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Abstract 

UCRL-16630 

The instantaneous current.and the ~verage current to a dropping mercury elec-. 

trode in .a binary salt solution are calculated. At very small times the instan·~ 

taneous current depends .only on the ohmic drop and varies as t
1

/ 3, whereas .at 

.sufficiently large time.s -and voltages a limiting current is reachedi which vades 

l/6 as t . The average current OVE;!r a drop lifetime is not well represented by the 

u . 
. limiting current approximation of the Ilkovic equation if either the drop life or the 

applied voltage is too small. However, the current is always directly proportional 

to the bulk concentration of the reactant. 



l 

The dropping mercury. el~ctrod.e is used .quit.e widely .fG>r the qualitative and 

quantitative analysis of s.olutions c;ontairiing reducible .solutes" It is also used 

occasionally. to measure diffusion co~fficientf:l when only rough Vf;l.lues are required". 

Ilkovi~l derived an expression for tl).e limiting current to the drop in a well 

2 
supported electrolyte., and von Stackelberg · determined the effect of migration 

on the. limiting current .f.or, the case of a binary electrolyteo In order to apply 

these theoretical re.sults one integrates the instantaneous current expression 

over the lifetime of a drop to obtain the average current, the quantity which is 

measured experimentallY• This proce.dure assumes that the limiting cu;rrent is 

attained at all time~, .which is a g;ooq ap:proxi~tion for a w~ll supported electro­

lyte. W.ith a binary electroJ.,yte, however, the relatively high ohmic drop in the 

diffusion layer ap.d even. in the bulk s.olution retards the approacp. to zero of "tfhe 

concentration .at the surface of the drop. In this case the expression for limiting 

current may not .be .adequate to interpret experimental resu),ts correctly, For 

this .purpose. it is nec.es.sary to investigate the transient behavior of the concen­

tration to det.ermine its. effect on the measured average current. Levich3 has 

attempted to treat the problem, but unforttL.'1ately h:j._s analysis contains serious 

errors. 

The Concentration Equation 

In our analysis we consider .a spherical m~rcury drOJ? formed at time zero in 

a binary salt solution of initial concentration c • The drop is h~ld at a constant . 0 

potential V relat.ive to a re.yersible counter-electrode far from the drop such that 

the cati.on is reduced and dissolves in tpe mercury. 

4 
Following Levich , we. wr,ite the equation of convective diffusion for this 

case in the following for.(ll: 

(l) 



where z - t
2/3 y, 

c 
c-c 

0 

c 
0 ' 

t is time, y i.s normal distance from the drop surface, c = c /(-z ) =·c /z is + - - + 

the concentrat.i.on,. ana D .is the diffusion coefficient, the latter two quantities 

.referring to the neutral salt. Two of the boundary conditions are 

c 0 at .. = o, z > 0 

a:nd c 0 as 

2 

The depletion of salt .in the <iiiffusion layer causes the electrica],. conductivity 

of the solution to decrease tn that region and contributes to a large ohm'j.c drpp. 

Since we have specified .a particular .potential between the electrodes, the surface 

concentration and the current must adjust themselves to bal!mce the ohmic drop 

and the concentration p0larization with the total applied voltage. Thus the third 

boundary condition is 

where c
1

(-r) is some function of time which .remains to be determined. 

Equation (l) may be solved by a Laplace transformation. The result is 

00 

c(-r,z) (2) 

The problem remains to determine c
1
{-r), the dimensionless concentration at the 

surface, from ,a consideration of the polarization. 

The Poti§ntial Equation 

From dilute electrolytic solution theory one can show that· the current 

density i .at the mercury drop is 

i 
-z z F 

+ -

-D dC I 
(i-t ·) oy 

+ jy=O 
(3) 
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where z and z are the valences of the ions, F is Faraday's constant, and t+ io 
+ -

the cation.transference number defined as 

Also the diffusion coefficient of the sa;lt may be written as 

D 
D D (z -z ) 
+ - + -
z D -z D + + -·-

where D .and D are the individual ionic diffusion coefficients. + - . . ' 

In g~neral, the current density in the solution may be written as 

i 
-z z F + -

F a¢ oc 
-(z D -z D ) -- c ~- (D -D ) ~ 

+ + - - RT oy + - oy 

(4) 

(5) 

where ¢ is the potential in the solution. Elimination of the current density from 

.equations (3) .and (6) and integration over y from zero to infinity yield the re-

quired equation for c
1

: 

where a is the. radius of the drop. Specifically the radius is given by 

a =: Y tl/3 (8) 

where ( 3~;u.)l/3 y =: 

' 
d is the. diameter of the capillary tube and U is the average flow veldcity 

0 

o.f the mer.cury through the capillary. .In this integration the c0rtcentration in 

the diffusion layer. was approximated by a. linear J>rofile, and the thickness of 

the diffusion .layer :was 13,ssumed to be small relative to the drop radius. Also 

w.e have made use of the N.ernst expre:?sion' for the concentration overvoltage, 

(9) 

3 
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the· difference in potential between the mercury and the solution at the interface. 

Nendimensienalizati;,n 0f equation (7) and substit~tinn of ~~aO from the 

differentiation of equation (2) give the following integra-differential equation 

for the determination of the surface c-oncentration: 

- ~- Jl 
dC1 (TJ) d')r 

ln (l+C
1

) + t+Cl dT] T]=81)r Jl, . 14 0 
- 1)r 

(10) 

where -z z FV ·~ + -- RT z -z + -
(11) 

The variable e is a dimensionless tim~ defined as 

(12) 

The Current 

Let us define a dimensionless current E(e,~,t+) as 

(13) 

where' I is the ·total current flowing to the drop at the time t to which the 

variable e corresponds. .From combination of e.quatiEms (2), (3), (J.,O), and (13) 

the reduced total current is found to be 

(14) 

. Thus, from the solution of equation (10) for c
1

, the instantaneous current may 

be calculated. 

The Concentration at the Drop Surface 
\,. 

It has been possible to obtain a solution to equation (10) valid at small 

times by expanding c
1 

as a power series in e. 

c
1 

= a
1
e + a2e2 + a

3
e3 + ••. (15) 
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The c0efficients a. are functi0ns -0f the parameters qJ and t • Their values are 
l + 

determined by substituting the series (15) int0 equati0n (10) and equating terms 

0f the same p0wer in e. 

The .. first term o.f this series C<:)rresp0nds t0 Ohm's law and leads t0 

i 
ICV 
a 

where K. is the c0nductivity 0f the soluti0n and is equal to 

2 
-z z F c D + + -

/C 
RT t 

(16) 

(17) 

That is, at very small times the only contribution to the potential drop is the 

ohmic .resistance of the solution around the sphere. This fir,st term gives the 

small time asymptote for the reduced current 

(18) 

At very .large times c
1 

will be constant, and the third boundary condition 

f0r the solution o.f equation (l) .is. n\") longer a function Qf time. Normally the 

.. applied voltage is sufficiently ;L\3-rge to produce a limiting current condition, 

v 
and the solution then corre.sponds .to that of Ilkovic. This result is the large 

. timej .. lar.ge. voltage __ asymptote and may be expressed. in dimensionless form as 

(1~) 

Comparis0n of .. this expression with the .limiting current of a cation with a sup-

.v 
p0rting electrolyte given by the Ilkov1c equation yields the result 

( 
l ) · . G. \1/2 oinary . = 1 .... ]2_/ 
Isupported . (l-t+) D+, 

· limiting 

(20) 

which is identical with the expression derived by von Stackelberg. 

5 

Using the small time expansi-on introduced in equation (15) we have calculated 

the reduced instantaneous current t0 the drop for various values of <l> and for 



values of e up to 1.0. The results are shown in Figure 1. It is seen that the 

'value of the' transference nwnb.er has only a small effect on the current parti-

cularly.at large voltages; the effect, in fact, vanishes in both the small and 

large time limits. We note that the current varies with ti or t 1 / 3 at. small 

1/6 time.s and then changes over to a e or t dependence at large times.1 the tran-

sition being earlier, the greater the applied potential. 

~· The Average Current 

The significant quantity for comparison with experiment is usually not the 

instantaneous current but :rather the current averaged over the lifetime of a 

drop. This average current is defined as 

where T is the drop life. 

The solution f.or the instantaneous current has been integrated to obtain the 

average current to the drop. The results are shown in Figure 2 where the 

dimensionless a vera.ge current E ( e, <l.i, t +), defined analogously to E, .is plotted 

versus dimensionless drop life e = efinal with the dimensionless voltage and t+ 

as parameters. For a typical experiment e is on the order of 0 .. 1 to 0. 5· Also, 

for a l·-1 electrolyte 

- 6 
The .. line E = 7 8 

an applied potential of one volt corresponds .to \l! 

'V 
is the Ilkovic - von Stacrkelberg limiting current result 

.. and represents the large time, large voltage asymptote. 

Conclusions 

In Figure 2 it is seen again that the value of the transference nwnber has 

little effect on the average. currep.t, particularly for reasonably large voltages? 

Curves for values of t+ between zero and LO fall.between the two curves given 

for these values. 

6 
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Figure l. The reduced instantaneous current to the drop as a 
· function of dimensionless time, dimensionless applied 
voltage; and cation transferenc.e number. 
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Figure 2. The reduced average current to the drop as a function 
of dimensionless drop life, dimensionless applied 
voltage, and cation transference number. 
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For cil > 20.and ® > Oa07 it is found that the limiting current approximation 

provides a good representation of the average current" However, for <1l = 10 the 

approximation is not very accurate un+ess ® > Oa20, and it becomes much less 
I 

adequate for smaller voltages and shorter times" Therefore; the correct inter-

pretation of experimental' data. obtained under circumstances where values of drop 

life or applied v.oltage may be necessarily small or where instantaneous current 

is .measured .directly. re.quire.s consideration of the detailed results of this 

analysis a 

A.further.conclusion of this work fl)llows from equations (13) and (lJ-t)o 

The right.-.hand side of equation (14) is dimensionless and independent of c 0 

0 

Therefore, even.during the transient concentration behavior, the current is 

always. prop0rtional to the. bulk concentr?-tion of the reactant. This is the 
I 

characteristic. of .all, polarographic sitliations which gives the method its great 

usefulhess as a quantitative analytical tooL 

The .. phenomena. considered here for a binary electrolyte also occur in a 

supported electrolyte. Hnwever, because of the higher conductivity, the tran-

sient effects. are o.f much. shorter du:r:ation .and therefore insignificant in that 
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Nomenclature 

a - radius of mercury d,rop (em). 

a. - coefficients in expansion of dimensionless qoncen~re,tion ~t the surface. 
l 

c - electrolyte concentration (mole/cm3). 

c - electrolyte concentration in bulk solution (mo~e/qm2 ). 
0 

c - electrolyte concentration at the surface of the drop (mole/ cm3) ~ 
l 

c - cation concentration (mole/cm3). 
+ 

C dimensionless electrolyte concentlr'at~en. 

D - diffusion coefficient of the salt ( c;.rn2 /sec). 

D. -.diffusion coefficient of ionic species i (cm2/sec), 
l 

.d - diameter of capilJf-ry from which mercury issues (em). 

E - dimensionless current .to the drop, 

F Faraday's const\3-nt (coulomb/equi v. ). 

i current density (amp/cm2 ) . 

. I - total current to the drop (amp). 

R - ga.s constant (joule/mole.,.°K). 

T - temperature ( °K), 

t - time (sec). 

t - cation .transference number. + 

U
0 

- .average velocity of mercury in capillary (em/ sec). 

V - applied voltage ( v0lts). 

y - normal distance from drop surface (em). 

zi - charge number of species if 

y - constant in drop growth rate (cm/secl/3), 

K - electrical conductivity of .the solution (mho/em). 

¢ - electrostatic potential (volts). 

10 
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<ll - dimensionless :potential. 

e - dimensionless time variable. 

e - dimensionless drop life. 
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