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ABSTRACT OF THE DISSERTATION

Flexible Finite-Element Modeling of Global Geomagnetic Depth
Sounding

by

Joseph Thomas Ribaudo

Doctor of Philosophy in Earth Sciences

University of California, San Diego, 2011

Professor Catherine G. Constable, Chair

Time-varying primary magnetic fields generated outside Earth by the mag-

netospheric ring current induce electrical currents in Earth’s interior, which give

rise to secondary magnetic fields with a complementary geometry. Geomagnetic

depth sounding involves the analysis of magnetic field data to compute frequency-

dependent response functions which yield information about the electrical con-

ductivity of Earth’s interior. I explore methods and results of forward-modeling

global electromagnetic induction under a variety of assumptions about Earth con-

ductivity and the spatial structure of the primary field. I begin by developing

computational tools to perform time- and frequency-domain simulations of global

induction in models with arbitrary conductivity and primary field structure us-

xiv



ing FlexPDE, a general-purpose software package that employs the finite-element

method to solve partial differential equations. The method is shown to produce

solutions with better than 1% accuracy when the simulated fields and response

functions are compared to analytic solutions for a variety of problems in electro-

magnetic induction, and to qualitatively reproduce fields and response functions

measured by satellites and observatories.

The technique is employed in combination with analytic methods to explore

the effect on the response of Earth models to primary fields with asymmetric struc-

ture. Standard methods of producing response functions from scalar and vector

magnetic data are compared, and scalar methods are found to generate responses

with significantly greater spatial bias for models with non-zonal fields. I develop

the mathematical formulation for including Earth-rotation in the forward models,

and use it to calculate frequency-dependent estimates of the amount of non-zonal

structure required to produce previously reported local-time bias in empirical satel-

lite response functions.

Because it is difficult to validate solutions to induction problems that lack

analytic solutions, we participate in an ongoing project with other researchers who

simulate the global induction problem with different methods. We compare the

synthetic fields calculated with the FlexPDE method to those calculated with the

integral equation method and with the time-domain spectral method for a variety

of conductivity models.
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Chapter 1

Introduction

1.1 Background and Motivation

Knowledge of electrical conductivity (σ) is useful for characterizing certain

properties of Earth’s mantle including temperature, composition, and melt, water,

and volatile content. Electromagnetic induction is governed by a diffusion equa-

tion, which makes induction studies less sensitive than seismic studies. However

electrical conductivity in Earth varies over a wider range than density and seis-

mic velocity, ranging from around 10−5 S/m in igneous rocks, to 5 × 105 S/m in

the core (Constable, 2007). Conduction studies provide an independent means

of gaining knowledge of processes in Earth’s interior, including mantle convection

and tectonic activity, and are an important complement to seismic studies, which

are not sensitive to the same parameters. Conductivity studies have been used

to test the Bercovici and Karato’s (2003) transition-zone water filter hypothesis

(Medin et al., 2007), to look for the post-perovskite phase in the D′′ layer at the

base of the mantle (Vel̀ımskỳ, 2010), and to perform numerous examinations of the

crust and upper mantle, including hydrocarbon exploration (Constable and Srnka,

2007), gas hydrate studies (Weitemeyer et al., 2011), and exploration of undersea

volcanoes (Myer et al., 2006).

Geomagnetic depth sounding (GDS), or the use of magnetic field measure-

ments to probe large-scale electrical conductivity, traces its beginnings to the first

observations of electrical current in Earth’s crust (or telluric currents), which oc-

1



2

curred in Norway in the early 19th century, and coincided with the advent of the

telegraph. Electrical cables were grounded at both ends in order to provide an ex-

tended equipotential circuit that could be used for communication over hundreds

of miles by messages encoded in voltage signals. Magnetic storms were known by

then, having been discovered in 1722 (Graham, 1724), and during a large magnetic

storm on April 16th, 1938 spontaneous electric potential differences of several hun-

dred volts, much larger than standard telegraph voltages, were observed on these

cables (Chapman and Bartels, 1940). Similar observations were made in England

in 1847 (Barlow, 1849), and in Europe and America in 1859, with simultaneous

observations of an especially large aurora (Clement, 1860).

The physical theory connecting magnetic storms and telluric currents is

largely attributable to Gauss’ separation of Earth’s field into internal and external

spherical harmonic components in 1839, and Maxwell’s equations for electromag-

netism in 1864. The latter was foreshadowed by the 1819 observations of Ørsted

and Ampere regarding the magnetic fields produced by electric currents, and Fara-

day’s empirical discovery of electrical currents induced by time-varying magnetic

fields in 1831. Continuous magnetic field measurements began at the Greenwich

observatory in 1847 with the invention of photographic recording techniques, and

the first dedicated telluric current measurement circuits began operation at the

same location in 1865 (Chapman and Bartels, 1940), in the form of perpendicular,

grounded 15 km grounded cables. These developments allowed similarities between

the two phenomena to be studied empirically.

Early mathematical methods for using magnetic fields for mantle conduc-

tivity studies involved modeling Earth as a smaller conductive sphere surrounded

by an insulating shell, and estimating the thickness of the shell (250 km) based

on magnetic measurements (Chapman, 1919). Later, it was shown that the mag-

netic observations were inconsistent with any conductivity model that does not

increase with depth (Lahiri and Price, 1939), and the first non-uniform profile of

estimated Earth conductivity was produced, extending to a depth of about 1000

km and proposing a rapidly increasing conductivity at a depth between 600 and

700 km, consistent with a seismic horizon at this depth. Attempts were made to



3

use the outward propagation of the secular variation of Earth’s core field to probe

the lower mantle (McDonald, 1957), but it was later shown that such attempts

were unreliable in the absence of independent information about the signal at the

core-mantle boundary (Backus, 1983).

Banks (1969) used the first 3 harmonics of the 27-day solar rotation cycle

and its associated recurrence of magnetic storms to produce a conductivity profile

to a depth of 2000 km, under the assumption that the field from the magnetospheric

ring current is uniform near Earth, and suggested a sharp conductivity increase at

400 km depth. Based on the attribution of this increase to the phase transition

between olivine and spinel, he used this result to estimate the temperature of the

mantle between 300 and 1000 km depth.

Banks also introduced the c-response for use with data collected from a

single observatory under the assumption that the primary field is described by one

spherical harmonic of degree n, and that the conductivity profile is purely radial:

cn(ω) =
a tan θ

2

Br(ω)

Bθ(ω)
, (1.1)

where ω is the radial frequency of the time-variations, a is Earth radius, r and θ

are the radius and geomagnetic colatitude in a spherical coordinate system with

its origin at Earth’s center, and Br and Bθ are the associated components of the

magnetic field. The cn-response forms the basis of the GDS method. It was later

adapted by for magnetotelluric studies, and its real part shown to be a measure of

the depth of penetration of electromagnetic fields into Earth (Weidelt, 1972).

The development of a global network of magnetic observatories has allowed

for the analysis of simultaneous fields in multiple locations. A modification of cn

exists for use under the assumption of more than one spherical harmonic term

(Schmucker, 1970):

c =
Br

∇τ ·Bτ

, (1.2)

where ∇τ ·Bτ is the horizontal part of the divergence.

In combination with MT impedance estimates, (1.2) may be employed in

a method to study lateral variations in Earth conductivity (Schmucker, 2003).

For good results, the magnetic measurements must have sufficient coverage to
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provide reliable estimates of lateral derivatives of the fields, which only occurs in

Europe (Kuvshinov, 2010). By using local measurements of Br from 24 European

observatories directly in (1.2), and using the corresponding Bθ measurements to

estimate spherical harmonic expansions of the field, Olsen calculated a European

average of c for periods between 3 hours and one year (Olsen, 1998, 1999).

The advent of high-precision magnetic satellite missions came with NASA’s

6-month Magsat mission in 1979-1980. This was followed by Denmark’s Ørsted,

Germany’s CHAMP, and SAC-C, which is a cooperative project between NASA

and Argentina. In combination, these last three missions have provided over a

decade of continuous measurements of Earth’s magnetic field at satellite altitude.

The ESA project SWARM is expected to begin in 2012, and will include 3 CHAMP-

style satellites flying in formation, which will help estimate the spatial structure

of the magnetic fields.

Satellite data have some advantages over ground observatories. Magnetic

satellites fly in polar orbits that are either stationary or nearly so with respect

to local time, with orbital periods of around 100 minutes. This provides global

coverage that includes the oceans, which are generally neglected by observatories,

but also presents special challenges. Satellites are unable to differentiate between

the time variation of the fields and their own motion through fields with spatial

variation. In order to be useful for GDS, care must be taken to remove fields from

crustal and atmospheric sources, as well as those from the core and its secular

variation from the data. This is often done by subtracting those fields with a

model like CHAOS (Olsen et al., 2006), or CM4 (Sabaka et al., 2004), and by

carefully selecting data to sample only nightside midlatitudes, since these models

usually do not adequately remove the auroral and field-aligned signals near the

poles and Sq signals on the dayside. Lacking simultaneous coverage, satellites

also have difficulty distinguishing higher degree and order structure in the primary

fields. As such, uniform primary fields are generally assumed in the inversions of

satellite data.

Estimates of depth-dependent Earth conductivity that have been produced

from measurements of single satellites include those of Didwall (1984) using POGO
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data, Olsen et al. (2003) using CHAMP data, and Constable and Constable (2004)

using Magsat data. In these cases, the satellite data for each half-orbit is used to

produce snapshots of the internal and external dipole coefficients at roughly 100

minute intervals. Cross-spectral methods are used to calculate c1(ω), which is then

inverted for mantle conductivity. Conductivity estimates have also been produced

from simultaneous analysis of the Ørsted, CHAMP, and SAC-C data in a similar

manner (Kuvshinov and Olsen, 2006), but these data do not lend themselves to

analysis on a half-orbit basis because the satellites are not precisely coordinated.

Instead cubic B-splines were used to parameterize their time-dependence.

Time-domain inversion of satellite magnetic data has been performed by

Vel̀ımskỳ et al. (2006) to generate 1D conductivity estimates from 11 magnetic

storms measured by CHAMP in 2001–2003. Also operating in the time-domain,

Martinec and Vel̀ımskỳ (2009) used 1 year of CHAMP data to produce estimates

of the lateral variation of electrical conductivity in the upper- and mid-mantle of

20% and 4%, respectively. In anticipation of the upcoming SWARM mission, fully

3D approaches to time- and frequency-domain inversion of satellite data have been

introduced (e.g. Kuvshinov et al., 2010), but not yet implemented.

1.2 Previous Work

An inherent requirement of all GDS inversion methods is the ability to ac-

curately calculate the induced magnetic field for given conductivity and primary

field structure. This is known as the forward problem, and is done by solving

low-frequency approximations of Maxwell’s equations in the form of differential

or integral equations. The body of work in this document describes my work in

calculating and applying forward solutions with a combination of analytic proce-

dures and numerical calculations. Other techniques for solving these equations

exist, and have been used to explore global induction. Each has advantages and

disadvantages.

My numerical solutions are calculated with a general-purpose differential

equation solver called FlexPDE, that employs the finite-element method (FEM).
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This package was chosen for its flexibility and ease of use. Since it is not designed

to solve a particular physical problem, it can be employed for any problem that can

be described with a soluble differential equation. The finite-element method is a

fairly complicated problem, that uses an irregular numerical mesh as a computation

domain, and iteratively solves the Galerkin (see Reddy, 1993) integral form of the

governing equations in each cell of the domain until the estimated error falls below

a given threshold. FlexPDE is controlled by a fairly simple script that allows

the user to specify the qualitative details of the solution domain, the differential

equations to be solved, and the error tolerance, but leaves the mathematical and

computational details of mesh construction, integral formulation of the differential

equations, solution algorithm, and error estimation to be controlled by pre-existing,

selectable software routines. This means that solutions to a great number of global

induction problems can be computed from a variety of solution routines with fairly

minor modifications of a script. This allows the researcher to concentrate on the

physical problems being simulated instead of on code production.

In general, the use of irregular meshes gives FEM the ability to account

for complex geometries, and to provide for nearly arbitrary node density varia-

tions over the computation domain. This allows allows extra nodes to be placed

in areas where the geometry is especially complex, or high solution precision is

required, while allowing for lower node density in areas with simpler geometry or

lower precision requirements. The mesh can also be adaptively refined throughout

the solution process, meaning that nodes are added in areas with high solution gra-

dients. One drawback of FEM is the time-consuming construction of the mesh and

solution elements, and the large computational domain required for the solutions

to decay at the boundaries.

Previous researchers have used FEM to explore global induction, but have

written the computational codes themselves (Everett and Schultz, 1996). Others

have modified the FEM approach by formulating the numerical solutions as sums

of spherical harmonics and solving the induction equations in the time domain

(Vel̀ımskỳ and Martinec, 2005). This approach is referred to as the time-domain

spectral method, and has the advantage of operating in terms of the basis functions
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that are most commonly used in theoretical studies, but has difficulty accurately

reproducing fields in the vicinity of lateral conductivity contrasts such as coast-

lines and has increased runtimes because each spherical harmonic term is solved

separately. Time-domain operation also increases runtimes because the solution

for each harmonic must be calculated at a great number of time steps over at least

two periods for each frequency.

The finite-difference method (FD) is similar to FEM, except that it employs

a regular cartesian grid as a computational domain and solves the governing equa-

tions in differental form. This allows for a simpler numerical implementation, but

often requires blocky conductivity models without smooth surfaces, which can be

problematic for spherical problems. The drawbacks of the FEM method also apply

to the FD method, with the additional difficulty that the regular meshes only al-

low for limited variation in node density across the solution domain, meaning that

greater solution precision comes with much higher memory requirements and run-

times. Some of these drawbacks have been reduced in the global induction problem

with the staggered grid technique, which employs radial layers of rectangular cells

similar to latitude-longitude grids (Uyeshima and Schultz, 2000). Another varia-

tion is a hybrid FD/FEM scheme called triangular finite differences, which solves

the integral induction equations on radial layers of triangular cells (Weiss, 2010).

This geometry avoids the node compression at the poles that results from the stag-

gered grid approach. Both of these techniques allow for smooth spherical surfaces

and node density that is more variable than in previous FD domains, although

they still place limitations on the lateral placement of conductivity variations.

Another approach to the forward problem is called the volume integral equa-

tion method (IE) (Kuvshinov et al., 2002a), and uses Green’s function techniques to

derive Fredholm-integral versions of Maxwell’s equations. Unlike those in FD and

FEM, the system matrices are dense, but only need to be formulated for radial lay-

ers with heterogeneous conductivity, and don’t require preconditioning. For models

with radially symmetric conductivity and heterogeneous surface conductance, the

computation space is reduced to Earth’s surface, as there is no requirement for

the fields to decay to zero at the boundaries. Thus accurate solutions can be pro-
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duced with high lateral resolutions and short runtimes. The disadvantage of the

IE method is the considerable difficulty of its computational implementation.

1.3 Outline

The FlexPDE method for performing forward-calculations for geomagnetic

induction is described in Chapter 2. The method is flexible enough to allow for

a great variety of forward-models with only minor modifications of a short script

and has the ability to operate in both time- and frequency-domains.. A technique

for including an infinitely thin surface conductance layer via a novel boundary

condition is also described. Validation of the technique is presented by comparison

of FlexPDE magnetic fields and response functions to analytic and semi-analytic

solutions for several electromagnetic induction problems: (1) concentric spherical

shells representing a layered Earth in a time-varying, uniform, external magnetic

field, (2) eccentrically nested conductive spheres in the same field, and (3) homo-

geneous spheres or cylinders, initially at rest, then rotating at a steady rate in a

constant, uniform, external field.

In Chapter 3, I describe a method for calculating c1 estimates for the global

induction problem with non-zonal source fields, and use this method to examine

longitude-dependent bias in response function estimates for a number of cases at

periods between 104 and 108 seconds. I compare the bias that comes from source

field geometry to that from the difference between the amplitudes of Earth’s re-

sponse to different primary fields. The method is further developed to incorporate

Earth rotation, and the local-time bias in the resulting responses is calculated and

compared to empirical response functions from the literature, and to previously

published calculations from a simpler method that only allows for examination of

long periods.

Chapter 4 deals with a collaborative project involving several other authors

of global induction forward codes, in which we have agreed to compare simulation

results for six different spherical induction models. I present FlexPDE solutions

for four models of spherical conductors with uniform primary fields, including
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radially conductive concentric spheres with different surface conductances in (1)

Northern and Southern hemispheres, and (2) Eastern and Western hemispheres, (3)

eccentrically nested spheres of different conductivity, and (4) radially conductive

concentric spheres with Earth-like surface conductance map. The results for the

first two models are compared with those of two other researchers, and the results

of the others are compared with analytic solutions for identical or illustratively

similar problems.

Conclusions are stated separately in each chapter and are summarized in

Chapter 5, along with a discussion of their implications with respect to future

research possibilities.
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Chapter 2

Scripted Finite-element Tools for

Global Electromagnetic Induction

Studies

Abstract

Numerical solution of global geomagnetic induction problems in two and

three spatial dimensions can be conducted with commercially available, general-

purpose, scripted, finite-element software. We show that FlexPDE is capable of

solving a variety of global geomagnetic induction problems. The models treated

can include arbitrary electrical conductivity of the core and mantle, arbitrary spa-

tial structure and time behavior of the primary magnetic field. A thin surface

layer of laterally heterogeneous conductivity, representing the oceans and crust,

may be represented by a boundary condition at the Earth-space interface. We

describe a numerical test, or validation, of the program by comparing its output

to analytic and semi-analytic solutions for several electromagnetic induction prob-

lems: (1) concentric spherical shells representing a layered Earth in a time-varying,

uniform, external magnetic field, (2) eccentrically nested conductive spheres in the

same field, and (3) homogeneous spheres or cylinders, initially at rest, then ro-

tating at a steady rate in a constant, uniform, external field. Calculations are

performed in both the time and frequency domains, and in both 2-dimensional

and 3-dimensional computational meshes, with adaptive mesh refinement. Root-

13
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mean-square accuracies of better than 1% are achieved in all cases. A unique

advantage of our technique is the ability to model Earth rotation in both the time

and the frequency domain, which is especially useful for simulating satellite data.

2.1 Introduction

A particularly well-suited application of large-scale numerical solutions of

partial differential equations is to the problem of Geomagnetic Depth Sounding

(GDS), the analysis of magnetic field data in order to estimate Earth’s electri-

cal conductivity structure. Based on magnetic field measurements from surface

observatories, and the Magsat, Ørsted, and CHAMP satellites, GDS has recov-

ered valuable information about one-dimensional electrical conductivity structure

of Earth’s mantle (Didwall, 1984; Olsen, 1999; Olsen, Vennerstrøm, and Friis-

Christensen, 2003; Constable and Constable, 2004; Kuvshinov and Olsen, 2006;

Vel̀ımskỳ, Martinec, and Everett, 2006; Medin, Parker, and Constable, 2007), and

global three-dimensional inversions are now available (Kelbert, Schultz, and Eg-

bert, 2009). The ability to simulate electromagnetic induction, that is, to solve the

equations accurately, on a global scale has important implications for GDS. Most

significantly, one can investigate the effects of the many simplifying assumptions

commonly used in induction analysis. One of these assumptions is that the ex-

ternal magnetic field is symmetric around Earth’s geomagnetic or rotational axis.

This has long been known to be false (Campbell, 1997), especially during the main

phase of geomagnetic storms (Daglis and Kozyra, 2002), but is also relevant at

longer periods (Balasis and Egbert, 2006), and this asymmetry has been shown

to confound the interpretation of Earth response functions estimated from satel-

lite data (Balasis, Egbert, and Maus, 2004). Although dayside satellite data have

usually been excluded from analysis, new techniques are being developed to incor-

porate the dayside Sq signal in induction studies (Everett, 2010). The effects of

lateral variations in mantle conductivity (Schultz and Larsen, 1987, 1990) and the

irregular distribution of the oceans on 1D response functions (Fainberg and Zinger,

1981; Fainberg, Kuvshinov, and Singer, 1990; Kuvshinov, Avdeev, and Pankratov,
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1999; Kuvshinov, Olsen, Avdeev, and Pankratov, 2002b; Everett, Constable, and

Constable, 2003) can also be explored.

Large-scale calculations can be carried out with a commercially available,

general-purpose finite-element method (FEM) software program called FlexPDE.

It allows the user to design and implement detailed simulations with a scripting

language, leaving the mechanics of the solution of the partial differential equations

to be managed by the program. A basic script can be adapted to a more complex

problem without extensive and time-consuming code modification. FlexPDE fea-

tures adaptive mesh refinement (AMR), and time-domain capabilities. The latter

is especially important when considerations of Earth’s rotation and the motions

of satellites make working in the frequency domain less practical. Similar calcu-

lations have been carried out by other workers using other numerical techniques,

such as spectral finite elements (Vel̀ımskỳ and Martinec, 2005), staggered-grid

finite-difference formulations (Uyeshima and Schultz, 2000), triangular finite dif-

ferences (Weiss, 2010), volume integral equations (Kuvshinov et al., 2002a). Each

approach has its advantages and disadvantages. Advantages of FlexPDE include

time-domain capability, field solutions everywhere in the domain, arbitrary pri-

mary field structure, relative simplicity of coding, portability to a variety of plat-

forms, and great flexibility in modeling, especially the ability to incorporate Earth

rotation in the simulations.

Our main objective here is to assess the accuracy of the general-purpose

code in the context of GDS. We first provide a short derivation of the governing

differential equations used in our simulations, and the implementation in Flex-

PDE. We then describe several examples of electromagnetic induction problems

with precisely known solutions that we have also solved with FlexPDE. We exam-

ine electromagnetic induction by a spatially uniform, oscillating primary field in

nested concentric spherical shells of uniform conductivity (analytic solution given

in Appendix 2.5), and in eccentrically nested spheres (Martinec, 1998). The fi-

nal example is that of a homogeneous sphere or cylinder, initially at rest then

set rotating steadily, in a uniform, constant primary field Parker (1966). We re-

port the accuracy of the numerical solutions, the runtimes, and the number of
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Figure 2.1: The solution domain for the global induction problem. Earth is
modeled as a conductive sphere with outer radius a = 6371 km, while space is
modeled as an infinitely resistive sphere with radius 10a. The secondary field Bs

is generated by induced electrical currents in the conducting Earth, and is fully
attenuated at the boundary of modeled space.

computational nodes for each example. We also discuss the analytic and simu-

lated frequency response of the concentric spheres model, and its correspondence

to empirical estimates from magnetic satellite data.

The calculations presented here are initial validations of a method we plan

to apply to more complex problems. They are generally performed in a fully

three-dimensional computational domain in order to provide preliminary accu-

racy estimates of 3D simulations. However, some global induction problems with

azimuthal symmetry may be simulated in a two-dimensional computational do-

main. When possible, 2D simulations are preferable because the drastic reduction

in the number of unknowns and solution nodes result in great gains in compu-

tational efficiency. We describe the results of our 2D simulations for the concen-

tric shells and rotating conductor examples. FlexPDE scripts for the concentric

shells example in 2D and 3D are available at http://earthref.org/erda/1384 and

http://earthref.org/erda/1385.
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Figure 2.2: Snapshots of the primary (left), secondary (center), and total (right)
magnetic induction fields for the case of a concentrically layered Earth in a uni-
form, z-directed primary field with a period of roughly 6.7 years. The black circles
represent conductivity contrasts in Earth, including the surface, the top and bot-
tom of the transition zone, and the core. The white curves are magnetic field lines.
The colors represent the magnitude of the z-component of the field. Blue indicates
an upward field, red a downward field, and green a weak or horizontal field. An
animated version of this figure can be found at http://earthref.org/erda/1137

2.2 Forward Modeling in 2D and 3D for Geo-

magnetic Depth Sounding (GDS)

We introduce a 3D cartesian coordinate system with the origin at the center

of Earth. The z-axis coincides with Earth’s geomagnetic pole, and the plane of

the x- and y-axes define the plane of the geomagnetic equator, as seen in Fig. 2.1,

where Earth is modeled as a conductive sphere with radius a = 6371 km. The

irregular finite-element mesh includes explicit interfaces at conductivity contrasts,

although it is also possible to vary the conductivity within the separate regions as

desired. Infinite space outside Earth is approximated as a shell of zero conductivity

also centered on the origin, with radius 10a – large enough that the secondary field

at the boundary of the model is negligible. This boundary condition is imposed by

forcing the secondary potentials to vanish at the boundary. The primary magnetic

field Bp, is defined throughout the solution domain, including inside Earth (see Fig.

2.2), and has a P 0
1 structure with amplitude 100 nT for all simulations discussed
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in this paper.

2.2.1 Governing Equations

We develop the governing equations of global geomagnetic induction in

slightly different form from that used by other researchers (e.g. Everett and Schultz,

1995; Everett et al., 2003; Vel̀ımskỳ and Martinec, 2005; Kuvshinov, 2008), who

solve for the total induction field. Our approach is motivated by ease of imple-

mentation in FlexPDE. Specifically, it is more convenient to impose the primary

field everywhere in modeled space, and solve for the secondary field. It is also

useful to eliminate magnetic monopoles by using the potentials in our ultimate

governing equations. (The decrease in accuracy resulting from numeric derivative

calculations can be counteracted by applying FlexPDE’s error tolerance control to

the resulting fields as well as the potentials.) Our approach is completely general,

and is physically consistent with others in the literature, as will be demonstrated

in section 2.3. Using this method, it is possible to visualize the secondary and

total fields everywhere within the model, including inside Earth, which is useful

for building intuition about complicated models.

The governing equations of global geomagnetic induction can be derived

from the Pre-Maxwell equations (see e.g. Griffiths, 1999). According to Faraday’s

Law,

∇× E = −∂tB, (2.1)

an electric field E will be created and current (J = σE, where σ is electrical

conductivity) will run inside the conducting Earth in response to any changes of

the magnetic field, ∂tB. (Note here our non-standard notation for partial deriva-

tives.) This current will generate a secondary magnetic field Bs. The shape of

the secondary field will be dictated by Ampere’s Law (with displacement currents

neglected as usual),

∇×Bs = µ0σE. (2.2)

Inside Earth, the secondary field will point in the direction opposing the time

derivative of the total field ∂tB, while largely reinforcing this vector outside Earth.
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For our purposes, the total magnetic field B is simply the vector sum of the primary

and secondary components. All other magnetic fields are neglected. Note that in

the above discussion, Faraday’s Law refers to the total magnetic field and Ampere’s

Law refers only to the secondary field.

In order to satisfy the law of no magnetic monopoles

∇ ·B = 0, (2.3)

it is convenient to recast these equations in terms of the magnetic vector potential

A = Ap + As, where

B = ∇×A. (2.4)

Then (2.2) becomes

∇×∇×As = µ0σE, (2.5)

and (2.1) becomes

∇× E = ∇×−∂tA, (2.6)

which implies that E can be written

E = −∂tA−∇V. (2.7)

for some scalar field V . In the absence of time variation is becomes clear that V is

the standard electric scalar potential, which is only non-zero in cases with exter-

nally imposed electric fields, unbalanced electric charge, or electric polarization.

We invoke the Coulomb Gauge (∇ ·A = 0) and use the vector identity

∇×∇×A = ∇(∇ ·A)−∇2A (2.8)

in combination with (2.5) and (2.7) to form the induction equation:

∇2As = µ0σ(∂tA +∇V ). (2.9)

We also force the electric current to be solenoidal within Earth:

∇ · (σ∂tA + σ∇V ) = 0, (2.10)
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while the electric scalar potential obeys Laplace’s equation in space:

∇2V = 0. (2.11)

Taken together, (2.9)–(2.11) uniquely determine the magnetic fields in Earth

and space when appropriate boundary conditions are specified, and A is required

to be continuous throughout the modeling domain (Biro and Preis, 1989). They

are specified as the governing equations in the FlexPDE script. The program

automatically converts them to the weak formulation and solves them.

These equations are appropriate for real-valued components in time-domain

simulations. In the frequency domain, each component becomes complex, essen-

tially doubling the number of unknowns. The time-dependence is assumed to be

of the form eiωt.

Modifications for 2D simulations

In simulations with azimuthal symmetry (or limited 3D simulations), V

and Az both vanish. Since the pathways of electric current are purely azimuthal,

they are also uniformly conductive, so there is no electric polarization. Since our

system is charge-neutral and has no externally imposed electric fields, we get

V = 0. (2.12)

Since the current pathways are purely azimuthal, (2.7) implies that A can be

written

A = Aφ

(
−y√
x2 + y2

x̂ +
x√

x2 + y2
ŷ

)
, (2.13)

for some scalar Aφ that is independent of longitude φ. Thus we can say

Az = 0, (2.14)

where we are neglecting any constant magnetic fields that do not contribute to

induction.

In limited 3D simulations (2.10) becomes unnecessary, (2.9) becomes

∇2As = µ0σ∂tA, (2.15)



21

and Az = 0 is imposed. This amounts to a reduction in the number of unknowns by

a factor of two when performed in a full 3D computational mesh, thus decreasing

the required computation time.

Limited 3D problems can also be performed on 2D computational meshes,

with the z-axis representing the geomagnetic pole and the x-axis representing the

geomagnetic equator. The y-axis points into the computational plane and remains

unmodeled. In this case, Ax vanishes within the computational domain (although

its y-derivative does not), and the only variable to be determined is Ay.

In this case operators containing derivatives in the y-direction must be

modified to explicitly reflect the assumed azimuthal symmetry. Specifically, the

Laplacian must be calculated

∇2As =

(
∂xxAsy + ∂zzAsy +

∂xAsy
x
− Asy

x2

)
ŷ. (2.16)

Additionally, the curl must be modified so that (2.4) becomes

B = −∂zAy x̂ +

(
∂xAy +

Ay
x

)
ẑ. (2.17)

Modeling Fine-scale Structure with Boundary Conditions

At periods less than a few days, Earth’s global inductive response is in-

fluenced by the oceans and other near surface effects (Everett et al., 2003). It

is often useful to include a thin ocean layer atop the radial conductivity model.

Modeling such an ocean by explicitly including a very thin conductive shell in

the finite-element mesh would be computationally expensive and would exceed the

node density limits of FlexPDE. Instead, we can impose a novel boundary condi-

tion at the interface between Earth and space that is suggested by Price (1949).

The current in the ocean layer is approximated by a surface current

j = −r̂×∇sψ, (2.18)

where r̂ is the outward-pointing radial unit vector, ∇s is the surface-parallel com-

ponent of the ∇ operator, and ψ is a scalar current function that satisfies

∇s ·
(
τ−1∇sψ

)
= ∂tBr. (2.19)
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Here, τ is surface conductance, Br is the radial component of the magnetic field.

The surface current will cause a discontinuity in the surface-parallel compo-

nent of the magnetic field B|| that can be calculated with the integral formulation

of Ampere’s Law, ∮
B · dl = µ0Ienc, (2.20)

where Ienc is the total current passing through a surface bounded by a closed path

l. Consider a rectangular amperian loop defined by l, with dimensions L×H and

a plane perpendicular to j as seen in Fig. 2.3. If the loop is small enough that

the current is effectively constant over the long side of the rectangle, then (2.20)

becomes

B+
|| · l

+ + B−|| · l
− = µ0jL, (2.21)

where l+ is the upper horizontal segment of l, and l− is the lower parallel segment.

Since l+ = −l− = L, the discontinuity in the component of B|| perpendicular to

the current is (
B+
|| −B−||

)
· l̂+ = µ0j, (2.22)

where l̂+ is the unit vector in the direction of l. If we rotate the amperian loop so

that its plane is parallel to the current we get Ienc = 0, so the component of B||

parallel to the current is continuous. Likewise, the surface-perpendicular compo-

nent of the field is continuous because of (2.3). These results can be summarized

as

r̂× (B+ −B−) = µ0j. (2.23)

To state this in terms of the vector potential, we note that (2.4) implies that

B|| involves the radial derivative of the surface-parallel part of the vector potential

A||. Specifically,

r̂×B = ∇Ar − ∂rA (2.24)

= ∇sAr − ∂rA||. (2.25)

Plugging (2.25) into (2.23) gives the boundary condition for the Earth-space in-

terface:

∂rA
+ − ∂rA− = −µ0j. (2.26)
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L

Hj

l
Figure 2.3: An amperian loop l with length L and height H around a sheet of
current j, which flows into the page.

Note that both the vector potential itself and the gradient of its radial component

remain continuous across the interface. The surface gradient ∇sAr from (2.25)

cancels in (2.23), and is therefore not referenced in the imposed boundary condi-

tion. The radial derivative of Ar plays no part in the determination of B||, thus

it should not be made discontinuous. This will happen automatically since j has

no radial component because of (2.18), so the boundary condition given by (2.26)

only affects the radial derivative of the surface-parallel part of A.

Enforcing this boundary condition at the Earth-space interface incorporates

the inductive effect of the oceans and continents into the solution process. In

detailed Earth simulations, a conductance map like that of Everett et al. (2003) can

be used for τ . The treatment shown here assumes that the surface is electrically

isolated from the mantle, which means that vertical currents crossing from the

mantle into the ocean and crust are neglected. The effect of this is a bias in

B magnitudes near coastlines that run perpendicular to current flow (Kuvshinov

et al., 1999). This bias is more pronounced at higher frequencies. It may be possible

to improve our method in the future by incorporating these vertical currents into

the technique, in a manner analogous to Vasseur and Weidelt (1977).
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2.2.2 Implementation in FlexPDE

FlexPDE allows a choice of quadratic or cubic basis functions for its so-

lutions (we choose a quadratic basis for all of our calculations) and employs a

modified Newton-Raphson solution algorithm (see e.g. Reddy 2005), where the

linear system solution is iterated until the estimated solution accuracy is less than

the requested error tolerance. If the system iterates five times without this occur-

ring, the solution mesh, which has triangular cells in 2D and tetrahedral cells in

3D, is adaptively refined and the linear system is regenerated and iteration begins.

Thus accuracy within a model can be controlled by the user in two ways: requested

error tolerance, and initial mesh density.

In all of our models, we set an error tolerance of 0.1%, which means that

after five iterations the program will split any cell in which the integrated error in

any variable is estimated to be greater than 0.1% relative to the variable range.

The error is estimated by forming the Galerkin integral of the governing equation

for each variable U over each cell, and computing a residual R. Then the variable

error estimate dU in that cell is calculated from

dU = D−1R (2.27)

where D is the diagaonal of the Jacobian matrix of derivatives of the Galerkin

integral. Although our modeling variables are the magnetic vector potential and

electric scalar potential, we require the program to apply this error tolerance to the

resulting magnetic field components as well. This is necessary because the fields

are calculated as spatial derivatives of the potentials, and are subject to additional

error introduced by the numerical processes. By applying the error tolerance rou-

tine to the fields, FlexPDE will iterate until the fields are appropriately accurate

despite the numerical differentiation. FlexPDE’s estimates are not the true errors

in the solution. We can discover the actual accuracy only in those cases where there

is an analytic solution or some other procedure with guaranteed accuracy, which

is of course the case for the systems considered here. Our objective in validation

is to discover the true error by finding the misfit between the precise solution and

that provided by FlexPDE.
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We impose a similar starting mesh in each of our models, unless otherwise

stated. Near the edge of modeled space, where the secondary field falls to zero

and spatial resolution is not a concern, the initial mesh is coarse, with the nodes

roughly 10,000 km apart. Near and inside Earth, the initial spacing decreases so

that the nodes are much closer together (∼580 km apart in a 3D model, or ∼250

km apart in a 2D model) and are adaptively refined as needed. This mesh is near

the limits of the program’s initial mesh density, as implemented on our system (a

2008 MacPro with 18 GB RAM, running four simultaneous threads). It is possible

to decrease the runtime of any of the calculations at the expense of a decrease in

accuracy or spatial resolution. For example, the nested eccentric spheres simulation

runs in 34 minutes at an error tolerance of 0.1% (for an excitation period of ∼242

days). The runtime increases to 3.5 hours for the same simulation when the error

tolerance is decreased to 0.01%.

2.2.3 Primary Field Models

In FlexPDE it is convenient to impose the primary field Bp (via the asso-

ciated vector potential Ap, stated in cartesian coordinates) everywhere, including

inside Earth. The program then solves for the secondary vector potential As and

the electric scalar potential, when applicable. A spherical harmonic representation

of the primary field is easily imposed by casting the primary vector potential in

terms of the complex poloidal magnetic scalar Pp = − (pml )p Y
m
l :

Ap = r×∇Pp, (2.28)

(pml )p = −a 1

(l + 1)
kml

(r
a

)l
, (2.29)

where kml is the external gauss coefficient of degree l and order m, r is the spherical

radius (or distance to the origin placed at Earth’s center) and Y m
l are spherical

harmonics (Backus et al., 1996, p. 185).

To a first-order approximation, the external field from the ring current is

uniform, with the form

Bp = −k0
1(t) ẑ, (2.30)
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and is thus generated by the vector potential

Ap =
k0

1(t)

2
(y x̂− x ŷ) . (2.31)

Additional components of the external field may be added to make the

primary field more realistic. The most obvious example is a Y 1
2 component, rep-

resenting either Sq (Kuvshinov et al., 1999), or the enhanced magnitude of the

external field on the nightside resulting from the non-axisymmetric component of

the ring current (Balasis et al., 2004).

Since electromagnetic induction is driven by time-variation of the mag-

netic field, Earth’s rotation through an asymmetric primary field complicates the

analysis of induction fields (Balasis et al., 2004). Induction occurs in a reference

frame that rotates within the magnetosphere along with Earth, and this rotation

changes the frequency content of the primary field as seen at a particular location

on Earth. However satellite measurements are collected in a reference frame that

is largely stationary with respect to the magnetosphere, which leads to a discrep-

ancy between the frequencies to which the Earth responds, and those at which the

response is observed in satellite data. For this reason it can be useful to model

Earth rotation in conjunction with non-axisymmetric primary field models. The

results of such simulations will be discussed in Chapter 3.

Secondary Fields

FlexPDE allows for the calculation and visualization of the fields everywhere

within the model domain. The magnetic fieldlines of an azimuthally symmetric

system can be displayed with contour lines of the flux function f = rcAφ, where

rc is the cylindrical radius. The primary and secondary fields can be viewed in-

dependently or superposed, which can yield additional insight into the problem.

Fig. 2.2 shows a sample snapshot of the individual and superposed synthetic field

magnitudes (color) and field lines (white curves). Note that time-variation in the

primary field occurs everywhere in the model, including Earth’s core. To counter-

act such changes, electric current in the core and mantle generates the secondary

fields seen in the center panel, with the familiar shape of an internal dipole. The
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combined field on the right demonstrates the exclusion of magnetic variations from

the highly conductive core.

2.2.4 Response Functions

A common approach to global conductivity studies (Lahiri and Price, 1939;

Banks, 1969) is to decompose the measured field into a sum of internal and external

parts with coefficents i01(t) and e01(t) by solving for them in the equation(
− cos(θ) 2

(
a
r

)3
cos(θ)

sin(θ)
(
a
r

)3
sin(θ)

)(
e01(t)

i01(t)

)
=

(
Br(t)

Bθ(t)

)
, (2.32)

where θ is magnetic colatitude and r is radial distance. The frequency-domain

response functions Q and c are estimated from these time-series using cross-spectral

techniques. Specifically,

Q(ω) =
i01(ω)

e01(ω)
, (2.33)

and

c(ω) =
E0(ω)

∂rE0(ω)
, (2.34)

where E0 is the amplitude of the electric field at Earth’s surface (Weidelt, 1972).

Given the assumption that l = 1, m = 0, and Earth’s conductivity is radially

stratified, (2.34) becomes (Constable, 1993)

c(ω) = a
1− 2Q(ω)

2(1 +Q(ω))
, (2.35)

The c-response can provide information about the depth of penetration of the

external field into the crust or mantle, and exact knowledge of it over all frequencies

is sufficient to recover Earth’s 1D conductivity structure (Bailey, 1970). Other

response functions exist that can be used for models with 3D conductivity or

source fields (Kuvshinov, 2010).

Synthetic data are collected from the simulations in a manner very simi-

lar to satellite measurements. For each frequency or timestep, 201 vector B data

points are collected along a given longitude meridian, evenly spaced from -50◦ to

+50◦ geomagnetic latitude. Each longitude sampled in this way represents a satel-

lite half-orbit, to be analyzed by the above methods. In contrast to most realistic
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Figure 2.4: The magnetic field components and residuals relative to analytic solu-
tions of the frequency-domain Earth model simulation measured at a single satellite
observation point (400 km altitude, colatitude θ = 45◦, longitude φ = 42.2◦), plot-
ted as a function of the logarithm (base 10) of the excitation period. The first
panel shows the magnitudes of the modeled fields: real Br (green), imaginary Br

(blue), real Bθ (red), and imaginary Bθ (orange), overlain by the analytic solutions
(dashed black). The second panel shows the residuals for the same components.
The dashed vertical lines indicate periods of 1 hour, 1 day, 1 month, and 1 year.

satellite data, synthetic data can be collected simultaneously at any number of

geographic longitudes, i.e. at multiple local times. This means that response func-

tions can be calculated as a function of either geographic longitude or local time.

Geographic response functions are useful when the conductivity model is laterally

heterogeneous. Local-time responses can be used for validating axisymmetric mod-

els, and for examining the effect of Earth’s rotation through a non-axisymmetric

primary field.

2.3 Validation

2.3.1 Frequency-domain Validation

Earth Model: Concentric Homogeneous Spherical Shells

The numerical solution is validated by comparison to various classes of

spherical induction problems with analytic or semi-analytic solutions. An im-
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portant case is that of concentric conductive spheres in a time-varying, uniform

primary field. The analytic solution for a system of conductive spheres is given in

Appendix 2.5. Now, V and the radial and polar components of A are known to

be zero, and the governing equations are adjusted accordingly.

Figs 2.4–2.7 show comparisons of our 3D frequency-domain modeling results

to the analytic solution for the case of a three-layer mantle overlying a highly

conductive core. The conductivity of each layer is listed in Table 2.1, and is

motivated by bounds determined by Medin et al. (2007). The response of this

model to uniform external fields was studied at periods from several minutes to 3

years.

In actual satellite mantle conductivity studies, the short-period range of the

c-response is limited by the orbital period of the satellite, which is generally 60–120

minutes, giving a Nyquist period of roughly 104 seconds. The long-period range

in such studies is limited by the length of available time-series and the possibility

of contamination of the induction signal by the secular variation of Earth’s main

field, which could manifest itself as reduced correlation between the internal and

external fields. For these reasons, current studies rarely explore periods much

longer than 100 days.

Simulations were run sequentially from long period to short, with the com-

putation mesh being retained from one period to the next, to reduce the time

required for mesh generation. This means that each model retained the extra

nodes resulting from adaptive refinement from previous runs. The initial 3D mesh

contained 121,866 nodes, while the final mesh contained 1,895,969 nodes. The

longer periods required shorter runtimes than the short periods; the period with

the shortest runtime was under 5 minutes, while the longest runtime was just under

four hours.

Being azimuthally symmetric, this model is also amenable to solution in a

2D mesh, which was carried out in a manner similar to the 3D models, but with

far fewer nodes (initial mesh: 11,713 nodes, final mesh: 90,787 nodes) and faster

runtimes (shortest runtime: less than 30 seconds, longest runtime: less than 11

minutes).
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Table 2.1: Electrical conductivities used in Earth model simulations. Mantle
values are motivated by Medin et al. (2007).

Region Depth (km) σ (S/m)
Upper mantle 0–400 0.01

Transition zone 400–800 0.1
Lower mantle 800–2871 1.0

Core 2871–6371 5× 105
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Figure 2.5: The magnetic field components and residuals of the frequency-domain
Earth model simulation vs. radius at constant colatitude (θ = 45◦) and longitude
(φ = 42.2◦) for excitation period T = 4.64 × 105 seconds, or about 5.4 days. The
dashed vertical lines indicate σ contrasts at the boundaries of the spherical shells
representing the core and layered mantle.

In Fig. 2.4, the real and imaginary parts of the radial and polar components

of the 3D model’s magnetic field are plotted vs. period at a single satellite mea-

surement location. Also shown are the residuals (analytic solution minus FlexPDE

solution). The results show excellent agreement, with an rms error less than 0.1

nT for each component, and a maximum error in any component of less than 0.3

nT. In the corresponding 2D model the errors are slightly higher: the rms error is

less than 1 nT for each component, while the maximum error is less than 2 nT. The

2D errors are similar in value to those found in 3D models with the error tolerance

(see section 2.2.2) increased from 0.1% to 1%. If necessary, the errors can be made

smaller by imposing a smaller error tolerance at the expense of longer runtimes.

Fig. 2.5 shows the components and residuals at the same colatitude and
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Figure 2.6: The magnetic field components and residuals of the frequency-domain
Earth model simulation vs. colatitude at satellite altitude (400 km) and constant
longitude (φ = 42.2◦) for T = 4.64× 105 seconds.

longitude as the previous figure as a function of radius, for a single period (T =

4.64 × 105 seconds). The boundaries of the homogeneous conductive shells are

also shown. The results are quite good, with a rms misfit less than 0.4 nT along

the track for all components. The residual of the polar component reaches 3.3 nT

at a point within the mantle, near the conductivity contrast at 800 km. This is

probably due to the discretization of the mesh, and the misfit is seen to increase

at conductivity interfaces. The error remains much lower outside of Earth, where

empirical measurements can actually be performed. Similar results are found along

radial tracks of other colatitudes, and at other frequencies. The corresponding rms

misfit along the track in the 2D model is less than 2 nT, while the maximum error

is less than 8 nT.

The same components and residuals are shown in Fig. 2.6 along a satellite

half-orbit (all latitudes along a single longitude at an altitude of 400 km) at the

same period as in Fig. 2.5. The simulation results again show good agreement

with the analytic solution, with an rms misfit in all field components of less than

0.3 nT, and a maximum residual of less than 0.6 nT. Similar results are found at

all frequencies. The corresponding rms misfit in the 2D simulation is just over 0.1

nT and the maximum residual is less than 0.2 nT.

Synthetic c-responses estimated from frequency-domain simulations are shown

in Fig. 2.7. The residuals for these responses have an rms value of 1.9 km for the
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Figure 2.7: The synthetic c-response calculated from the frequency-domain Earth
model simulations. The red lines are the real (positive) and imaginary (negative)
parts of c for the Earth model, with conductivity described in Table 2.1. The
green lines indicate the response of the same model overlain by a global 3 km
ocean. The dashed black curves overlying the red and green curves indicate the
analytic solutions for both of these models. Also indicated are empirical estimates
of the Earth’s c-response, derived from satellite magnetic measurements.
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real part and 0.7 km for the imaginary part, with a maximum value of 3.1 km

for all excitation periods. Also shown is the response of the same conductivity

model overlain by a global surface ocean of conductance τ = 9000 S, along with

the analytic solution. The ocean was included via the boundary condition (2.26)

and solved in 3D simulations. Two dimensional simulations with this boundary

condition yielded similar results, but with slightly smaller residuals.

The inclusion of the global ocean allows induced electric current to run in

the conductive seawater, which decreases the amplitude of the magnetic fields at

the seafloor, and thus reduces the depth of penetration of the fields into the mantle.

This penetration depth is the physical interpretation of the real part of c, which

explains its reduction at periods less than ten days. A similar effect occurs in the

imaginary part of c, but the physical interpretation of this quantity is less intuitive.

At longer periods, the skin depth in seawater is large enough to allow the fields

to pass through the ocean largely unimpeded, which results in the c-responses at

these periods being insensitive to the presence of the ocean.

3D Conductivity Model: Eccentrically Nested Spheres

To validate the technique with fully 3D geometry, we simulated induction

in a 6371 km conductive sphere (σ = 1 S/m) with an off-axis spherical inclusion

(σ = 10 S/m) with radius 3500 km centered at radius r = 2700 km, colatitude θ =

40◦, and longitude φ = 35◦ for T = 2.094×107 seconds. This conductivity model is

fully 3D and has twice the number of unknowns of an analogous limited 3D model.

However, this model contains only one conductive inclusion inside Earth and has

a relatively long period. At an error tolerance of 0.1%, the simulation required

only 109,021 nodes – fewer than the multiple-frequency Earth model calculation

described above, and requiring no AMR – and the runtime was 33 minutes. This

produced fields with errors of roughly 0.1 nT outside Earth, but that reached 1.2

nT inside Earth. In order to reduce these errors to less than 0.6 nT everywhere, we

reduced the error tolerance to 0.01%. This more accurate simulation did require

AMR, ending up with 231,677 nodes and a runtime of 3.5 hours.

The results are compared to the analytic solution of Martinec (1998) in Fig.
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Figure 2.8: The magnetic field components and residuals of the eccentrically
nested spheres simulation at constant colatitude (θ = 13◦) and longitude (φ = 0◦)
as a function of radius, for T = 2.094× 107 seconds (or about 242 days). The top
panels show the real (solid red line) and imaginary (solid blue line) magnitudes of
the B-field components, overlain by the analytic solutions (dashed black lines). The
bottom panels show the residuals with respect to the analytic solution (Martinec,
1998). The left panels refer to Br, the middle to Bθ, and the right to Bφ. The
vertical dashed line indicates the location of the boundary between the inner and
outer spheres along the radial measurement profile.
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2.8, which shows the value of the simulated components of the magnetic field, the

analytic solution, and the residuals as a function of radius. The rms of the residual

in this measurement is less than 0.2 nT for all components.

2.3.2 Time-domain Validation

Rotating Conductor in a Uniform Field

To test the accuracy of the time-stepping capability of FlexPDE, the case of

a rotating homogeneous 6371 km sphere in a 100 nT uniform y-directed magnetic

field was modeled in the time domain. The analytic solution for this case is given

by Parker (1966). In this problem, the conducting sphere (surrounded by vacuum)

is initially at rest and permeated by the magnetic field. At time t = 0, the sphere

begins to rotate around the z-axis at constant angular speed ω = 1.96×10−6 rad/s,

corresponding to a rotational period of 37.1 days. The behavior of the system is

dependent on the magnetic Reynolds number Rm = µ0ωσa
2 = 100. The simulation

is carried out in the rotating coordinate system of the sphere, 50 time steps for

each complete rotation. The initial node spacing inside the conductor was roughly

580 km, giving a total 102,993 nodes in the full model, while the final mesh had

103,023 nodes. The complete 100 step calculation ran in approximately 1 hour

and 12 minutes.

Fig. 2.9 shows a snapshot of the magnitude of the numerical solution (top)

and its residual (bottom) after 100 time steps on a cross-sectional plane at the

equator. The figure also shows time-series of the field components at two points

inside and two points outside the conductor. The residuals in the field components

remain below 3 nT within the solution domain, with an rms value of 1 nT. The

largest residuals once again occur within the conductor adjacent to the interface.

Since solution accuracy can be partially controlled in FlexPDE via the node-

density of the solution mesh, we also performed this simulation with an initial node

spacing within the conductor of roughly 710, 910, 1300, and 2100 km. We show in

Fig. 2.10 the rms error within the area of interest as a function of 3D node spacing

for simulations with Rm = 100 and Rm = 3213.4.

This spherical induction problem is not axisymmetric, and is not amenable



36

-100

0

100

200
B

0 50 100
-1

0

1

2

timestep

x1
x2

x3
x4

analytic

-200

-100

0

100

200
B

0 50 100
-4

-2

0

2

4

timestep

B

Y
40

80

120

X

Y
-2
0

2
4

-a a

-a

a

-a

a

-4R
es

id
ua

ls
 (n

T)
Fi

el
ds

 (n
T)

x1 x x43x2

r φ

Figure 2.9: Snapshot of the magnetic field magnitude and residuals on the x-y
plane for the time-domain simulation of a rotating (T = 37.1 days) conductive
sphere in a constant, uniform external field. The top left panel shows the B-
field magnitude in nT at time t = 74.2 days, as calculated by FlexPDE after
100 timesteps. The top middle and right panels show time-series of the Br and
Bφ calculated on the x-axis of the rotating frame at x1 = 4718 km (orange),
x2 = 5927 km (red), x3 = 7137 km (green), and x4 = 8347 km (light blue). Each
of the bottom panels indicates the measured misfit for the panels directly above.
An animated version of this figure can be found at http://earthref.org/erda/1136
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Reynolds number Rm = 3213.4); the x’s indicate a rotational period of 37.1 days
(Rm = 100).



38

to 2D simulation. However, running such a problem with the magnetic field lying

always in the plane of the 2D computation mesh is physically identical to the

rotation of an infinitely long conductive cylinder within a uniform field orthogonal

to the cylinder axis, as long as the assumption of axisymmetry is not applied to

the calculation of spatial derivatives (i.e. (2.16) and (2.17) are replaced with the

standard 2D Laplacian and curl) . This problem also has an analytic solution

(Parker, 1966). We performed such a 100-step time-domain simulation with a

primary field magnitude and conductivity identical to the 3D spherical case, with

initial node spacings within the sphere of 250, 320, 429, 640, and 1300 km. The

rms misfit in the 250 km case was 0.6 nT, and the maximum residual was 1.4 nT.

Fig. 2.10 shows the rms misfit as a function of 2D node spacing.

Time-stepping Earth Model

The concentric spherical shells Earth model from section 3.1.1 can also

be validated for any given period in the time domain, by imposing a time-varying

primary field of constant period. When this was performed for a number of periods

in 2D and 3D with eight timesteps per cycle, it was found that the results were

similar in accuracy to the frequency-domain validations discussed above. In all

cases, it was necessary to allow a single initial cycle to pass in order for transient

effects to be minimized as the system reached steady-state. This implies that

synthetic data should be trimmed appropriately prior to analysis in future time-

domain simulations, and extends the runtime of time-domain simulations used

for long-period, deep mantle conductivity studies. It should be noted that time-

domain simulations of global geomagnetic induction based on realistic primary field

magnitudes may require shorter timesteps than those implied in these validations

in order to accommodate the high-frequency content and sudden magnetic storms

found in the realistic primary field.
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2.4 Conclusions

We successfully validated a 2D and 3D simulation technique for the global

geomagnetic induction problem. The technique allows for nearly arbitrary con-

ductivity and primary field structures, and is easily adapted for Earth rotation. A

laterally-varying surface conductance can be imposed via a boundary condition at

the Earth-Space interface.

The synthetic fields show good agreement with analytic solutions for electro-

magnetic induction in concentric spheres, eccentrically nested spheres, and rotating

uniform conductors. The absolute error of the FlexPDE solution is dependent on

the conductivity values, geometry, and excitation period of the system being simu-

lated, as well as on node spacing and the location of the measurement, with higher

errors in areas of nonzero conductivity. Acceptable errors (a few nT inside Earth

and less than 1 nT in space) are attainable on our system. The associated error

in global c-response estimates is roughly 1-2 km. The rms errors of the region

including Earth and 2000 km of surrounding space are generally of the order of

the error tolerance set by the user.

We have shown FlexPDE to be a highly effective tool for solving a wide

variety of the geophysical problems in electromagnetic induction. The capability

to produce time- and frequency-domain solutions of induction in a rotating Earth

in within a variety of non-axisymmetric primary fields is especially scientifically

valuable. Such solutions will be discussed in a forthcoming paper.

2.5 Appendix: Analytic Solution for Earth Model

in Uniform Primary Field

We study induction in a spherically layered body, excited by a single spher-

ical harmonic source field, degree l. We extend the treatment in Chapter 5 of

Backus et al. (1996), henceforth BPC. Everything is time periodic with radian

frequency ω. The external magnetic field is harmonic; we take the source field to

be uniform and axial for simplicity, i.e. l = 1,m = 0. Then the magnetic scalar
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potential is Ω with

Ω = a

[
k
(r
a

)
+ g

(a
r

)2
]

cos θ, r ≥ a (2.36)

where k is the amplitude of the uniform driving field and g = g0
1 is the Gauss

coefficient of the induced axial dipole. According to BPC page 198, if

Q(ω) =
g(ω)

k(ω)
(2.37)

then
∂rp

p(r)
= −1

a

4Q(ω) + 1

2Q(ω)− 1
, (2.38)

where p = p0
1.

The scalar obeys the ordinary differential equation BPC (5.4.20) which,

when l = 1 and m = 0 becomes

∂2
rp+

2

r
∂rp−

(
2

r2
+ iωµ0σ(r)

)
p = 0. (2.39)

Let the sphere be divided into N concentric shells with radii 0 < r1 < r2 · ·· < rN =

a and corresponding conductivities σn. Let the poloidal scalar in the nth shell be

pn(r). Then the solution to (2.39) is the combination of spherical Bessel functions

pn(r) =

{
Anj1(knr), n = 1

Anh
(1)
1 (knr) +Bnh

(2)
1 (knr), n > 1

(2.40)

where kn = (1− i)
√
ωµ0σn/2 and the Bessel functions are explicitly

h
(1)
1 (z) = −e

iz

z

(
1 +

i

z

)
; h

(2)
1 (z) = −e

−iz

z

(
1− i

z

)
(2.41)

j1(z) =
h

(1)
1 (z) + h

(2)
1 (z)

2
=

sin z

z2
− cos z

z
(2.42)

and j1(0) = 0. Because of the complex form of k, |h(1)
1 (kr)| decreases exponen-

tially with increasing r, while |h(2)
1 (kr)| grows with increasing r. In fact for high

frequencies, h
(1)
1 may be utterly negligible compared with h

(2)
1 almost everywhere.

We can in principle discover the coefficients An and Bn from the fact that pn and

∂rpn are continuous at rn. The absolute size of the solution will vary over an
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enormous range if the frequency is large, and will cause numerical problems with a

straightforward evaluation. One answer to this difficulty is to start the solution for

p several skin depths below the surface, not at r = 0 and use an artificial boundary

condition p = 0 there.

Another approach is to follow the quantity on the left of (2.38) from the

bottom to the surface; this ratio never becomes excessively large or small since

it is the derivative of the log of p. Then we can work backwards from (3). We

illustrate. Let Cn = a∂rp(rn)/p(rn). Within the nth shell, when n > 1

Cn = a
And1 +Bnd2

Anh1 +Bnh2

(2.43)

Cn−1 = a
And

−
1 +Bnd

−
2

Anh
−
1 +Bnh

−
2

(2.44)

where we reduce notational clutter with these abbreviations:

hj = hj1(knrn); h−j = hj1(knrn−1); (2.45)

dj = ∂rh
j
1(knrn); d−j = ∂rh

j
1(knrn−1). (2.46)

Rearranging (2.43) we have

An
Bn

= −
(
Cnh2 − bd2

Cnh1 − bd1

)
. (2.47)

And of course (2.44) is just

Cn−1 = a
d−1 (An/Bn) + d−2
h−1 (An/Bn) + h−2

. (2.48)

Substituting (2.47) into (2.48) gives

Cn = a
Cn−1(d2h

−
1 − d1h

−
2 ) + a(d1d

−
2 − d2d

−
1 )

Cn−1(h2h
−
1 − h1h

−
2 ) + a(h1d

−
2 − h2d

−
1 )
. (2.49)

This expression allows us to move up through the shells to the top, provided we

can evaluate C1. This is easy from (2.40):

C1 =
a ∂rj1(k1r1)

j1(k1r1)
. (2.50)

Notice that in (2.49) each factor involving the very small h
(1)
1 is always multiplied

by h
(2)
1 (or its derivative) which is almost its reciprocal, thus keeping the product
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of the two fairly near unity no matter how large or small the individual factors

themselves may become. To take advantage of this fact, symbolic manipulation of

(2.41) and (2.42) may be required in order to convert (2.49) and (2.50) into a form

that avoids numerical overflow or underflow. Finally,

c(ω) =
a

1 + CN
. (2.51)

If the magnetic fields are needed in addition to the c-response, then knowl-

edge of Cn throughout the system, can be converted to knowledge of An/Bn

through (2.47) although this value may become very large. From continuity of

p and (2.40) with n > 1

Anh
−
1 +Bnh

−
2 = An−1h

−−
1 +Bn−1h

−−
2 (2.52)

where h−−j = hj1(kn−1rn−1). Thus

An

(
h−1 +

h−2
An/Bn

)
= An−1

(
h−−1 +

h−−2

An−1/Bn−1

)
, (2.53)

so An can be transferred from one level to the next. The overall scaling comes

from BPC (5.3.15) which implies that

p(rN) = a (g − k/2) . (2.54)
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Vel̀ımskỳ, J., and Martinec, Z., 2005: Time-domain, spherical harmonic-finite ele-
ment approach to transient three-dimensional geomagnetic induction in a spher-
ical heterogeneous earth. Geophys. J Int., 161(1), 81–101.



46
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Chapter 3

The effect of on global response

function estimates of Earth’s

rotation through an asymmetric

source field

Abstract

A method for calculating response function estimates for the global in-

duction problem with asymmetric source fields is described and used to examine

spatial bias in response function estimates for a number of cases, including uniform

primary fields contaminated with asymmetric quadrupole structure and uniformly-

directed primary fields with spatially variable amplitude. The resulting longitude-

and local-time-dependent effect on Weidelts c-response is analyzed for periods be-

tween 104 and 108 seconds. The biasing effects from source field geometry and from

the different amplitude of Earth’s response to different primary field structures are

compared, and it is found that the geometric effect dominates. The method is

further developed to incorporate Earth rotation, and the local-time bias in the re-

sulting responses is calculated and compared to empirical response functions from

the literature. It is found that quadrupole contamination of predominantly uniform

primary fields is more likely to explain the observed bias than uniformly-directed

47
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primary fields with longitude-weighted amplitude. The synthetic responses are

compared to previously published calculations for periods of 5 and 10 days. With

only minor modification, the described method can be extended to rotating-Earth

models with nearly arbitrary primary field structure.

3.1 Introduction

Since 1889 ground-based observations of magnetic fields have been used to

explore the 1D electrical conductivity of Earth’s mantle (Chapman, 1919), and a

worldwide network of observatories was eventually built that produces data for

geomagnetic depth sounding (GDS) techniques (Lahiri and Price, 1939; Banks,

1969). However the spatial distribution of observatories is sparse, with coverage

especially lacking in the oceans. Beginning with Magsat in 1979–1980, and contin-

uing with Ørsted, CHAMP, and SAC-C, high-precision magnetic satellite missions

with global coverage have generated a over a decade of mostly continuous mea-

surements, and show great promise as alternative or supplementary data sources to

extend and refine these conductivity studies (e.g. Constable and Constable, 2004;

Kuvshinov and Olsen, 2006), but also present special challenges. Specifically, the

structure of the primary field must be accurately accounted for in the analysis, or

the resulting conductivity estimates may be inaccurate.

The magnetospheric ring current and its associated magnetic field have long

been known to be asymmetric (Campbell, 1997), especially during the main phase

of magnetic storms (Daglis and Kozyra, 2002). Newer evidence indicates that this

asymmetry is present even at longer periods (Balasis and Egbert, 2006), and global

field modelers have begun to include up to degree and order 2 spherical harmonic

structure in the model parameters for external fields (Olsen et al., 2006, 2009). As

the orbits of magnetic satellites are most easily described in the magnetospheric

reference frame (i.e. the local-time (LT) frame), and are often either constant in LT

(e.g. MagSat), or slowly precess through all LT’s (e.g. CHAMP), the asymmetry

of the primary field can bias satellite studies more than those based on data from

observatories that pass through all LT’s every 24 hours. Nonetheless, estimates
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Table 3.1: Electrical conductivity profile of Earth model used in this study.

Region Depth (km) σ (S/m)
Upper mantle 0 – 400 0.01
Transition zone 400 – 800 0.1
Lower mantle 800 – 2871 1.0
Core 2871 – 6371 5× 105

of the conductivity of Earth’s mantle based on magnetic data from observatories

and satellites alike generally rely on the assumption that the primary field is well-

described in geomagnetic coordinates by an external axial dipole (i.e. a spherical

harmonic Y m
l with degree l = 1 and order m = 0). This assumption makes it easier

to estimate the internal and external parts of the field, and is justified by the fact

that the asymmetric part of the primary field is believed to be much smaller in

magnitude than the symmetric part (Constable, 2007).

However, response functions in the period range of 104 to 106 seconds are

found to show significant bias when calculated from satellite data that have been

binned by local time (Balasis et al., 2004). That study, henceforth called ‘BEM’,

motivates the work in this chapter. BEM showed that the observed bias can be

qualitatively explained at periods of 5 and 10 days by Earth’s rotation through a

primary field that includes a Y 1
2 component of 1/10 the magnitude of the dipole

component, and has a maximum amplitude fixed at 8 pm. We extend the BEM

analysis to eliminate certain approximations so that we can include all relevant

periods, and estimate the magnitude of the Y 1
2 coefficient as a function of period

assuming that all of the observed bias is a result of this type of asymmetry. For

the purposes of this study, we model the Earth as a conducting sphere surrounded

by perfectly insulating space. In our model, the electrical conductivity σ varies

with radius only, and is described by Table 3.1.

3.2 Method

In the following analysis, we will neglect all components of Earth’s magnetic

field except for the primary field Bp generated by the magnetospheric ring current,
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and the secondary field Bs resulting from the associated induced electrical currents

inside Earth. For simplicity, we will not consider Earth’s core field or ionospheric

fields, although these can have inductive effects. We will also neglect the crustal

field. Thus we will refer to the total field B as the sum of the primary and secondary

fields:

B = Bp + Bs. (3.1)

In the insulating space surrounding Earth, an arbitrarily complex magnetic

field B can be represented as the negative gradient of a scalar magnetic potential

Ψ. Since one of Maxwell’s equations is

∇ ·B = 0, (3.2)

we get

∇2Ψ = 0. (3.3)

This is Laplace’s equation. Its solution Ψ is called a harmonic function, and can

be written as a sum of spherical harmonic terms given by

Ψ(r, θ, φ, t) = a
∞∑
l=1

l∑
m=−l

Ψm
l (r, θ, φ, t) (3.4)

= a
∞∑
l=1

l∑
m=−l

[
eml (t)

(r
a

)l
+ iml (t)

(a
r

)l+1
]
Y m
l (θ, φ), (3.5)

in the spherical coordinate system (r, θ, φ), where r is distance from the origin at

Earth’s center, θ is geomagnetic colatitude, φ is geomagnetic longitude, and t is

time. The time-dependent gauss coefficients eml (t) and iml (t) correspond to primary

fields of external origin and secondary fields internal origin, respectively. The real

parts of the spherical harmonics are defined by

Y m
l = Pm

l (cos θ) cosmφ, (3.6)

where Pm
l are associated Legendre functions. In the numerical parts of this chapter,

a modified Schmidt-normalization is chosen to match that of BEM.

Along a given colatitude, Y m
l has will have zero crossings at 2m differ-

ent longitudes. We can decompose any magnetic field derived from (3.5) into an
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axisymmetric part

S = Sp + Ss, (3.7)

for which m = 0, and a non-axisymmetric part

N = Np + Ns, (3.8)

for which m 6= 0. As a result, the primary field can now be written

Bp = Sp + Np, (3.9)

and the secondary field is

Bs = Ss + Ns, (3.10)

For primary fields oscillating at a specific radial frequency ω, the external

gauss coefficient for a given l and m is given by

eml (t) = êml (ω)eiωt, (3.11)

and will produce a secondary field described by the internal gauss coefficient

iml (t) = îml (ω)eiωt, (3.12)

for the same l and m, provided conductivity varies only with radius. The complex,

frequency-dependent response function Ql(ω) is the ratio of the Fourier amplitudes

of the dipole coefficients:

Ql(ω) =
îml (ω)

êml (ω)
, (3.13)

which has the same value, regardless of m. Weidelt’s (1972) c-response, or admit-

tance, is given by

c(ω)n =
E0(ω)

∂rE0(ω)
, (3.14)

where E0 is the amplitude of the electric field at Earth’s surface, and ∂r represents

the radial derivative. Given the assumption that Earth’s conductivity is radially

stratified, for a given degree l this becomes (Constable, 1993)

cl(ω) = a
l − (l + 1)Ql(ω)

l(l + 1)(1 +Ql(ω))
. (3.15)

The c-response gives information about the penetration depth of B. When it is

known for all ω it can be inverted for an unique radial conductivity profile (Weidelt,

1972).
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3.2.1 The Dipole Assumption

A common approach to global induction studies employs the assumption

that the structures of Bp and Bs are accurately described by external and internal

dipoles plus noise. Thus l = 1 and m = 0 in (3.5). Since

P 0
1 (cos θ) = cos θ, (3.16)

we get (
− cos(θ) 2

(
a
r

)3
cos(θ)

sin(θ)
(
a
r

)3
sin(θ)

)(
e01(t)

i01(t)

)
≈

(
Br(t)

Bθ(t)

)
. (3.17)

Time-series of Br and Bθ are measured by satellites and observatories and

can be used to estimate the electric conductivity of Earth’s mantle in the following

way. First, the induction field is isolated in the data, often after subtracting

some global field model D(r, θ, φ) from the measurements. Time-domain dipole

coefficients e01(t) and i01(t) are estimated from vector measurements of Br(t) and

Bθ(t) via (3.17), or from measurements of the scalar anomaly dD, which can be

described by

dD =
B ·D
D

, (3.18)

where D is the magnitude of D. This equation reflects the fact that when the field

model has much higher amplitude than the induction field, any component of the

latter that is orthogonal to D has very little impact on dD.

The dipole coefficients are transformed to the frequency domain with cross-

spectral techniques, and then used to calculate estimates of Q1(ω) and c1(ω) from

Q1(ω) =
î01(ω)

ê01(ω)
, (3.19)

and

c1(ω) = a
1− 2Q1(ω)

2 + 2Q1(ω)
, (3.20)

where a is the radius of Earth. A radial profile of mantle conductivity can then

estimated by inverting the resulting estimate of c1(ω).

Data from the dayside of Earth is contaminated by contributions from the

Sq field (caused by solar heating of the atmosphere) and its induced counterpart.
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These fields are not well-described by Y 0
1 spherical harmonics. Ground-based mag-

netic observatories will see the atmospheric Sq field as external and the induced

response to Sq as internal, but magnetic satellites fly above the Sq source, and will

see both Sq and its induced response as internal. For this reason, dayside satellite

data is usually excluded from analysis.

3.2.2 Adding a Quadrupole Source

If there are non-Y 0
1 contributions to the induction field, then the estimate

of c1(ω) found using the above dipole assumption will be an inaccurate reflection

of Earth’s electromagnetic response because of two distinct effects. We will call

the first of these geometrical bias, because it reflects the fact that the geometrical

decomposition of the induction fields given by (3.17) is incorrect. The second effect

we will call amplitude bias, since it reflects the fact that the amplitude and phase

of the response Ql(ω) is not equal for different l.

Since the primary field from the magnetospheric ring current is known to

be stronger on the nightside of Earth than on the dayside (Campbell, 1997; Balasis

et al., 2004) even for long-period variations (Balasis and Egbert, 2006) it is useful to

calculate the effect of non-axisymmetric fields on response functions. The simplest

spherical harmonic term that qualitatively describes such an amplitude increase

across Earth’s diameter is Y 1
2 . In this section we explore the effect on estimates of

c1(ω) resulting from contamination of the primary field by a Y 1
2 component for a

non-rotating Earth with conductivity described by Table 3.1. Although neglecting

Earth’s rotation makes this largely a theoretical exercise, it is nonetheless very

useful one for building intuition with regard to the asymmetric global induction

problem, and for motivating many of the steps that will be necessary when we add

Earth rotation in Section 3.2.3. Time-varying asymmetry with rotation is a fairly

complicated problem, and it is useful to approach it in stages.

We make the assumption that the primary field is described by a super-

position of Y 0
1 and Y 1

2 terms that are coherent and in phase. For a given ω, the
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axisymmetric part of the primary field Sp is given by

Sp(t) = ê01(ω)
(
− cos θ r̂ + sin θ θ̂

)
eiωt, (3.21)

As in Section 3.2.1, this primary field will produce an axisymmetric secondary field

Ss given by

Ss(t) = î01(ω)
(a
r

)3 (
2 cos θ r̂ + sin θ θ̂

)
eiωt, (3.22)

where î01(ω) is complex in order to allow for a phase difference between Sp and Ss.

The non-axisymmetric part of the primary field Np at the same frequency is

given by the gradient of the real part of a rotated Y 1
2 term with Fourier coefficient

ê12(ω) = β(ω) ê01(ω). Since

P 1
2 (cos θ) =

√
3

2
sin 2θ, (3.23)

we get

Np(t) = ê12(ω)
√

3
r

a

(
− sin 2θ cos(φ1) r̂ (3.24)

− cos 2θ cos(φ1) θ̂

+ cos θ sin(φ1) φ̂

)
eiωt,

where φ1 = φ− φ0, and φ0 is the longitude of the peak amplitude.

The non-axisymmetric secondary fields Ns generated by this primary field

will have the form

Ns(ω) = î12(ω)
√

3
(a
r

)4
(

3

2
sin 2θ cos(φ1) r̂ (3.25)

− cos 2θ cos(φ1) θ̂

+ cos θ sin(φ1) φ̂

)
eiωt.

We examine the effect of Y 1
2 contamination on estimates of c1(ω) in a non-

rotating Earth by simulating satellite magnetic field measurements and using (3.19)

and (3.20) to produce response function estimates. We adopt the value e01(ω) = 100

nT for all ω and note that it has no imaginary component. Initially, we set β(ω) =

0.1 for all ω as suggested by BEM, and φ0 = 0◦. Values of î01(ω) are computed
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Figure 3.1: Top panel: the real (solid) and imaginary (dashed) parts parts of
c1 (red) and c2 (blue). Middle panel: the amplitude of Q1 (red) and Q2 (blue).
Bottom panel: the phase in degrees of Q1 (red) and Q2 (blue). Dashed black
vertical lines indicate reference periods of 1 day, 1 month, and 1 year.
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analytically for each ω (see Section 2.5), while values of î12(ω) are calculated from

frequency-domain FlexPDE solutions of the fully 3D induction equations without

surface conductance as described in Chapter 2.

The FlexPDE method requires the induction problem to be stated in terms

of the vector potential A, and requires the variables to be described in cartesian

coordinates. The cartesian translation of (3.24) is

Np(t) = − ê
1
2(ω)
√

3

a
(z x̂ + x ẑ) eiωt, (3.26)

and the vector potential required to generate it is

A(t) =
ê12(ω)

a
√

3

(
xy x̂ + (z2 − x2) ŷ − yz ẑ

)
eiωt, (3.27)

where ẑ is aligned with the geomagnetic axis, x̂ points along φ = 0◦, and ŷ

completes the right-handed triple.

Secondary fields were calculated for 30 values of ω corresponding to periods

(T = 2π/ω) between 2.5 hours and 317 years, and are interpolated as needed. A

plot of Q1(T ) and Q2(T ) is given in Figure 3.1, where Q2 is calculated from

Q2(ω) =
î12(ω)

ê12(ω)
. (3.28)

In global induction studies, periods beyond 100 days are rarely analyzed because

the secular variation of Earth’s core field contaminates the long-period data, but

the addition of Earth rotation in Section 3.2.3 will make these long-period responses

useful. Note that Earth’s highly conducting core prevents the amplitude of the

response from reaching zero even at very long periods.

Using these values of Q1(T ) and Q2(T ), we simulated the total induction

field in the frequency domain for a non-rotating Earth for periods between 2.7 hours

and 3 years. These fields were calculated for colatitudes 40◦ ≤ θ ≤ 140◦ along 24

evenly spaced constant-longitude half-orbits at an altitude of 400 km. We used

(3.17) to estimate ê01(T ) and î01(T ) for each period, and used (3.19) and (3.20) to

calculate the measured response of each profile separately in order to explore the

effect of employing the dipole assumption on fields that were contaminated with

Y 1
2 structure. The resulting profiles are shown in Figure 3.2.
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Figure 3.2: Total bias from a Y 1
2 contaminated primary field without rotation.

The real (positive) and imaginary (negative) parts of c1(T ) with β = 0.1 and
φ = 0◦ are shown for seven longitudes evenly spaced between 0◦ and 180◦. The
solid black curve indicates the response for φ = 0◦, the dashed black curve indicates
the response for φ = 180◦, and the plus signs indicate the response for a pure Y 0

1

primary field.
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Figure 3.3: Isolation of the geometrical effect in bias from a Y 1
2 contaminated

primary field in a non-rotating Earth. The real (positive) and imaginary (negative)
parts of c1(T ) with β = 0.1 and φ = 0◦ are shown for seven longitudes evenly spaced
between 0◦ and 180◦. In this case, Q1(T ) was used to calculate î12(T ). The solid
black curve indicates the response for φ = 0◦, the dashed black curve indicates
the response for φ = 180◦, and the plus signs indicate the response for a pure Y 0

1

primary field.

The azimuthal asymmetry in the measured fields from this simulation gen-

erates a considerable φ-dependent bias in c1, which is slightly larger for long periods

than for shorter periods. The bias for longitude φ is equivalent to that for −φ be-

cause the fields in this model are an even function of longitude. The bias is much

more evident in the real part of c1 than in the imaginary part, and has opposite

sign in these two components.

Similar simulations can be done to demonstrate that the bias seen in Figure

3.2 is mainly due to the inaccurate geometric decomposition that comes from the

false assumption contained in (3.16). We calculate exactly the same fields and
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Figure 3.4: Isolation of the amplitude effect in bias from a Y 1
2 contaminated

primary field in a non-rotating Earth. The real (positive) and imaginary (negative)
parts of c1(T ) with β = 0.1 and φ = 0◦ are shown for seven longitudes evenly spaced
between 0◦ and 180◦. In this case, the asymmetric fields have the shape of Y 0

1 fields
weighted by cosφ. The solid black curve indicates the response for φ = 0◦, the
dashed black curve indicates the response for φ = 180◦, and the plus signs indicate
the response for a pure Y 0

1 primary field.

make only the substitution

î12(T ) = Q1(T )ê12(T ), (3.29)

which generates magnetic fields that have the same geometry as before, but with

secondary amplitudes that correspond to induction with dipolar primary fields.

This modification eliminates amplitude bias and allows us to examine the purely

geometrical effect of Y 1
2 contamination. The resulting estimates for c1(T ) are shown

in Figure 3.3, and demonstrate nearly the same bias seen in Figure 3.2, but with

a more consistent amplitude across all periods.
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Alternatively, we can study amplitude bias by using Q2(T ) to calculate

î12(T ), but giving N the geometrical shape of a dipole weighted by the cosine of

the longitude, or

N′p(t) = ê12(ω)
√

3
(
− cos θ r̂ + sin θ θ̂

)
cosφ eiωt, (3.30)

and

N′s(t) = î12(ω)
√

3
(a
r

)3 (
2 cos θ r̂ + sin θ θ̂

)
cosφ eiωt, (3.31)

where we include a factor of
√

3 to keep the magnitude of theta component consis-

tent with the previous asymmetric fields. This exercise eliminates geometrical bias

and isolates the bias resulting from the difference between the amplitudes of Q1

and Q2. The resulting estimates for c1(T ) are shown in Figure 3.4, and they show

a much smaller bias than what is seen in Figures 3.2 and 3.3, demonstrating that

the geometrical effect of Y 1
2 contamination is the dominant factor in the bias seen

in Figure 3.2. The shorter period bias in the real part of c1 has opposite sign from

that at long periods. Thus the amplitude bias slightly counteracts the geometrical

bias at short periods and reinforces it at long periods.

It should be noted that the cosφ-weighted Y 0
1 primary field described in

(3.30) will not actually create the similarly weighted Y 0
1 secondary field described

in (3.31) in a real system. The plot shown in Figure 3.4 is intended only to

demonstrate the dominance of geometrical bias as compared to amplitude bias in

a radially conductive system with Y 1
2 contamination.

We used FlexPDE to calculate the secondary fields that are actually pro-

duced when our Earth model is excited with the field described by (3.30). This

primary field, which is described very simply in the cartesian frame as

N′p(t) = − ê
1
2(ω)
√

3x

a
ẑeiωt, (3.32)

with vector potential

A(t) = − ê
1
2(ω)
√

3x2

2a
ẑeiωt, (3.33)

and is identical in the z-component to a Y 1
2 primary field, but lacks a cross polar x-

component seen in (3.26). In this respect, the field given in (3.30) can be considered

to be a simpler field than that given in (3.24), while still generating the desired
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Figure 3.5: Total bias from a cosφ-weighted Y 0
1 primary field in a non-rotating

Earth. The real (positive) and imaginary (negative) parts of c1(T ) with β = 0.1
and φ = 0◦ are shown for seven longitudes evenly spaced between 0◦ and 180◦. In
this case, the asymmetric primary fields have the shape of Y 0

1 fields weighted by
cosφ, while the asymmetric secondary fields have the internal Y 1

2 geometry that
would actually result from this type of excitation. The solid black curve indicates
the response for φ = 0◦, the dashed black curve indicates the response for φ = 180◦,
and the plus signs indicate the response for a pure Y 0

1 primary field.
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increase in nightside amplitude. Thus it is a reasonable primary field with which

to explore the effect of asymmetry on response functions.

The calculations show that the secondary field resulting from N ′p is very

well described by an internal Y 1
2 as in (3.25) with coefficient d̂1

2(ω), and that for

any given ω

d̂1
2(ω) ≈ 0.429 î12(ω). (3.34)

Total induction fields were calculated for this model and c1 estimates were produced

in the same manner as those in Figures 3.2 – 3.4. These estimates are shown in

Figure 3.5, and show a similar bias to that of true Y 1
2 contamination, but with

much smaller amplitude and a slight decrease in bias at long periods. The bias in

the imaginary part of c1 is almost vanishing for most periods.

3.2.3 Adding Rotation

In this section, we extend the preceding discussion to include Earth’s ro-

tation through the time-varying magnetospheric primary field that includes Y 0
1

and Y 1
2 components. Allowing for Earth rotation complicates the exploration of

bias in response functions because the primary field is most easily described in the

stationary magnetospheric reference frame (r, θ, φ), while induction occurs in the

rotating frame of Earth (r′, θ′, φ′), where

r′ = r, (3.35)

θ′ = θ, (3.36)

φ′ = φ− ωrt, (3.37)

and ωr is the radial frequency corresponding to a rotational perid of 24 hours.

For simplicity, we ignore the distinction between the geomagnetic and geographic

reference frames, and assume that φ′ = 0 is positioned at local midnight at time

t = 0.

The time-variation of the primary field as seen at a particular location on

Earth’s surface results from a combination of the field’s true time-variation at ra-

dial frequency ω as seen in the stationary magnetospheric frame, and its spatial
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variation as Earth rotates through it. Since rotation has no effect on axisymmetric

fields, we limit our discussion to the asymmetric parts of the field. In the mag-

netospheric frame, Np is the same as in (3.24), with potential ΨNp that can be

written

ΨNp(t) = ê12(ω)K(r, θ) cosφ1 cos(ωt), (3.38)

where

K(r, θ) =
r2
√

3

2a
sin 2θ. (3.39)

In the rotating Earth frame this potential is described by

Ψ′Np(t) = ê12(ω)K(r, θ) cos(φ′1 + ωrt) cos(ωt), (3.40)

or, equivalently,

Ψ′Np(t) =
1

2
ê12(ω)K(r, θ)

[
cos(φ′1 + (ωr + ω)t) (3.41)

+ cos(φ′1 + (ωr − ω)t)

]
.

For insight into (3.41), it is useful to examine the potential seen on Earth

as it rotates at arbitrary radial frequency Ωr through a static external quadrupole

of unit magnitude. This is given by

Ψ(t) = K(r, θ) cos(φ′1 + Ωrt). (3.42)

Comparison of (3.41) and (3.42) indicates that the former describes a superposition

of two external static quadrupoles rotating at effective radial frequencies

ω+ = ωr + ω, (3.43)

and

ω− = ωr − ω, (3.44)

with corresponding periods

T+ = 2π/ω+ (3.45)

and

T− = 2π/ω−. (3.46)
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Figure 3.6: The absolute values of the effective oscillation periods seen in the
rotating Earth frame plotted against the source oscillation period T seen in the
magnetospheric frame. The blue curve is T+ and the red curve is T−. The latter
is negative to the left of the vertical pole at T = 1 day and positive to the right.
T+ is positive everywhere.
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A plot of these effective periods against source period T is shown in Figure 3.6,

and shows that for source periods less than ∼1 hour

T+ ≈ T− ≈ T. (3.47)

These periods are shorter than the Nyquist period for satellite data, which is 90–

120 minutes, so are not usually analyzed for studies using a single satellite. For

source periods longer than ∼30 days

T+ ≈ T− ≈ 1 day. (3.48)

This fact was exploited by BEM in their analysis, and was used at periods of 5

and 10 days to generate estimates of β and φ0.

Another feature of Figure 3.6 is the vertical pole in T− at a source period

of 1 day where ω approaches ωr. The effect of this pole will be discussed shortly.

For periods shorter than 1 day, T− is negative, which indicates that the associated

static quadrupole rotates in reverse.

The rotating, non-oscillatory quadrupole potential given in (3.42) can be

written as a superposition of two time-varying, non-rotating potentials:

Ψ(t) = K(r, θ)

[
cosφ′1 cos(Ωrt) + sinφ′1 sin(Ωrt)

]
. (3.49)

Since a non-rotating, external Y 1
2 primary field will induce a non-rotating, internal

Y 1
2 secondary field, (3.49) tells us that the secondary field produced by a non-

oscillatory, rotating external quadrupole will be a non-oscillatory, rotating internal

quadrupole. The temporal phase shift corresponding to the complex î12(Ωr) will

manifest as a constant rotational offset of the secondary field with respect to the

primary field by a longitude of

ϕ(Ωr) = arctan

(
={̂i12(Ωr)}
<{̂i12(Ωr)}

)
, (3.50)

which corresponds to the amount of rotation that occurs during the time interval

associated with the temporal phase.

Thus a primary field that is the superposition of two non-oscillatory, ro-

tating external quadrupoles as described by (3.41) will produce two secondary
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non-oscillatory, rotating internal quadrupoles described by

Ψ′Ns(t) =
1

2
G(r, θ)

[ ∣∣∣̂i12(ω+)
∣∣∣ cos(φ′1 + ω+t− ϕ+) (3.51)

+
∣∣∣̂i12(ω−)

∣∣∣ cos(φ′1 + ω−t− ϕ−)

]
,

where

G(r, θ) =
a4
√

3

2r3
sin 2θ. (3.52)

The rotational phase shifts ϕ+ = ϕ(ω+) and ϕ− = ϕ(ω−) will in general not be

equal to each other, as they will each reflect Earth’s response at different frequen-

cies. At periods shorter than 1 day, ϕ− must have reversed sign to correctly reflect

the reversed rotational direction associated with negative ω−.

Earth rotation has little effect on observatory response functions, since these

are calculated in the rotating frame. The amplitude and phase of the measured

secondary field appropriately reflects the effective frequency of the measured pri-

mary field, even though this frequency is not equal to the source frequency. At

any single longitude, the rotational phase shift described above will be seen as

the appropriate temporal phase shift of the secondary field relative to the primary

field. Thus the rotation signal manifests as deviations in measurements of e01(t)

and i01(t) that result from the response and geometrical biases discussed in Sec-

tion 3.2.2. The bias in the estimate of Q1 that results from these deviations will

have opposite signs on opposite sides of Earth, so it will tend to cancel itself in

long time-series. This is confirmed by time-domain FlexPDE simulations of ob-

servatory measurements in a rotating Earth with Y 1
2 contamination that show no

longitude-dependent bias.

The effect of rotation on satellite response functions can be drastic. These

are calculated for locations that are nearly stationary in the magnetospheric frame,

with a primary quadrupole potential for a given frequency described by (3.38),

which can be usefully rewritten

ΨNp(t) =
1

2
ê12(ω)K(r, θ) [cos(φ1 + ωt) + cos(φ1 + ωt)] . (3.53)

Equation (3.53) reflects the fact that an oscillating stationary quadrupole can

be thought of as the sum of two static quadrupoles, each with half the original
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amplitude, rotating in opposite directions. After being transformed into the mag-

netospheric frame by (3.37), the secondary potential from (3.51) will be

ΨNs(t) =
1

2
G(r, θ)

[ ∣∣∣̂i12(ω+)
∣∣∣ cos(φ1 + ωt− ϕ+) (3.54)

+
∣∣∣̂i12(ω−)

∣∣∣ cos(φ1 − ωt− ϕ−)

]
.

Thus the secondary fields will also be described by static quadrupoles rotating in

opposite directions with rotational frequency ω, but will have response character-

istics appropriate to ω+ and ω−. As in the rotating frame, when the + and −
parts are considered separately and the Earth is viewed as a whole, phase of î12

will manifest in the stationary frame as a longitude offset between the secondary

and primary rotating quadrupoles. At a single local time, this will appear as a

temporal phase shift.

Global induction is rarely studied at periods less than a few hours (be-

cause of near-surface inhomogeneity and the complexity of the source fields in the

ionosphere) or greater than 100 days (because of contamination by the secular

variation of the main field). It is nonetheless instructive to consider three limiting

cases: very long periods, very short periods, and periods near one day.

At very long periods where (3.48) applies, we can make the approximation

that the amplitudes and phases of both parts of the secondary field are approx-

imately equal. The secondary quadrupoles will combine to manifest as a single,

non-rotating quadrupole that oscillates at frequency ω, but has an amplitude corre-

sponding to effective frequencies ω+ and ω−. This mismatch can bias c1 estimates

considerably since secondary field amplitudes generally increase with frequency, as

seen in the middle panel of Figure 3.1. This will make the responses unexpectedly

large at these long periods. The secondary quadrupole will be rotated by a lon-

gitude of ϕ+ with respect to the primary quadrupole. Perhaps counterintuitively,

there will be no temporal phase shift between the two.

At very short periods (3.47) applies. As in the long-period case, the sec-

ondary field will appear as an oscillating, non-rotating quadrupole, but unlike the

long-period case, the rotational phase shifts of the + and − parts will have equal

magnitude and opposite sign, so the secondary quadrupole will have a temporal
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phase shift relative to the primary field, but will have no rotational offset. Be-

cause of (3.47), both the response characteristics of the secondary field will be

appropriate to the frequency of the source field. Thus the very short-period case

is indistinguishable from that of Y 1
2 contamination in a non-rotating Earth. This

reflects the fact that each complete rotation of the Earth will contain dozens of

short-period oscillations, so the Earth can be considered to be effectively stationary

during each of them.

At periods near 1 day, ω+ corresponds to periods near 12 hours, while

ω− corresponds to a vertical asymptote where the absolute value of T− rapidly

approaches infinity from both directions, as seen in Figure 3.6. Although the

effective period changes very rapidly in this region, the amplitude and rotational

phase become nearly constant at long periods, so the vertical pole in T− has very

little effect other than the change in sign of rotational phase mentioned above.

We perform frequency-domain satellite measurements of a rotating Earth

with Y 1
2 contamination by calculating the primary and secondary Y 0

1 fields and

the primary Y 1
2 fields as above. The secondary Y 1

2 fields are derived from (3.55),

given in the frequency-domain by

ΨNs(ω) =
1

2
G(r, θ)

[
(1− i)

∣∣∣̂i12(ω+) cos(φ1 − ϕ+)
∣∣∣ eiωt (3.55)

+(1 + i)
∣∣∣̂i12(ω−)

∣∣∣ cos(φ1 − ϕ−)eiωt
]
,

where the imaginary parts are rotated by ±90◦ to correctly produce the rotation of

static quadrupoles described above. The coefficients î12 are calculated in the same

way as in Section 3.2.2. For T− > 1010 seconds near source periods of one day, the

approximation î12(T
−) = î12(1010 sec) is used. Otherwise, no long- or short-period

approximations are required.

BEM calculated the LT bias in c1 estimates at periods of 5 and 10 days in a

manner very similar to the one we used in Section 3.2.2, but using simulated scalar

anomalies instead of simulated vector measurements. The BEM authors generated

scalar anomalies via (3.18) using a B reflected both Y 0
1 and Y 1

2 terms, and then

used those anomalies to estimate dipole coefficients with the same equation after

replacing B with one that only accounted for Y 0
1 structure.
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Figure 3.7: Synthetic estimates of the real part of c1 for a Y 1
2 contaminated

primary field in a rotating Earth, for β = 0.1 and φ0 = −60◦ (triangles), and for
β = 0.125 and φ0 = −65◦ (circles). BEM estimates for 10 pm (blue), 2 am (green),
and 6 am (pink), are compared to estimates from this work (black).

We reproduce BEM’s results, which are displayed with ours in Figure 3.7

for β = 0.1, and φ0 = −60◦, and for β = 0.125, and φ0 = −67.5◦. To most

closely match BEM, we used the scalar anomaly method, modeling the Earth’s

main field as in internal dipole with a 30 µT coefficient, and extending our range

of colatitudes to match theirs: 25◦ ≤ θ ≤ 155◦. The estimates match qualitatively,

with maximum disagreement of less than 100 km (for biases of roughly 600 km)

that can be accounted for by different conductivity profiles used in the estimates

of Q1 and Q2. Note that BEM do not supply values for the imaginary parts of c1

in the β = 0.1 case, and their estimates of this value for the β = 0.125 case are

nearly identical to each other. For this reason, we only include the real parts of

all estimates in the figure.

BEM used the long-period approximation (3.48) for their calculations. While

our method does not rely on this approximation, we used it to produce a second

set of estimates in the interest of quantifying the approximation’s effect. The es-

timates made with and without the approximation were nearly identical, with an

RMS misfit of about 2 km and a maximum misfit of 10 km, demonstrating the

applicability of this approximation at periods of 5 and 10 days.

We used our method to calculate LT-dependent c1 estimates at periods be-
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Figure 3.8: Bias from a Y 1
2 contaminated primary field in a rotating Earth using

the scalar decomposition method. The real (positive) and imaginary (negative)
parts of c1(T ) with β = 0.1 and φ = 0◦ are shown for 12 longitudes evenly spaced
around the globe. The solid black curve indicates the response for φ1 = 0◦, the
dashed black curve indicates the response for φ1 = 180◦, and the plus signs indicate
the response for a pure Y 0

1 primary field.
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Figure 3.9: Bias from a Y 1
2 contaminated primary field in a rotating Earth using

the vector decomposition method. The real (positive) and imaginary (negative)
parts ofc1(T ) with β = 0.1 and φ = 0◦ are shown for 12 longitudes evenly spaced
around the globe. The solid black curve indicates the response for φ1 = 0◦, the
dashed black curve indicates the response for φ1 = 180◦, and the plus signs indicate
the response for a pure Y 0

1 primary field.
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tween 104 and 108 seconds for a rotating Earth model with Y 1
2 contamination. For

these calculations we used β = 0.1 and φ0 = −60◦ for all periods. Figure 3.8

shows results that were calculated using the scalar anomaly method, and colatu-

tude range 25◦ ≤ θ ≤ 155◦, and Figure 3.9 shows results that were calculated using

the vector measurement method and colatitude range 40◦ ≤ θ ≤ 140◦.

In general, the vector method can be used with a more restricted range of

colatitudes centered on the geomagnetic equator, while the scalar method requires

longer satellite tracks that extend closer to the poles, where there is more differ-

ence in orientation between the internal and external dipole fields. Measurements

from scalar satellite magnetometers are thought to be more accurate than vector

measurements, which rely on star cameras for orientation. This increased accuracy

may be counteracted by the fact that many main field models do a poor job of

fully accounting for auroral currents, which can be significant at higher latitudes.

Synthetic tests of Y 0
1 induction fields with and without gaussian noise show

that both scalar and vector methods work quite well for pure dipoles, but Figures

3.8 and 3.9 demonstrate that the c1 bias is much greater when the scalar anomaly

method is used in the presence of Y 1
2 contamination. This argues against the

use of the scalar method in traditional satellite induction studies, but opens the

possibility of gaining information about the structure of the field from comparisons

between response functions calculated from the two methods.

Both figures show a LT bias in the responses that is fairly consistent over

the full range of periods, with a slight increase in the bias of the real part of c1

in the middle of the spectrum, and a slight decrease in the bias of the imaginary

part in the same place. The real and imaginary parts both kink slightly at periods

of one day because of the change in sign of the rotational phase. The direction of

this kink has opposite sign on opposite sides of Earth. It is notable that the bias

has reversed sign compared to the non-rotating models. The rotating models have

the maximum positive bias in the real part of c1 at φ1 = 0◦ and the maximum

negative bias at φ1 = 180◦. In the non-rotating models, these are reversed, with

the maximum positive bias at φ1 = 180◦ and maximum negative bias at φ1 = 0◦.

We performed similar simulations with a rotating version of the cosφ-
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Figure 3.10: Bias from a cosφ1-weighted Y 0
1 primary field in a rotating Earth

using the vector decomposition method. The real (positive) and imaginary (neg-
ative) parts of c1(T ) with β = 0.1 and φ = 0◦ are shown for 12 longitudes evenly
spaced around the globe. The solid black curve indicates the response for φ = φ0,
the dashed black curve indicates the response for φ = φ0 +180◦, and the plus signs
indicate the response for a pure Y 0

1 primary field.
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Figure 3.11: Recreation of Balasis bias for a Y 1
2 contaminated primary field in a

rotating Earth. The real (positive) and imaginary (negative) parts of c1(T ) with
β = 0.1 and φ = 0◦ are shown for local time subsets of 10 pm (blue), 2 am (green),
and 6 am (pink). The solid curves indicate the empirical bias found by BEM. The
dashed curves indicate the synthetic bias produced by our method. The plus signs
indicate the response for a pure Y 0

1 primary field.

weighted Y 0
1 primary field given in (3.30) and its associated induced rotating Y 1

2

secondary field. Response functions were calculated from these simulations, using

the vector method, β = 0.1, φ0 = −60◦, and 40◦ ≤ θ ≤ 140◦. These are shown in

Figure 3.10, and when compared to the fully Y 1
2 models, show a similar reduction

in bias to that found in Section 3.2.2. The bias in the real part of the response

switches sign at long period in this case, a fact that remains true when scalar

decomposition is used..

We estimate the period-dependent values of β and φ0 necessary to recreate

the BEM bias in c1 using the scalar method and the assumption that this bias is

entirely caused by coherent Y 1
2 contamination in the primary and secondary fields.
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Figure 3.12: Values of β(ω) and φ0(ω) used to create Figure 3.11.

To approximate the amplitude of the bias we assume that β is a linear function

of the BEM bias for the 10 pm LT subset. To approximate the asymmetry of

the bias between the 10 pm and 6 am LT curves, we assume that φ0 is simply a

linear function of logperiod. We use a perturbational approach to match the bias

in the real part of c1 in the period range 2 × 104 ≤ T ≤ 3 × 106 seconds. The

short-period range for BEM’s 6 am LT result was not considered in the fit, since

BEM attributed its structure to low signal strength in the dawn LT sector. The

resulting fit is shown in Figure 3.11, and the β(T ) and φ0(T ) estimates used to

produce it are shown in Figure 3.12. The fit to the bias in the real part is very

good, excluding the short-period dawn sector. The maximum value of β is ∼0.13

at periods just over 1 day. This corresponds to a fairly large difference of ∼45 nT

in Bθ on opposite sides of Earth when we assume that ê01 = 100 nT. The fit to

the imaginary part of c1 is not as good, with the modeled bias being very small

compared to the BEM bias, even when the dawn sector result is excluded. Using

our technique to fit the bias in the imaginary part would result in overly large

biases in the real part since the imaginary bias from our method is always very

small compared to the real bias. Some other effect must be invoked to explain

this discrepancy. Possibilities include lack of coherence between the symmetric

and asymmetric fields and other spherical harmonic terms, although these were

not explored in this study.

We applied the same technique to estimate β(T ) and φ0(T ) under the as-
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Figure 3.13: Recreation of Balasis bias with a cosφ1-weighted Y 0
1 primary field

and the resulting Y 1
2 contamination in the secondary field. The real (positive) and

imaginary (negative) parts of c1(T ) for local time subsets of 10 pm (blue), 2 am
(green), and 6 am (pink). The solid curves indicate the empirical bias found by
BEM. The dashed curves indicate the synthetic bias produced by our method. The
plus signs indicate the response for a pure Y 0

1 field.
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Figure 3.14: Values of β(ω) and φ0(ω) used to create Figure 3.13.



77

sumption that the bias is caused by coherent cosφ1-weighted Y 0
1 contamination of

the primary field and the resulting Y 1
2 contamination of the secondary field. The

fit is shown in Figure 3.13, and the β(T ) and φ0(T ) estimates used to produce

it are shown in Figure 3.14. In this case, the fit to the real part of c1 is not as

good as in the previous case, since it is difficult to fit all three LT subsets simul-

taneously. We choose to fit the 10 pm and 2 am sectors at the expense of the 6

am sector, in consideration of BEM’s attribution of lower accuracy in the dawn

sector. The maximum value of β for this case is ∼0.3 at periods just over 1 day.

This corresponds to difference of ∼100 nT in Bθ on opposite sides of Earth when

we assume that ê01 = 100 nT, which is unlikely to be realistic. The modeled bias

in the imaginary parts of c1 is increased when compared to the previous case, but

does not reflect the structure of the empirical responses.

3.3 Conclusions

We find that it is possible to recreate the LT bias in empirical c1 responses

found by BEM with the inclusion of time-varying Y 1
2 contamination in the primary

and secondary fields in the period range 104–106 seconds. We note that the amount

of asymmetry in equatorial field strength that is required to account for the BEM

bias reaches nearly 50% at some periods, a fact which contradicts the findings of

many previous researchers, who found that the ring current could be adequately

modeled at most time scales as a Y 0
1 spherical harmonic (e.g. Banks, 1969; Schultz

and Larsen, 1987; Martinec and Vel̀ımskỳ, 2009). We attribute most of the bias in

these c1 estimates to the geometry of the Y 1
2 fields, which is shown to have a much

larger effect than the difference between Q2 and Q1.

We find it unlikely that the BEM bias is caused by contamination of primary

field with the simpler form described by a cosφ1-weighting of a Y 0
1 external field

since the resulting modeled bias is a poor fit to the empirical bias, and the required

amount of asymmetry in equatorial field strength would exceed 100% at some

periods. The reduced effectiveness of this type of field in creating bias in response

functions is consistent with the fact that the external field geometry is very similar
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to that of a uniform field, and the fact that its Q-value is much lower than Q2 for

any given source period.

This study does not rule out other causes of the BEM bias, including higher

degree and order spherical harmonic structure in the primary fields, but argues that

a greater understanding of the structure of the primary field will be necessary for

accurate interpretation of satellite data. It is hoped that multi-satellite missions

such as SWARM will help in this regard. If such structure is found, this study

provides a method by which to estimate the effect of Earth rotation on satellite

c1 responses without the approximations required by BEM’s analysis. The effect

of Earth rotation on any spherical harmonic structure of order m = 1 can be

estimated with very little modification to this method, and the extension to m > 1

should be straightforward.

We also conclude that the presence of non-Y 0
1 structure in the fields makes

the use of scalar anomalies of questionable value for satellite induction studies.

The bias in response functions calculated from scalar satellite data is drastically

increased compared to those estimated from vector data. Although it may be

possible to draw conclusions about the structure of the fields from the differences

in these estimates, we have not done so in this study.
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Chapter 4

FlexPDE Simulations For

Comparison Of Global Induction

Codes

Abstract We present FlexPDE solutions to simulations of global electromagnetic

induction in four models of spherical conductors with uniform primary fields. The

models presented include radially conductive concentric spheres with different sur-

face conductances in (1) Northern and Southern hemispheres, and (2) Eastern and

Western hemispheres, (3) eccentrically nested spheres of different conductivity,

and (4) radially conductive concentric spheres with Earth-like surface conductance

map. The results for the first two models are compared with those of two other

researchers, and the results of the others are compared with analytic solutions

for identical or illustratively similar problems. The FlexPDE results show good

agreement with the other solutions, with some differences near coastlines.

4.1 Introduction

The authors of several codes designed to simulate global geomagnetic in-

duction have agreed to collaborate on a project comparing simulation results for

six different spherical induction models. The goal of this project is to determine

the relative strengths and weaknesses of these codes with respect to accuracy, run-

81
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time, and applicability to specific problem types. In this paper, I present results

for four of the proposed models as calculated by FlexPDE finite-element modeling

software.

Each model consists of a conductive sphere with radius 6371 km surrounded

by infinitely large and perfectly insulating vacuum (approximated in the FlexPDE

solutions by an insulating sphere extending to 10 times the radius of the conduct-

ing sphere), and is excited by a Y 0
1 external field at periods of 6 hours, 1 day,

4 days, and 16 days. All simulations are calculated in the geomagnetic (GM)

coordinate system. The external field is aligned parallel to the GM pole (which

coincides with the cartesian z-axis in FlexPDE model space), and has an external

dipole coefficient of 100 nT, meaning that the field at the northern GM pole has

only a radial component with a value of -100 nT. All FlexPDE calculations are

performed in the frequency domain, using the technique described in Chapter 2,

except as noted. The finite-element mesh is composed of straight line segments,

measurement points at the conductor/vacuum interface (CVI) may fall slightly to

one side or the other of this surface. Since some of the models include an infinitely

thin surface conductance map which can produce a field discontinuity in conjunc-

tion with a boundary condition at the CVI, this can result in large discontinuities

in field profiles measured directly on the CVI. For this reason, all of the Flex-

PDE solutions in this chapter are given at an altitude of 100 m in order to avoid

these discontinuities. The FlexPDE solutions are provided with no smoothing or

additional processing.

To date, the other participants in this project who have produced solutions

to some of the models are Alexei Kuvshinov, using the integral equation method

(Kuvshinov et al., 2002a), and Jakub Vel̀ımskỳ, using time-domain spectral meth-

ods (Vel̀ımskỳ and Martinec, 2005), both of whom have provided solutions to

Models 1 and 2. For details about these methods see Chapter 1. Thus far, only

the FlexPDE solutions have been generated for Models 3 and 6, while Models 4

and 5 have not yet been specified in enough detail for solutions to be calculated.

Other potential participants in this project include Chet Weiss – using triangular

finite differences (Weiss, 2010), Mark Everett – using hand-coded FEM (Everett
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Table 4.1: Electrical conductivities used in Models 1 and 2.

Depth (km) σ (S/m)
0–100 0.0001

100–400 0.01
400–650 0.1
650–6371 2

Table 4.2: Surface conductance used in Model 1.

Hemisphere Colatitude(◦) Longitude (◦) τ (S)
North 0–90 0–360 20,000
South 90–180 0–360 20

and Schultz, 1996), and Makoto Uyeshima – using staggered grids (Uyeshima and

Schultz, 2000).

4.2 Model 1: North/South Hemispheres

In this model, the conductivity, σ, is radially varying, with values as de-

scribed in Table 4.1. These values are not exactly Earthlike, but are known to

adequately reproduce Earth’s response to Dst and Sq fields (Kuvshinov et al.,

1999). One of the most obvious deviations from realistic Earth values is the ab-

sence in the model of a highly conductive (roughly 5 × 105 S/m (Jeanloz, 1990))

core. At 2 S/m, the innermost layer is conductive enough that, at the periods

of investigation, the magnetic field is negligible at the depth of the core, and its

absence does not affect the result of the calculation.

In addition, an infinitely thin spherical shell describing the surface con-

ductance τ is present at the CVI. The conductances are separately constant, but

differ by 3 orders of magnitude between the northern and southern hemispheres,

as described in Table 4.2. The shell boundary is like a coastline, but the ocean

conductance is much larger than the average value of Earth’s oceans in order to

provide a larger ocean/continent contrast with which to test the codes.

In this model, the pathways of electric current are everywhere purely az-
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imuthal, and never encounter gradients or discontinuities in σ or τ . Thus this

problem is a limited 3D problem, as described in Chapter 2, and is amenable to

solution in a 2D model space. Nonetheless, all results presented for this model

refer to solutions calculated in a full 3D model space, under the assumption that

both the electric scalar potential V , and the z-component of the magnetic vector

potential Az are both identically zero.

The fact that the current pathways are azimuthal and homogeneously con-

ductive also implies that it is not necessary to solve for the scalar current function

ψ, the purpose of which is to determine the direction and magnitude of the sur-

face current j at the CVI under the assumption that j is divergenceless and the

surface layer is electrically isolated from the underlying mantle. These qualities

apply intrinsically to any current caused by purely azimuthal electric field follow-

ing homogeneous pathways, including those at the CVI. Thus j can be calculated

directly from the total scalar potential A via Ohm’s law:

j = τE, (4.1)

which reduces in this case to

j = −iωA. (4.2)

The resulting discontinuity in Bθ is imposed in the simulations by enforcing the

following boundary condition at the CVI:

∂rA
+ − ∂rA− = iωµ0τA. (4.3)

This technique has the effect of achieving higher accuracy with shorter runtimes

than we would get by including ψ as a solution variable.

The FlexPDE solutions of the total magnetic field as a function of colatitude

are shown in Figure 4.1, along with the Kuvshinov and Vel̀ımskỳ solutions. The

radial and polar components of the induction field B are shown for all periods as

functions of colatitude. (The azimuthal component is identically zero in Model

1.) All of the solutions show good agreement, with the Kuvshinov and FlexPDE

solutions being nearly identical. The Vel̀ımskỳ solution shows a very small amount

of both systematic bias and anomalous short wavelength structure compared to



85

Table 4.3: Runtimes for Model 1.

Period Runtime (minutes)
16 days 36
4 days 33
1 day 55

6 hours 105

the other two. Both of these effects are likely caused by the representation of the

solution in terms of a truncated series of spherical harmonics. It should also be

noted that the Vel̀ımskỳ solutions have been smoothed in post-processing.

Runtimes for the FlexPDE solution are given in Table 4.3. These runtimes

are highly dependent on the hardware employed, and on user-controlled specifica-

tions in the problem script, including but not limited to: requested error tolerance,

initial mesh density, number of simultaneous processor threads, the number of con-

jugate gradient iterations performed before AMR is applied, and whether the mesh

is reused from one period to the next or constructed from scratch each time. All

of the FlexPDE solutions presented here are calculated with 4 simultaneous CPU

threads at an error tolerance of .001, which roughly corresponds to an absolute

accuracy of about 1 nT (see Section 2.2.2 for details). The computation mesh is

passed from one period to the next and the periods are run in order from long to

short, meaning the initial mesh construction is included in the runtimes for the

periods of 16 days.

4.3 Model 2: East/West Hemispheres

The radially varying conductivity in Model 2 is identical to that in Model 1,

as given in Table 4.1. The surface conductance in Model 2 is very similar to that in

Model 1, except that the conductance layer is separated into Eastern and Western

hemispheres, instead of Northern and Southern hemispheres. This is described

quantitatively in Table 4.4.

This is a fully 3D model (as described in Chapter 2), where neither the

volume current nor the surface current is expected to be purely azimuthal. Thus
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Figure 4.1: Meriodional profiles of Br (left column) and Bθ (right column) for
Model 1 as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Vel̀ımskỳ with time-domain spectral methods
(red) for each period considered. The solid curves are the real part and the dashed
curves indicate the imaginary part. Plots are shown for periods of 6 hours (first
row), 1 day (second row), 4 days (third row), and 16 days (fourth row).
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Table 4.4: Surface conductance used in Model 2.

Hemisphere Colatitude(◦) Longitude (◦) τ (S)
East 0–180 -90–90 20
West 0–180 90–270 20,000

Table 4.5: Runtimes for Model 2.

Period Runtime (hours)
16 days 10.5
4 days 11
1 day 30

6 hours 86

we must find solutions for five complex variables: three components of the magnetic

vector potential A, the electric scalar potential V , and the current function ψ. This

is more than double the number of variables compared to Model 1, which increases

runtimes considerably. These runtimes are given in Table 4.5.

Meridional profiles of the FlexPDE solutions are shown in Figures 4.2 – 4.16,

alongside the integral equation solutions and the time-domain spectral solutions.

Unlike those for Model 1, the solutions for Model 2 are dependent on longitude,

thus they are shown as meridional profiles for four different longitudes (one apiece

near the center of each hemisphere, and one apiece near each coastline) in Figures

4.2 – 4.13, and as azimuthal profiles at a single colatitude in Figures 4.14 – 4.16.
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Figure 4.2: Meridional profiles of the real (solid) and imaginary (dashed) parts of
Br for longitude φ = 0.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue), by Kuvshinov with integral
equations (black), and by Veĺımský with time-domain spectral methods (red).
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Figure 4.3: Meridional profiles of the real (solid) and imaginary (dashed) parts of
Bθ for longitude φ = 0.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue), by Kuvshinov with integral
equations (black), and by Veĺımský with time-domain spectral methods (red).
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Bφ for longitude φ = 0.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue), by Kuvshinov with integral
equations (black), and by Veĺımský with time-domain spectral methods (red).
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Figure 4.5: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 90.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
(red).
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Figure 4.6: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 90.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
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Figure 4.7: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 90.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
(red).
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Figure 4.8: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 180.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
(red).
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Figure 4.9: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 180.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
(red).
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Figure 4.10: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 180.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
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Figure 4.11: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 270.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
(red).
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Figure 4.12: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 270.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
(red).
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Figure 4.13: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 270.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
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of Br for longitude θ = 45.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
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Figure 4.15: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude θ = 45.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
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Figure 4.16: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude θ = 45.5◦ in Model 2 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue), by Kuvshinov with
integral equations (black), and by Veĺımský with time-domain spectral methods
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The FlexPDE solutions exhibit both systematic bias and short-wavelength

variation with respect to the other two solutions. Both of these types of disagree-

ment decrease with distance from the coastlines and with increased period, but for

different reasons in each case. The short-wavelength variations are simply noise

in the solutions, and are an artifact of the calculation technique, which iterates

until the estimated error in the solution falls below a certain threshold. This noise

can be reduced by decreasing the error tolerance and/or increasing the mesh den-

sity, both of which lead to increased runtimes. At longer periods, the inductive

signal penetrates deeper into the mantle, and the fields at the surface are more

reflective of the azimuthally symmetric structure of the mantle, while shorter peri-

ods focus the induced current at shallower depths and allow the discontinuities of

the surface conductance to play a greater role in the solutions. Short-wavelength

structure in the fields is most evident at the coastlines, which means the noise in

the solutions will be more evident there. The component with the greatest noise

is Bφ, for which the mid-hemisphere solutions have the lowest signal-to-noise ratio

simply because the value of the component is very close to zero there. These errors

are large compared to the signal itself, but remain well below 1 nT in magnitude.

The noise in the coastal estimates of Bφ are much larger however and reflect the

fact that Bφ appears to be the most difficult component for FlexPDE to resolve

accurately. The integral equation method and the time-domain spectral method

are less susceptible to this type of noise: the former because it only calculates the

field at Earth’s surface instead of everywhere within the model, which provides

a more focused use of computational resources, and the latter because it solves

for individual spherical harmonics, which are smooth functions to begin with, and

then adds additional smoothing in post-processing.

The systematic differences among the three solutions are most evident in

the meridional profiles of Bφ, all of which vary significantly, especially near the

coastlines (including near the poles). These differences likely reflect the slight

variations in the physics being modeled by each method. Specifically, the integral

equation technique assumes an infinitely thin surface conductance that has elec-

trical interaction with the underlying mantle (or bimodal induction), which allows
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for vertical leakage currents between the surface layer and mantle. The FlexPDE

method also assumes an infinitely thin surface layer, but does not allow electrical

contact with the mantle. This means all surface currents are purely toroidal, and

leakage currents are not allowed. The difference between these two methods is

most evident near meridional conductance contrasts, where the FlexPDE method

will preferentially divert more of the azimuthal current to the north or south (gen-

erating the locally increased amplitudes seen in the azimuthal profiles of Figures

4.14–4.16, and the systematic biases in Br and Bφ in the coastal meridional profiles

of Figures 4.5, 4.7, 4.11, and 4.13), while bimodal methods will allow some of that

current to plunge beneath the surface into the mantle and continue traveling az-

imuthally. The effect of this difference in our results is more pronounced at shorter

periods, as expected (Kuvshinov et al., 1999).

The spectral method of Veĺımský takes yet another approach and gives

the surface layer a finite thickness (10 km in this case) in the computation mesh.

This variation arguably produces the most realistic representation of induction in

the true Earth, having a surface layer with both finite spatial extent and galvanic

contact with the mantle, but this realism is offset by the description of the solution

as a truncated and arbitrarily smoothed set of spherical harmonics. The differences

among the methods are least important far from the conductivity contrasts, where

the fields calculated by all methods closely match those associated with fully 1D

conductivities matching the local depth profiles.

4.4 Model 3: Eccentrically Nested Spheres

In this model, the conductor is modeled as a set of two nested conductive

spheres. The outer sphere has conductivity σ = 0.01 S/m, and radius 6371 km.

The inner sphere, with σ = 1.0 S/m and radius 3500 km, is not concentric with

the outer sphere. Instead, its center is located at a radius r = 2500 km, colatitude

θ = 40◦, and longitude φ = 35◦, in a coordinate system with its origin at the center

of the outer sphere.

To date, none of the other participants in the global comparison project
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Table 4.6: Runtimes for Model 3.

Period Runtime (hours)
16 days 3
4 days 3.5
1 day 26

6 hours 76

have provided solutions for this model. However a semi-analytic solution (Mar-

tinec, 1998) has been calculated (Vel̀ımskỳ, personal correspondence) with which

to compare the FlexPDE solutions. Martinec’s solution is calculated in terms of

a series of spherical harmonics, truncated at order 18 for the longer two periods

and at order 12 for the shorter two periods. Increasing the number of terms in

the series causes the solutions for the two shorter periods to become unstable and

produce volatile results, so the series is truncated to prevent this at the cost of

reduced spatial resolution.

Model 3 represents a fully 3D problem, but has no surface conductance.

Thus FlexPDE must find solutions for four complex variables: V , and the three

components of A. Since there are more variables than in Model 1, but fewer than

in Model 2, it is not surprising that the runtimes for Model 3, given in Table 4.6,

fall between those of the previous two models.

The FlexPDE solutions are compared to the semi-analytic solutions in Fig-

ures 4.17 – 4.34. They are shown for all periods of investigation along meridional

profiles at φ = 0◦ (Figures 4.17 – 4.19), 90◦ (Figures 4.20 – 4.22), 180◦ (Figures

4.23 – 4.25), and 270◦ (Figures 4.26 – 4.28), and along azimuthal profiles at θ = 45◦

(Figures 4.29 – 4.31) and 135◦ (Figures 4.32 – 4.34). The solutions compare very

well to the semi-analytic solutions, with the largest deviations again being found

in Bφ at the shorter periods. Once again, this component is itself very small, and

the noise in the solutions may appear large in comparison, although in most cases

this noise is less than 1 nT in amplitude. It is also notable that the semi-analytic

solution for this component at 6-hour period is curiously oscillatory, and is likely

to be inaccurate itself. More information about this will likely become available

when other researchers present results for this model.



106

! "! #!! #"!
!$!

!#!

!

#!

%
&'
()
*
+

,'-./&0

! "! #!! #"!

!$!

!

$!

#'123

! "! #!! #"!

!"!

!

"!

!'(145+

%
&'
()
*
+

6'1230

! "! #!! #"!

!"!

!

"!

#!!

!'(145+

#,'1230

Figure 4.17: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 0◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.18: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 0◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.19: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 0◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.20: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 90◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.21: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 90◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.22: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 90◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.23: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 180◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Figure 4.24: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 180◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Figure 4.25: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 180◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Figure 4.26: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 270◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Figure 4.27: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 270◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Figure 4.28: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 270◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Figure 4.29: Azimuthal profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude θ = 45◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.30: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude θ = 45◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.31: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude θ = 45◦ in Model 3 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The semi-analytic solution
is shown in red.
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Figure 4.32: Azimuthal profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude θ = 135◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Figure 4.33: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude θ = 135◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Figure 4.34: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude θ = 135◦ in Model 3 for periods of 6 hours, 1 day, 4 days,
and 16 days as calculated by the author with FlexPDE (blue). The semi-analytic
solution is shown in red.
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Table 4.7: Electrical conductivities used in Models 6.

Depth (km) σ (S/m)
0–400 0.01

400–800 0.1
800–2871 1.0
2871–6371 5× 105

Table 4.8: Runtimes for Model 6.

Period Runtime (hours)
16 days 25.25
4 days 13.5
1 day 33.5

6 hours 97

4.5 Model 6: 3D Surface Conductance Map Over

Radial Conductivity Model

Earth is represented in Model 6 as a set of four concentric uniform spheres

with conductivities described in Table 4.7, overlain at the CVI by an infinitely thin

1◦ × 1◦ conductance map (Everett et al., 2003) representing the realistic conduc-

tivity of Earth’s oceans and continents, as seen in Figure 4.35. The external dipole

field is aligned with the GM axis, the North pole of which is located at geographic

longitude φg = −72◦, and geographic colatitude θg = 10◦.

This model is computationally analogous to Model 2, although the con-

ductivity profile is different, and the FlexPDE method computes solutions for five

complex variables. However the conductance map of Model 6 is more complicated

than that of Model 2, which can increase runtimes, described in Table 4.8

As with Model 3, no other researchers have yet presented their solutions

for Model 6, however in this case there is no analytic or semi-analytic solution

to compare with the FlexPDE solution. Thus there is little basis for judging the

accuracy of the FlexPDE solutions, which are presented in Figures 4.37 – 4.54 along

the same profiles as were used for Model 3. Nonetheless, the analytic solutions for

a 1D version of Model 6 that lacks a surface conductance map can be used as a



125

!

"

 

 

−150 −100 −50 0 50 100 150

0

20

40

60

80

100

120

140

160

180

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 104

Figure 4.35: Map of the surface conductance τ used for Model 6, shown here in
terms of geomagnetic colatitude θ and geomagnetic longitude φ. The color scale
is in units of S. Black lines indicate the azimuthal and meridional profiles along
which the synthetic data is collected to generate the plots in Figures 4.36 – 4.54.

qualitative comparison, and are plotted in the same figures.

It is notable that the deviations of the 3D solutions from the 1D solutions

follow a systematic pattern. Short wavelength spikes in Br and Bθ are present

at conductivity contrasts (northern and southern coastlines) along the meridional

profiles, while longer wavelength anomalies are visible in Bφ along eastern and

western coastlines. These features indicate the coast effect (Parker, 1968), the

channeling of electric current within the surface layer that is caused when an east-

west directed oceanic electric current encounters a resistive continent and deviates

poleward along the coast. These north- or south-directed currents generate a

significant amplitude in Bφ, which vanishes in an azimuthally symmetric model.

The deviated currents then curve around the northern or southern coast of the

continent, which greatly enhances the azimuthal current density in the oceans near

these coasts, and generates anomalies in Br and Bθ. The coast effect manifests

in the azimuthal profiles with long wavelength patterns in Br and Bθ that clearly

indicate the locations of the oceans and continents, and sawtooth patterns in Bφ
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that clearly indicate the coastlines.

The coast effect can be seen in maps of the anomalous radial field, Br,a

calculated by

Br,a = Br −Br,1D, (4.4)

whereBr,1D is the radial field from an Earth model that has equivalent conductivity,

but lacks surface conductance. Such a map is shown in Figure 4.36 for a source

period of 6 hours, and clearly delineates the continental coastlines, especially the

northern and southern coasts. This effect can lead to anomalous results in response

functions estimated from observatories located near these coastlines, such as the

one in Hermanus, on the southern coast of Africa (Constable, 1993; Kuvshinov

et al., 2002b).

The coast effect is more pronounced at shorter periods, for which the mag-

netic skin depths are small enough to concentrate the electric current in the het-

erogeneous outer layer. At longer periods, the magnetic fields penetrate deeper

into the mantle, and more of the current flows in a homogeneous medium where it

is less necessary to divert from azimuthal pathways. Once other researchers have

calculated similar profiles, it will be possible to compare the bimodal solutions

to our unimodal solutions, and to characterize the differences in the coast effect

between the two methods.
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anamolous radial field Br,a, illustrating the coast effect for Model 6 at a period of
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Figure 4.37: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 0◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.38: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 0◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.39: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 0◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.40: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 90◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.41: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 90◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.42: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 90◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.43: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 180◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.44: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 180◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.45: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 180◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.46: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude φ = 270◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.47: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude φ = 270◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.48: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude φ = 270◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.49: Azimuthal profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude θ = 45◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.50: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude θ = 45◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.51: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude θ = 45◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and 16
days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.



143

! "!! #!! $!!

!

%!

"!!

"%!

#!!

&
'(
)*
+
,

-(./0'1

! "!! #!! $!!

!

%!

"!!

"(234

! "!! #!! $!!

!"!

!

"!

#!

$!

5!

!()267,

&
'(
)*
+
,

5(2341

! "!! #!! $!!

!"!

!

"!

#!

$!

!()267,

"-(2341

Figure 4.52: Azimuthal profiles of the real (solid) and imaginary (dashed) parts
of Br for longitude θ = 135◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.53: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bθ for longitude θ = 135◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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Figure 4.54: Meridional profiles of the real (solid) and imaginary (dashed) parts
of Bφ for longitude θ = 135◦ in Model 6 for periods of 6 hours, 1 day, 4 days, and
16 days as calculated by the author with FlexPDE (blue). The red curves show the
analytic solution for a model with the same 1D mantle conductivity, but without
the surface conductance map.
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4.6 Summary

FlexPDE solutions have been calculated for the magnetic fields in four

global benchmark models, and show good agreement with the other available solu-

tions, especially for Br and Bθ. The solutions for Bφ are slightly noisier than the

other two, but not excessively so. The FlexPDE solutions for azimuthally asym-

metric models which include a surface conductance show systematic differences

from bimodal solutions, particularly at short periods near coastlines. At longer

periods these differences become minimal. The differences between bimodal and

unimodal solutions with respect to the coast effect are easily distinguished in the

presence of discontinuities in surface conductance. When other researchers provide

solutions for Model 6, it will be possible to quantify how pronounced these artifacts

are in the presence of more realistic conductances that are spatially continuous.
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Chapter 5

Conclusions and Future Outlook

The work presented in this document describes new and flexible tools and

methods for forward-modeling the global induction problem with a combination of

numerical and analytic techniques. These methods allow for nearly arbitrary con-

ductivity and primary field models, and include the ability to account for surface

conductance and Earth rotation.

In Chapter 2 the numerical methods were shown to accurately calculate

the magnetic fields for global induction problems with analytic solutions including

concentric spheres, eccentrically nested spheres, and rotating uniform conductors

in uniform primary fields. While the accuracy of the solution is highly dependent

on model parameters, solution options, and measurement locations, errors of less

than 1% are attainable for the problems we describe. The method is sufficiently

powerful to model complicated and scientifically interesting problems, but they are

specified in a short and fairly simple script. This means that new variations can be

created in a short amount of time by a researcher with mathematical and physical

expertise, but little FEM experience.

We demonstrated in Chapter 3 that is possible to recreate the previously re-

ported bias in local time c1(ω) estimates by including coherent, non-zonal structure

in the primary fields, but that the magnitude of the asymmetry in these fields must

be larger than that empirically estimated by other researchers. We showed that

the biasing effect of non-zonal structure is more influenced by the geometry of the

fields than the discrepancy in the magnitude of the response functions for higher
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degree structure, and that the addition of Y 1
2 structure to a primary field that is

otherwise purely dipolar is more effective at biasing c1 than longitude weighting of

the dipolar primary field. We also demonstrate that, if present, non-zonal struc-

ture in the primary field causes greater bias in response functions estimated from

scalar anomaly measurements than from vector component measurements. With

little modification, the methods described in this chapter could be adapted for use

with inclusion of other spherical harmonic terms in the primary fields. This may

be useful as the structure of Earth’s primary fields become known with greater

precision.

Finally, in Chapter 4 we showed that the FlexPDE magnetic field solutions

show good agreement with the solutions from other numerical techniques for two

models with radial conductivity in heterogeneous surface conductance, but show

some systematic differences from bimodal solutions near coastlines at short periods.

The FlexPDE solutions for a non-concentric nested spheres model agree well with

analytic results, while the solutions for the most realistic model considered, which

includes a metallic core and Earth-like surface conductance, qualitatively reproduce

the coast effect at short periods.

The FlexPDE method could be advanced by allowing for bimodal induction

in the formulation of the surface conductance boundary condition, which would

account for the known vertical leakage currents connecting the ocean and upper

mantle. This would increase the accuracy of simulated coast effects. Another pos-

sibility is the formulation of a far-field boundary condition that could be imposed

at the edge of modeled space. The resulting reduction in the size of the models

would make it possible to decrease the runtimes and memory requirements, to

calculate solutions of even greater accuracy, and/or to add conductivity structure

that is too small to be included in the current computational meshes.

The numerical techniques described here could be easily adapted to other

global induction problems, including studies of the outward propagation of the sec-

ular variation of Earth’s core field through the mantle, sensitivity and resolution

studies for GDS explorations of the D′′ layer, explorations of the limits and possi-

bilities of new and existing response functions for primary fields with complicated
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source fields and lateral variations in conductivity, and for conductivity studies of

other planets and moons with global magnetic fields. With a small modification

of the script, solutions for localized flat-Earth models can be calculated in 2 and

3 dimensions, and MT and CSEM problems could explored with the inclusion of

electric fields in the calculations.




