
UCLA
UCLA Previously Published Works

Title
Exploiting natural dynamics for gait generation in undulatory locomotion

Permalink
https://escholarship.org/uc/item/3f67b04v

Journal
International Journal of Control, 93(2)

ISSN
0020-7179

Authors
Ludeke, Taylor
Iwasaki, Tetsuya

Publication Date
2020-02-01

DOI
10.1080/00207179.2019.1569763
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3f67b04v
https://escholarship.org
http://www.cdlib.org/


Exploiting Natural Dynamics for Gait Generation

in Undulatory Locomotion

Taylor Ludeke and Tetsuya Iwasaki

UCLA Mechanical & Aerospace Engineering, Los Angeles, CA 90095, USA

ARTICLE HISTORY

Compiled March 10, 2018

ABSTRACT
Robotic vehicles inspired by animal locomotion are propelled by interactive forces
from the environment resulting from periodic body movements. The pattern of body
oscillation (gait) can be mimicked from animals, but understanding the principles
underlying the gait generation would allow for flexible and broad applications to
match and go beyond the performance of the nature’s design. We hypothesize that
the traveling-wave oscillations, often observed in undulatory locomotion, can be
characterized as a natural oscillation of the locomotion dynamics, and propose a
formal definition of the natural gait for locomotion systems. We first identify the
dynamics essential to undulatory locomotion, and define the mode shape of nat-
ural oscillation by the free response of an idealized system. We then use body-
environment resonance to define the amplitude and frequency of the oscillations.
Explicit formulas for the natural gait are derived to provide insight into the mecha-
nisms underlying undulatory locomotion. An example of leech swimming illustrates
how undulatory gaits similar to those observed can be produced as the natural gait,
and how they can be modulated to achieve a variety of swim speeds.
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1. Introduction

Animal locomotion has been studied for decades by engineers and scientists with over-
lapping objectives. Scientific study of animal locomotion has contributed to a bet-
ter understanding of biological mechanisms underlying various functionalities such as
adaptability, efficiency, and agility. The knowledge thus generated is useful for develop-
ing biologically inspired robots (Ijspeert, 2014; Sitti, Menciassi, Ijspeert, Low, & Kim,
2013). Development of robotic locomotors involves selection of gaits (periodic body
movements leading to sustained traveling velocity) in addition to mechanical design
of body, actuation, sensing, and control. In most designs, both body shape and gait
are designed by mimicking animals. For example, observed undulatory movements
of snakes or fish are parametrized and used to set the basic motion primitives and
possibly optimize a cost function in robotic locomotors (Curet, Patankar, Lauder, &
MacIver, 2011; Hatton & Choset, 2010; Saito, Fukaya, & Iwasaki, 2002; Tesch et al.,
2009). This type of biomimicry has also been used for legged locomotion (Fukuoka,
Kimura, & Cohen, 2003; Grizzle, Abba, & Plestan, 2001) as well as for gait transition
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from swimming to walking (Ijspeert, Crespi, Ryczko, & Cabelguen, 2007). While these
results produced effective robotic locomotors with some success, deeper understanding
of biology and systematic theories for gait determination would enable the generation
of adaptable gaits and possibly non-intuitive gaits that could go beyond mimicking
animals in achieving desired properties.

A common approach to gait selection is to search for an optimal gait. Optimiza-
tion is useful because it is based on contrived metrics which can be clearly defined
for mathematical analysis. Existing strategies include quadratic optimization over all
periodic motions (Blair & Iwasaki, 2011; Kohannim & Iwasaki, 2017), parametrization
of the geometric configuration over a truncated basis (Cortes, Martinez, Ostrowski,
& McIsaac, 2001), calculus of variations (Hicks & Ito, 2005), and mimicking observed
kinematics to reduce the number of parameters which are then optimized numerically
by gridding the parameter space (McIsaac & Ostrowski, 2003). Some of these methods
have been successfully applied to reproduce biological gaits with no presumption on
the kinematics (Liu, Fish, Russo, Blemker, & Iwasaki, 2016). However, these optimiza-
tion methods are based on numerical computations, and hence the results are not as
transparent or insightful as analytical closed-form solutions, and may not explain why
a particular gait makes sense physically.

An alternative approach to gait design may be through natural oscillations or reso-
nance. There is evidence that animals exploit resonance during locomotion (Ahlborn,
Blake, & Megill, 2006). Experiments have shown that a natural walking stride con-
forms to the resonant frequency of the limbs when they are modeled as pendulums
(Holt, Hamill, & Anders, 1991; Wagenaar & van Emmerik, 2000). Mathematical anal-
ysis of inertial swimmers (high Reynolds number swimming) supports the existence
of resonance peaks when considering muscle tension (Kohannim & Iwasaki, 2014),
travel speed, and efficiency (Gazzola, Argentina, & Mahadevan, 2015) with respect to
frequency. Animals can also tune the resonance frequency of their bodies. Limbed an-
imals can redistribute mass by bending their limbs, changing the resonance frequency
when they switch between walking and running gaits (Ahlborn et al., 2006). Fish can
activate the muscles on both sides of their body to alter their body stiffness (Long
& Jr., 1998). Thus, resonance mechanisms underlying animal locomotion may suggest
ways to design gaits for robotic systems.

Resonance phenomena in animal locomotion has been extensively studied through
fluid mechanics of swimming and flying. Wake resonance is defined for the motion of the
fluid surrounding the oscillating body (e.g. fin), and has been studied experimentally
using particle image velocimetry or computationally through simulation and analysis
based on the Navier Stokes equations (Moored, Dewey, Smits, & Haj-Hariri, 2012;
Triantafyllou, Triantafyllou, & Yue, 2000). In the study of hydrodynamic resonance,
the body movements are typically prescribed, either by mimicking observed kinematics
(Borazjani & Sotiropoulos, 2008, 2009) or parameterizing the motion by frequency and
amplitude (Lewin & Haj-Hariri, 2003). Hence, the resonance is exclusively due to the
fluid motion and is independent of body flexibility. The effect of body flexibility on
anguilliform swimming has been examined and flapping tail resonance is found to
contribute to increasing propulsive force (Leftwich, Tytell, Cohen, & Smits, 2012).
However, it remains obscure how the resonances of body and fluid interact with each
other to determine the overall gait.

A way to avoid prescribed kinematics and define the overall gait is passive loco-
motion resulting from the inherent natural dynamics. The overall gait is defined by a
periodic body movement sustained as a “natural oscillation” (or free response) of the
body-environment dynamics. The gait has an intrinsic frequency and a correspond-
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ing mode shape which describes the pattern of oscillation for the multiple degrees of
freedom. For instance, bipedal robots on a slope, with limbs that are allowed to swing
freely within morphological constraints, were found to have gaits similar to observed
human walking (McGeer, 1990). For such passive walkers, the environment (i.e. grav-
ity field) provides a power source, and the gait is essentially determined by the body
properties (Collins, Ruina, Tedrake, & Wissei, 2005; Ijspeert, 2008). For non-pedal
locomotion such as swimming and crawling, however, body undulation has not been
characterized as a free response of autonomous dynamics.

In this paper, we will present a mathematical characterization for undulatory gaits
based on natural modes of oscillation and body-environment resonance. To the au-
thors’ knowledge, there has been no rigorous model-based analysis of the traveling
body wave observed in the undulatory gait of slender-body animals. Nor has a com-
prehensive definition for resonance, incorporating the body and the environment, been
established for undulatory locomotion. We seek the origin of traveling waves within
natural oscillations without prescribing such motion. We also develop analytical in-
sights into the frequency and amplitude of undulation in terms of resonance resulting
from dynamic interactions of the body and environment.

First, we present simple mathematical models for undulatory locomotion that cap-
ture the essential dynamics of body and environment. We consider the long, slender
body with no limbs or other appendages. This body type, which epitomizes a user
of the undulatory gait, can be modeled with good accuracy as a chain of rigid links
connected by flexible joints. Additionally we consider the environmental forces acting
on the body to be resistive, meaning the forces correlate positively with the relative
velocities between the body and environment. Simple models are developed from laws
of physics with approximations under small amplitude oscillations and averaging over
an undulation cycle.

We then use the models to give precise definitions of natural oscillation and res-
onance for the body-environment system so that the resulting motion resembles the
undulatory gaits observed in nature. Resonance and natural modes of oscillation have
well established definitions for “standard” linear mechanical systems described by
mass, stiffness, and damping matrices that are symmetric positive (semi)definite. The
natural modes of oscillation are defined as the periodic solutions of the idealized system
where the damping is removed. For undulatory locomotion, however, the traditional
definition does not apply since nonlinearities in the system and resistive (damping)
forces are essential for thrust generation (Blair & Iwasaki, 2011), and lead to an asym-
metric stiffness matrix (Z. Chen, Iwasaki, & Zhu, 2015).

Nevertheless, we hypothesize that the traditional concepts can be extended to ex-
plain the body oscillations that occur in undulatory locomotion, in spite of the dynam-
ics being more complex and dependent on resistive forces. In particular, we provide
an analogous definition for natural modes of oscillation as the free response to an ide-
alized system in which body mass, body stiffness, and purely dissipative drag forces
are removed. This explains the traveling waves. Fixing the mode shape in this way,
we seek body-environment resonance, at which the frequency and amplitude maximize
the gain from the input bending moment to the travel velocity. This combination of
natural modes of oscillation and body-environment resonance forms our definition for
a natural gait, which is fully characterized in terms of analytical, closed form expres-
sions. Our result provides a unique approach to both gait selection and the ongoing
attempt to understand what makes an observed gait natural.
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Some preliminary results were reported in (Ludeke & Iwasaki, 2017) without proofs.
This paper expands on those results with more in depth analysis and complete proofs.
The case study of leech swimming provided here is new.

2. The Dynamics of Undulatory Locomotion

Undulatory gaits are typically used by animals with long, thin bodies, such as eels
and snakes. Such locomotion depends on directional anisotropy in the interactive force
between the body and its environment (i.e. larger normal force than tangential force) to
rectify local periodic joint movement into global linear motion (Blair & Iwasaki, 2011;
Hirose, 1993; Saito et al., 2002). To model the dynamics of undulatory locomotion, we
represent the robotic or animal body as a chain of n rigid links connected by n − 1
flexible joints as shown in Fig. 1. Only planar motion is considered. The direction of
travel is considered to be along the x-axis.

Each joint is assigned a linear spring stiffness to account for the elasticity of the
body. Bending moment u ∈ Rn−1 is applied by actuators/muscles at the joints. The
interactive force from the environment is assumed proportional to the relative velocity
with a larger drag/friction coefficient in the normal direction than that in the tangen-
tial direction. Examples of locomotion that depends on these type of resistive forces
are low Reynolds number swimming and snake crawling. The reactive hydrodynamic
force (or added-mass effect), which is known to be dominant in fish swimming with
a caudal fin (Lighthill, 1969), is not important in undulatory swimming (J. Chen,
Friesen, & Iwasaki, 2011) and therefore not considered here. The model is crude, but
captures the most essential dynamics for thrust generation in undulatory locomotion.

θ 1

φ
3

θ 2

2

1

(x,y)

θ3

y

u

x

u

Figure 1. The link-chain model for undulator (case n = 4).

The equations of motion are developed by balancing the moments and forces acting
on the links in a manner similar to that used in (Blair & Iwasaki, 2011; Saito et al.,
2002). Let θ ∈ Rn be the link angles as in Fig. 1, and (vx, vy) := (ẋ, ẏ) ∈ R2 be the
locomotion velocity of the mass center of the whole body. Assuming that the body
deformation θ and the velocity component vy orthogonal to the direction of locomotion
are small and of order ε, the fully nonlinear equations of motion are simplified by
neglecting the O(ε3) terms as follows:Jθ̈ +Kθ −Bu

mv̇x
mv̇y

+

 D Λθ −F TCne
θTΛT eTCte+ θTCoθ −θTCoe

−eTCnF −eTCoθ eTCne

 θ̇
vx
vy

 = 0, (1)

where the coefficient matrices, as well as all other matrices to be used in this paper,
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are defined in Appendix A. The first term captures the inertial forces, body stiffness,
and bending moment, while the second term captures the forces from the environment.
Assuming that the body is modeled by uniform links, we have

M = moI, L = ℓoI, Cn = cnI, Ct = ctI, K = kBBT, (2)

where mo and 2ℓo are the mass and length of each link, k is the bending stiffness of
each joint, and cn and ct are the normal and tangential drag/friction coefficients for
the linear environmental force acting on each link. We will impose the uniform link
assumption on the model throughout the paper.

The link angle vector θ ∈ Rn contains information on the body shape ϕ ∈ Rn−1

and orientation θo ∈ R, where ϕi := θi − θi+1 are the joint angles and θo is defined
to be the average of link angles θi. In particular, they are related by the coordinate
transformation θ ↔ (ϕ, θo) defined by[

ϕ
θo

]
=

[
BT

eT/n

]
θ or θ = Tϕ+ eθo, (3)

where T := B(BTB)−1 is the Moore-Penrose inverse of BT. A gait is a periodic function
ϕ(t) describing a rhythmic body motion. A proper gait for locomotion is generated by
periodic joint torques u(t), and results in periodic velocity (vx, vy) and orientation θo,
where the average value of vx is nonzero and those for vy and θo are zero.

For analytical study of gaits, we will further simplify the model by introducing
fictitious forces fx and fy and toque τ uniformly acting on all the links to remove
oscillations in vx, vy, and θo, respectively. These additional forces will replace the zero
vector on the right hand side of (1) by column vector (eτ, fx, fy), which is periodic
with zero average because its role is only to remove the ripples and the main thrust
for locomotion should come from the environmental force resulting from a periodic
body motion. The following two lemmas provide models with two levels of reduced
complexity.

Lemma 2.1. Consider the model (1) with additional input vector (eτ, fx, fy) on the
right hand side. Suppose τ ≡ 0 and (fx, fy) are T-periodic with zero average and keep
the locomotion velocity constant at (vx, vy) ≡ (vo, 0). Then T-periodic signals (u, θ)
satisfy the augmented model equation if and only if

Jθ̈ +Dθ̇ + (K + voΛ)θ = Bu∫ T

0

(
θ̇TΛθ + (eTCte+ θTCoθ)vo

)
dt = 0∫ T

0
θo dt = 0

(4)

Proof. When the fictitious forces (fx, fy) remove the influence of oscillations in the
velocity such that (vx, vy) ≡ (vo, 0), the first equation in (4) is equivalent to the first line
in (1). The other equations in (4) are obtained by integrating the second and third lines
in (1) over one period and noting that the average of (fx, fy) is zero. Examination of the
definitions in Appendix A shows that eTCnF = 0 under the uniformity assumption.
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Lemma 2.2. Consider the model (1) with additional input vector (eτ, fx, fy) on the
right hand side. Suppose fy ≡ 0 and (τ, fx) are T-periodic with zero average and keep
the locomotion speed and orientation constant at (vx, θo) ≡ (vo, 0). Then T-periodic
signals (u, ϕ, vy) satisfy the augmented model equation if and only if

Jϕ̈+Dϕ̇+ (K+ voΛ)ϕ = u∫ T

0

(
ϕ̇TΛϕ+ (eTCte+ ϕTCoϕ)vo

)
dt = 0∫ T

0
eTΛTϕ dt = 0, vy ≡ 0

(5)

where, with T in (3),

J := T TJT, D := T TDT, Λ := T TΛT, Co := T TCoT.

Proof. Given signals (u, ϕ, vy), together with (vx, θo) ≡ (vo, 0), satisfy (1) with the
fictitious inputs if and only if

Jϕ̈+Dϕ̇+ (voΛ+K)ϕ− u

eTJT ϕ̈+ eTDTϕ̇+ voe
TΛTϕ

ϕTΛTϕ̇+ vo(e
TCte+ ϕTCoϕ)

mv̇y + eTCne vy

 =


0

eTeτ
fx
0

 ,

where the transformation in (3) is applied, and we noted T TB, eTB, and T Te are all zero
by definition. Thus the first row gives the fist equation in (5). Averaging the second
and third rows over one period T gives the two integral equations in (5), recalling that
(τ, fx) averages zero over one period. Finally, periodic vy satisfying the fourth row is
uniquely determined as vy ≡ 0.

3. Natural Gait

We seek a gait ϕ(t) that is characterized in terms of a natural oscillation and reso-
nance of the models developed in the previous section. In particular, we define a unique
gait such that the oscillation pattern (relative timing and amplitude of the joint os-
cillations) is specified as a mode shape of natural oscillation for idealized dynamics,
while the frequency and amplitude are determined by resonance in the coupled body-
environment system. We will refer to this as the natural gait since it exploits natural
dynamics to achieve efficient locomotion.

3.1. Natural Oscillation

We consider natural oscillation to be a periodic solution to the free response equation
of a system that has been idealized to sustain oscillation without external forcing.
Removal of damping is the process for such idealization for standard mechanical sys-
tems (e.g. a pendulum subject to friction). For locomotion systems, the drag from
the environment gives damping terms, but cannot be removed completely since thrust
for locomotion is generated from part of this force. This section will show a proper
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idealization wherein the modified dynamics admit a periodic solution appropriate for
undulatory locomotion and characterize natural oscillations.

The origin of traveling waves observed in undulatory locomotion may reside in the
dynamics of body-environment interactions. Based on this idea, we define the idealized
system by neglecting body mass, body stiffness, and the portion of the environmental
drag that cannot contribute to thrust generation. Clearly, the drag force tangent to
each link always resists forward locomotion and can be removed by setting Ct = 0.
The drag force normal to each link can have both positive and negative contributions
to thrust generation. It turns out that the negative portion is exactly captured by the
torsional drag Dτ ϕ̇, which is due to pure rotation about the center of mass for a given
link and results only in energy loss as does tangential drag.

Theorem 3.1. Consider the model in (1). Suppose the body has no inertia (J = 0),
no stiffness (K = 0), and no active bending moment (u(t) ≡ 0). Further assume that
there is no tangential drag (Ct = 0) or torsional drag (Dτ = 0). Then the motion
variables (ϕ, θo, vx, vy) satisfy the model equation if and only if

∆ϕ̇+ vxϕ+ δθ̇o = 0, vxθo = vy, ∆ := ALT, δ := ALe. (6)

In particular, for a constant vo ∈ R, the gait specified by

ϕ(t) = ℜ[ϕ̂ejωt], (jω∆+ voI)ϕ̂ = 0 (7)

satisfies the dynamics in (6) with associated velocities and orientation (vx, vy, θo) ≡
(vo, 0, 0), where ϕ̂ ∈ Cn−1 and ω ∈ R are a nonzero vector and scalar.

Proof. The model in (1) under the idealized condition reduces to F TCnF F TCnθ −F TCne
θTCnF θTCn −θTCne

−eTCnF −eTCnθ eTCne

 θ̇
vx
vy

 = 0, (8)

which, through factorization of the coefficient matrix, is equivalent to

F θ̇ + vxθ − vye = 0.

Then using the coordinate transformation in (3) and the definition of F in Appendix
A, this equation is equivalent to[

ALT ALe
0 0

] [
ϕ̇

θ̇o

]
+

[
ϕ
θo

]
vx −

[
0
1

]
vy = 0.

Thus we have the system in (6). All the eigenvalues of ∆ are purely imaginary because
of the similarity

U∆U−1 = ℓoUABU, U := (BTB)−1/2,

where AB is skew symmetric and U is symmetric. Thus the harmonic gait specified
in (7) is well defined, and can readily been shown to satisfy the equations of motion
in (6).
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For each locomotion speed vo, the natural oscillations of (1) are now characterized
by (7), which are periodic solutions of the idealized dynamics (8). It turned out that
the natural oscillation is harmonic:

ϕi(t) = αi cos(ωt+ βi), αie
jβi := ϕ̂i, i = 1, 2, . . . , n− 1.

All n− 1 eigenvalues of ∆ are distinct and lie on the imaginary axis, one of which is
at the origin if n is even. For each nonzero eigenvalue λ of ∆, the mode shape ϕ̂ is
uniquely determined (up to a scalar multiple) as the corresponding eigenvector, while
the natural frequency ω linearly varies with the locomotion speed vo as ω = jvo/λ. It
can be verified that eigenvalues λ = jpm with pm > 0 and corresponding eigenvectors
zm of ∆ are given by

pm =
ℓo

tan θm
, zmi =

ej(2iθm)

√
n− 1

, θm :=
mπ

n
, (9)

for m = 1, . . . , ⌊(n − 1)/2⌋, where zmi ∈ C is the ith entry of the mth eigenvector
zm ∈ Cn−1 which is normalized such that ∥zm∥ = 1. Note in particular that, for each
m, the magnitudes zmi are uniform over i, which means that the oscillation amplitudes
are uniform for all joint angles ϕi(t) along the body. Moreover, the phase angles of zmi

are equally spaced over 2mπ, which translates to traveling waves exhibited by the body
with the number of waves equal to m. For a given locomotion speed vo, the natural
frequency ω is the smallest for the 1st mode.

The body shape described by ϕ(t) in (7) is depicted in Fig. 2 at six evenly spaced
time instances during one cycle for two modes of natural oscillations, where the number
of links is n = 18 and ϕ̂ = γzm with m = 1, 2 and γ = 0.914, 1.828Rad. Each oscillation
exhibits body waves traveling to the left as indicated by the diagonal lines marking the
path of the apex of the body wave. The waves push the environment (e.g. ground for
crawling and water for swimming), creating thrust to move the body to the right. The

amplitude of body undulation depends on the magnitude of ∥ϕ̂∥, which is unspecified
in (7) and is chosen arbitrarily in the snapshots in Fig. 2 .

Figure 2. Oscillation patterns for 1st and 2nd modes of natural oscillation.

The natural oscillation in (7) by itself is not adequate for defining a reasonable gait
because it has an undefined amplitude and may not result in locomotion speed vx = vo
when subject to the full dynamics in the system in (1). To define the natural gait (as
opposed to the natural oscillation) consistently with the original models, we adopt the
mode shape as only one of its defining properties.
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Definition 3.2. The mode shape, z ∈ Cn−1, of a natural gait is defined by the
eigenvector of ∆ in (6), associated with a nonzero eigenvalue (denoted by jp):

∆z = jpz, p ̸= 0, ∥z∥ = 1. (10)

where the magnitude is normalized.

The natural gait is of the form ϕ(t) = ℜ[γzejωt] where z is the mode shape specified
in Definition 3.2. We will specify the amplitude γ and frequency ω based on resonance.

3.2. Resonance

Suppose the body undulates with harmonic gait ϕ(t) = ℜ[γzejωt] with period T :=
2π/ω, where z is the mode shape as specified in Definition 3.2, and γ and ω are
arbitrary constants. Let u(t) be the T-periodic bending moment input that generates
this gait, and vo be the resulting locomotion velocity, in accordance with (4) or (5).
Consider the gain from bending moment to locomotion speed:

G(ω, γ) :=
vo

uRMS
, uRMS :=

√
1

T

∫ T

0
∥u(t)∥2dt, (11)

which dictates effectiveness of the gait; larger G means that faster locomotion is
achieved with smaller actuation effort. When G takes the maximum value over a
range of (ω, γ), we say that the gait achieves resonance. We use this property to define
the natural gait.

Definition 3.3. The frequency ω and amplitude γ of the natural gait ϕ(t) = ℜ[γzejωt]
are those achieving resonance in the body-environment dynamics to maximize the gain
in (11) subject to (4) or (5), where the mode shape z is specified in Definition 3.2.

The following result is useful for determining the resonant frequency and amplitude.

Lemma 3.4. Consider the model in (4) with an arbitrary gait of the form ϕ(t) =
ℜ[γzejωt]. The gain in (11) with T := 2π/ω can be calculated as

G(ω, γ) =

√
2 vo
∥û∥

, (12)

û := (K+ voL− Jω2 + jωD)ϕ̂, ϕ̂ = γz. (13)

where vo is a real root of the 3rd order polynomial given by(
2eTCte+ θ̂∗Coθ̂

)
vo = jωθ̂∗Sθ̂,

θ̂ := (X + voY )ϕ̂, S := (Λ− ΛT)/2,
X := T − ehT, Y := eΛ21/(ω

2J22 − jωD22)

(14)

and the coefficient matrices are defined in Appendix A.

Proof. With (ϕ, θo) in (3), let us introduce another variable φ := θo + hTϕ where h
is defined in (A2) in AppendixA. Through the coordinate transformation θ ↔ (ϕ, φ),
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the first equation in (4) is equivalent to

Jϕ̈+Dϕ̇+ voLϕ+Kϕ = u,
J22φ̈+D22φ̇+ voΛ21ϕ = 0,

(15)

where the terms are defined by (A2) in Appendix A. Therefore, the bending moment

u(t) that generates a given gait ϕ(t) = ℜ[ϕ̂ejωt] in accordance with the first equation
in (4) can be uniquely determined as u(t) = ℜ[ûejωt] with û in (13). For this u(t) the
average of magnitude ∥u(t)∥2 over one period as specified in (11) is given by ∥û∥2/2.
Solving the second equation in (15) for steady state φ(t), we have

φ(t) = ℜ[φ̂ejωt], φ̂ := (voΛ21ϕ̂)/(ω
2J22 − jωD22).

The original variable θ(t) can then be obtained by the transformation θ ↔ (ϕ, φ) as

θ(t) = ℜ[θ̂ejωt], θ̂ = (T − ehT)ϕ̂+ eφ̂ = (X + voY )ϕ̂.

Since θ(t) is unbiased, so is θo := eTθ/n and the third condition in (4) is satisfied.
Finally, the velocity vo resulting from the gait ϕ(t) is determined by the phasor form
of the second equation in (4), as given in (14).

The 3rd order polynomial in (14) may have multiple real solutions for vo in gen-
eral. However, uniqueness is expected because one gait, with all other parameters
fixed, cannot result in multiple constant, steady-state velocities. This presumption is
supported by our numerical investigations which always resulted in one real and two
imaginary solutions for vo. With the gain G determined for each pair (ω, γ), the res-
onant frequency and amplitude that maximize G can be computed by gridding the
(ω, γ) plane. The method works for an arbitrary oscillation pattern z ∈ Cn−1 which is
not necessarily a mode shape for natural oscillation.

4. Analytical Study of Resonance

The equations for calculating the gain G for the model in (4) as specified in Lemma
3.4 do not allow a closed form characterization of resonance. Explicit formulas for
the resonant frequency and amplitude can, however, be derived for the model in (5)
which further simplifies (4) by θo ≡ 0. The pitching oscillation of the body orientation
denoted by θo(t) is fairly small in amplitude during undulatory locomotion whether
observed in nature or described by the model in (4) for a given input u(t). Therefore,
we use (5) for analysis in this section to gain insights into mechanisms underlying the
body-environment resonance.

4.1. Formulas for Resonance Frequency and Amplitude

The following result provides explicit, closed-form formulas for characterizing the res-
onance.

Theorem 4.1. Let a gait ϕ(t) = ℜ[γzejωt] be given with z in Definition 3.2 and
consider the model in (5). The gain in (11) takes the maximum over all (ω, γ) satisfying
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(5) when

ω =

√
∥Kz∥
∥Jz∥

, vo =
γ2z∗(jωΛ)z

γ2z∗Coz + 2eTCte
,

γ = 4

√
(2eTCte)

2(∥(Jω2 −K)z∥2 + ∥ωDz∥2)
(z∗Coz)2∥(Jω2 −K)z∥2 + (z∗Pz)2∥ωDz∥2

(16)

where, using p in Definition 3.2,

P := jσΛ− Co, σ :=
p

p2 + ℓ2o/3

(
1− ct

cn

)
. (17)

Proof. The gait ϕ(t) is unbiased and hence satisfies the integral equation in the third
line of (5). From the first equation in (5), the input u(t) that results in the gait ϕ(t)
is given by

u(t) = ℜ[ûejωt], û = Q(jω)ϕ̂, ϕ̂ := γz,
Q(s) := s2J+ sD+ voΛ+K.

(18)

The second equation in (5) holds if and only if(
2eTCte+ ϕ̂∗Coϕ̂

)
vo = jωϕ̂∗Λϕ̂, (19)

where by definition, Λ is skew symmetric under assumption (2) so the right hand side
is a real number. The gain in (11) is now given by (12) with û in (18) and vo in (16)
obtained by solving the linear equation (19).

First consider the ω that maximizes G for a fixed γ. From (19) it is clear that the
ratio vo/ω is fixed by γ. Substituting û from (18) into (12) and rearranging terms gives

G =

√
2 vo/ω

γ∥Q(jω)z∥
, Q(s) := Q(s)/ω.

Recalling that (jp, z) is an eigenvalue-eigenvector pair of ∆ as specified in Defini-
tion 3.2, it can be verified that

Jz = mopy, jΛz = copy,
Dz = cnpy, z∗Coz = co∥By∥2,
y := (BTB)−1z, p := p2 + ℓ2o/3, co := cn − ct

(20)

hold. Noting in particular that jΛz = σDz, we have

Q(jω)z = (K/ω − Jω + jζD)z, ζ := 1− σvo/ω.

where σ is a constant defined in (17). Hence, the ω that maximizes G is given by the
minimizer of ∥Q(jω)z∥. Noting that the matrices J, D, and K commute, we obtain

∥Q(jω)z∥2 = ∥Jz∥2ω2 + ∥Kz∥2/ω2 + ζ2∥Dz∥2 − 2z∗KJz.
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Since ζ is fixed by γ as are vo/ω, the minimum occurs when

∥Jz∥2ω2 = ∥Kz∥2/ω2,

which is satisfied by the ω given in (16).
The γ that maximizes G(ω, γ) in (12) as determined by (18) and (19) can now be

found using the ω that maximizes G(ω, γ) as given in (16). During the γ optimization,
the resonance frequency ω can be treated as a given constant since it turned out to be
independent of γ. The special properties in (20) allow cross terms to cancel such that
∥û∥2 from (18) can be written as

∥û∥2 = γ2∥(ω2J−K)z∥2 + γ2∥(voΛ+ jωD)z∥2 = γ2
(
q2v

2
o − q1vo + qo

)
.

where

q2 = ∥Λz∥2, q1 = 2σω∥Dz∥2, q0 = ∥(ω2J−K)z∥2 + ω2∥Dz∥2.

Then, from (12), γ maximizes G when it minimizes

2

G2
=

∥û∥2

v2o
= γ2g1 +

g2
γ2

+ g3,

where vo in (16) is substituted and

g1 = q2 −
(z∗Coz)q1
jωz∗Λz

+
(z∗Coz)

2qo
(jωz∗Λz)2

,

g2 =
(2eTCte)

2qo
(jωz∗Λz)2

,

g3 =
2(z∗Coz)(2e

TCte)qo
(jωz∗Λz)2

− (2eTCte)q1
jωz∗Λz

.

It can be shown that g1 and g2 are positive, and hence 2/G2 has a global minimum
when

γ = 4
√

g2/g1.

The expression for γ given in (16) is then obtained by substituting jΛz = σDz.

The most striking finding in Theorem 4.1 is that the resonance frequency for a
natural oscillation, ω, is independent of the environmental drag coefficients and is
completely determined by the body mass and stiffness once the mode shape z is fixed.
The resonant amplitude of undulation, γ, depends on both body and environmental
parameters, where the explicit formula in (16) shows how each factor contributes to its
determination. We will gain further insights into the resonant amplitude in the next
section.

4.2. Body Resonance vs. Environment Resonance

The previous section showed that the body resonance determines the undulation fre-
quency of the natural gait. This section will show that the environment dynamics are

12



the dominant factor that determines the resonant amplitude. To this end, first note
that the gain in (11) can be factored as

G(ω, γ) =

√
1
T

∫ T

0 ∥ϕ̇(t)∥2dt√
1
T

∫ T

0 ∥u(t)∥2dt︸ ︷︷ ︸
B(ω,γ)

· vo√
1
T

∫ T

0 ∥ϕ̇(t)∥2dt︸ ︷︷ ︸
E(ω,γ)

. (21)

Each factor has its own meaning. The gain B(ω, γ) maximizes the body (joint) move-
ment relative to the bending moment needed to generate the joint movement, while the
gain E(ω, γ) maximizes the travel speed with respect to the joint movement required
to produce such a speed. Thus the two factors separate the total resonance into those
due to body and environment.

Theorem 4.2. Consider the model in (5), the gait ϕ(t) = ℜ[γzejωt] with z = zm in
(9), where m is a fixed integer, and the gain G in (11) along with the factors B and E

in (21). Suppose cn > ct. Then the following statements hold.

(i) The frequency ω that maximizes the body gain B(ω, γ) is independent of γ and
is given by (16).

(ii) The environmental gain E(ω, γ) is independent of ω, and the amplitude γ that
maximizes E is given by

γ =

√
2n

∥Tz∥2
· ct
cn − ct

. (22)

Moreover, this amplitude is the lower bound on the γ in (16) that maximizes
G(ω, γ), approached in the limit where the stiffness k goes to infinity.

Proof. First note that√
1

T

∫ T

0
∥ϕ̇(t)∥2dt =

√
1

2
∥jωγz∥2 = ωγ√

2

and the velocity vo is given in (16). Hence E in (21) is equivalent to

E(γ) =
z∗(jΛ)z

(2eTCte)/γ + (z∗Coz)γ
, (23)

from which it is clear that E is independent of ω. Therefore the ω that maximizes
B is the ω that maximizes G in Theorem 4.1, which is given in (16). Moreover, the
gain E(γ) is maximized when the denominator takes its minimum, which occurs if the
two terms in the denominator are equal. Thus the maximizing γ is given by (22). The
statement regarding the lower bound follows by noting that the term ∥(Jω2 −K)z∥ in
(16) is proportional to k.

It is interesting to note that the amplitude γ in (22) at the environmental resonance
is smaller when the directional anisotropy cn/ct is larger. This basic property is in-
herited by γ for the body-environment resonance in (16), with the additional effect of
the body flexibility which makes γ larger.
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5. Illustrative Example: Leech Swimming

The results in the previous sections are illustrated numerically in the example of the
swimming leech, which has been modeled in (J. Chen et al., 2011). Assuming small
body deformation, the model can be simplified to (1), which captures the essential
dynamics of undulatory swimming, as shown in (Blair & Iwasaki, 2011).

We first show that observed undulatory movements of leeches can be reproduced as
the natural gait. The parameter values in the model are set as

ℓ = 94.8 mm, m = 1.16 g, k = 58 mN ·mm/rad,
cn = 1.4 mN/(m/s), ct = 0.12 mN/(m/s), n = 18,

where body length ℓ and mass m are those of Leech 1 in (J. Chen et al., 2011), and
the body stiffness k and fluid drag coefficients (cn, ct) are tuned to roughly match the
natural gait swimming with the experimentally observed behavior of Leech 1.

The first mode of the natural gait for the model in (4), as described by Definitions
3.2 and 3.3, are given in Table 1. Experimentally measured values for Leech 1 are also
shown for comparison. Here, α denotes the amplitude of oscillation maxϕi averaged
over the body (over i = 1 · · ·n−1); α := γ/

√
n− 1 for the natural gait. The resonance

parameters are calculated numerically using the method in Lemma3.4 by gridding the
(ω, γ) plane. The contour plot in Fig. 3 of the gain G calculated at grid points shows
a clear resonance peak.

Table 1. Resonance results for the case study.

ω (Hz) α (deg.) vo (mm/s)
Natural Gait 2.93 11.3 129

Leech Data (J. Chen et al., 2011) 2.94 11.1 130

2.7

2.7

2.
9

2.9

2.9

2.9

3.
1

3.1

3.13.3

3.
3

3.
3 3.

5

G (1/mN.s)

ω (Hz)

α 
(d

eg
)

2 2.5 3 3.5 4 4.5
6

8

10

12

14

16

18

Figure 3. The gain contours showing a resonance peak.

Next we illustrate that, when the natural gait is used for motion planning of robotic
systems, the locomotion speed can be adjusted by setting the body stiffness appro-
priately. The resonant values of ω, α, vo, and uRMS are calculated for various values
of the stiffness k, and plotted as functions of k in Fig. 4. The red and blue curves
show the results from (5) and (4), with and without assuming θo = 0, respectively.
The similarity of the red and blue curves for (ω, α) indicates that the input τ which
removes oscillation from the pitch angle θo and distinguishes (4) from (5) has little
effect on resonance, and the analytical formulas in Theorem 4.1 are accurate. The
natural gait at a variety of swim speeds can be generated by adjusting the bending
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stiffness k. A slower speed is achieved by decreasing the frequency and increasing the
amplitude, while a faster speed is achieved by increasing the frequency with roughly
constant amplitude near the lower bound in (22) indicated by the black horizontal
line.
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Figure 4. The resonance frequency and amplitude, swim speed, and RMS value of bending moment, as
functions of bending stiffness.

We now examine some specific gaits of natural modes 1 and 2 for a body with
large/small stiffness. The gait parameter values are calculated for (4) and summarized
in Table 2. For each case, 10 snapshots of the body during one cycle of undulation
are shown in Fig. 5, where the red and blue bodies indicate the initial and terminal
positions. We see that a higher speed is achieved by larger frequency with smaller
amplitude (or curvature) within the same mode. The snapshots indicate that the body
pushes water behind to generate thrust, with a larger slide at a higher speed. The slip
is very small at a low speed so that the tail almost follows the trajectory of the head.
Comparing (a) and (c), the second mode of the natural gait achieves (roughly) the
same speed as the first mode by a higher frequency with a smaller bending moment.
The leeches normally use the first mode, showing their preference of a low frequency
over a low muscle tension. The second mode may be useful for robotic applications
when the locomotion has to occur in a narrow channel.

Table 2. Natural gaits at two modes with large/small stiffness

m k ω α vo uRMS

Case mode mN·mm
rad Hz deg mm/s mN·mm

(a) 1 300 6.89 8.59 231 128
(b) 1 5 0.85 18.6 58.4 7.00
(c) 2 60 11.0 16.6 237 46.9
(d) 2 0.5 1.00 31.7 34.9 1.12
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(a) (b)

(c) (d)

Figure 5. Snapshots of the natural gaits over one cycle for cases (a)–(d) in Table 2 on the same scale
(swimming to right).

6. Conclusion

We have shown that the origin of traveling waves observed in undulatory locomotion
can be traced to natural oscillations of idealized dynamics as detailed in Theorem 3.1.
For this system, the natural mode shape z, specified in Definition 3.2, is shown to have
a constant magnitude and linearly changing phase along the body. The total phase lag
from head to tail for the mth mode approaches 2mπ as the number of links n increases,
which gives m waves exhibited by the body at each time instant. For each mode, the
gain from the bending moment to the locomotion speed is shown to have a peak that
defines the resonant frequency and amplitude (ω, γ) for which explicit formulas are
derived in Theorem 4.1.

The resonant frequency ω given in Theorem 4.1 depends only on the body stiffness
and body inertia and is clearly analogous to the undamped natural frequency of a
standard mechanical system. This ω not only maximizes the gain G used in Defini-
tion 3.3, but also the gain B in (21) which goes from the bending moment to the joint
movement. The input-output system for which the gain B is defined is linear, so it is
not surprising that resonance is independent of amplitude. However, the input-output
system for which the gain G is defined is nonlinear with resonance occurring at a par-
ticular amplitude, so it is consequential that the resonant frequency is independent of
the amplitude and equivalent to the frequency maximizing B.

The resonant amplitude γ given in Theorem 4.1 depends on both the body properties
and the drag coefficients. It is not independent of ω. However the γ that maximizes the
gain E from the joint movement to the travel velocity is independent of ω and depends
only on the drag coefficients. When the difference between the normal and tangential
drag coefficients becomes smaller, γ increases to compensate. This is intuitive since
larger body waves increase normal drag with no effect on tangential drag, thereby
increasing thrust.

In conclusion, Definitions 3.2 and 3.3 fully describe an undulatory gait for a long,
slender body subject to resistive anisotropic forces from the environment. The natural
gait can be calculated in an instant using the explicit formulas that analytically show
how the gait is affected by system parameters. The gait exploits natural dynamics
of the body-environment system for efficient locomotion, and the travel speed can be
adjusted by setting the resonance appropriately through the stiffness value. The result
is useful for designing gaits of robotic locomotors as well as for understanding the
mechanisms underlying undulatory locomotion observed in nature.
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Appendix A. Terms in the Equation of Motion

The coefficient matrices in (1) are defined by

J := LML/3 + F TMF, D := Dτ +Dn,
Dτ := LCnL/3, Dn := F TCnF, Λ := Λn − Λt,
Λt := F TCt − diag(F TCte), Λn := F TCn,
F := M−1B(BTM−1B)−1AL,

Co := Cn − Ct, K := BKBT, e :=
[
1 · · · 1

]T
,

A :=
[
I o

]
+
[
o I

]
, BT :=

[
I o

]
−
[
o I

]
,

(A1)

where o is the n − 1 dimensional zero vector, M , L, Cn, and Ct are n × n diagonal
matrices with mass, half length, normal drag coefficient, and tangential drag coefficient
for each link on the diagonal, and K is a (n − 1) × (n − 1) diagonal matrix of joint
stiffness coefficients.

When the mass and normal drag coefficient are proportional to each other for each
link, the moment of inertia and environmental drag matrices are proportional as well:

Cn = ηM ⇒ D = ηJ,

where η ∈ R is a proportionality constant. This is the case under the uniform link
assumption (2) with η = cn/mo.
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The coefficient matrices in (5) and (15) are defined by[
J11 J12
J21 J22

]
:=

[
T T

eT

]
J
[
T e

]
,

T := B(BTB)−1,
h := J12J

−1
22 ,

J := J11, D := D11, Λ := Λ11,
J := J− hJ21, D := ηJ, L := Λ− hΛ21,

(A2)

and Λij and Dij with i, j = 1, 2 are defined for Λ and D by the same congruence
transformation as in Jij . Note that Λ12 and Λ22 are zero under (2).
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