Lawrence Berkeley National Laboratory

Recent Work

Title
POLAROGRAPHY IN A BINARY SALT SOLUTION

Permalink
https://escholarship.org/uc/item/3f79f9sg

Authors

Chapman, Thomas W.
Newman, John.

Publication Date
1966-03-01

eScholarship.org

Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3f79f9s8
https://escholarship.org
http://www.cdlib.org/

UCRL-16630

University of California

Ernest O. Lawrence
Radiation Laboratory

POLAROGRAPHY IN A BINARY SALT SOLUTION

4 )

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



s Er— T - ’. i - =
| Submitted to Journal of Physical Chentistry }
UCRL~-16630
'
| |
. UNIVERSITY OF CALIFORNIA
@ :
Lawrence Radiatien lLaberatory
Berkeley, California
AEC Contract No. W-TLO5-eng-L48

POLAROGRAPHY IN A BINARY SALT SOLUTION'

Thomas W. Chapman and John Newman

March, 1966



UCRL-16630

Polarography in a Binary Salt Solution
"Thomas W. Chapman and John Newman
Inorganic Materials Research Divisioen,
Lawrence Radiatien Laberatory, and

Department of Chemical Engineering
University of California, Berkeley

Maich, 1966

Abstract

. The instantaneous current and the average current to a dropping mercury elec-

trode in.a binary salt solution‘are calculated. At very small times the'instahm

1/3

taneous. current depeﬁds‘only on the ohmic dr®p and varies.as t 5 whereas at

‘sufficiently.large times and voltages a limiting current is reached, which varies
a8 tl/éc The average current over a drop lifetime is not well represented Ey the
limiting current approximation of the Ilkovic equatien if either the drop life or the

.applied voltage is too small.. However, the current'is.always'directly'pf0portional

to the bulk concentration of the reactant.



The drepping-mercury.electfode is used quite widely fer the gqualitative and
gquantitative analysis of solutions containing-reducible'solutesm It is al.so -used
occasionally .to measure diffusionvcoefficients when only rough values.agre requiredw
Ilkovfél derived an expression for the limiéing current to the drop in a well
. supported electrolyte,vand vén.Stackélbergg determined the effect of migration
' on'the.limiting”current.for;the.éase of a binary electrolyte. In order to apply
these fheoretical results one integratesvthé instantaneous current expression
over the lifetime. of é drop to. obtain the average current; the quantity which is
méasured experimentally. This proceﬁure assumes that the limiting current,is
attained at all tihes,.whiéh.isna.good approximation for a well supported electro-
.lyte., With a binary.electrolyté, howevef, the relatively high ohmic drop in the
diffusion layer and. even.in the.bulk solution retards the appreach to zere of the
concentration.at.the surface: of thé drop. In this.case.the expression for limiting
current may-not.be.adequate_tobinterpret experimen£al resulﬂs correctly° For |
thisTPurposeiiﬁ,is necessary to.investigate the transient behavier Qf the\concen-
tration to determine its effect on the measu:ed average currént. Levich3 has
attempted to treat the broblem,vbut uhfbrtunately his analysis éontains serious

~ errors.

Thé Concentration Equation

In eour analysis we copéiderfa spherical mercury dr@p formed at time zero in
.a binary sélﬁ solutioﬁ‘oifinitial goncentrétion cot-‘Thé drop is held at.a constant
potential V relatiVé to a reyersible counter—electréde far from the drop such that
the cation is reduced and dissolves in the mercury. |

.Foilowing Levich%, weuwrité the equation of convective diffusien for this

case in the follewing form:
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t is time, y is normal distance from the drop surface, c = c+/(—z_) =‘c_/z+ is
the éoncentiétion,vand D is the diffusion coeffiéient, the latter twe quantities
referriﬁgito the neutral salt. Two of the boundary conditiens are

C=0 at T=0,2>0
and ‘ "C =0 as z ™o,

The depletion of salt in the diffusion layer causes the electrical conductivity
of the solution te decrease in that region’and contributes to a large ohmic drop.
Since we. have specifieduaiparticular.potential between the electrodes, the surface
concentration and the current must adjust themselves.tovbalance the ohmic droﬁ
- and the. concentration polarization with the total applied voltage. Thus the third‘
boundary qéndition is |

C = cl(r) at z = O

where C. (1) is seme function of time which remains to be determined.

1 (

Equation (1) may be solved by a Ldplace transformation. The result is
© ) . | . ‘
. -2 2 '
2 . / - -
c(t,2) = J:; d[\ 'Cl<; - 5—§> e* dax . - - (2)
v ,'Tr / - . Ll"X ’ .
Z/EJ;f ' '

- The problem remains to determine C.(7), the dimensionless concentration at the

1

surface, from.a consideration of the polarization.

The Poténtial Equation
From dilute electrolytic sélution theory one can.show thatythe current .
density 1 at the mercury drop is
i -D__ dc¢ -
, . (3)

-2,z F ~ (1-t,) aylyzo




where-z+ and z -are the valences of the ions, F is Faradéy's constant, and t+ i
the catien.transference number defined as
. z‘+D+ ‘ ' )
+» z+D+fz_D : ,

Alse the diffusion ceoefficient of the salt may bé written as

DD (z -z )

G St
D=z ————— (5)
z+D+ z D :

4where.D+.and D_ are the individual ienic diffusion coefficients.
. In general, the current density in the solution may be written as

_ F gol dc
—Z;Z_F - (Z+D+ z.D_) RT ¢ Oy ~ (D+'D-) Sy ()
where % is the potential in the solution. Elimination of the current denéity from
equations (3).and(6) and integratien over y from zero to infinity yield the re-

quired equatieon for_cl: . )

' ' 3 (z-—z) c (2~z) c~c.\
Da c + o _+ - L‘:)_ {
V':‘E:'ﬁ_‘é‘%) —-—z——-mz’+—.z+—zjt+<.c) -

- 1 fo}

where a is the. radius of the drep° Specifically the radius is given by

a % Y tl/3 '. . , | (8).

3d U
re (),

d is the diameter of the capillary tube and Ué is the average flow velocity

where

of the mercury through the capillary. .In this integratién the cercentration in
the. diffusion layer was .approximated by.azlinearuprofile,aand the thickness of
the .diffusion .layer was .assumed to be small. relative to the drop radius. Also

we have made use of the Nernst expression for the concentration evervoltage,

‘_""Z%c_o: (9)
‘ 1



the difference in potential between the mercury and the solution at the interface.

Nondimensionalization of equation (7) and substitution of <§§2 from the
= =0

differentiation of equation (2) give the follewing intégro-differentia; equation

for thevdeterminaﬁion of the .surface concentration:

v

- ~1ac(n) : o .
-9 -l]h ——%ﬁ—— — = (a+c)) + 6,0 (10)
VYo n=0y ‘,l:’ Wlh
where o :7—z+z_ FV ‘ (11)
Tz -z RT° :
+ ‘-
The variable 6 is a dimensionless time aefined as
AR N3/ 7 -
(Z -2 )\/;T-(.—SE .D ]
o=l T =8 VALY (12)
z Dvr : '
+
The Current
Let us define a dimensionless current E(Q,@,t+).as
ID -
E(6,0,t ) = — (13)
* 28 r3Fe_z°D,

‘where I is the total current flowing te the drop at the time t to which the
_ variable 6 corresponds. .From combination of equations (2), (3), (10), and (13)

the reduced“total current is .found to be

= & [n (1+c)) + 2+t c ] . | : v(lh)

E(6,0,t, ) 1

_Thus, from the solution of equation (10) for C

17 the instantaneous current may

be qalculated.

The Cencentration at the Drop Surface '
Lo .

It has been possible to obtain.a solution to equafion (10) valid at. small
times by expanding. C, as a power series in 6.

C, = a

2 3 . ;
1 A VCAE W I (15)
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The coefficients.ai‘are functions of the parameters @ and t . Their values are
determined by substituting the series (15) inte equation (10) and equating terms
of the same pewer in 6.

The. first term of this series corresponds to Ohm's law and leads to

1= | (16)

where K is the conductivity of the solution and is equal to

2
-z+z_F c+D_

K="FrT - Qan

That is, at very small times the only contribution to the potential drop is the
ohmic resistance of the solution around the sphere. This first term gives the

small time asymptote for the reduced current
E(egq))t+) = 00~ , (18)

At very large times . C, will be coﬁstant,and the third boundary condition

1
for the solutien of equatien (l) is ne longer a. function of time. Normally the
.applied voltage is sufficiently large to produce g limiting current conditien,

and the solution then. corresponds to that of Tlkovié. This result is the .large-

-time, large voltage .asymptote and may be expressed.in .dimensionless form as

E(6,9,5,) = 6. (19)

Comparisen of this expression with the limiting current of a cation with a sup-

porting electrolyte given by thevIlkovié equation yields the result

(Ibina-rz ) 1 (o) (20)
I : T -t ) \D /- .
, S SuppOTted s ting | oo '

- which is identical with the expreésion derived by von Stackelberg.
Using: the small time expansion introduced in equatien (15) we Have calculated

the reduced instantaneous current to the drep for various values of ¢ and for



"

times and then.chahges over to a 8 or

values of 6 up to 1.0. .The results are shown in Figure 1. It is seen that the
value of the transference number has only a small effect on the current parti-
cularly“at.large voltages; the effect, in fact, vanishes in both the small and

large time limits. We nete that the current varies with 92 or tl/3 at small

t1/6

-dependence at large times, the tran-

sitien being earlier, the greater the applied potential.

The Average Current

The significant quantity for compariseon with expériment is usually not the

.instantanedus current. but rather the current averaged over the lifetime of a

drop. This avérage.current is defined as

v 1T '

I(0,t, ) = T;/b T4t , - (21)
Tdg v

where T is the drop life.

 The,solution for the instantaneous current has been integrated to ebtain the
average current to fhe drop. Thevrésults,are_shown.in Figure 2 vwhere the.
dimensionless average current E(@,@,t+), definea analogously to E, is plotted

versus dimensionless drop life © = 6 with the dimensionless voltage and t+

final
as parameters. For .a typical experiment ® is on the order of 0.1 te 0.5. Also,

for a 1-1 electrolyte an applied potential of one veolt corresponds to ¢ = 19.5.

N U : o o :
The .line E :.g @ is the Ilkevic - von-Staakelberg limiting current result

.and. represents the large time, large voltage asymptote.

Conclusions

In Figure 2 it is seen again that the wvalue of the transference number has

little effect .on the average. current,. particularly for reasonably large voltages.

. Curves for values of't+ between zero and l,O'fallxbetween the two éurves given

for these vélues,
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-:Figure»l -The reduced instantaneous current to the drop as a
- function of dimensionless- time, dimensionless applled
voltage, and catlon transference number.
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. Figure 2.- The reduced average current to the drop as a function
of dimensionless drop life, dimensionless applied
. ~voltage, and cation transference number.



. For @ > 2é,and @ > 0.07 it is.found that the limiting current.appréximatioh
provides.a goed representation of the avérage current. . HoWever, for ® = 10 the
.approximatien is not very accurate un%essv@ > 0526, agnd it becomes much less |
adequate. for sﬁaller voltages .and sho?ter fimeso, Therefore; the cerrect inter-
pretétion.éf experimental°d§ta.obtained.under circumstances where values of drep
life or applied'veitage.may be necessarily small or where instantaneeus current
’nis.meésured.directly.requires considgration of_the-detailed results of this
analysis.. |

A further.conclusion of this werk follows from équations (13) énd (14).
The right-hand side of equation (14) is dimensionless and independent of c-
Therefore, even.duringwthe transient COncentration behavior; the current is
always,pr0portional to the,Bulk,concentration of the reactant. ?hisuis-the
_characteristiq‘of.all polarographié situations which gives the methed its great
usefulhess as.a quantitative analytical. tool.

Thehphenomena‘conéidered here for a binary electrolyte. alse oeccur in a
supported electrelyte. . However, Because of the highﬁr conductivity, the tran-
sient effects are of much.sherter duration.and therefore insignificant in that

case.
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Nomenclature

.radius of mercury drop (em).

coefficients in expahsion of dimensionless concentration at thevsurface.
'electrélyte coencentration (mole/cmB)a’

electrolyte concentration. in bulk splution (mole/cm®).
electrolyte conéentration,at the surface.of the drop (mele/cm3),
cation concentration (mole/cm3).

dimensieonless electrolyte concentration.

diffusien coefficient-of the salt (cmg/sec)«

.diffusien coefficient of ionic species i (cmg/sec),

- diameter of capilﬁ@ry from which mercury issues (cm).
dimensienless current.te the drep.

Feraday's constant (coulomb/equiv. ).

current density (amp/cm?).

total éﬁrrent to the drop. (amp).

gas constant (joule/mole-°K).

temperature (°K).

time (sec).

cationLpraﬁsference'number,

average velocity eof mercury in capillary (cm/séc).-
. applied voltagev(VOIts);

normal distance frem drop surface (cm).

chérge numﬁer of species i,
. censtant in drep growth rate (cm/secl/3);

~electrical cenductivity of the solution (mho/cm).

electrostatie potential (volts).

10
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® - dimensienless potential.

6 - dimensionless time variable.

® - dimensienless drep life.’
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