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Increased Cerebral Free Radical Production During 
Thiamine Deficiency 

Philip J. Langlaisl,2,4, Gary Anderson2, S.X. Guo3, Stephen C. Bondy3 

Received: 27 June 1996; Accepted: 23 December 1996 

Concentration of reactive oxygen species (ROS) and the antioxidant glutathione (GSH) 
was measured in thalamus and cortex after 13 and 14 days of pyrithiamine-induced 
thiamine deficiency (PTO) in the rat. The concentration of ROS was significantly 
elevated in thalamus and cortex on day 14 when righting reflexes were absent and 
spontaneous seizures occured. No significant changes in GSH concentration were 
observed in thalamus or cortex on either day of treatment. These findings suggest that 
increased formation of free radicals occurs during the more acute symptomatic stage of 
thiamine deficiency and may contribute to the structural damage described in this model of 
Wernicke's encephalopathy. 
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INTRODUCTION 

Numerous theories have been proposed to explain the mechanisms responsible for the 
ncuroanatomical damage produced by thiamine deficiency (Butterworth, 1993: Langlais. 
1995: Witt, 1986). An excess production of free radicals is not one of these theories but 
this paLhogenetic mechanism is suggested by the following observations. First, pathologic 
lesions in the pyrithiaminc-induced thiamine deficient (PTO) rat arc associated with 
increased levels of glutamate and activation of the NMDA receptor (Hazell et al., 1993; 
Langlais, 1995: Langlais and Mair, 1990: Langlais and Zhang, 1993). Activation of 
glutamate-NM DA receptors leads to free radical fonnation (Bondy and Lee, 1993) and 
NMDA agonists are particularly potent in stimulating the rate of generation of reactive 
oxygen species (ROS) in cerebral tissue (Bondy and Lee, 1993). Activation of the NMDA 
receptor has also been implicated in postischemic elevation of lipid peroxidation in 
hippocampus and transient ischemia elevates extracellular fluid (ECF) levels of both 
excitatory amino acids and rates of hydroxyl radical formation (Delbarre et al., 1991). 
Second. reactive astrocytcs and microglia, important sources of the free radical supcroxide 
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(Halliwell and Gutteridge, 1985), are frequently observed in vulnerable brain regions of PTD 
treated rats (Collins, 1967; Zhang et al., 1995) and mice (Watanabe and Kanabe, 1978). 
Third, increased levels of lactate and reduced pH occur in areas susceptible to necrosis during 
acute episodes of thiamine deficiency (Hakim, 1984). These phenomena may contribute 
significantly to oxidative damage since decreased pH may aid in mobilizing 'free iron', a 
transition metal that is important in catalyzing free radical production. Finally, thiamine 
deficiency significantly impairs the activity of transketolase prior to the onset of behavioral 
symptoms and histological changes in brain (Giguere and Butterworth, 1987). 
Transketolase is a key enzyme of the hexose monophosphate (HMP) shunt responsible for 
the generation of NADPH. This nucleotide coenzyme is necessary for the maintenance of 
reduced glutathione (GSH), an important antioxidant and free radical scavenger. Previous 
studies have demonstrated significant reduction of GSH concentrations in erythrocyte and 
heart (Hsu and Chow, 1960) and in brainstem (McCandless and Schenker, 1968) of 
symptomatic thiamine deficient animals. 

The present study examined free radical production and oxidative stress in the 
pyrithiamine-induced thiamine deficient (PTO) rat model of Wernicke's encephalopathy 
(Langlais and Mair, 1990). The thalamus and frontoparietal cortex were examined since the 
former is highly susceptible to thiamine deficiency-induced necrosis while the latter appears 
relatively resistant to necrosis but does undergo edematous changes (Watanabe and Kanabe, 
1978; Takahaski er al., 1988) and white matter damage (Langlais and Zhang, 1995). 
Twenty six male Sprague-Dawley rats 8 weeks old (270-300 gm) were randomly assigned to 
one of the following treatments: PTO - each rat received daily injections of pyrithiamine 
HBr (0.25 mg/kg. i.p. Sigma Chem. Co.) and fed thiamine deficient chow (Teklad Mills); 
CT - each control rat was fed a thiamine-deficient chow equal to the average amount 
consumed by PTO rats and given daily injections of thiamine HCl (0.4 mg/kg, i.p.). 
Separate groups of PTO treated rats were sacrificed on the thirteenth day of treatment (PTD-
13. N=7) and fourteenth day (PTD-14. N=6) of treatment. A previous study of this PTO 
model has shown that within the thalamus the earliest evidence of morphological changes 
in the absence of cell loss is observed on the thirtheenth day of treatment. On the 
fourteenth day of treatment and at the onset of seizures, excitotoxic and/or apoptotic 
degenerative changes and a small degree of neuronal loss are evident in a few discrete 
thalamic nuclei, i.e, the anteroventral and ventrobasal, while the other nuclei are relatively 
well-preserved (Zhang et al., 1995). All animals in the PTD-13 group were displaying 
symptoms of weight loss, ataxia and 5/7 had impaired righting reflexes. In the PTD-14 
group, all animals had marked difficulty with righting and 4/6 were sacrificed within I hr 
following the appearance of seizures. Groups of CT animals were sacrificed on day 
13 (N=7) and day 14 (N=6) of treatment. Rats were lightly anesthetized by inhalation of 
C02• decapitated and the brains rapidly removed. A 2 mm coronal section of diencephalon 
was placed on a freezing plate (-20°C), the entire thalamus and overlying frontoparietal 
cortex were dissected and separately stored in microcentrifuge tubes at -70°C. Each tissue 
was weighed and homogenized in I 0 vols. of 0.32 M sucrose and centrifuged (1800 x g for 
10 min). The supernatant was then centrifuged at 31,500 x g for 10 min to yield a 
mitochondrial pellet (P2) and a supernatant (S2) fraction. The P2 pellet was subsequently 
resuspended in HEPES buffer to a concentration of 0.1 gequiv/ml. This method of 
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preparing subcellular organelles from frozen brain tissues has been shown to preserve 
structure and metabolic integrity (Dodd et al., 1981 ). The final protein concentration of the 
P2 and S2 suspensions was 1.6-3.1 mg/ml. 

The concentration of ROS was determined with a spectrophometric assay in which 2',7'
dichlorofluoroscein diacetate (DCFH-DA) is oxidized by reactive oxygen to the fluorescent 
2',7'-dichlorofluoroscein (DCF) (LeBel and Bondy, 1990). Fifty µI of the P2 suspension 
was incubated with 5 µM DCFH-DA in a final volume of 2 ml HEPES at 37°C for 
15 min. Fluorescence was monitored ( 488 nm excitation/525 nm emission) before and after 
incubation. Autofluorescence (> 11 % of total) was corrected by the inclusion of blanks with 
no DCFH-DA. ROS was quantified from a DCF standard curve (0.05-1.0 mM) and results 
expressed as nmol DCF formed/h/mg protein. The concentration of the antioxidant, reduced 
glutathione (GSH), was determined in the S2 fraction by the fluorometric measurement of 
the reaction product of GSH and monochlorobimane (mBCI) as previously described 
(Shrieve et al., 1988). Monochlorobimane (5 mM in ethanol) was added to 0.1 ml of the 
S2 suspension and 1.9 ml of HEPES buffer to a final concentration of I 0 µM. The 
suspension was incubated for 15 min at 37°C. The fluorescent product was measured at 
395 nm (excitation) and 470 nm emission. Tissue GSH concentration was determined 
using a GSH standard curve and expressed as mM/mg protein. 

Data from the controls were pooled and examined with the data from the PTD-13 and 
PTD-14 groups using repeated measures (thalamus, cortex) ANOVA. Analysis of ROS 
levels (Table) demonstrated a significant effect of treatment (F[2,23]=8.745, p=.0015) and 
area (F[ 1,23]=14.371, p=.0009) but no significant treatment X area interaction 
(F[2,23]=1.090, p==.353). As shown in the Figure, ROS levels were higher in thalamus 
and cortex of the PTO animals after 13 and 14 days of treatment. Post-hoc analyses 
(Tukey' s), however, demonstrated that the level of ROS in thalamus and cortex of the PTD-
14 group was significantly elevated compared to controls. The elevation of ROS within 
thalamus of the PTD-14 animals ( 135%) is quite toxic and lethal. At this stage of PTO in 
the rat, morphl1\pg1cal changes suggestive of an excitotoxic or apoptotic degeneration are 
observed within the antcroventral, ventrolateral, ventroposterolateral and posterior nuclei of 
thalamus (Zhang et al., 1995). Neuronal loss is minimal and approximately 15-20% of the 
neurons arc affected. Midline nuclei, i.e., central medial, anteromedial, mediodorsal, 
paracentral and parafascicular are unaffected. Because the entire thalamus was dissected and 
examined as a whole, it is impossible to determine if these elevations reflect much higher 
levels of ROS in only the affected nuclei or more modest increases within larger regions of 
thalamus. The level of ROS within thalamus was also elevated in thiamine deficient 
animals examined I day earlier but these changes were smaller and not significantly different 
from controls. At this stage, excitotoxic-like morphological changes are limited to two 
thalamic nuclei, the gelatinosus and anteroventral (Zhang et al., 1995). The progressive and 
significant increase in ROS within frontoparietal cortex is somewhat unexpected since this 
brain region does not undergo the severe neurodegeneration and necrotic changes observed in 
thalamus. However, swelling of astrocytes, splitting of myelin sheaths, swelling of the 
periaxonal space (Takahashi et al., 1988), and degenerating white matter fibers (Langlais and 
Zhang, 1995) have been observed within rat cortex after 13 days of PTO treatment, at the 
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onset of impaired righting renexes and prior to the more acute symptomatic stage 
characterized by seizures. Loss of neurons and shrinkage of frontoparietal cortex have also 
been reported in rats following recovery from symptomatic stages of thiamine deficiency 
(Kril and Homewood, 1993; Langlais and Savage, 1995) . 
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Figure 1. Level (mean± SEM) of reactive oxygen species (A) and reduced glutathione (Bl in 
th alamus and frontoparietal cortex of pyrithiamine-induccd th iamine defici ent ( PTDl rats after l 3 
days ( PTD-13) and l 4 days ( PTD-14) of treatment. Values arc expressed as percent of 
concentration determined in a group pairfcd controls <CT). *p<.05, Tukey's post-hoc test. 
compared to Control. 

Table I. Concentration of Reactive Oxygen Species (ROS) and Reduced Glutathionc (GSH) 

ROS GSH (µM/mg Protein) 
(nmol DCF formed/hr/mg Prot.) 

Group N Thalamus Cortex Thalamus Cortex 

Control l 3 l.72±0 .24 2.04±0.22 11.20±1.74 9.57±2.44 
PTD-13 7 1.99 ±0.29 2.33±0.40 12 .21±0.95 10.44±0.81 
PTD-14 6 2.32±0.3 8* 2.43±0.28* 10.37±1.93 9.77±0.73 

Values represent the mean ± S.D. of the concentration of ROS and GSH in thalamus and 
frontoparietal cortex of pyrithiaminc-induced thiamine deficient rats after 13 days (PTD-13) and 
14 days (PTD-14) of tr~atment and a group of pairfed controls . *p<.05 Tukey's post-hoc test, 
compared to Control. 

Analyses of GSH levels (Table l) demonstrated no significant treatment (F[2,23)= 1.752, 
p=.196 ), nor interaction (treatment X area) effects (F[2,23 J=.528, p=.597 ). There was a 
significant effect of area (F[ 1,23 ]=7 .854, p=.0 I), retlecting the overall higher levels of GSH 
within thalamus compared to cortex. The absence of a significant decline in GSH levels 
suggest that increased free radical production may not occur in these regions. However, 
glutathione levels can undergo a biphasic response to oxidative stress and thus the absolute 
level of GSH may not be as reliable an index of oxidative stress as the direct measurement 
of ROS (Adams et al., 1993). 
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The source of elevated free radical production during thiamine deficiency is unknown but 
atlcast two possibilities exist. First, a significant increase in ROS was observed only in 
the PTD-14 group in which most animals had developed spontaneous or sensory-evoked 
seizures. Seizures are known to elevate cerebral production of ROS (Armstead et al., 1989; 
Bruce and Baudry, 1995; Ikeda and Long, 1990). However, seizures arc often associated 
with excitotoxins which by themselves cause excessive production of oxygen free radicals 
through activation of NMDA receptors (Coyle and Puttfarcken, 1993). It has been shown 
that activation of NMDA receptors in neuronal cultures leads to the production of 
superoxidc radicals (Lafon-Caza! et al., 1993 ). Previous studies have demonstrated increased 
extracellular levels of the cxcitotoxin glutamate within thalamus prior to the onset of 
seizures in the PTD rat model (Hazell et al., 1993; Langlais and Zhang. 1993). Since 
several of the thalamic nuclei affected by thiamine deficiency play critical roles in 
suppressing seizures (Gale, 1992), it is possible that damage to these regulatory neurons 
through increased glutamate NMDA activation and free radical production may precipitate 
the onset of seizures. 

Other observations suggest that disturbances of vascular and glial cells may contribute 
to the increased levels of reactive oxygen species. Thiamine deficiency encephalopathy is 
often characterized as an early vascular-glial disorder which eventually culminates in 
neuronal loss and tissue necrosis. This hypothesis is supported by recent evidence of an 
early breakdown of the blood-brain barrier (BBB) and subsequent vasogenic edema in PTD 
rats (Cal ingasan cl al., 1995; Zhang et al., 1995) and mice (Harata and Iwasaki, 1995). 
More importantly, breakdown of the BBB occurs selectively in vulnerable brain regions and 
precedes the onset of cytomorphological alterations of glia and neurons. The biochemical 
basis for thiamine deficiency and regional BBB breakdown is unclear. However. thiamine 
has been identified within the cytoplasm of endothelial cells. in glial processes surrounding 
the capillary wall, and in cell structures closely associated with the basement membrane 
(Gragern et al., 1994 ). Endothelial cells arc a primary source of nitric oxide (NO), a free 
radical which acts hoth as a molecular messenger and as a cytotoxin (Bredt and Snyder, 
1994; Moncada cl al., 1991 ). NO alters the pem1eability of the BBB and causes structural 
damage to brain capillary endothelial cells (Au et al., 1985) and surrounding tissue 
(Moncada et al., 1991). NO is also produced by macrophages/microglia and astrocytes 
following activation of the inducible form of the synthetic enzyme nitric oxide synthase 
(iNOS). 

The present results have important clinical and theoretical implications. First, they 
suggest that administration of antioxidants may be an effective treatment approach for the 
prevention or minimization of thiamine deficiency-induced damage to the brain. Second, 
they provide a biochemical basis for the synergistic interaction of thiamine deficiency and 
ethanol proposed in the etiology of alcohol related disorders. Increasing evidence suggest 
that free radicals, nitric oxide and NMDA receptors play key roles in the permanent 
structural and functional alterations observed after long term ethanol exposure (Lancaster, 
1992; Pellmar, 1992). Finally, the present findings suggest that future studies are needed to 
examine the role of NO and other free radicals in the evolution of structural changes in more 
discrete regions thalamus, cortex and other vulnerable brain structures during thiamine 
deficiency. 
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