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Abstract
Uncovering how categories develop through childhood is cru-
cial for cognitive science. However, even for simple domains,
categories can be complex, making it challenging to access them
experimentally, especially in developmental studies. Markov-
Chain Monte Carlo with People (MCMCp) is a statistically-
based procedure that allows us to elicit category members from
participants’ implicit categories. However, due to the com-
plexity of the paradigm, MCMCp has been limited to experi-
ments with adult populations. Here, we develop and validate a
child-friendly method for applying MCMCp, producing the first
MCMCp experiment to elicit category examples from children.
Comparing fruit category members for five-year-olds and seven-
year-olds, we find generally consistent representative fruits and
a developmental progression of initially broad and overlapping
fruit categories to more differentiated distributions.
Keywords: Categorization; cognitive development; experimen-
tal methods

Introduction
Uncovering how we represent categories and how these rep-
resentations change throughout development and learning is
crucial for cognitive psychology. Therefore, sophisticated
experimental methods have been developed to determine prop-
erties of these mental representations, such as using similarity
judgments, spatial sorting, or generalization gradients to deter-
mine psychological spaces (Shepard, 1980, 1987; Goldstone,
1994; Hout, Goldinger, & Ferguson, 2013).

However, previous research on conceptual development has
typically used small sets of hand-picked, simplified items (e.g.,
stylized images of animals) to keep the experimental dura-
tion manageable and to ensure that children recognize the
presented items. These materials restrict the insights studies
can offer about the structure of children’s categories. This
is because the items an adult selects as salient or representa-
tive category members might not correspond to what a young
child considers representative, introducing a potential bias into
the experiments. In addition, many experiments assess chil-
dren’s categories by presenting the child with discrete choices
between contrasting materials. For example, in feature gener-
alization tasks, it is common to ask the child to generalize the
property of an example category member to one of two options,
where each option usually matches the example category in
some way (e.g., a visually similar member of a different cate-
gory versus a visually distinct member of the same category,
where adult experimenters determine similarity and category
membership). These discrete choices can reveal if an example

is perceived to be a category member or inferred to have a
particular property. However, category membership is graded,
with some instances being judged better category members
than others (Rosch & Mervis, 1975), and atypical instances
can lie at the boundary of competing categories, for example,
when deciding what kind of animal a platypus is, or what color
aquamarine is. Reducing the number and variety of materials
used in experimental studies and testing discrete, either-or
category membership thus reduces our ability to answer more
fine-grained questions, such as how representative category
members develop and how category boundaries are formed.

Here we adopt an experimental paradigm, Markov-Chain
Monte Carlo with people (MCMCp; Sanborn, Griffiths, &
Shiffrin, 2010), that is not limited to testing a pre-specified
set of materials. Instead, the method adaptively learns to
present representative stimuli to participants and then explores
participants’ categories, presenting stimuli proportionally to
the stimulus’ degree of category membership.

For example, when eliciting repeated examples of what
an apple is, there might be many Red Delicious, some but
fewer Granny Smiths, more red and green apples than yellows,
and few, if any, Black Oxfords. MCMCp asks participants
to repeatedly choose between a previously selected category
member, in our example, an apple, and an adaptively generated
example of the category (the proposed update). Participants
are asked to choose the more likely category member of the
two, e.g., “Which is the most apple-like?”. If this new proposal
is selected, it becomes the next example, or else the previous
state is carried forward.

MCMCp is motivated by Markov-Chain Monte Carlo
(MCMC), a widely used statistical method. In many infer-
ence problems, it is impossible to directly calculate measures
of a variable of interest, such as the mean or variance. MCMC
allows practitioners to approximate these measures by produc-
ing many samples that approximate the distribution of interest.

MCMC produces these samples by iteratively extending
a chain of states, each state corresponding to one sample
from the target distribution. Many MCMC algorithms ex-
ist; here, we will focus on one of the most common variants,
Metropolis–Hastings MCMC (MH-MCMC). In each iteration,
MH-MCMC generates a proposed update by perturbing the
previous state. Then, the likelihood of the proposed update
and the previous state are compared. If the update is accepted,
the proposal becomes the new state in the MH-MCMC chain,
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otherwise, the previous state is maintained. It can be shown
that for appropriate proposal and acceptance procedures, MH-
MCMC produces a chain of samples approximating the de-
sired probability distribution; for an accessible introduction to
MCMC, see MacKay (2003).

In MCMCp, the desired probability distribution is the par-
ticipants’ distribution over category members. As in MCMC,
we cannot access this distribution directly, but we can present
participants with a series of forced choices between two cate-
gory instances, where one option is the previous choice and
the alternative is a proposed update. Given that these forced
choices correspond to a valid acceptance procedure for MCMC
(Sanborn et al., 2010), the sequence of choices will approxi-
mate the participant’s category member distribution.

MCMCp offers several advantages over alternative exper-
imental methods. Most importantly, in MCMCp, the exper-
imenter does not need to specify all stimuli before running
the experiment. Instead, stimuli are generated adaptively, al-
lowing experiments to test complex stimuli effectively and
reducing bias introduced by pre-selecting materials. MCMCp
offers unique potential, especially in studies where the ex-
perimenter’s intuitions about which stimuli to test might be
misaligned with the participant population, such as in develop-
mental studies.

MCMCp was first introduced by Sanborn et al. (2010) and
has since been used to produce category representations for
complex and diverse categories such as stylized fruits and
animals (Sanborn et al., 2010), face perception (McDuff, 2010;
Martin, Griffiths, & Sanborn, 2012), or continuous-valued
relationships (León-Villagrá, Klar, Sanborn, & Lucas, 2019).
However, MCMCp typically requires hundreds or thousands
of samples to capture the structure of a category (Sanborn
et al., 2010; McDuff, 2010), resulting in repetitive and long
experimental sessions. Therefore, this approach has been
limited to adult populations.

Here we test, for the first time, if MCMCp can be used in
developmental experiments. To make experimental sessions
more manageable for young children, we use short MCMCp
chains, using the final state of a previous participant as their
starting point (Martin et al., 2012; Ramlee, Sanborn, & Tang,
2017; León-Villagrá, Otsubo, Lucas, & Buchsbaum, 2020).
We have previously shown that these linked MCMCp sessions
can produce population-level category members that are quali-
tatively similar to traditional MCMCp designs (León-Villagrá
et al., 2020). Furthermore, we introduce a child-friendly cover
story to make the task more engaging for children and mo-
tivate them to select representative category members. We
show that the resulting experimental setup allows us to effi-
ciently produce examples of children’s categories: MCMCp
quickly learns to produce representative category members
and then explores the extent of the categories. Uncovering chil-
dren’s categories efficiently offers the prospect of answering
fundamental questions in cognitive development and cogni-
tive science, such as if children’s conceptual spaces undergo
sudden restructuring or are, instead, gradually refined.

Experiment

We assess children’s category representations for three fruit
categories, apples, oranges, and grapes. We chose this domain
since previous adult MCMCp experiments have produced con-
vincing category representations (Sanborn et al., 2010; León-
Villagrá et al., 2020), and previous experiments showed that
children were comfortable treating the stylized experimen-
tal materials as fruit-like (León-Villagrá, Ehrlich, Lucas, &
Buchsbaum, 2022). In pilot experiments, we observed that
children would quickly realize that they could select fruits
freely without “erroneous” choices affecting their performance.
As a result, several children in our pilots enjoyed selecting
implausible fruits, such as blue oranges. To motivate children
to select representative fruits, we thus introduced a cover story
in which children were instructed that their MCMCp choices
served to teach a robot to draw fruits. Introducing this cover
story discouraged purposefully selecting nonsensical fruit ex-
amples and was an important modification to make MCMCp
practicable as a developmental paradigm.

Participants

Following our pre-registered participant collection criteria,1 a
total of 99 children participated in the task, split into two age
groups, 5-year-olds (N = 47) and 7-year-olds (N = 52).2 Chil-
dren were recruited from the lab’s parent databases, the online
volunteer database children helping science, and Facebook
parent groups. Note that our collection criteria did not specify
a fixed number of participants. Instead, we aimed to select
a minimum number of participants required for MCMCp to
showcase its practical use as a developmental paradigm. There-
fore, we pre-registered the number of trials required to achieve
reliable MCMCp results based on statistical criteria (see Re-
sults) and collected data until these criteria were achieved.
Most children spent less than 10 minutes on the MCMCp task
(M = 8.2 minutes, SD = 2.2), and the total experiment (includ-
ing briefing, familiarization, follow-ups, and debriefing) took
about 25 minutes.

Additionally, 49 5-year-olds and 21 7-year-olds participated
in the task but were excluded according to our pre-registered
exclusion criteria. Most exclusions were due to inattention
(n5 = 21, n7 = 7), random clicking (n5 = 21, n7 = 4) or tech-
nical issues (n5 = 4, n7 = 7).

1https://osf.io/vnkaf
2We originally planned to compare 4-5 versus 6-7-year-olds. How-

ever, early in data collection and prior to any analysis, we noticed
that our pre-registered exclusion criteria resulted in high exclusion
rates for 4-year-olds. After testing 41 children, 9 of 12 4-year-olds
were excluded due to inattention or random clicking. In contrast,
only 1 of 8 5-year-olds, 1 of 9 6-year-olds, and 2 of 12 7-year-olds
were excluded. To allow for balanced age groups while keeping the
participant numbers manageable, we dropped 4- and 6-year-olds from
the design and continued with only 5- and 7-year-olds. Therefore, a
small number of 4 and 6-year-olds are included, but exclusively in
the early stages of burn-in, and thus do not affect the interpretation
of the resulting fruit category member distributions.
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Materials
The experiment was conducted in a web application on the
participants’ computers or tablets. The stimuli were stylized
fruits, as introduced originally in Sanborn et al. (2010). These
fruits were programmatically created by varying the radii of
three circles (r), as well as the horizontal (h) and vertical (v)
distance between the circles. To create a shape, we calculated
the convex hull over the three circles and programmatically col-
ored the shape (variables hue, saturation, luminosity). Each
fruit was topped with a brown stem to indicate the fruit’s ori-
entation to the participants. By varying these six parameters,
complex colored shapes could be created; see Figure 1.

h

v
r

Figure 1: Stimuli were programmatically generated by speci-
fying radii (r), vertical (v), and horizontal (h) length, and three
color parameters.

Procedure
The experiment consisted of four blocks and was conducted
over Zoom video conferencing. Participants were linked to
previous (non-excluded) participants within their age group,
resulting in an overall linked sequence of category samples
representative of all children in the age group.

Setup and Familiarization: The first block of the experi-
ment consisted of an audio and video setup and briefing (with
the child’s guardian present), familiarizing the child with the
task, and testing their comprehension. To motivate children
to select representative fruit examples, we presented a short
video that provided the rationale for the MCMCp task. In
the video, children were introduced to Robbie, a smart robot
that does not know how to draw fruits. After the video was
presented, the children were asked if they could help Robbie
learn how to draw fruits. Once they agreed, they performed
one test trial, in which they had to select a banana from two
options (“Robbie drew these. Can you pick the banana?”). In
the test trial, one stylized banana and a round blue shape were
presented in the same fashion as the later MCMCp trials. For
an illustration of the familiarization, see Figure 2.

MCMCp Blocks: The main experiment used a custom web
application. During the child’s interaction, the experimenter
recorded the child’s engagement with the app and provided
feedback and encouragement when required. The main ex-
periment consisted of two blocks of MCMCp, each with 54
trials. In each trial, an animation of Robbie drawing two fruits
on two stylized white plates equidistant from the center of a

A

B

Figure 2: In the familiarization block, children were first
shown a short video about the task context (A). In the video,
Robbie the robot is introduced as a great artist who does not
know how to draw fruits. The child is tasked to teach Robbie
how to draw fruits. The second part of the familiarization
consisted of one test trial, in which children were asked to
select the banana from two options (B).

black screen was presented. This animation was followed by
pre-recorded audio instructions, asking the child to “Pick the
[fruit]” for one of the three fruit categories: apple, orange, or
grape; for an illustration of the main experiment, see Figure 3.

apple

Figure 3: Illustration of the MCMCp procedure. In each trial,
an animation showed Robbie “drawing” two fruits. Children
were then asked to “Pick the [fruit]”, for apples, oranges, and
grapes. After maximally two blocks of 54 trials, the current
selections for all three fruit categories were linked to the subse-
quent participant, thereby linking individual MCMCp chains.

In each trial, one fruit was the current state of the MCMC
chain, and the other was the proposed update, with sides pre-
sented in random order. Children could select one of the two
options using their mouse or touch. Upon selection, a sound
was played, and an animation removed the two fruits and plates
before the procedure was repeated with the next iteration of
choices. To provide feedback on the child’s progress, after
each trial, a star appeared at the top of the screen. After 54
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trials, a new screen appeared with Robbie presenting “All the
fruits he had drawn in his notebook”. Children could take a
short break before continuing to the second block of 54 trials.
If the child decided to end the task, or once both blocks of 54
trials were completed, the child proceeded to the final block.

To make the iterative procedure less obvious to participants,
fruits were presented in an interleaved fashion, starting with
apples. To assess whether MCMCp produced representative
fruit category members using established statistical measures
from the MCMC literature (see Results section), we also inter-
leaved three MCMCp chains per fruit. Therefore the sequence
of presentations was: apple1, orange1, grape1, apple2, etc.

To improve the speed at which MCMCp moved toward rep-
resentative category members, the first four MCMCp blocks
frequently generated proposals using uniform distributions
over the shape or color parameters (three equally probable pro-
posal schemes: uniform proposals in color, uniform proposals
in shape, and Gaussian proposals centered on the previous
fruit parameters). In contrast, later blocks favored Gaussian
proposals (8/10 Gaussian proposals, 1/10 uniform in color,
1/10 uniform in shape). The standard deviation of the Gaus-
sian proposals was set to cover 7% of each parameter range,
as in Sanborn et al. (2010). As in Sanborn et al. (2010), pro-
posals outside the valid parameter ranges were automatically
rejected without being shown to participants; the current state
was recorded, and the proposal counted as a rejection. A new
proposal was generated until the parameters were within the
admissible range.

Follow-up Questions: In the final block, children were
asked follow-up questions about how they selected the three
fruits (“How did you pick the [fruit]?”, for apples, oranges,
and grapes). Then they were asked, “Did Robbie get better
at drawing fruits?”, “Did you enjoy this game?”, and if they
could hear and see the task and experimenter clearly. Finally,
the children were thanked and presented with their participa-
tion certificates.

Results
Determining the effectiveness of MCMCp

To determine if MCMCp is a valid developmental paradigm,
it is important to assess if MCMCp produced consistent esti-
mates of participants’ categories. This analysis follows the
common practice in MCMC of determining how consistently
the multiple MCMC chains (in our case, three for each fruit)
move across the parameter space. Many diagnostics have been
proposed in the statistical literature; here, we focus on the
rate of convergence, the effective sample size (the number
of uncorrelated MCMCp samples), the number of proposals
that participants accepted, and the degree to which MCMCp
explored the parameter space.

Burn-in: It is common practice to start parallel MCMC
chains at random locations in the category space to assess
at which point these initially separate chains converge to an

area of the category space where the distribution is concen-
trated. Before that point, MCMC samples will be biased by
the random starting positions and will not accurately reflect
the target distribution. Thus, it is standard practice to remove
iterations before this point, the so-called burn-in period.

In MCMCp, determining burn-in is an important measure
of the validity and efficacy of the method. MCMCp would
not produce interpretable category member distributions if the
randomly initialized chains do not converge to the participant’s
category distribution, or if convergence requires impracticable
numbers of iterations.

Thus, we determined the length of burn-in following pre-
registered criteria, by incrementally calculating the multivari-
ate scale reduction (R̂; Brooks & Gelman, 1998) of each fruit.
After each participant, we calculated R̂ values for all three
fruits from the beginning of the chain (the first iteration in
the sequence of linked MCMCp trials) to iterations up to the
current participants’ last trial. Once a sequence was found
that suggested that the chain had converged (R̂ values ≤ 1.5,
as specified in our pre-registration) we labeled this point as
the end of the burn-in period. Both 7-year-olds (M = 170,
SD = 120.50) and 5-year-olds (M = 75.33, SD = 4.04) con-
verged within the expected number of trials, suggesting that
MCMCp successfully converges to children’s category mem-
ber distributions.

Since we obtained three different R̂ values, one per fruit
category, we conservatively used the maximum iteration across
all three fruits; for the burn-in points per fruit and age group,
see Table 1. We analyze category distributions after burn-in
up to 1500 iterations.

Table 1: The iteration index i at which burn-in was achieved
after incrementally increasing the subsequence i to j that re-
sulted in R̂ ≤ 1.5. Since most children performed two blocks
of MCMCp, burn-in was achieved after 8-18 participants.

i j Block R̂

5-
ye

ar
s Apple 80 288 16 1.46

Orange 73 360 20 1.12
Grape 73 324 18 1.49

7-
ye

ar
s Apple 309 648 36 1.21

Orange 106 594 33 1.18
Grape 95 594 33 1.13

Effective Sample Size: In addition to converging to the tar-
get fruit distribution, we also require sufficiently many samples
to obtain reliable estimates of children’s category member dis-
tributions. Since each state in a chain of MCMC or MCMCp
states depends on the previous, samples are correlated. Thus,
the total iteration length (1500) tends to significantly over-
estimate the effective number of independent (uncorrelated)
samples. A common way of estimating these independent
samples is to estimate the effective sample size (ESS Gelman
et al., 2013). Both 5-year-olds (M = 43.3, SD = 21.56) and
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7-year-olds (M = 29.84, SD = 17.18) produced satisfactory
per-parameter ESS values (for each fruit) and overall compa-
rable ESS to previous adult experiments (Sanborn et al., 2010;
León-Villagrá et al., 2020).

Acceptances: Another important measure to assess the ef-
fectiveness of MCMCp is considering the quality of proposals
generated. Ideally, proposed states in MCMC strike a balance
between presenting highly representative samples and explor-
ing less representative areas of the category space (to ensure
not missing potentially more representative areas).

Since out-of-range parameters were automatically rejected,
the number of total samples was often higher than the number
of trials seen by participants. Therefore, we evaluated accep-
tances, including automatic rejections, as they are diagnostic
for the sampling process (total acceptance rates) and exclud-
ing automatic rejections (human acceptance rates), as this is
diagnostic for the psychological validity of the method, see
Table 2.

Table 2: Acceptance rates including automatic rejections (acc),
and excluding automatic rejections (hac).

Maac SDaac Mhac SDhac

5-
ye

ar
s Apple 0.33 0.47 0.38 0.49

Orange 0.42 0.49 0.43 0.50
Grape 0.42 0.49 0.41 0.49

7-
ye

ar
s Apple 0.23 0.42 0.24 0.43

Orange 0.25 0.43 0.25 0.43
Grape 0.27 0.44 0.27 0.44

Including automatic rejections, 5-year-olds (M = .39, SD =
.49) and 7-year-olds (M = .25, SD = .43) produced satisfac-
tory acceptance rates. Excluding automatic rejections, 5-year-
olds (M = .41, SD= .49) and 7-year-olds (M = .25, SD= .43)
produced very similar acceptance rates, suggesting that par-
ticipants only rarely moved towards the fringes of the param-
eter ranges. Across age groups, these acceptance rates were
higher than previously reported results in Sanborn et al. (2010)
and León-Villagrá et al. (2020) and comparable to the recom-
mended 20 % to 40 %(Roberts, Gelman, & Gilks, 1997).

Overall, these acceptance rates suggest that the proposal
schemes were highly effective in producing representative
fruits for the three fruit categories.

Multivariate Scale Reduction Finally, since participants
could start diverging, even after burn-in was achieved3 we
determine R̂ for the 1500 samples after burn-in. Overall R̂
was close to the recommended convergence measures in the
statistical literature (R̂ ≈ 1.1) for all fruits, suggesting that
MCMCp produced samples from the participants’ category
representations. Similar to the R̂ values that determined burn-

3For example, if subpopulations of participants have significantly
different category member distributions and these subpopulations
cluster within the linked MCMCp chain.

in, younger children had smaller R̂ values (M = 1.12, SD =
0.02) than 7-year-olds (M = 1.26, SD = 0.15), and both age
groups produced highly satisfactory convergence measures.
These results suggest that MCMCp effectively converged to
the category member distributions, and, within age groups,
participants agreed on which fruit category members were
representative.

Fruit Category Distributions
Since we have established that the MCMCp samples of both
age groups converged to the fruit categories and that both
groups generated sufficient samples, we next discuss these
distributions further.

Visually, we found that 5-year-olds produced broader cate-
gory distributions across parameters, and variances were more
than twice as large as for 7-year-olds. Disregarding the broader
distributions, 5-year-olds produced fairly consistent fruit dis-
tributions to 7-year-olds — both age groups agreed on which
fruits had multiple characteristic colors (grapes) and that or-
anges only had one characteristic color, as well as which fea-
tures were characteristic of fruits. For example, both age
groups selected blueish and greenish grapes, orange oranges,
and reddish and greenish apples; see Figure 4 for fruit means,
and Figure 5 for histograms.

5 
ye

ar
s

Apple

7 
ye

ar
s

Orange Grape

Figure 4: The mean fruit category members for 5- and 7-year-
olds.

However, this visual comparison also suggests differences.
Interestingly, for grapes, 5-year-olds produced considerably
larger grapes (see the distribution of h,v,r parameters) than
7-year-olds. Finally, for 5-year-olds, the fruit parameters of
the three fruits overlapped considerably, while 7-year-olds
produced more differentiated categories.

Qualitative Features & Follow-up Questions
To assess how children chose the fruits, we additionally an-
alyzed the reasons they provided for their choices after the
MCMCp blocks. Responses were broadly consistent with the
posterior category member distributions. Both 5-year-olds and
7-year-olds frequently named color and shape as a reason for
their choices. Consistent with the posterior distributions, 7-
year-olds mentioned size at higher rates than 5-year-olds when
picking grapes, and both age groups mentioned size less for
apples and oranges. Finally, older children mentioned because
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Apple Orange Grape
Figure 5: The category member distributions for 5-year-olds (top row) and 7-year-olds (bottom row). Each column displays the
posterior histograms for one of the six parameters that determined the shape and color of the fruits for the three fruits. Note that
hue is structured in circular space, with values wrapping around at 360◦. Vertical lines show (circular) means.

it has a stem more often than younger children, suggesting
that some children judged the materials as actual fruits, see
Table 3.

Table 3: Proportion of children naming each feature when
prompted “How did you pick the [fruit]”. Is responses were
statements such as “Because it is a [fruit].”.

Color Shape Size Stem Is

5-
ye

ar
s Apples 0.60 0.40 0.17 0.00 0.03

Oranges 0.63 0.43 0.14 0.00 0.06
Grapes 0.57 0.31 0.31 0.03 0.06

7-
ye

ar
s Apples 0.83 0.67 0.10 0.10 0.02

Oranges 0.67 0.71 0.10 0.07 0.05
Grapes 0.60 0.45 0.50 0.00 0.10

Most children reported that they enjoyed the game (93% of
5-year-olds, 94% of 7-year-olds) and saw and heard the task
and experimenter clearly (100% of 5-year-olds, 96% of 7-year-
olds). Overall, children perceived the drawings to improve
(89% of 5-year-olds, 94% of 7-year-olds). Together with our
convergence results, these findings suggest that we succeeded
in adapting MCMCp as a developmental paradigm.

Discussion
We developed and validated a child-friendly method for pro-
ducing category member distributions from young children
without pre-specifying experimental materials. Using rigorous
measures from the statistical MCMC literature, we found that
MCMCp converged to children’s categories and effectively pro-
duced samples from the three fruit distributions. Across mea-
sures, and for both age groups, we obtained similar, or better,

statistical measures than previous MCMCp experiments with
adults, suggesting that MCMCp can be used in developmen-
tal paradigms. By linking individual MCMCp runs together
and introducing a child-friendly cover story, we showed that
MCMCp can be used as a developmental paradigm, even in
remotely deployed experiments. Analyzing the distributions
over fruit category members, we found broadly consistent
representative fruits and several categories characterized by
multiple modes. However, we also found characteristic dif-
ferences – younger children’s grape categories did not reflect
scale differences as much as older children’s.

Moreover, we found a general developmental progression
of initially broad and overlapping fruit categories to more dif-
ferentiated distributions. These results are intriguing, as they
are at odds with previous work highlighting that younger chil-
dren have less permissive category representations and tend
to prefer more extreme category members as representative
instances (see, for instance, Foster-Hanson & Rhodes, 2019).
In this account, our results might reflect that younger children
were noisier, producing more diffuse distributions. However,
our work is consistent with the idea that younger children ex-
hibit higher cognitive flexibility (Gopnik et al., 2017). Future
research should assess these competing explanations, for ex-
ample, by evaluating the MCMCp distributions we obtained
in convergent tasks, such as feature generalization tasks.

These types of experiments could facilitate a deeper un-
derstanding of how children’s categories develop and how
category structure determines children’s and adults’ general-
ization and inference capabilities, showcasing the strengths of
MCMCp as a developmental paradigm. More broadly, we see
much potential in using MCMCp and linked variants in experi-
ments beyond developmental studies, given its effectiveness
in estimating population-level categories.
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