with continuum (dashed) and discrete (solid)

Benjamin-Feir stabilityv lines.
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In our simulations, \;Vith pt = 0.2, we have v = 0.8242. If we make a plot of &
versus 3, then the hyperbola representing the Benjamin-Feir condition is shifted
for the discrete case by about 18% (cf. Fig. 1.4).

| The Benjamin-Feir condition has the nice symmetry of invariance under a simul-
taneous change of sign of @ and 8. This is not just accidental; the CGL equation
(1.24) shares this symmetry. To see this, take the complex conjugate of (1.24').«
This will obtain a CGL equation for the field A*, with the signs flipped on a and 3.
- Only two quadrants of Fig. 1.4 are needed then. Furthermore, the stability line liés
in only one of these two quadranté, the other quadrant being entirely Benjamin-
Feir‘sta_ble. in this study, we therefore consider just quadrant II (a > 0,8 < 0) of

Fig. 1.4 as our phase diagram [18].

1.4.3 The Brusselator

In this sectidn, we apply the analysis of Section 1.2 to a chemical reaction model
known as the Brusselator [19, 20]. Our treatment will closely follow that of refer-
ences [13] and [5]. |

Consider the following reaction mechanism [21]:

A — X (1.45)

B+X — Y +D (1.46)
20X +Y — 3X ' (1.47)
X — E. (1.48)

Assume that the reaction are irreversible and that the concentrations of A and B

are kept constant. The rate equations for X and Y are then
X = kA—kBX + kXY — kX (1.49)

17




Y = kBX — ks X?Y. (1.50)

These can be simplified through the change of variables 7 = k4¢, a = %\ /%A, b=
2B,z = VX, y=1/8Y. The new rate equations, with diffusion turned on, are

then

& = a—(b+1)z+z%y+ D,V (1.51)
y = bz—z*y+ D,V%y. (1.52)
The uniform, steady-state solution to these equations is (zq, yo) = (a,‘b/a), and

- we define our fluctuation about this fixed point by u = (z,y) — (z0,30) = (¢, 7).

Rewriting (1.51,1.52), the time evolution of the fluctuations is given by

€ = (b=1) +a'n+ D.V%+ f(6,m) (1.53)

= —b —a’n+ D,V — f(E,n), (1.54)

where f(£,n) = b€%/a + 2an + £%n. The above is transparently linearized, and the

eigenvalues of L are easily computed: A = 3(b—1—a? % \/(b —1- dz)z —4a?).
Therefore, the steady state is stable iff Re(A) < 0,1.e. b <1+ a2 Let uvs suppose
that a 1s constant, and take b as our tunable control parameter a la u. Then we
have the critical value b, = 1 + a® marking the Hopf bifurcation. We can confirm
that this is truly Hopf by computing the critical eigenvalues: A\, = +ia.

To facilitate the small-u expansion, we shift and normalize 'phe control parameter

to 4 = (b — b.)/b. It is then straightforward to find the next set of operators and

eigenvectors:
Lo = yLi=(1+a°) 1, D= , (1.55)

18
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Ug = 7ﬁ0 = 5 (l - ia» _ia)v/\l = 3(1 + 61,2), (156)
~1+1/a - - : :
and ,
1 : ' . »
h= -2-[D3_. + Dy —ia(D, — Dy)]. - : (1.57)

Likewise, the Mo and Ng operators can be corﬁputed to give the constant g:
g = [6a + 3a® + (4 — Ta®+ 4a)]/6a°. (1.58)

Remembéring that o = Im(g)/Re(}g) and ,8 = [Im(h)/Re(h), we finally arrive at

the expressions

4—Ta?+ 40
© = @D : (1.59).
D, - D,

,B = aDy-{—Dx’

(1.60)

which relate our a and § parameters back to the rate and diffusion constants.
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Chapter 2
Vortexv‘ Stgtes

IN GIRVM IMVS NOCTE
ET CONSVMIMVR IGNL

- Latin palindrome

2.1 Vortices |

2.1.1 Defects

Totally different from the homogeneous state (1.34), are solutions that allow the.
field A to assume phase singularities, or phase-less points. As an example of phase
conﬁgurations that result in points of undefined phase, consider Fig. 2.1a. In the
two-dimensional context, we refer to these defects as vortices, since the phase field
undergoes rotation on a closed loop encircling vone. Proceeding clockwise around
the" vortex in Fig. 2.1a, the field A also rotates clockwise. Same for Fig. 2.1b.

However,'i‘n Fig. 2.1c (or d), the field A rotates counterclockwise along the same

clockwise-oriented loop. These latter configurations are called antivortices. The
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Figure 2.1: Singular phase configurations represented by unit vectors: (a) Field

around a vortex of charge 1. (b) Field in (a) rotated by =. (c) Field around an

antivortex of charge —1. (d) Field in (c) rotated by .
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phasé #(r,t) at a vortex (or antivortex) center is undefined, but |A| = 0 so that A
remains well-defined. (Where the “distinc‘ti‘on between vortices and antivortices is
irrelevant, we refer to them collectively as VOItié€S‘.’) Since these defects fésult from
the nontrivial tdpology of the surrounding field, they cannot simply decay away or
be smoothéd over. Only the merger of a vortex and antivortex can relax the field
to a simpler topology. | |

In some respects, vortices and antivortices behave like positive and negative
charges. This is best seen if the above definitions of vortices are rewritten in terms
of the gradient‘ field V. The circulation of the gradient of the phase over a closed

loop containing n, vortices and n_ antivortices is
A¢=qus-d1,=27r(n+-n-). (2.1)

Physically, this is the tv;'o-dimensioﬁal analog of Gauss’ theorem from electrostatics.
One interprets ﬁ_,,—-n_ as the total topological charge of n positive and n_ negative .
unit charges. (Higher integral charges are conceivable, but seemingly never appear
in our simulations.) An interesting feature of this analogy is that the usual electric
ﬁeid lines aré now isophase Iinés, and the usual eq_uipétential lines are now gradient

field lines (cf. Fig. 2.2). In other words, the usual electrostatic features are rotated

~ by =/2.

2.1.2 Topological charge and boundary conditions

An important global constraint on the numbers and types of vortices can be ap-
preciated through a simple argument. It is related to the notion of “combing the
hair” on a two-dimensional surface. First, picture the phase field as a field of unit

vectors lying on a sphere. It is clear that the presence of a source and sink (as in
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Figure 2.2: Two regions (positive and negative) of topological charge. Isophase

lines (¢ = constant) and gradient field (V¢) are indicated.
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(c) (d)

Figure 2.3: (a) Source, sink and (cos ¢,sin ¢) lines on a sphere. (b) Topological
charges replace source and sink. (c) Handle replaces two positive charges. (d) A

subsequent handle liberates two negative charges.
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Fig. 2.1 a,b) on the sphere leads to an otherwise continuous vector field (Fig. 2.3 a).
In addition to this vortex-vortex pair, any number of vortex-antivortex pairs may
be present, perturbing but not breaking the original field lines. These can then be
separated and moved around at will. So much for the sphere - it can thus support

a net topological charge of +2 (Fig. 2.3 b).

Imagine now making a torus by adding a handle to the sphere, with the handle
ends attached at the locations of the original vortex-vortex pair. These two vortices
are no longer needed as the handle surface can smoothly carry the flow from source
to sink (Fig. 2.3 ¢). The torus therefore supports a net zero charge. Likewise, the
attachment of any new two-vortex handle, and the subsequent unbinding of two
vortex-antivortex pairs, leads to the liberation of two antivortices — a decrease of 2
in net charge (Fig. 2.3 d). Therefore, a surface with g handles (i.e. a surface of genus
g) supports a net charge of 2 + g x (—2), which is exactly the Euler characteristic

x for a compact, orientable surface.

In tl-lis study, the use of periodic boundary conditions is topologically equivalent
-to embedding in a toroidal surface (¢ = 1), so the relevant constraint on the total
topological charge is @ = 2 — 2¢g = 0, as stated above. For systems where unit-
charged vortices and antivortices are the only defects, this guarantees equal numbers

of each: ny =n_.

2.1.3 Counting vortices

A simple method can be used to count the vortices and antivortices in the system.

We take the counterclockwise circulation about all the elementary plaquettes in the
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Figure 2.4: Elementary plaquette with phase variables.

lattice, using the discrete form of (2.1):

Qo= o [f(6s = 65) + [(d— d2) + flda = d) + fr = 60, (22

where ¢; € [—7, 7] and f is a 27-periodic functioﬁ, with f(z) = z in the domain
|2] < =. _

In practice, the amplitude |A| is always slightly larger than zero on our discrete
lattice, and therefore no phase on a plaquette is ever truly undefined. From the
definition in (2.2), it is easy to see that the possible cases are @, = 0,£1. The total

number of vortices plus antivortices is then the sum of |@,| over the entire lattice.

2.1.4 Spiral waves

Having dealt with the topological properties of point defects, we now turn to the

geometry of actual vortices. Since an analytic solution describing the vortices does
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Figure 2.5: Contours of Re(A) = 0 and Im(A) = 0 for a vortex solution.

not exist [13], we begin with information gleaned from numerical experience [15

22, 23, 24].

Generally speaking, the actual solutions resemble our schematics (Figs. 2.1)
only near the vortex center. The general case has the geometry of Fig. 2.5, where
the curves Re(A) = 0 and Im(A) = 0 form tightly-wound, Archimedean spirals.
(The two lines must meet at the vortex core, where A = 0.) A more complete view
of the spiral-wave structure can be had from a phase portrait, using a color map
extending from dark blue to dark red, corresponding to the phase range — to ,
respectively. Fig. 2.6 shows a vortex in a system with parameters o = 0.72, 8 =
—1. Experimental observations of concentration waves in the Belousov-Zhabotinskii
reaction show remarkably similar features to the phase plot in Fig. 2.6a. [5, 25]. The
corresponding amplitude plot (Fig. 2.6b), shows how the amplitude goes to zero at

the vortex core, and flattens out far from the core. Here the color map ranges from
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dark blue at the amplitude minimum (zero), to dark red at the amplitude maximum
(not sAhown). Aside from its intrinsic worth, the advantage or the disadvantage
(depending on one’s point of view) of the amplitude portrait is the great reduction
in amount of visual information it presents. The absolute phase is lost, but this
loss is compensated for by the clearly pictured localization of the vortex core. For
many-vortex states, we find that plots of the amplitude are indispensable for our
qualitative and quantitative arguments.

The steady rotation of spirals, seen numerically as well as experimentally, lends
the vortex solutions their wave character. Rotation of the spiral pattern, at a fre-
quency {2, can be expressed by a phase function of simplified argument: ¢(r,0,1) =
¢(r, 0 £ Qt). This, with our earlier observation that ¢(r, 6 + 27, t) = ¢(r,0,t) + 2,
and together a long argument [13], implies that ¢ can be approximated asymptot-
ically by

é(r,0,t) = 17 + cologr + 6 + Q. (2.3)

Far from the vortex core (at 7 = 0), the field A is well approximated by a radial plane
wave of constant |A| and linearly increasing ¢. We will find this characterization

particularly useful in Section 4.2.2.

2.2 Frozen States

2.2.1 Initial conditions

Here we begin a discussion of the many-vortex states, both ordered and disordered,
generated by the CGL equation. Our initial conditions of choice are uniformally-

distributed, random values of amplitude and phase. Amplitude is chosen from the
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interval [0, 1], and phase from the interval [—7,7].

Starting from these random initial conditions, and depending on the parameters
a and [, a state populated by a low density of stationary vortices and antivortices is
eventually reached. The existence of this “frozen” state is based almost entirely on
numerical observations [15, 18]. (Note that it is the amplitude which is effectively
frozen here; a spiral wave rotates around each vortex core.) Elphick and Meron
[26] found solutions consisting of a bound pair of vortices for 8 < 0. We find
these stationary, frozen states even for 8 = 0, suggesting the need for an intuitive,
physical argument supporting them. From the local point of view, the general
situation is one of two annihilating waves, of the same wavelength and frequency,
colliding and unable to grow further into each others territory. Another perspective
comes from thinking of the vortices as interacting point particles, whose interactions

are screened by the spatial and temporal rotation of the surrounding phase field.

2.2.2 Amplitude portraits

As a graphic catalog of the different varieties of frozen vortex states, we perform
the following simple exercise: Let a large (512 x 512) system evolve to a late time
(t = 10%), and take a snapshot of the amplitude at that time. We make two passes
through the o — § phase diagram, one horizontal (fixed «), and one vertical (fixed
B). The parameter values for these two slices are a = 0.5 (Figs. 2.7,2.8) and 8 = —1
(Figa. 2.9,2.10).

The appearance of “domain” walls separating the spiral waves is a striking and
unexpected discovery. As is clear from the amplitude plots, the walls are the global
amplitude maxima of the field A. However, unlike the vortices, which are amplitude

minima, the walls are not topological in origin.
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Figure 2.7: Amplitude for (a) 8 =10, (b) = —0.5. (¢ =0.5.)
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(b)

Figure 2.9: Amplitude for (a) « =0, (b) a =0.2. (8= —-1.)
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2.2.3 Wavelength charts

It is possible to define a wavelength for the spiral waves in the region where the
spiral arms are well-approximated by plane waves. A unique wavelength, a function
only of @ and B, is selected by the frozen spiral-wave solutions. Examples of this
phenomenon, and data that will be useful in Chapter 4, are presented in Figs. 2.11-
2.13. In each of these sets, 3 is fixed and « is varied

A measurement of this wavelength, for a particular (a, ), requires only the
existence of a spiral wave. Sufficient time must elapse before a spiral achieves a
substantial size (at least a few wavelengths in radius). Depending on the aver-
age inter-vortex separation (from the vortex density), large spiral structures may
be suppressed, making the wavelength measurement impractical. For an accurate
reckoning, some care is taken in the preparation of vortex states. A fast “éuench”
from an « value corresponding to a low-density vortex state to our particular a of
interest (with S fixed), will eventually result in a low density of well-formed spirals,
all having the sought-after wavelength. Listed in Table 2.1 are the corresponding

wavelengths for each of the phase portraits in Figs. 2.11, 2.12, and 2.13, respectively.

2.3 Turbulent States

In sharp contrast to the frozen vortex states detailed in Section 2.2, there exist
turbulent vortex states characterized by moving vortices and vortex-antivortex pair
creation and annihilation. Various methods have been used to analyze this vortex

turbulence [13, 22].

From the statistical point of view, a suprisingly simple picture has emerged [27):
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Figure 2.11: Phase portraits of spiral waves for # = —0.25 and « values of (a) 0.4

b

(b) 0.6, (c) 0.8, (d) 1. Shown are 100 x 84 regions of 256 x 256 lattices.

36



ey

e
e

o

i

ﬂ:ksa o
¢
o

.
6

b

i

e

it
.,1)’ s

o

e

i

s

S

o

Figure 2.12: Phase portraits of spiral waves for 8 = —0.75 and « values of (a) 0.4,

(b) 0.5, (c) 0.6, (d) 0.8. Shown are 100 x 84 regions of 256 x 256 lattices.
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A
Figure 2.13: Phase portraits of spiral waves for # = —1.25 and « values of (a) 0,

(b) 0.2, (c) 0.4, (d) 0.6. Shown are 100 x 84 regions of 256 x 256 lattices.
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(e, B) wavelength
0.4]-0.25| 61 +10
0.6 | -0.25 23.9
0.8 | -0.25 16.0
1.0 | -0.25 1!4.4

(a, B) wavelength
0.4 -0.75 17.55
0.5 | -0.75 16.1
0.6 | -0.75 15.05
0.8 | -0.75 13.2

(a, B) wavelength
0.0 | -1.25 22.2
0.2 ]-1.25 18.6
0.4 |-1.25 16.2
0.6 | -1.25 13.75

Table 2.1: Spiral wavelengths for various a; 8 = —0.25,—0.75, and —1.25.
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Vortices (and antivortices) are uniformly distributed in space, and the average sep-
a,ra,t‘ion between neighboring defects is of order the correlation length of the field A.
The latter fact is ascertained from measurements of the time-averaged correlation
function (Re[A(r)A*(0)]), which has been found to decrease exponentially with |r|
[27].

One striking characteristic of the turbulent states is their relatively high density.
That there should be a “steady-state” density, can be seen as follows: Since the field
correlation is as large as the vortex separation, one can assume a constant rate c.. of
pair creation “far” from any extant vortices. Furthermore, since vortices annihilate
by pairs, the rate of annihilation can be taken proportional to the vortex density
squared, namely c_p?. The steady-state density that balances these two terms is
then p = (/cy/c—. (See Section 3.2 for more about this simple creation-annihilation
model.)

For the turbulent states, we also present a visual catalog of sorts. We fix a at a
relatively large value (a = 2), and vary 3 from 0 to —1.5. The resulting amplitude

portraits, made at a time t = 2000, are presented in Figs. 2.14a-e.

2.4 Transition Line

Our numerical work has shown that, in the limit of long times (= 10°), the system
either remains turbulent, or settles into a low-density state of frozen, randomly-
distributed vortices, separated by well-defined domain walls [18]. The transition line
a = ag(B) between these two phases can be found through the following procedure:
Fix f, and choose a small a to ensure that the system will enter a frozen vortex

state; increment « slightly with each time step. At some «, the vortex density will
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Figure 2.14: Amplitude portrait for & = 2 and 8 = values of (a) 0, (b) —0.5, (c)
~1, (d) —L.5.
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Figure 2.15: Vortex density as a function of e, for # = —1. Density obtained by

slowly increasing o at the rate & = 5-107°.

increase abruptly by an order of magnitude (cf. Fig. 2.15). The transition o can
be read off from the position of the density jump. For example, averages over a few
runs like that of Fig. 2.15 (where 8 = —1 and & = 5 - 107%) put the transition at
ap = 0.855 £ 0.003. By systematically measuring ag for a sequence of decreasing
a, we can extrapolate to the limit of zero rate. For the above example, we found

the asymptotic value ap = 0.8458.

Performing the same analysis for a range of 8 gives us the transition line to
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Figure 2.16: Phase diagram for 0 < o <2, and —2 < 8 < 0. (T) Transition line

ao(B) to vortex turbulence (solid). (BF) Benjamin-Feir line (dashed).
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vortex turbulence ag(f). We compare this line with the Benjamin-Feir line in
Fig. 2.16. It is remarkable that the transition to turbulence can take place both
below and above the Benjamin-Feir line. This directly contradicts the prediction
that turbulence lies entirely within the Benjamin-Feir unstable region. Within the
last year, a group in Germany has performed simulations based on pseudo-spectral

codes and has confirmed our turbulence transition line [28].
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Chapter 3

Vortex Density and Decay

3.1 Density Traces

There is a superficial similarity between the dynamics of the CGL equation with ran-
dom initial conditions, and the relaxational, ordering behavior of deeply-quenched
thermodynamic systems. For the latter case, the theory of phase-ordering processes
[29] predicts the development of patterns characterized by a dynamical length hav-
ing a power-law scaling in time. The existence of frozen vortex states (see Section
2.2), and therefore of frozen length scales, would seem to preclude this type of
scaling law. However, if the system decays smoothly to zero density, then there
1s no obstacle to applying the phase-ordering ideas. This possibility is explored in

Section 3.5.

In the absence of a theory of the dynamical phases in the CGL system. we
find that the plot of vortex number (or density) versus time provides a tool for
directly tracing the different dynamical regimes. As an example representing the

variety of dynamical changes, consider a 512 x 512 lattice with the parameter values
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Figure 3.1: Decay of vortex density in time, from random initial conditions, for

a =0.75,8 = —1. Four dynamical regimes (I)-(IV) are indicated.

a = 0.75,8 = —1 (Fig. 3.1). Four distinct dynamical behaviors can be identified:
(I) initial decay, (II) transient steady state, (III) decay to frozen state, (IV) frozen

vortex state.

More generally, let us take a vertical slice through the @ — 8 phase diagram
(choosing here § = —1), and examine the density plots for a succession of different
a values. Fig. 3.2 is the result of this sweep, which examined a range of o from 0
to 2, out to a time ¢t = 10° (plotted here to ¢t = 72 000 so that the vertical scale
could be read). Only the density traces labeled ¢,d and e of Fig. 3.2 can be placed
in the same category as the trace in Fig. 3.1. These are distinguished by a local

density minimum (between regimes I and II), a plateau-like transient (II), and a
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relatively rapid drop in density (III). (Trace f also displays a density minimum, but
followed by a presumably eternal turbulent state. This agrees with our previous
placement of the turbulence transition line, i.e. case f is far above the transition
to turbulence.)

About the traces labeled by a and b, we shall say very little in this work. Very

slow decay to the frozen state (like class b) is briefly discussed in Section 3.3.

3.2 Initial Decay

The region of initially rapid decay (from times of order one, to a time T of order
100 near the transition to turbulence) is well fit by a line of slope —1. The fit is
shown in Fig. 3.3. The same initial behavior is seen over the entire phase diagram,
for (asymptotically) frozen and turbulent phases, independent of a and 8. We can
think of this rapid decay as stemming from the extremely high density of defects
generated in the random initial conditions. The consequent decay in vortex density
can be understood from a simple picture of vortex-antivortex annihilation and cre-
ation. The basic assumption is mean-field: the rate of annihilation is proportional to
the density squared, since the density can only decrease through vortex-antivortex
encounters. In other words, p « ’—p2, and this leads to the power-law decay p o 1/t,
as observed.

Moreover, an additional contribution comes from the creation of vortex-
antivortex pairs. We assume that, at these high initial densities, the pair creation

rate is roughly a constant, c;. The time rate-of-change of the density is then

p= e, —c_p. (3.1)
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Figure 3.3: Log-log plot of density versus time, for « = 0.8, 3 = —1 and 512 x 512

system. Best-fit slope (shown) is —1.06 £ 0.04.
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Recasting this equation in term of a rescaled density, p = y/cy/c_ p, gives

¢ = Ve (1- o). (3.2)

Note that the derivative of coth(t) is simply 1 —coth®(¢) (using cosh?(¢)—sinh?(t) =
1), and so the derivative of coth(kt) is k — k coth?(kt). The solution to (3.1) is then

easily read off from the above:

p = 1/c/c- coth(\/eye_t). (3.3)

For small ¢, (3.3) reduces to p = (c_t)~!, as argued above. On the other hand,
for large ¢, (3.3) approaches the constant y/c,/c_. A more detailed version of this
argument has been published [27].

With the initial decay curve showing no dependence on a and B, the fit in
Fig. 3.3 provides an estimate of c_ ~ 4. For an estimate of c,, we need the initial
decay to bottom out to a turbulent steady state, which we could take to be transient
or non-transient. However, in either case, the density goes through a local minimum
at a time T before flattening out - behavior not allowed by our naive solution {3.3),
Nevertheless, we can argue that the steady state density still corresponds to the
constant y/cy /c_ found above. For example, in the case & = 0.8, = —1 (trace ¢
in Fig. 3.2), this identification gives c; =~ 4.5-10~%; in the case a = 2.0 =
we get ¢, ~2.5-1074,

In this view, the dip in density would then correspond to the system undershoot-
ing and then returning to the steady state, as if the system, despite the underlying
first order (A) dynamics, had a second-order term enabling it to slosh back and

forth in a potential well.
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3.3 Slow decay to Frozen State

The slow decay to a frozen state, for example trace b of Fig. 3.2, stands somewhat
outside the domain of immediate concern in this thesis. Inasmuch as the features
of the slow decay remain poorly understood, this case would merit a full chapter
in a more complete work. However, at the very least, it is instructive to see the
amplitude plots at different times during this slow decay. Figs. 3.4-3.6 are the
amplitude fields, taken from a 1024 x 1024 system, for times ¢ = 100,400,107,
respectively.

Some interesting information can be gleaned from these amplitude plots. By
time 400, a high-density state with well-defined domain walls has formed. This state
is nearly frozen. Between times 400 and 10%, the random lattice has decreased in
vortex density, and regrouped considerably. A segregation into “large” vortices and
“small” vortices has occurred, with the small vortices clumped into separate clusters
of size comparable to a single large vortex. We classify this state as frozen, although
from time to time a domain wall breaks down, resulting in vortex-antivortex anni-
hilation. The segregation, rearrangement and subsequent pair annihilation of the
small, clump-bound vortices and antivortices are responsible for the very slow decay

in overall density.

3.4 Fast Decay to Frozen State

3.4.1 Parabola law: Numerics

The slow decay featured in the last section disappears for higher a values that are

still below the transition to turbulence. These systems possess a transient turbulent

o1



Figure 3.4: Amplitude for a = 0.25,8 = —1, at time ¢t = 100. 760 x 760 region of

a 1024 x 1024 lattice.
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Figure 3.5: Amplitude at ¢ = 400, otherwise same parameters as in Fig. 3.4.
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Figure 3.6: Amplitude at ¢ = 10%, otherwise same parameters as in Fig. 3.4.
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state, and at some point rapidly decay out of this state to a frozen configuration. As
we devote all of Chapter 4 to studying the transients (regime Il in Fig. 3.1), in this
section we content ourselves with considering the decay from the high, steady-state
density to the low density of the frozen state (regime III of same figure).

We begin by redisplaying the fast decay data in Fig. 3.2. Cases d (o = 0.75,8 =
—1) and e (¢ = 0.8, = —1) in that plot have been plotted in Fig. 3.7 with linear
density and linear time axes. The decay region, for much of its extent, appears
to have a parabolic shape. Fig. 3.7 gives the best quadratic fit to each case. Let
the quadratic p = a + bt — ct® be denoted by (a, b, —c). Then the two curves are
d: (0.00345,2.63 - 1077, —6.55 - 1071°) and e: (—0.00442, 1.42-107%,—6.35 - 10711).
Shifting the time origin to the position of the maximum, yields the following two

equations:

p(a =0.75) = 0.00348 — 6.55 - 1071°¢2, (3.4)

pla =0.80) = 0.00355—6.35-10711¢2, (3.5)

3.4.2 Nucleation

To understand the parabola laws (3.4,3.5) it helps to view the system as it decays
out of the turbulent transient. To this end, we present in Figs. 3.8-3.10 amplitude
portraits of a large system, with o = 0.791, 8 = —1, at an early, intermediate, and
final stage of the decay, respectively. The phenomenon we observe in these pictures
is nucleation. Vortex “droplets” nucleate out of the turbulent sea, and grow until
the entire space is covered by the frozen phase. We therefore think of the transient
turbulent state as unstable with respect to localized fluctuations of finite size; in

other words, the transient state is metastable. We return to this idea in Chapter 4,
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Figure 3.7: Density versus time for fast decay to frozen vortex state. Curves are
best fits of the form p = a + bt — ct?. Left curve: a = 0.75,3 = —1. Right curve:
a=0.38,=-1.



Figure 3.8: Beginning of nucleation, for @ = 0.791, 8 = —1. Shown is an 760 x 760

region of a 1024 x 1024 lattice.
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Figure 3.9: Intermediate stage of nucleation. Same parameters as Fig. 3.8.
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where some consequences of the nucleation picture are pursued.

3.4.3 Parabola law: Model

A very simple model consisting of expanding circular regions accounts for the
parabola law. We assume that the radius of a vortex droplet increases with a
constant velocity v, and that the density decays from piur4 t0 psro. through the
growth of a fixed, low density (psr0.) of nucleation sites. The general idea is shown
in the successive time frames of Fig. 3.11. In fact, the cartoon in Fig. 3.11 is some-
what too faithful to the phenomenon, since the model below assumes noninteracting
vortices. The final frozen pattern in our simulations appears very much like the

Voronoi (or Wigner-Seitz) cell construction of Fig. 3.11e.

Define Ap = piyurs — Pfroz, Afroz(t) equal to the area covered by the frozen phase

at time t, and L? as the system size. Then

p=—DpAso/L?, (3.6)

where 7 is the radius of any given droplet. Integrating this and matching the

boundary conditions gives

P = Prurb — TV P srozApte. (3.7)

Although the above model reproduces the quadratic law, it ignores some obvious
features, such as the time-dependent density of nucleation sites. Such refinements

should only affect the coefficients in (3.7).
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Figure 3.11: Cartoon of vortex droplet growth in five frames (a)-(e).
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3.5 XY-type Decay

3.5.1 The exponent £

For the special case o = B = 0 (the real Ginzburg-Landau equation), we present
numerical evidence and general arguments to show that the vortex density follows

a power law

p~1¢ (3.8)

at late times with an exponent ¢ = 3/4. The generality of the arguments suggests
that the exponent is universal for two-dimensional Coulomb-gas systems, including

the important case of freely-decaying two-dimensional turbulence.

Let us begin with the numerical evidence for a power-law decay in thea = 8 =0
system. Fig. 3.12 is our usual log-log trace of density versus time. At early times,
we again find that the density decays like 1/t (i.e. £ = 1). The physical picture
of a sea of vortices and antivortices pair annihilating and being pair-created was
presented in Section 3.2. Fig. 3.13 displays the phase of A at an early time. This
result is also in agreement with the XY literature [30, 31], and with simulations
of the scattering function by Mondello and Goldenfeld [32] (the latter speculate
however that { = 1 at very late stages). And, as in the CGL case, at later times,
the vortices are more sparsely distributed (Fig. 3.14), making the annihilation rate
non-trivial. Here we find numerically that the vortex decay follows the power law

(3.8), with £ = 0.74 = 0.02 (Fig. 3.12).
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Figure 3.12: Log-log plot of density p(t). Initial slope is compared with a slope of

—1. The asymptotic slope is found to be £ = 0.74 + 0.02.
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Figure 3.13: Phase field for the real Ginzburg-Landau equation at time ¢t = 64.

Shown is a 380 x 380 section of a 512 x 512 lattice.
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Figure 3.14: Phase field for the real Ginzburg-Landau equation at time ¢t = 4096.

Same view as Fig. 3.13.
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Figure 3.15: Phase portrait, as in Fig. 3.14, with phase divided into 20 bands to

bring out the electrostatic analog.
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3.5.2 Annihilation scale

A length scale R, characteristic of time ¢, can be extracted by considering the
average initial separation between vortices and antivortices that annihilate at time
t. In Fig. 3.16, pairs of vortices and antivortices that later annihilate, are linked by
straight lines, and labeled with their annihilation time. At late times (low density),
the vortices and antivortices interact via a logarithmic pair potential ®(r;,r;) =
—klog(r), where r = |r; —r;|. The dissipative equation of motion, 7 = —22, relates

the separation R between a vortex and antivortex to their annihilation time ¢,
R ~ t1/2, (3.9)

Computation of annihilation times for our system of many XY vortices on a 128 x

128 lattice are in agreement with (3.9) (Fig. 3.17).

3.5.3 Continuous ordering

The theory of continuous ordering [33] provides another reason to expect a dy-
namical length scale R(t) that increases according to (3.9). The vortex dynamics
can be viewed as the non-equilibrium phase ordering arising from an instantaneous
quench from a high-temperature to a zero-temperature configuration. One could
arbitrarily divide the phase @(r,t) of A into two states by assigning +1 to sites
with Im(A) > 0, and —1 to sites with /m(A) < 0. In this way, the complex order
parameter is transformed to an up-down spin. The vortices and antivortices lie on
the +1/—1 interface (Fig. 3.18).

With no locally-conserved order parameter, (3.9) is predicted by the Lifshitz-

Allen-Cahn theory [33, 34].
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Figure 3.16: Vortex-antivortex pair positions at ¢ = 30. Straight lines connect the

pairs and are labeled by their subsequent time of merger. Lattice size is 128 x 128.
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Figure 3.17: Log-log plot of vortex-antivortex separation R (at time t = 30) versus

annihilation time.
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Figure 3.18: Phase ¢ divided into two states by assigning +1 (yellow) to sites with

Im(A) > 0, and —1 (blue) to sites with Im(A) < 0. The vortice and antivortices

must lie on the interface. Time ¢t = 64.
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Figure 3.19: Phase plot with same parameters as previous figure. Time ¢t = 4096.
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3.5.4 Interaction volume

The decay can be understood in terms of the dynamical length R(¢), which we
associate with an interaction volume [35, 36]: After a time ¢, all vortex-antivortex
pairs within an area A ~ R(t)? have had a chance to annihilate. The number of
remaining vortices p(t) A equals 6(A¢4)/2n, where §(A¢,) is the standard deviation
of the circulation A¢ over the perimeter enclosing the area A.

One might reason [37, 38] that because of the presence of free vortices in the
initial high-temperature regime, the variance of A¢ 4 should scale like the area of
A. Though intuitively plausible, this ‘area law’ is incorrect. Based on a (high-
temperature) uniform distribution of mutually-independent phase differences (mod
27) between neighboring sites, Dhar [38] showed that, for large areas (late times),
the variance of A¢4 at all temperatures is proportional to the perimeter of A, i.e.

82(A¢4) ~ R. Thus,

pR? ~ §(A¢4) ~ VR. (3.10)

In other words, p ~ R=3/2, and (3.9) yields the exponent ¢ = 3/4.

3.5.5 Freely-decaying turbulence

The general arguments above suggest that £ is universal. This conclusion is further
supported by recent numerical and experimental results obtained for freely-decaying
two-dimensional turbulence. These results also point to universal vortex decay,
from highly turbulent to laminar, vortex-free flows. The evolution of vorticity is

here given by the fluid-dynamical equation

0w + J(¥,w) = vV, w=-V, (3.11)
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where w is the scalar vorticity, ¥ the stream function, v the kinematic viscosity, and

J (¢, w) = 0:%0,w — 0wy the Jacobian. For this system, McWilliams [39] found

 the exponent ¢ to be ¢ ~ 0.71. In later works [40, 41], the value is variously reported

¢ ~ 0.72 — 0.75, and preliminary results pointed to a universal { value for a whole
hierarchy of freely-decaying turbulence models. A recent turbulence experiment by
Tabeling et al. [42] yielded £ = 0.7 & 0.1, in support of this conjecture.

—2/3 hetween vortices

In should be pointed out that the initial separation R ~ p
that later merge (annihilate) differs from the average distance | ~ p~'/2 between
vortices (of both signs). It is a consequence of this, and not of anomalous diffusion,

that close encounters between vortex pairs occur less freqﬁently than expected from

the random motion of (sign-less) vortices {39].
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Chapter 4
Transient Turbulence

4.1 Transient Overview

Of fundamental interest is the occurrence of transient turbulent states near the
traﬁsition line that separates the frozen states from the turbulent states. In this
chapter, we present f)resent analytical.and numerical results that explain the tran-
sient turbulent dynamlcs Just below the transmon to turbulence, we observe that
turbulent states break down by the nucleation and growth of single-vortex droplets

leading to frozen states of stationary vortices. We derive a relation between nu-
cleation time ana radius, and determine their dependence on the distance to the

turbulence transition line.
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4.2 Critical line

4.2.1 Local density minimum

To ﬁnderstand better the occurrence of transients, let us return to the density
traces of Fig. 3.2. In that plot, the dénsity was followed for times of order 10°
for a sequence of a values (0, 0.25, 0.6, 0.75, 0.8, 2) at ﬁxéd B (B = —1). The
traces correSpondiné to 0.6,. 0.75, and 0.8 were associated with transient states of
tﬁrbulence.

Thrdugh a comparison of density traces with their corresponding amplitude
portraits, it was verified that the existence of the local density miﬁimum (at roughly:
t = 100) signals the beginning/of a turbulent steady state (transient or otvherwisé)..
When this .density minimum vanishes (as a function of a), so does the transient
.turBuleﬁce. We call this critical « value, where the transient state first appears,
a., since it Imarks the boundary between two qualitatively different many-vortex _
dynamics. As an example, Fig. 3.2 shows thé}t a (B =i —1) lies between 0.25
and 0.6. A finer sweep through this particular « range puts this critical value
at a. = 0.57 £ 0.03. Extending the analysis to other values of 3, we find the
curve a.(f), plotfed in Fig. 4.1 (as the dotted line with error bars) alongside the

turbulence transition and Benjamin-Feir lines. A

4.2.2 Linear stability analysis

The value o = a,(8) can be estimated by linear stability analysis (solid-circle line
(ECK) in Fig. 4.1). The stability (with respect to small perturbations) of plane-

wave solutions of the form A(k) = R(k)expli(k - x — w(k)t)],. can be worked out as
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Figure 4.1: Phase diagram for 0 < « S 2,and -2 < B < 0. (NUC): Line a.(8)
below which nucleation is no longer observed (dotted, wiﬁh error 4bars.). (ECK):
- Eckhaus instability line (solid-circle, with error bars). (T): Transition line to vortex
turbulence (solid). (BF): Benjamin-Feir line (dashed). |
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Figure 4.2: Linear instability threshoid (solid line) and selected wavelengths (cir--

cles), plotted as wavelength versus a. 8 = —0.75.

an extension to the k = 0 analysis of Section 1.4.1. Bohr et al. {16] have done this
for the case of the coupled-rha.p construction. As an example of their analysis, the
bold curve in Fig. 4.2 is a plot of the smallest unstable o for a fixed wavelength
A = 27/|k|. (In this example, B = —0.75.) The circles in the figure correspond to
the “natural” wavelengths found in Table 2.1. The intersection of the two curves
© provides an estimate of a.. In other wofds, for @ > a., the plane-wave solutioﬁ
~ with the selected, parameter-dependent wavelength is linearly unstable (Eckhaus
vinst.a.bi_lity [43]). From Fig. 4.2, we estimate a. = 0.55 + 0.01, in good agreement

with the observation of the onset of metastability reported in the previous section.
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As the Fig. 4.1 shows, the linevar instability estimate is always lower than the
one found from nucleation. This is to be expected since the magnitudes of the
eigenvalues determining the instability grow very slowly with o above the instability
line, and the corresp.onding nucleation times T become too short to be resolved.
Also one must keep in mind the fact. that the stability line is calculated assuming
a plane-wave statev‘wit'h the selected wavelength - the existence of the vortex cores

is not taken into account.

4.3 Near the Transition Line

4.3.1 Absolute instability

T>}I1e Eckhaus instability is of convectivetype: although the linear instability signifies
exponential growth, this growth is only observed in a frame moving with the group
velocity. This was noted recently by Aranson et al. [28], who further conjectured
(with support from simulation) that the onset of turbulence a = a4 is close to the
onset of absolute instability, where the exponential instability takes place even in the
rest frame. This conjecture has been checked for our coupled-map representation by
exténding the stability analysis to the complex plane and computing the eigenvalue
x that corresponds to the saddle point [44]. In fact one finds that x passes through
1 very near the onset of turbulence and we now show how this can be used to

estimate the transient lifetime T' and find its dependence on the parameters.
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Figure 4.3: Vortex density versus a (8 = —1), as in Fig. 2.15, with addition of the

density curve for the metastable (transient) states. The o represents the onset of

transient turbulence, and.correspondé to the dotted line (NUC) in Fig. 4.1.

| 4.3.2 Nucleation time

In previous sections, we saw that for valpha above the critial curve a., a density
minimum occurs at T, after which the density assumes a roughly constant value.
In Chapter 3, we associated the end of this transient with the nucleation of vortex
droplets, and hence refered to the transient as a metastable state. We can keep
track of these metastable states by plotting their density as a function of a (keeping -
B fixed), and supefposing this plot onto our earlier Fig. 2.15.

We define the transient lifetime T so that after time T, + T, the system just be-
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gins its decay to the frozen state. More exactly, the transient time T' was comi)uted
by determining when the vortex density had decayed by two standard “devia.tions
- from its average value in the metastable turbulent state. We have found that the
‘av.verage transient lifetime divefges as the transition line is approached [18]. (This
last result Was also found in [24], where the trénsient lifetime was identified by
fneasuring the Lyapunov expoﬂent.) We can think of. the time T as a nucleat»ibon

time - the time required to nucleate a growixig droplet.

4.4 | Géometrical Nucleation

4.4.1 Outer perturbations

A nucleating droplet 'conpains only one vortex (spiral wave). A necessary condition
for the droplet to form is that this central vortex survives outer turbulent pertur-
bations for a tifne peri‘o.d At la,rgé eﬁough to localiy stabilize the spiral wave. A
perturbation decays like x*, so the timé needed is At ~ |logx|™!. If v denotes
the (average) turbulent vortex velocity, we are led to the following condition: for a
dfoplet to form, the distance R from the ‘nucleéting’ vortex-to the closest pértur-

bation center (outer vbrtex) must be at least
R = vAt ~ v|log x|™*. (4.1)

For fixed 8, an expansion to lowest order in a yields v ~ vy and log x ~ (a — ag),

where vg is the turbulent velocity at the instability. Thus, by (4.1),

R~ (ag—a)™". ' C42)
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4.4.2 Divergence

The nucleation time T is the time it takes for a nucleating droplet to form. From
the considerations above, T is the time we have to wait before a single. vortex
somewhere becomes separated from all other vortices By a distance larger than
R. If we assume that the vortices move randomly, then T ~ 1/p, Where pis the
probability that an area 7 R?, that contains a single vortex, exists in one realization
of réndomly-distributed vortices. In each region of size 7 R?, the probability p; of

- finding exactly one vortex is givén by the binomial form
p=Nr(1=r)N"', r=n/N, L (4.3)

where n = pwR?, and N is the total number of vortices. Moreover, 1 — p =

[1—p V" Forl <<n<< N, we have p~ Né‘”, and thus by (4.2)

log(T/Tw) ~ (a0 — @)%, o (1.4)

where the time scale TN _decreases with N. (The size dependent time scale Ty 1s
associated only with the time needed to form the first droplet, not with the time
- to reach the final frozen state.)

We have determined T'(«) in our simulations (for § = —1), averaged over five
runs. As shown in Fig. 4.5, the analytic form (4.4) fits the data quite well. Fur-
thermore, a two-variable fit, gave best agreement for ag(—1) = 0.84 & 0.005 and

and exponent (for ap — &) of —1.97 4 0.10, in excellent agreement with our theory

(18].
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83



Chapter 5
‘Conclusions and Extensions

5.1 « Conclusions

We briefly summarize the main reéults of this thesis:

From random initial conditions, we found a low-depsity frozen state of stationary
vortices. _ ”

We locé,ted the transition to vortex turbulence by measuring the vortex density
and observing an order-of-magnitude jump from its value in the frozen state. We
presented a phase diagram showing the transition line between frozen and turbulent
states. A metastability curve corresponding to transient turbulence was also located
in the phase diagram.

. We explored the properties of metastable turbulence which precedes a range of
" asymptotic frozen states. We observed that they break down by the random ap-
pearance and growth of single-vortex droplets, and gave evidence for this nucleation

rnodel.v

Finally, we measured the lifetime of these transient states as the turbulence
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tra,nsxtlon is approached, and found it dlverges accordmg to a simple law. We

explained this law through the nucleation model

5.2 Extensions

5.2.1 Suprises in quadrant I11

Back in Section 1.4.2, we restrxcted our subsequent attention to the quadrant of
the pha.se diagram havmg a > 0 and ﬂ < 0 (quadrant II). Later, we saw that
the turbulent transition line and the Benjamin-Feir line were quite different - not
suprisingly, the stability of the homogeneous state was not a good predictor for
the many-body vortex states. Thus, the study of a Benjamin-Feir stable quadrant, |
quadrant I (« 2 0, B > 0) for instance, is an appropriate extension of the p.resent
thesis. |

As a quick sortie into this unexplored region, imagine beginning from a frozen
- vortex state at @ = 0, 8 = —1, and lowering o at a fixed rate‘. This will take us
‘into quadrant III, which we know from the symmet’ries of the CGL to be equivalent
to quadrant 1. We have performed only relatively fast a sweeps (& = 1072) into
quadrant III-. This procedure has uncovered a turbulent region at o = 5 (for 8 =
—1). The turbulence is dominated by stringy structures of zero amplitude and
finite length, which wrigg]e back and forth, shedding other strings like wavefronts,
and dissipating at their ends, leaving a vortex behind. 'The configuration is then
oné of a ﬁﬁite density of vortices interspersed between the rapidly moving turbulent
ﬁlaments.b |

The particular instability excited by these fast sweeps is equally fantastic. The
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'Figure 5.1: “Spindle body” resulting from a recent vortex-antivortex annihilation

event (amplitude portrait). Parameters are @ = —5.5, B = —1 ; system size is

375 x 375.- : a
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Filamentary turbulence. Same parameters as Fig. 5.1.
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entire turbulent pattern is initiated by a single vortex-antivortex annihilation.
When a single wavefront from this annihilation event decreases in amplitude to
zero amplitude, a short curved arc of zero amplitude results. Very quickly, a small,
but steadily expanding, “spindle body” (Fig. 5.1) is éreavted by the motion and.
wavefront shedding of the curved segment. The edges of this turbulent region ex-
pand at a high velocity, and soon the entire region is filled with this filamentary

turbulence (Fig. 5.2).

5.2.2 Vortex lines in three dimensions

Of great physical and chemical relevance is the behavior of the CGL e/qfuation in /
three dirﬁenéions. (See reference [25] for a phenomenological analysis of defects
in three-dimensional excitable media.) The coupled-map scheme described in Sec-
tion 1.3 is applicable to lattices in any dimensi‘on. For d = 3, we must simply modify
the discrete Laplacian in (1.28) by avéragjng now -over the 6 nearestt.neighbors to a
‘site of a cubic lattice. Fig. 5.3 shows the result of sifnulating t‘he CG‘L equation after -
200 time steps, on a 64 x 64 x 64 latti;:e, with the parameters o = 0.5, 8 = —~1. In
thé'ﬁgure, an amplitude isosurface is imaged, with shadings drawn from the phase
values along the isosurface. In this way, a number of vortex tube.s appear, each
* surrounding a vortex line of zero amplitude. The shading indicates a twist in the
phase field around each vortex line.

To perform a study analogous to the present two-dimensional one, we need
an analog of the vortex density in three dimensions. A natural choice is the total
length of the vortex lines. Furthermore, we can think of our two-dimensional system
as simply a planar cross-section of the three-dimensional system - vortices and

antivortices are then just slices through vortex lines. Since a vortex line can thread
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Figure 5.3: Vortex tubes in three dimensions, at ¢ = 200. An amplitude isosurface
of |A| = 0.15 is displayed, shaded by the phasé value at each point of the isosurface.

Parameters are o = 0.5, beta = —1; system size is 64 x 64 X 64.
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- through this plane more than once, vortex-antivortex creation and annihilation
is then just the passage of a vortex hairpin into the plane and out of the plane,
respectively. It would be very interesting study the correspohding turbulent phase
of the vortex lines; since non ohly the complex motiovns of vortexv lines éré necessary

to produce it.
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