
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Document retrieval on repetitive string collections.

Permalink
https://escholarship.org/uc/item/3f94n64r

Journal
Information Retrieval, 20(3)

ISSN
1386-4564

Authors
Gagie, Travis
Hartikainen, Aleksi
Karhu, Kalle
et al.

Publication Date
2017

DOI
10.1007/s10791-017-9297-7

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3f94n64r
https://escholarship.org/uc/item/3f94n64r#author
https://escholarship.org
http://www.cdlib.org/

INFORMATION RETRIEVAL EFFICIENCY

Document retrieval on repetitive string collections

Travis Gagie1
• Aleksi Hartikainen2

• Kalle Karhu3
•

Juha Kärkkäinen4
• Gonzalo Navarro5

• Simon J. Puglisi4 •

Jouni Sirén6

Received: 28 May 2016 / Accepted: 28 February 2017 / Published online: 1 April 2017
� The Author(s) 2017. This article is an open access publication

Abstract Most of the fastest-growing string collections today are repetitive, that is, most of the

constituent documents are similar to many others. As these collections keep growing, a key

approach to handling them is to exploit their repetitiveness,which can reduce their space usage by

orders of magnitude. We study the problem of indexing repetitive string collections in order to

perform efficient document retrieval operations on them. Document retrieval problems are

routinely solved by search engines on large natural language collections, but the techniques are

less developed on generic string collections. The case of repetitive string collections is even less

understood, and there are very few existing solutions. We develop two novel ideas, interleaved

LCPs and precomputed document lists, that yield highly compressed indexes solving the problem

of document listing (find all the documentswhere a string appears), top-kdocument retrieval (find

the k documentswhere a string appearsmost often), and document counting (count the number of

documents where a string appears). We also show that a classical data structure supporting the

latter query becomes highly compressible on repetitive data. Finally, we show how the tools we

Preliminary partial versions of this paper appeared in Proc. CPM 2013, Proc. ESA 2014, and Proc. DCC
2015. Part of this work was done while the first author was at the University of Helsinki and the third author
was at Aalto University, Finland.

& Jouni Sirén
jouni.siren@iki.fi

Travis Gagie
travis.gagie@gmail.com

Aleksi Hartikainen
ahartik@gmail.com

Kalle Karhu
kalle.karhu@iki.fi

Juha Kärkkäinen
tpkarkka@cs.helsinki.fi

Gonzalo Navarro
gnavarro@dcc.uchile.cl

Simon J. Puglisi
puglisi@cs.helsinki.fi

123

Inf Retrieval J (2017) 20:253–291
DOI 10.1007/s10791-017-9297-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9297-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9297-7&domain=pdf

developed can be combined to solve ranked conjunctive and disjunctivemulti-termqueries under

the simple tf-idf model of relevance. We thoroughly evaluate the resulting techniques in

various real-life repetitiveness scenarios, and recommend the best choices for each case.

Keywords Repetitive string collections � Document retrieval on strings � Suffix trees and

arrays

1 Introduction

Document retrieval on natural language text collections is a routine activity in web and

enterprise search engines. It is solved with variants of the inverted index (Büttcher et al.

2010; Baeza-Yates and Ribeiro-Neto 2011), an immensely successful technology that can

by now be considered mature. The inverted index has well-known limitations, however:

the text must be easy to parse into terms or words, and queries must be sets of words or

sequences of words (phrases). Those limitations are acceptable in most cases when natural

language text collections are indexed, and they enable the use of an extremely simple

index organization that is efficient and scalable, and that has been the key to the success of

Web-scale information retrieval.

Those limitations, on the other hand, hamper the use of the inverted index in other kinds

of string collections where partitioning the text into words and limiting queries to word

sequences is inconvenient, difficult, or meaningless: DNA and protein sequences, source

code, music streams, and even some East Asian languages. Document retrieval queries are

of interest in those string collections, but the state of the art about alternatives to the

inverted index is much less developed (Hon et al. 2013; Navarro 2014).

In this article we focus on repetitive string collections, where most of the strings are

very similar to many others. These types of collections arise naturally in scenarios like

versioned document collections (such as Wikipedia1 or the Wayback Machine2), versioned

software repositories, periodical data publications in text form (where very similar data is

published over and over), sequence databases with genomes of individuals of the same

species (which differ at relatively few positions), and so on. Such collections are the

fastest-growing ones today. For example, genome sequencing data is expected to grow at

least as fast as astronomical, YouTube, or Twitter data by 2025, exceeding Moore’s Law

rate by a wide margin (Stephens et al. 2015). This growth brings new scientific opportu-

nities but it also creates new computational problems.

1 CeBiB — Center of Biotechnology and Bioengineering, School of Computer Science and
Telecommunications, Diego Portales University, Santiago, Chile

2 Google Inc, Mountain View, CA, USA

3 Research and Technology, Planmeca Oy, Helsinki, Finland

4 Department of Computer Science, Helsinki Institute of Information Technology, University of
Helsinki, Helsinki, Finland

5 Department of Computer Science, CeBiB — Center of Biotechnology and Bioengineering,
University of Chile, Santiago, Chile

6 Wellcome Trust Sanger Institute, Cambridge, UK

1 www.wikipedia.org.
2 From the Internet Archive, www.archive.org/web/web.php.

254 Inf Retrieval J (2017) 20:253–291

123

http://www.wikipedia.org
http://www.archive.org/web/web.php

A key tool for handling this kind of growth is to exploit repetitiveness to obtain size

reductions of orders of magnitude. An appropriate Lempel-Ziv compressor3 can success-

fully capture such repetitiveness, and version control systems have offered direct access to

any version since their beginnings, by means of storing the edits of a version with respect

to some other version that is stored in full (Rochkind 1975). However, document retrieval

requires much more than retrieving individual documents. In this article we focus on three

basic document retrieval problems on string collections:

Document Listing: Given a string P, list the identifiers of all the df documents where

P appears.

Top-k Retrieval: Given a string P and k, list k documents where P appears most often.

Document

Counting:

Given a string P, return the number df of documents where

P appears.

Apart from the obvious case of information retrieval on East Asian and other languages

where separating words is difficult, these queries are relevant in many other applications

where string collections are maintained. For example, in pan-genomics (Marschall et al.

2016) we index the genomes of all the strains of an organism. The index can be either a

specialized data structure, such as a colored de Bruijn graph, or a text index over the

concatenation of the individual genomes. The parts of the genome common to all strains

are called core; the parts common to several strains are called peripheral; and the parts in

only one strain are called unique. Given a set of DNA reads from an unidentified strain, we

may want to identify it (if it is known) or find the closest strain in our database (if it is not),

by identifying reads from unique or peripheral genomes (i.e., those that occur rarely) and

listing the corresponding strains. This boils down to document listing and counting

problems. In turn, top-k retrieval is at the core of information retrieval systems, since the

term frequency tf (i.e., the number of times a pattern appears in a document) is a basic

criterion to establish the relevance of a document for a query (Büttcher et al. 2010; Baeza-

Yates and Ribeiro-Neto 2011). On multi-term queries, it is usually combined with the

document frequency, df, to compute tf-idf, a simple and popular relevance model. Docu-

ment counting is also important for data mining applications on strings (or string mining

(Dhaliwal et al. 2012)), where the value df=d of a given pattern, d being the total number

of documents, is its support in the collection. Finally, we will show that the best choice of

document listing and top-k retrieval algorithms in practice strongly depends on the df=occ,
where occ is the number of times the pattern appears in the collection, and thus the ability

to compute df quickly allows for the efficient selection of an appropriate listing or top-

k algorithm at query time. Navarro (2014) lists several other applications of these queries.

In the case of natural language, there exist various proposals to reduce the inverted

index size by exploiting the text repetitiveness (Anick and Flynn 1992; Broder et al. 2006;

He et al. 2009, 2010; He and Suel 2012; Claude et al. 2016). For general string collections,

the situation is much worse. Most of the indexing structures designed for repetitive string

collections (Mäkinen et al. 2010; Claude et al. 2010; Claude and Navarro 2010, 2012;

Kreft and Navarro 2013; Gagie et al. 2012a, 2014; Do et al. 2014; Belazzougui et al. 2015)

support only pattern matching, that is, they count or list the occ occurrences of a pattern P

in the whole collection. Of course one can retrieve the occ occurrences and then answer

any of our three document retrieval queries, but the time will be X(occ). Instead, there are
optimal-time indexes for string collections that solve document listing in time O jPj þ dfð Þ
(Muthukrishnan 2002), top-k retrieval in time O jPj þ kð Þ (Navarro and Nekrich 2012), and

3 Such as p7zip, http://p7zip.sourceforge.net.

Inf Retrieval J (2017) 20:253–291 255

123

http://p7zip.sourceforge.net

document counting in time O jPjð Þ (Sadakane 2007). The first two solutions, however, use a
lot of space even for classical, non-repetitive collections. While more compact represen-

tations have been studied (Hon et al. 2013; Navarro 2014), none of those is tailored to the

repetitive scenario, except for a grammar-based index that solves document listing (Claude

and Munro 2013).

In this article we develop several novel solutions for the three document retrieval

queries of interest, tailored to repetitive string collections. Our first idea, called interleaved

LCPs (ILCP) stores the longest common prefix (LCP) array of the documents, interleaved

in the order of the global LCP array. The ILCP turns out to have a number of interesting

properties that make it compressible on repetitive collections, and useful for document

listing and counting. Our second idea, precomputed document lists (PDL), samples some

nodes in the global suffix tree of the collection and stores precomputed answers on those. It

then applies grammar compression on the stored answers, which is effective when the

collection is repetitive. PDL yields very efficient solutions for document listing and top-k

retrieval. Third, we show that a solution for document counting (Sadakane 2007) that uses

just two bits per symbol (bps) in the worst case (which is unacceptably high in the

repetitive scenario) turns out to be highly compressible when the collection is repetitive,

and becomes the most attractive solution for document counting. Finally, we show how the

different components of our solutions can be assembled to offer tf-idf ranked conjunctive

and disjunctive multi-term queries on repetitive string collections.

We implement and experimentally compare several variants of our solutions with the

state of the art, including the solution for repetitive string collections (Claude and Munro

2013) and some relevant solutions for general string collections (Ferrada and Navarro

2013; Gog and Navarro 2015a). We consider various kinds of real-life repetitiveness

scenarios, and show which solutions are the best depending on the kind and amount of

repetitiveness, and the space reduction that can be achieved. For example, on very

repetitive collections of up to 1 GB we perform document listing and top-k retrieval in

10–100 microseconds per result and using 1–2 bits per symbol. For counting, we use as

little as 0.1 bits per symbol and answer queries in less than a microsecond. Multi-term top-

k queries can be solved with a throughput of 100–200 queries per second, which we show

to be similar to that of a state-of-the-art inverted index. Of course, we do not aim to

compete with inverted indexes in the scenarios where they can be applied (mainly, in

natural language text collections), but to offer similar functionality in the case of generic

string collections, where inverted indexes cannot be used.

This article collects our earlier results appearing in CPM 2013 (Gagie et al. 2013), ESA

2014 (Navarro et al. 2014a), and DCC 2015 (Gagie et al. 2015), where we focused on

exploiting repetitiveness in different ways to handle different document retrieval problems.

Here we present them in a unified form, considering the application of two new techniques

(ILCP and PDL) and an existing one (Sadakane 2007) to the three problems (document

listing, top-k retrieval, and document counting), and showing how they interact (e.g., the

need to use fast document counting to choose the best document listing method). In this

article we also consider a more complex document retrieval problem we had not addressed

before: top-k retrieval of multi-word queries. We present an algorithm that uses our (single-

term) top-k retrieval and document counting structures to solve ranked multi-term con-

junctive and disjunctive queries under the tf-idf relevance model.

The article is organized as follows (see Table 1). In Sect. 2 we introduce the concepts

needed to follow the presentation. In Sect. 3 we introduce the Interleaved LCP (ILCP)

structure and show how it can be used for document listing and, with a different repre-

sentation, for document counting. In Sect. 4 we introduce our second structure,

256 Inf Retrieval J (2017) 20:253–291

123

Precomputed Document Lists (PDL), and describe how it can be used for document listing

and, with some reordering of the lists, for top-k retrieval. Section 5 then returns to the

problem of document counting, not to propose a new data structure but to study a known

one (Sadakane 2007), which is found to be compressible in a repetitiveness scenario (and,

curiously, on totally random texts as well). Section 6 shows how our developments can be

combined to build a document retrieval index that handles multi-term queries. Section 7

empirically studies the performance of our solutions on the three document retrieval

problems, also comparing them with the state of the art for generic string collections,

repetitive or not, and giving recommendations on which structure to use in each case.

Finally, Sect. 8 concludes and gives some future work directions.

2 Preliminaries

2.1 Suffix trees and arrays

A large number of solutions for pattern matching or document retrieval on string collec-

tions rely on the suffix tree (Weiner 1973) or the suffix array (Manber and Myers 1993).

Assume that we have a collection of d strings, each terminated with a special symbol ‘‘$’’

(which we consider to be lexicographically smaller than any other symbol), and let T[1..n]

be their concatenation. The suffix tree of T is a compacted digital tree where all the suffixes

T[i..n] are inserted. Collecting the leaves of the suffix tree yields the suffix array, SA½1::n�,
which is an array of pointers to all the suffixes sorted in increasing lexicographic order, that

is, T ½SA½i�::n�\T ½SA½iþ 1�::n� for all 1 B i\ n. To find all the occ occurrences of a string

P[1..m] in the collection, we traverse the suffix tree following the symbols of P and output

the leaves of the node we arrive at, called the locus of P, in time O mþ occð Þ. On a suffix

array, we obtain the range SA½‘::r� of the leaves (i.e., of the suffixes prefixed by P) by

binary search, and then list the contents of the range, in total time O m lg nþ occð Þ.
We will make use of compressed suffix arrays (Navarro and Mäkinen 2007), which we

will call generically CSAs. Their size in bits is denoted jCSAj, their time to find ‘ and r is

denoted search mð Þ, and their time to access any cell SA½i� is denoted lookup nð Þ. A
particular version of the CSA that is tailored for repetitive collections is the Run-Length

Compressed Suffix Array (RLCSA) (Mäkinen et al. 2010).

2.2 Rank and select on sequences

Let S[1..n] be a sequence over an alphabet [1..r]. When r = 2 we use 0 and 1 as the two

symbols, and the sequence is called a bitvector. Two operations of interest on S are

rankcðS; iÞ, which counts the number of occurrences of symbol c in S[1..i], and

selectcðS; jÞ, which gives the position of the jth occurrence of symbol c in S. For

Table 1 The techniques we study and the document retrieval problems we solve with them

Problem ILCP PDL Sadakane

Listing Section 3.3 Section 4.1

Top-k Section 4.2

Counting Section 3.4 Section 5

Inf Retrieval J (2017) 20:253–291 257

123

bitvectors, one can compute both functions in O 1ð Þ time using o(n) bits on top of S (Clark

1996). If S contains m 1s, we can also represent it using m lg n
m
þO mð Þ bits, so that rank

takes O lg n
m

� �
time and select takes O 1ð Þ (Okanohara and Sadakane 2007).4

The wavelet tree (Grossi et al. 2003) is a tool for extending bitvector representations to

sequences. It is a binary tree where the alphabet [1..r] is recursively partitioned. The root

represents S and stores a bitvector W[1..n] where W[i] = 0 iff symbol S[i] belongs to the

left child. Left and right children represent a subsequence of S formed by the symbols of

[1..r] they handle, so they recursively store a bitvector and so on until reaching the leaves,

which represent a single symbol. By giving constant-time rank and select capabilities to
the bitvectors associated with the nodes, the wavelet tree can compute any S[i] = c,

rankcðS; iÞ, or selectcðS; jÞ) in time proportional to the depth of the leaf of c. If the

bitvectors are represented in a certain compressed form (Raman et al. 2007), then the total

space is at most n lg rþ oðnhÞ, where h is the wavelet tree height, independent of the way

the alphabet is partitioned (Grossi et al. 2003).

2.3 Document listing

Let us now describe the optimal-time algorithm of Muthukrishnan (2002) for document

listing. Muthukrishnan stores the suffix tree of T; a so-called document array DA½1::n� of T,
in which each cell DA½i� stores the identifier of the document containing T ½SA½i��; an array

C[1..n], in which each cell C[i] stores the largest value h\ i such that DA½h� ¼ DA½i�, or 0
if there is no such value h; and a data structure supporting range-minimum queries (RMQs)

over C, rmqCði; jÞ ¼ argmini� k� j C½k�. These data structures take a total of O n lg nð Þ bits.
Given a pattern P[1..m], the suffix tree is used to find the interval SA½‘::r� that contains the
starting positions of the suffixes prefixed by P. It follows that every value C[i]\ ‘ in

C[‘..r] corresponds to a distinct document in DA½i�. Thus a recursive algorithm finding all

those positions i starts with k ¼ rmqCð‘; rÞ. If C½k� � ‘ it stops. Otherwise it reports

document DA½k� and continues recursively with the ranges C[‘..k - 1] and C[K?1..r] (the

condition C½k� � ‘ always uses the original ‘ value). In total, the algorithm uses O mþ dfð Þ
time, where df is the number of documents returned.

Sadakane (2007) proposed a space-efficient version of this algorithm, using just

jCSAj þ O nð Þ bits. The suffix tree is replaced with a CSA. The array DA is replaced with

a bitvector B[1..n] such that B[i] = 1 iff i is the first symbol of a document in T. Therefore

DA½i� ¼ rank1ðB;SA½i�Þ can be computed in constant time (Clark 1996). The RMQ data

structure is replaced with a variant (Fischer and Heun 2011) that uses just 2n ? o(n) bits

and answers queries in constant time without accessing C. Finally, the comparisons

C½k� � ‘ are replaced by marking the documents already reported in a bitvector V[1..d]

(initially all 0s), so that V ½DA½i�� ¼ 1 iff document DA½i� has already been reported. If

V½DA½i�� ¼ 1 the recursion stops, otherwise it sets V½DA½i��, reports DA½i�, and continues.

This is correct as long as the RMQ structure returns the leftmost minimum in the range,

and the range [‘..k - 1] is processed before the range C[K ? 1..r] (Navarro 2014). The

total time is then O search mð Þ þ df � lookup nð Þð Þ.

4 This is achieved by using a constant-time rank/select solution (Clark 1996) to represent their internal
bitvector H.

258 Inf Retrieval J (2017) 20:253–291

123

3 Interleaved LCP

We introduce our first structure, the Interleaved LCP (ILCP). The main idea is to interleave

the longest-common-prefix (LCP) arrays of the documents, in the order given by the global

LCP of the collection. This yields long runs of equal values on repetitive collections,

making the ILCP structure run-length compressible. Then, we show that the classical

document listing technique of Muthukrishnan (2002), designed to work on a completely

different array, works almost verbatim over the ILCP array, and this yields a new docu-

ment listing technique of independent interest for string collections. Finally, we show that a

particular representation of the ILCP array allows us to count the number of documents

where a string appears without having to list them one by one.

3.1 The ILCP array

The longest-common-prefix array LCPS½1::jSj� of a string S is defined such that LCPS½1� ¼
0 and, for 2� i� jSj, LCPS½i� is the length of the longest common prefix of the lexico-

graphically (i - 1)th and ith suffixes of S, that is, of S½SAS½i� 1�::jSj� and S½SAS½i�::jSj�,
where SAS is the suffix array of S. We define the interleaved LCP array of T, ILCP, to be

the interleaving of the LCP arrays of the individual documents according to the document

array.

Definition 1 Let T ½1::n� ¼ S1 � S2 � � � Sd be the concatenation of documents Sj, DA the

document array of T, and LCPSj the longest-common-prefix array of string Sj. Then the

interleaved LCP array of T is defined, for all 1� i� n, as

ILCP½i� ¼ LCPSDA½i� rankDA½i�ðDA; iÞ
� �

:

That is, if the suffix SA½i� belongs to document Sj (i.e., DA½i� ¼ j), and this is the rth

suffix of SA that belongs to Sj (i.e., r ¼ rankjðDA; iÞ), then ILCP½i� ¼ LCPSj ½r�. Therefore
the order of the individual LCP arrays is preserved in ILCP.

Example Consider the documents S1 ¼ 00TATA$00, S2 ¼ 00LATA$00, and S3 ¼ 00AAAA$00.
Their concatenation is T ¼ 00TATA$LATA$AAAA$00, its suffix array is SA ¼
h15; 10; 5; 14; 9; 4; 13; 12; 11; 7; 2; 6; 8; 3; 1i and its document array is

DA ¼ h3; 2; 1; 3; 2; 1; 3; 3; 3; 2; 1; 2; 2; 1; 1i. The LCP arrays of the documents are

LCPS1 ¼ h0; 0; 1; 0; 2i, LCPS2 ¼ h0; 0; 1; 0; 0i, and LCPS3 ¼ h0; 0; 1; 2; 3i. Therefore,

ILCP ¼ h0; 0; 0; 0; 0; 0; 1; 2; 3; 1; 1; 0; 0; 0; 2i interleaves the LCP arrays in the order given

by DA (notice the fonts above).

The following property of ILCP makes it suitable for document retrieval.

Lemma 1 Let T ½1::n� ¼ S1 � S2 � � � Sd be the concatenation of documents Sj, SA its suffix

array and DA its document array. Let SA½‘::r� be the interval that contains the starting

positions of suffixes prefixed by a pattern P½1::m�. Then the leftmost occurrences of the

distinct document identifiers in DA½‘::r� are in the same positions as the values strictly less

than m in ILCP½‘::r�.

Proof Let SASj ½‘j::rj� be the interval of all the suffixes of Sj starting with P[1..m]. Then

LCPSj ½‘j�\m, as otherwise Sj½SA½‘j � 1�::SA½‘j � 1� þ m� 1� ¼ Sj½SA½‘j�::SA½‘j� þ m�
1� ¼ P as well, contradicting the definition of ‘j. For the same reason, it holds that

LCPSj ½‘j þ k� �m for all 1� k� rj � ‘j.

Inf Retrieval J (2017) 20:253–291 259

123

Now let Sj start at position pj ? 1 in T, where pj ¼ jS1 � � � Sj�1j. Because each Sj is

terminated by ‘‘$’’, the lexicographic ordering between the suffixes Sj[k..] in SASj is the

same as that of the corresponding suffixes T[pj ? k..] in SA. Hence

hSA½i� j DA½i� ¼ j; 1� i� ni ¼ hpj þ SASj ½i� j 1� i� jSjji. Or, put another way, SA½i� ¼
pj þ SASj ½rankjðDA; iÞ� whenever DA½i� ¼ j.

Now let fj be the leftmost occurrence of j in DA½‘::r�. This means that SA½fj� is the

lexicographically first suffix of Sj that starts with P. By the definition of ‘j, it holds that
‘j ¼ rankjðDA; fjÞ. Thus, by definition of ILCP, it holds that

ILCP½fj� ¼ LCPSj ½rankjðDA; fjÞ� ¼ LCPSj ½‘j�\m, whereas all the other ILCP½k� values, for
‘� k� r, where DA½k� ¼ j, must be �m. h

Example In the example above, if we search for P½1::2� ¼ 00TA00, the resulting range is

SA½13::15� ¼ h8; 3; 1i. The corresponding range DA½13::15� ¼ h2; 1; 1i indicates that the

occurrence at SA½13� is in S2 and those in SA½14::15� are in S1. According to the lemma, it

is sufficient to report the documents DA½13� ¼ 2 and DA½14� ¼ 1, as those are the positions

in ILCP½13::15� ¼ h0; 0; 2i with values less than |P| = 2.

Therefore, for the purposes of document listing, we can replace the C array by ILCP in

Muthukrishnan’s algorithm (Sect. 2.3): instead of recursing until we have listed all the

positions k such that C[k]\ ‘, we recurse until we list all the positions k such that

ILCP½k�\m. Instead of using it directly, however, we will design a variant that exploits

repetitiveness in the string collection.

3.2 ILCP on repetitive collections

The array ILCP has yet another property, which makes it attractive for repetitive collec-

tions: it contains long runs of equal values. We give an analytic proof of this fact under a

model where a base document S is generated at random under the very general A2

probabilistic model of Szpankowski (1993),5 and the collection is formed by performing

some edits on d copies of S.

Lemma 2 Let S[1..r] be a string generated under Szpankowski’s A2 model. Let T be

formed by concatenating d copies of S, each terminated with the special symbol ‘‘$’’, and

then carrying out s edits (symbol insertions, deletions, or substitutions) at arbitrary

positions in T (excluding the ‘$’s). Then, almost surely (a.s.6), the ILCP array of T is

formed by q� r þO s lgðr þ sÞð Þ runs of equal values.

Proof Before applying the edit operations, we have T ¼ S1 � � � Sd and Sj ¼ S$ for all j. At

this point, ILCP is formed by at most r ? 1 runs of equal values, since the d equal suffixes

Sj½SASj ½i�::r þ 1� must be contiguous in the suffix array SA of T, in the area

SA½ði� 1Þd þ 1::id�. Since the values l ¼ LCPSj ½i� are also equal, and ILCP values are the

LCPSj values listed in the order of SA, it follows that ILCP½ði� 1Þd þ 1::id� ¼ l forms a

5 This model states that the statistical dependence of a symbol from previous ones tends to zero as the
distance towards them tends to infinity. The A2 model includes, in particular, the Bernoulli model (where
each symbol is generated independently of the context), stationary Markov chains (where the probability of
each symbol depends on the previous one), and kth order models (where each symbol depends on the
k previous ones, for a fixed k).
6 This is a very strong kind of convergence. A sequence Xn tends to a value b almost surely if, for every
�[0, the probability that jXN=b� 1j[� for some N[n tends to zero as n tends to infinity,
limn!1 supN[n PrðjXN=b� 1j[�Þ ¼ 0.

260 Inf Retrieval J (2017) 20:253–291

123

run, and thus there are r ? 1 = n/d runs in ILCP. Now, if we carry out s edit operations on

T, any Sj will be of length at most r ? s ? 1. Consider an arbitrary edit operation at T[k]. It

changes all the suffixes T[k - h..n] for all 0� h\k. However, since a.s. the string depth of

a leaf in the suffix tree of S is O lgðr þ sÞð Þ (Szpankowski 1993), the suffix will possibly be

moved in SA only for h ¼ O lgðr þ sÞð Þ. Thus, a.s., only O lgðr þ sÞð Þ suffixes are moved

in SA, and possibly the corresponding runs in ILCP are broken. Hence q� r þ
O s lgðr þ sÞð Þ a.s. h

Therefore, the number of runs depends linearly on the size of the base document and the

number of edits, not on the total collection size. The proof generalizes the arguments of

Mäkinen et al. (2010), which hold for uniformly distributed strings S. There is also

experimental evidence (Mäkinen et al. 2010) that, in real-life text collections, a small

change to a string usually causes only a small change to its LCP array. Next we design a

document listing data structure whose size is bounded in terms of q.

3.3 Document listing

Let LILCP½1::q� be the array containing the partial sums of the lengths of the q runs in

ILCP, and let VILCP½1::q� be the array containing the values in those runs. We can store

LILCP as a bitvector L[1..n] with q 1s, so that LILCP½i� ¼ selectðL; iÞ. Then L can be

stored using the structure of Okanohara and Sadakane (2007) that requires q lgðn=qÞ þ
O qð Þ bits.

With this representation, it holds that ILCP½i� ¼ VILCP½rank1ðL; iÞ�. We can map from

any position i to its run i0 ¼ rank1ðL; iÞ in time O lgðn=qÞð Þ, and from any run i0 to its

starting position in ILCP, i ¼ selectðL; i0Þ, in constant time.

Example Consider the array ILCP½1::15� ¼ h0; 0; 0; 0; 0; 0; 1; 2; 3; 1; 1; 0; 0; 0; 2i of our

running example. It has q = 7 runs, so we represent it with VILCP½1::7� ¼
h0; 1; 2; 3; 1; 0; 2i and L½1::15� ¼ 100000111101001.

This is sufficient to emulate the document listing algorithm of Sadakane (2007)

(Sect. 2.3) on a repetitive collection. We will use RLCSA as the CSA. The sparse bitvector
B[1..n] marking the document beginnings in T will be represented in the same way as L, so

that it requires d lgðn=dÞ þ O dð Þ bits and lets us compute any value DA½i� ¼
rank1ðB;SA½i�Þ in time O lookup nð Þð Þ. Finally, we build the compact RMQ data structure

(Fischer and Heun 2011) on VILCP, requiring 2qþ oðqÞ bits. We note that this RMQ

structure does not need access to VILCP to answer queries.

Assume that we have already found the range SA½‘::r� in O search mð Þð Þ time. We

compute ‘0 ¼ rank1ðL; ‘Þ and r0 ¼ rank1ðL; rÞ, which are the endpoints of the interval

VILCP½‘0::r0� containing the values in the runs in ILCP½‘::r�. Now we run Sadakane’s

algorithm on VILCP½‘0::r0�. Each time we find a minimum at VILCP½i0�, we remap it to the

run ILCP½i::j�, where i ¼ maxð‘; selectðL; i0ÞÞ and j ¼ minðr; selectðL; i0 þ 1Þ � 1Þ. For
each i� k� j, we compute DA½k� using B and RLCSA as explained, mark it in

V½DA½k�� 1, and report it. If, however, it already holds that V½DA½k�� ¼ 1, we stop the

recursion. Figure 1 gives the pseudocode.

We show next that this is correct as long as RMQ returns the leftmost minimum in the

range and that we recurse first to the left and then to the right of each minimum VILCP½i0�
found.

Lemma 3 Using the procedure described, we correctly find all the positions ‘� k� r

such that ILCP½k�\m.

Inf Retrieval J (2017) 20:253–291 261

123

Proof Let j ¼ DA½k� be the leftmost occurrence of document j in DA½‘::r�. By Lemma 1,

among all the positions where DA½k0� ¼ j in DA½‘::r�, k is the only one where ILCP½k�\m.

Since we find a minimum ILCP value in the range, and then explore the left subrange

before the right subrange, it is not possible to find first another occurrence DA½k0� ¼ j, since

it has a larger ILCP value and is to the right of k. Therefore, when V½DA½k�� ¼ 0, that is,

the first time we find a DA½k� ¼ j, it must hold that ILCP½k�\m, and the same is true for all

the other ILCP values in the run. Hence it is correct to list all those documents and mark

them in V. Conversely, whenever we find a V ½DA½k0�� ¼ 1, the document has already been

reported. Thus this is not its leftmost occurrence and then ILCP½k0� �m holds, as well as

for the whole run. Hence it is correct to avoid reporting the whole run and to stop the

recursion in the range, as the minimum value is already at least m. h

Note that we are not storing VILCP at all. We have obtained our first result for doc-

ument listing, where we recall that q is small on repetitive collections (Lemma 2):

Theorem 1 Let T ¼ S1 � S2 � � � Sd be the concatenation of d documents Sj, and CSA be a

compressed suffix array on T, searching for any pattern P[1..m] in time search mð Þ and
accessing SA½i� in time lookup nð Þ. Let q be the number of runs in the ILCP array of T. We

can store T in jCSAj þ q lgðn=qÞ þ O qð Þ þ d lgðn=dÞ þ O dð Þ ¼ jCSAj þ O ðqþ dÞ lg nð Þ
bits such that document listing takes O search mð Þ þ df � ðlookup nð Þ þ lg nÞð Þ time.

3.4 Document counting

Array ILCP also allows us to efficiently count the number of distinct documents where P

appears, without listing them all. This time we will explicitly represent VILCP, in the

following convenient way: consider a skewed wavelet tree (Sect. 2.2), where the leftmost

leaf is at depth 1, the next 2 leaves are at depth 3, the next 4 leaves are at depth 5, and in

general the 2d-1th to (2d - 1)th leftmost leaves are at depth 2d - 1. Then the ith leftmost

leaf is at depth 1þ 2blg ic ¼ O lg ið Þ. The number of wavelet tree nodes up to depth d is
Pðdþ1Þ=2

i¼1 2i ¼ 2ð2ðdþ1Þ=2 � 1Þ. The number of nodes up to the depth of the mth leftmost

leaf is maximized when m is of the form m = 2d-1, reaching 2ð2d � 1Þ ¼ 4m� 2 ¼ O mð Þ.
See Fig. 2.

function listDocuments()
(, r) ← (rank1(), rank1(L, r))
return list(, r)

function list(, r)
if > r : return ∅

∅

i ← rmqVILCP(, r)
i ← max(select(L, i))
j ← min(r, select(L, i + 1) − 1)
res
for k ←

←
i . . . j:

g ← rank1(B, SA[k])
if V [g] = 1: return res
V [g] ← 1
res ← res ∪ {g}

return res ∪ list(, i − 1) ∪ list(i + 1, r)

Fig. 1 Pseudocode for document
listing using the ILCP array.
Function listDocuments(‘, r) lists
the documents from interval
SA½‘::r�; listð‘0; r0Þ returns the
distinct documents mentioned in
the runs ‘0 to r0 that also belong to
DA½‘::r�. We assume that in the
beginning it holds V[k] = 0 for
all k; this can be arranged by
resetting to 0 the same positions
after the query or by using
initializable arrays. All the
unions on res are known to be
disjoint

262 Inf Retrieval J (2017) 20:253–291

123

Let k be the maximum value in the ILCP array. Then the height of the wavelet tree is

O lg kð Þ and the representation of VILCP takes at most q lg kþ oðq lg kÞ bits. If the doc-

uments S are generated using the A2 probabilistic model of Szpankowski (1993), then

k ¼ O lg jSjð Þ ¼ O lg nð Þ, and VILCP uses q lg lg nð1þ oð1ÞÞ bits. The same happens under

the model used in Sect. 3.2.

The number of documents where P appears, df, is the number of times a value smaller

than m occurs in ILCP½‘::r�. An algorithm to find all those values in a wavelet tree of ILCP
is as follows Gagie et al. (2012b). Start at the root with the range [‘..r] and its bitvector W.

Go to the left child with the interval ½rank0ðW ; ‘� 1Þ þ 1::rank0ðW ; rÞ� and to the right

child with the interval ½rank1ðW; ‘� 1Þ þ 1::rank1ðW ; rÞ�, stopping the recursion on

empty intervals. This method arrives at all the wavelet tree leaves corresponding to the

distinct values in ILCP½‘::r�. Moreover, if it arrives at a leaf l with interval ‘l..rl, then there

are rl - ‘l ? 1 occurrences of the symbol of that leaf in ILCP½‘::r�.
Now, in the skewed wavelet tree of VILCP, we are interested in the occurrences of

symbols 0 to m - 1. Thus we apply the above algorithm but we do not enter into subtrees

handling an interval of values that is disjoint with [0..m - 1]. Therefore, we only arrive at

the m leftmost leaves of the wavelet tree, and thus traverse only O mð Þ wavelet tree nodes,
in time O mð Þ.

A complication is that VILCP is the array of run length heads, so when we start at

VILCP½‘0::r0� and arrive at each leaf l with interval ½‘0l::r0l�, we only know that VILCP½‘0::r0�
contains from the ‘0lth to the r0lth occurrences of value l in VILCP½‘0::r0�. We store a

reordering of the run lengths so that the runs corresponding to each value l are collected

left to right in ILCP and stored aligned to the wavelet tree leaf l. Those are concatenated

into another bitmap L0½1::n� with q 1s, similar to L, which allows us, using selectðL0; �Þ, to
count the total length spanned by the ‘0lth to r0lth runs in leaf l. By adding the areas spanned

over the m leaves, we count the total number of documents where P occurs. Note that we

need to correct the lengths of runs ‘0 and r0, as they may overlap the original interval

ILCP½‘::r�. Figure 3 gives the pseudocode.

Theorem 2 Let T ¼ S1 � S2 � � � Sd be the concatenation of d documents Sj, and CSA a

compressed suffix array on T that searches for any pattern P[1..m] in time search mð Þ. Let
q be the number of runs in the ILCP array of T and k be the maximum length of a repeated

substring inside any Sj. Then we can store T in jCSAj þ qðlg kþ 2 lgðn=qÞ þ O 1ð ÞÞ ¼
jCSAj þ O q lg nð Þ bits such that the number of documents where a pattern P[1..m] occurs

can be computed in time O mþ search mð Þð Þ.

0 0 1 0 0

0 1 0 1
0

1 2

3

0

1 2

3 4 5 6

0 1 1 1 1 0 1

Fig. 2 On the left, the schematic view of our skewed wavelet tree; on the right, the case of our running
example where it represents VILCP ¼ h0; 1; 2; 3; 1; 0; 2i

Inf Retrieval J (2017) 20:253–291 263

123

4 Precomputed document lists

In this section we introduce the idea of precomputing the answers of document retrieval

queries for a sample of suffix tree nodes, and then exploit repetitiveness by grammar-

compressing the resulting sets of answers. Such grammar compression is effective when

the underlying collection is repetitive. The queries are then extremely fast on the sampled

nodes, whereas on the others we have a way to bound the amount of work performed. The

resulting structure is called PDL (Precomputed Document Lists), for which we develop a

variant for document listing and another for top-k retrieval queries.

4.1 Document listing

Let v be a suffix tree node. We write SAv to denote the interval of the suffix array covered

by node v, and Dv to denote the set of distinct document identifiers occurring in the same

interval of the document array. Given a block size b and a constant b C 1, we build a

sampled suffix tree that allows us to answer document listing queries efficiently. For any

suffix tree node v, it holds that:

1. node v is sampled and thus set Dv is directly stored; or

2. jSAvj\b, and thus documents can be listed in time O b � lookup nð Þð Þ by using a CSA
and the bitvectors B and V of Sect. 2.3; or

3. we can compute the set Dv as the union of stored sets Du1 ; . . .;Duk of total size at most

b � jDvj, where nodes u1; . . .; uk are the children of v in the sampled suffix tree.

The purpose of rule 2 is to ensure that suffix array intervals solved by brute force are not

longer than b. The purpose of rule 3 is to ensure that, if we have to rebuild an answer by

merging a list of answers precomputed at descendant sampled suffix tree nodes, then the

function countDocuments()
(, r) ← (rank1(), rank1(L, r))
l ← m
c ← count(, r)
if VILCP[] < m: c ← c − (− select())
if VILCP[r] < m: c ← c − (select(L, r + 1) − 1 − r)
return c

function count(, r)
if l = 0: return 0
if v is a leaf:

l ← l − 1
if > r : return 0
return select(L , r + 1) − select(L)

(1, r1) ← (rank1(− 1) + 1, rank1(v.W, r))
return count(− 1 + 1, r − r1) + count(1, r1)

Fig. 3 Document counting with the ILCP array. Function countDocuments(‘, r) counts the distinct
documents from interval SA½‘::r�; countðv; ‘0; r0Þ returns the number of documents mentioned in the runs ‘0

to r0 under wavelet tree node v that also belong to DA½‘::r�. We assume that the wavelet tree root node is
root, and that any internal wavelet tree node v has fields v.W (bitvector), v.left (left child), and v.right (right
child). Global variable l is used to traverse the first m leaves. The access to VILCP is also done with the
wavelet tree

264 Inf Retrieval J (2017) 20:253–291

123

merging costs no more than b per result. That is, we can discard answers of nodes that are

close to being the union of the answers of their descendant nodes, since we do not waste

too much work in performing the unions of those descendants. Instead, if the answers of

the descendants have many documents in common, then it is worth storing the answer at

the node too; otherwise merging will require much work because the same document will

be found many times (more than b on average).

We start by selecting suffix tree nodes v1; . . .; vL, so that no selected node is an ancestor

of another, and the intervals SAvi of the selected nodes cover the entire suffix array. Given

node v and its parent w, we select v if jSAvj � b and jSAwj[b, and store Dv with the node.

These nodes v become the leaves of the sampled suffix tree, and we assume that they are

numbered from left to right. We then assume that all the ancestors of those leaves belong to

the sampled suffix tree, and proceed upward in the suffix tree removing some of them. Let

v be an internal node, u1; . . .; uk its children, and w its parent. If the total size of sets

Du1 ; . . .;Duk is at most b � jDvj, we remove node v from the tree, and add nodes u1; . . .; uk to
the children of node w. Otherwise we keep node v in the sampled suffix tree, and store Dv

there.

When the document collection is repetitive, the document array DA½1::n� is also

repetitive. This property has been used in the past to compress DA using grammars

(Navarro et al. 2014b). We can apply a similar idea on the Dv sets stored at the sampled

suffix tree nodes, since Dv is a function of the range DA½‘::r� that corresponds to node v.

Let v1; . . .; vL be the leaf nodes and vLþ1; . . .; vLþI the internal nodes of the sampled

suffix tree. We use grammar-based compression to replace frequent subsets in sets

Dv1 ; . . .;DvLþI with grammar rules expanding to those subsets. Given a set Z and a grammar

rule X ? Y, where Y � f1; . . .; dg, we can replace Z with ðZ [fXgÞ n Y , if Y � Z. As long

as jY j � 2 for all grammar rules X ? Y, each set Dvi can be decompressed in O jDvi jð Þ time.

To choose the replacements, consider the bipartite graph with vertex sets fv1; . . .; vLþIg
and f1; . . .; dg, with an edge from vi to j if j 2 Dvi . Let X ? Y be a grammar rule, and let V

be the set of nodes vi such that rule X ? Y can be applied to set Dvi . As Y � Dvi for all

v [V, the induced subgraph with vertex sets V and Y is a complete bipartite graph or a

biclique. Many Web graph compression algorithms are based on finding bicliques or other

dense subgraphs (Hernández and Navarro 2014), and we can use these algorithms to find a

good grammar compressing the precomputed document lists.

When all rules have been applied, we store the reduced sets Dv1 ; . . .;DvLþI as an array A

of document and rule identifiers. The array takes jAj lgðd þ nRÞ bits of space, where nR is

the total number of rules. We mark the first cell in the encoding of each set with a 1 in a

bitvector BA[1..|A|], so that set Dvi can be retrieved by decompressing

A½selectðBA; iÞ::selectðBA; iþ 1Þ � 1�. The bitvector takes |A|(1 ? o(1) bits of space and

answers select queries in O 1ð Þ time. The grammar rules are stored similarly, in an array G

taking jGj lg d bits, with a bitvector BG[1..|G|] of |G|(1 ? o(1)) bits separating the array into

rules (note that right hand sides of rules are formed only by terminals).

In addition to the sets and the grammar, we must also store the sampled suffix tree. A

bitvector BL[1..n] marks the first cell of interval SAvi for all leaf nodes vi, allowing

us to convert interval SA½‘::r� into a range of nodes ½ln::rn� ¼
½rank1ðBL; ‘Þ::rank1ðBL; r þ 1Þ � 1�. Using the format of Okanohara and Sadakane (2007)

for BL, the bitvector takes L lgðn=LÞ þ O Lð Þ bits, and answers rank queries in O lgðn=LÞð Þ
time and select queries in constant time. A second bitvector BF[1..L ? I], using

(L ? I)(1 ? o(1)) bits and supporting rank queries in constant time, marks the nodes that

are the first children of their parents. An array F[1..I] of I lg I bits stores pointers from first

Inf Retrieval J (2017) 20:253–291 265

123

children to their parent nodes, so that if node vi is a first child, its parent node is vj, where

j ¼ Lþ F½rank1ðBF; iÞ�. Finally, array N[1..I] of I lg L bits stores a pointer to the leaf node

following those below each internal node.

Figure 4 gives the pseudocode for document listing using the precomputed answers.

Function list(‘, r) takes O ðr þ 1� ‘Þ lookup nð Þð Þ time, set(i) takes O jDvi jð Þ time, and

parent(i) takes O 1ð Þ time. Function decompress(‘, r) produces set res in time O jresj � bhð Þ,
where h is the height of the sampled suffix tree: finding each set may take O hð Þ time, and

we may encounter the same document O bð Þ times. Hence the total time for listDocu-

ments(‘, r) is O df � bhþ lg nð Þ for unions of precomputed answers, and O b � lookup nð Þð Þ
otherwise. If the text follows the A2 model of Szpankowski (1993), then h ¼ O lg nð Þ and
the total time is on average O df � b lg nþ b � lookup nð Þð Þ.

We do not write the result as a theorem because we cannot upper bound the space used

by the structure in terms of b and b. In a bad case like T ¼ a‘�1$b‘�1$c‘�1$. . ., the suffix
tree is formed by d long paths and the sampled suffix tree contains at least dðn=d � bÞ ¼
HðnÞ nodes (assuming bd = o(n)), so the total space is O n lg nð Þ bits as in a classical

suffix tree. In a good case, such as a balanced suffix tree (which also arises on texts

following the A2 model), the sampled suffix tree has O n=bð Þ nodes. Although each such

node v may store a list Dv with b entries, many of those entries are similar when the

collection is repetitive, and thus their compression is effective.

function listDocuments()
(res, ln) ← (∅

∅

, rank1(BL))
if select(BL, ln) :

r ← min(select(BL, ln+ 1) − 1, r)
(res, ln) ← (list(), ln+ 1)
if r = r: return res

rn ← rank1(BL, r + 1) − 1
if select(BL, rn+ 1) ≤ r:

← select(BL, rn+ 1)
res ← res ∪ list(, r)

return res ∪ decompress(ln, rn)

function decompress()
(res, i) ← (∅)
while i ≤ r:

next ← i+ 1
while BF [i] = 1:

(i , next) ← parent(i)
if next > r + 1: break
(i, next) ← (i , next)

res ← res ∪ set(i)
i ← next

return res

function parent(i)
par ← F [rank1(BF , i)]
return (par + L,N [par])

function set(i)
res

←
←

∅res ←

select(BA, i)
r ← select(BA, i+ 1) − 1
for j ← to r:

if A[j] ≤ d: res ← res ∪ {A[j]}
else: res ← res ∪ rule(A[j] − d)

return res

function rule(i)
← select(BG, i)

r ← select(BG, i+ 1) − 1
return G[]

function list()

for i ← to r:
res ← res ∪ {rank1(B, SA[i])}

return res

Fig. 4 Document listing using precomputed answers. Function listDocuments(‘, r) lists the documents
from interval SA½‘::r�; decompress(‘, r) decompresses the sets stored in nodes v‘; . . .; vr ; parent(i) returns
the parent node and the leaf node following it for a first child vi; set(i) decompresses the set stored in vi;
rule(i) expands the ith grammar rule; and list(‘, r) lists the documents from interval SA½‘::r� by using CSA
and bitvector B

266 Inf Retrieval J (2017) 20:253–291

123

4.2 Top-k retrieval

Since we have the freedom to represent the documents in sets Dv in any order, we can in

particular sort the document identifiers in decreasing order of their ‘‘frequencies’’, that is,

the number of times the string represented by v appears in the documents. Ties are broken

by document identifiers in increasing order. Then a top-k query on a node v that stores its

list Dv boils down to listing the first k elements of Dv.

This time we cannot use the set-based grammar compressor, but we need, instead, a

compressor that preserves the order. We use Re-Pair (Larsson and Moffat 2000), which

produces a grammar where each nonterminal produces two new symbols, terminal or

nonterminal. As Re-Pair decompression is recursive, decompression can be slower than in

document listing, although it is still fast in practice and takes linear time in the length of the

decompressed sequence.

In order to merge the results from multiple nodes in the sampled suffix tree, we need to

store the frequency of each document. These are stored in the same order as the identifiers.

Since the frequencies are nonincreasing, with potentially long runs of small values, we can

represent them space-efficiently by run-length encoding the sequences and using differ-

ential encoding for the run heads. A node containing s suffixes in its subtree has at most

O ffiffi
s
pð Þ distinct frequencies, and the frequencies can be encoded in O ffiffi

s
p

lg sð Þ bits.
There are two basic approaches to using the PDL structure for top-k document retrieval.

First, we can store the document lists for all suffix tree nodes above the leaf blocks,

producing a structure that is essentially an inverted index for all frequent substrings. This

approach is very fast, as we need only decompress the first k document identifiers from the

stored sequence, and it works well with repetitive collections thanks to the grammar-

compression of the lists. Note that this enables incremental top-k queries, where value k is

not given beforehand, but we extract documents with successively lower scores and can

stop at any time. Note also that, in this version, it is not necessary to store the frequencies.

Alternatively, we can build the PDL structure as in Sect. 4.1, with some parameter b, to
achieve better space usage. Answering queries will then be slower as we have to

decompress multiple document sets, merge the sets, and determine the top k documents.

We tried different heuristics for merging prefixes of the document sequences, stopping

when a correct answer to the top-k query could be guaranteed. The heuristics did not

generally work well, making brute-force merging the fastest alternative.

5 Engineering a document counting structure

In this section we revisit a generic document counting structure by Sadakane (2007), which

uses 2n ? o(n) bits and answers counting queries in constant time. We show that the

structure inherits the repetitiveness present in the text collection, which can then be

exploited to reduce its space occupancy. Surprisingly, the structure also becomes repetitive

with random and near-random data, such as unrelated DNA sequences, which is a result of

interest for general string collections. We show how to take advantage of this redundancy

in a number of different ways, leading to different time/space trade-offs.

Inf Retrieval J (2017) 20:253–291 267

123

5.1 The basic bitvector

We describe the original document structure of Sadakane (2007), which computes df in
constant time given the locus of the pattern P (i.e., the suffix tree node arrived at when

searching for P), while using just 2n ? o(n) bits of space.

We start with the suffix tree of the text, and add new internal nodes to it to make it a

binary tree. For each internal node v of the binary suffix tree, let Dv be again the set of

distinct document identifiers in the corresponding range DA½‘::r�, and let countðvÞ ¼ jDvj
be the size of that set. If node v has children u and w, we define the number of redundant

suffixes as hðvÞ ¼ jDu \ Dwj. This allows us to compute df recursively:

countðvÞ ¼ countðuÞ þ countðwÞ � hðvÞ. By using the leaf nodes descending from v,

[‘..r], as base cases, we can solve the recurrence:

countðvÞ ¼ countð‘; rÞ ¼ ðr þ 1� ‘Þ �
X

u

hðuÞ;

where the summation goes over the internal nodes of the subtree rooted at v.

We form an array H[1..n - 1] by traversing the internal nodes in inorder and listing the

h(v) values. As the nodes are listed in inorder, subtrees form contiguous ranges in the array.

We can therefore rewrite the solution as

countð‘; rÞ ¼ ðr þ 1� ‘Þ �
Xr�1

i¼‘
H½i�:

To speed up the computation, we encode the array in unary as bitvector H0. Each cell H[i]

is encoded as a 1-bit, followed by H[i] 0s. We can now compute the sum by counting the

number of 0s between the 1s of ranks ‘ and r:

countð‘; rÞ ¼ 2ðr � ‘Þ � ðselect1ðH0; rÞ � select1ðH0; ‘ÞÞ þ 1:

As there are n - 1 1s and n - d 0s, bitvector H0 takes at most 2n ? o(n) bits.

5.2 Compressing the bitvector

The original bitvector requires 2n ? o(n) bits, regardless of the underlying data. This can

be a considerable overhead with highly compressible collections, taking significantly more

space than the CSA (on top of which the structure operates). Fortunately, as we now show,

the bitvector H0 used in Sadakane’s method is highly compressible. There are five main

ways of compressing the bitvector, with different combinations of them working better

with different datasets.

1. Let Vv be the set of nodes of the binary suffix tree corresponding to node v of the

original suffix tree. As we only need to compute countðÞ for the nodes of the original
suffix tree, the individual values of h(u), u [Vv, do not matter, as long as the sumP

u2Vv
hðuÞ remains the same. We can therefore make bitvector H0 more compressible

by setting H½i� ¼
P

u2Vv
hðuÞ, where i is the inorder rank of node v, and H[j] = 0 for

the rest of the nodes. As there are no real drawbacks in this reordering, we will use it

with all of our variants of Sadakane’s method.

2. Run-length encoding works well with versioned collections and collections of random

documents. When a pattern occurs in many documents, but no more than once in each,

the corresponding subtree will be encoded as a run of 1s in H0.

268 Inf Retrieval J (2017) 20:253–291

123

3. When the documents in the collection have a versioned structure, we can reasonably

expect grammar compression to be effective. To see this, consider a substring x that

occurs in many documents, but at most once in each document. If each occurrence of

substring x is preceded by symbol a, the subtrees of the binary suffix tree

corresponding to patterns x and ax have an identical structure, and the corresponding

areas in D are identical. Hence the subtrees are encoded identically in bitvector H0.
4. If the documents are internally repetitive but unrelated to each other, the suffix tree has

many subtrees with suffixes from just one document. We can prune these subtrees into

leaves in the binary suffix tree, using a filter bitvector F[1..n - 1] to mark the

remaining nodes. Let v be a node of the binary suffix tree with inorder rank i. We will

set F[i] = 1 iff countðvÞ[1. Given a range [‘..r - 1] of nodes in the binary suffix

tree, the corresponding subtree of the pruned tree is ½rank1ðF; ‘Þ::rank1ðF; r � 1Þ�.
The filtered structure consists of bitvector H0 for the pruned tree and a compressed

encoding of F.

5. We can also use filters based on the values in array H instead of the sizes of the

document sets. If H[i] = 0 for most cells, we can use a sparse filter FS[1..n - 1],

where FS[i] = 1 iff H[i][0, and build bitvector H0 only for those nodes. We can also

encode positions with H[i] = 1 separately with a 1-filter F1[1..n - 1], where

F1[i] = 1 iff H[i] = 1. With a 1-filter, we do not write 0s in H0 for nodes with

H[i] = 1, but instead subtract the number of 1s in F1[‘..r - 1] from the result of the

query. It is also possible to use a sparse filter and a 1-filter simultaneously. In that case,

we set FS[i] = 1 iff H[i][1.

5.3 Analysis

We analyze the number of runs of 1s in bitvector H0 in the expected case. Assume that our

document collection consists of d documents, each of length r, over an alphabet of size r.
We call string S unique, if it occurs at most once in every document. The subtree of the

binary suffix tree corresponding to a unique string is encoded as a run of 1s in bitvector H0.
If we can cover all leaves of the tree with u unique substrings, bitvector H0 has at most

2u runs of 1s.

Consider a random string of length k. Suppose the probability that the string occurs at

least twice in a given document is at most r2=ð2r2kÞ, which is the case if, e.g., we choose

each document randomly or we choose one document randomly and generate the others by

copying it and randomly substituting some symbols. By the union bound, the probability

the string is non-unique is at most dr2=ð2r2kÞ. Let N(i) be the number of non-unique strings

of length ki ¼ lgrðr
ffiffiffi
d
p
Þ þ i. As there are rki strings of length ki, the expected value of N(i)

is at most r
ffiffiffi
d
p

=ð2riÞ. The expected size of the smallest cover of unique strings is therefore

at most

ðrk0 � Nð0ÞÞ þ
X1

i¼1
ðrNði� 1Þ � NðiÞÞ ¼ r

ffiffiffi
d
p
þ ðr� 1Þ

X1

i¼0
NðiÞ� r

2
þ 1

� �
r

ffiffiffi
d
p

;

where rN(i - 1) - N(i) is the number of strings that become unique at length ki. The

number of runs of 1s in H0 is therefore sublinear in the size of the collection (dr). See Fig. 5
for an experimental confirmation of this analysis.

Inf Retrieval J (2017) 20:253–291 269

123

6 A multi-term index

The queries we defined in the Introduction are single-term, that is, the query pattern P is a

single string. In this section we show how our indexes for single-term retrieval can be used

for ranked multi-term queries on repetitive text collections. The key idea is to regard our

incremental top-k algorithm of Sect. 4.2 as an abstract representation of the inverted lists

of the individual query terms, sorted by decreasing weight, and then apply any algorithm

that traverses those lists sequentially. Since our relevance score will depend on the term

frequency and the document frequency of the terms, we will integrate a document counting

structure as well (Sects. 3.4 or 5).

Let Q ¼ hq1; . . .; qmi be a query consisting of m patterns qi. We support ranked queries,

which return the k documents with the highest scores among the documents matching the

query. A disjunctive or ranked-OR query matches document D if at least one of the patterns

occurs in it, while a conjunctive or ranked-AND query matches D if all query patterns

occur in it. Our index supports both conjunctive and disjunctive queries with tf-idf-like
scores

wðD;QÞ ¼
Xm

i¼1
wðD; qiÞ ¼

Xm

i¼1
f ðtfðD; qiÞÞ � gðdfðqiÞÞ;

where f C 0 is an increasing function, tfðD; qiÞ is the term frequency (the number of

occurrences) of pattern qi in document D, g C 0 is a decreasing function, and dfðqiÞ is the
document frequency of pattern qi. For example, the standard tf-idf scoring scheme corre-

sponds to using f ðtfÞ ¼ tf and gðdfÞ ¼ lgðd=maxðdf; 1ÞÞ.
From Sect. 4.2, we use the incremental variant, which stores the full answers for all the

suffix tree nodes above leaves. The query algorithm uses CSA to find the lexicographic

range [‘i..ri] matching each pattern qi. We then use PDL to find the sparse suffix tree node

Documents

R
un

s
of

 1
−b

its

128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

10
0

10
00

10
00

0
1e

+0
5

1e
+0

6
1e

+0
7

6md^0.5
p = 1
p = 0.1
p = 0.01
p = 0.001

Fig. 5 The number of runs of 1-bits in Sadakane’s bitvector H0 on synthetic collections of DNA sequences
(r = 4). Each collection has been generated by taking a random sequence of length m = 27–217, duplicating
it d = 217–27 times (making the total size of the collection 224), and mutating the sequences with random
point mutations at probability p = 0.001–1. The mutations preserve zero-order empirical entropy by
replacing the mutated symbol with a randomly chosen symbol according to the distribution in the original
sequence. The dashed line represents the expected case upper bound for p = 1

270 Inf Retrieval J (2017) 20:253–291

123

vi corresponding to range [‘i..ri] and fetch its list Dvi , which is stored in decreasing term

frequency order. If vi is not in the sparse suffix tree, we use instead the CSA to build Dvi by

brute force from SA½‘i::ri�. We also compute dfðqiÞ ¼ countðviÞ for all query patterns qi
with our document counting structure. The algorithm then iterates the following loop with

k0 ¼ 2k; 4k; 8k; . . .:

1. Extract k0 more documents from the document list of vi for each pattern qi.

2. If the query is conjunctive, filter out extracted documents that do not match the query

patterns with completely decompressed document lists.

3. Determine a lower bound for w(D, Q) for all documents D extracted so far. If

document D has not been encountered in the document list of vi, use 0 as a lower

bound for w(D, qi).

4. Determine an upper bound for w(D, Q) for all documents D. If document D has not

been encountered in the document list of vi, use tfðD0; qiÞ, where D0 is the next

unextracted document for pattern qi, as an upper bound for tfðD; qiÞ.
5. If the query is disjunctive, filter out extracted documents D with smaller upper bounds

for w(D, Q) than the lower bounds for the current top-k documents. Stop if the top-

k set cannot change further.

6. If the query is conjunctive, stop if the top-k documents match all query patterns and the

upper bounds for the remaining documents are lower than the lower bounds for the

top-k documents.

The algorithm always finds a correct top-k set, although the scores may be incorrect if a

disjunctive query stops early.

7 Experiments and discussion

7.1 Experimental setup

7.1.1 Document collections

We performed extensive experiments with both real and synthetic collections.7 Most of our

document collections were relatively small, around 100 MB in size, as some of the

implementations (Navarro et al. 2014b) use 32-bit libraries. We also used larger versions

of some collections, up to 1 GB in size, to see how the collection size affects the results. In

general, collection size is more important in top-k document retrieval. Increasing the

number of documents generally increases the df=k ratio, and thus makes brute-force

solutions based on document listing less appealing. In document listing, the size of the

documents is more important than collection size, as a large occ=df ratio makes brute-force

solutions based on pattern matching less appealing.

The performance of various solutions depends both on the repetitiveness of the col-

lection and the type of the repetitiveness. Hence we used a fair number of real and

synthetic collections with different characteristics for our experiments. We describe them

next, and summarize their statistics in Table 2.

A note on collection size The index structures evaluated in this paper should be

understood as promising algorithmic ideas. In most implementations, the construction

algorithms do not scale up for collections larger than a couple of gigabytes. This is often

7 See http://jltsiren.kapsi.fi/rlcsa for the datasets and full results.

Inf Retrieval J (2017) 20:253–291 271

123

http://jltsiren.kapsi.fi/rlcsa

T
a

b
le

2
S
ta
ti
st
ic
s
fo
r
d
o
cu
m
en
t
co
ll
ec
ti
o
n
s
(s
m
al
l,
m
ed
iu
m
,
an
d
la
rg
e
v
ar
ia
n
ts
)

C
o
ll
ec
ti
o
n

S
iz
e

C
S
A

si
ze

D
o
cu
m
en
ts

A
v
g
.
d
o
c
si
ze

P
at
te
rn
s

O
cc
u
rr
en
ce
s

D
o
cu
m
en
t
o
cc
s

O
cc
s
p
er

d
o
c

(n
)
(M

B
)

(R
L
C
S
A
)
(M

B
)

(d
)

(n
/
d
)

(o
cc
)

(d
f)

(o
cc
=
d
f)

P
a

g
e

1
1
0

2
.5
8

6
0

1
,9
1
9
,3
8
2

7
6
5
8

7
8
1

3
2
4
2
.7
5

6
4
1

9
.0
0

1
9
0

3
,5
3
4
,9
2
1

1
4
,2
8
6

2
6
0
1

6
4
4
4
.7
9

1
0
3
7

1
7
.4
5

2
8
0

3
,8
8
3
,1
4
5

2
0
,5
3
6

2
8
8
9

7
4
2
9
.0
4

R
ev

is
io

n
1
1
0

2
.5
9

8
8
3
4

1
3
,0
0
5

7
6
5
8

7
7
6

3
7
1

2
.0
9

6
4
0

9
.0
4

3
1
,2
0
8

2
1
,4
9
0

1
4
,2
8
4

2
5
9
2

1
0
6
5

2
.4
3

1
0
3
5

1
7
.5
5

6
5
,5
6
5

1
6
,5
5
2

2
0
,5
3
6

2
8
7
6

1
1
8
8

2
.4
2

E
n

w
ik

i
1
1
3

4
9
.4
4

7
0
0
0

1
6
,9
3
2

1
8
,9
3
5

1
9
0
4

5
0
5

3
.7
7

6
3
9

3
0
9
.3
1

4
4
,0
0
0

1
5
,2
3
6

1
9
,6
2
8

1
0
,3
1
6

2
8
5
6

3
.6
1

1
0
3
4

4
8
2
.1
6

9
0
,0
0
0

1
2
,0
5
0

1
9
,8
0
5

1
7
,0
9
2

4
9
7
6

3
.4
4

In
fl

u
en

za
1
3
7

5
.5
2

1
0
0
,0
0
0

1
4
3
6

1
0
0
0

2
4
,9
7
5

1
8
,5
4
7

1
.3
5

3
2
1

1
0
.5
3

2
2
7
,3
5
6

1
4
8
0

1
0
0
0

5
9
,9
9
7

4
4
,0
1
2

1
.3
6

S
w

is
sp

ro
t

5
4

2
5
.1
9

1
4
3
,2
4
4

3
9
8

1
0
,0
0
0

1
6
0

1
2
1

1
.3
3

W
ik

i
1
4
3
2

4
2
.9
0

1
0
3
,1
9
0

1
4
,5
4
0

D
N

A
9
5

1
0
0
,0
0
0

8
8
9
–
1
0
0
0

C
o

n
ca

t
9
5

1
0
–
1
0
0
0

7
5
3
8
–
1
5
,2
7
2

V
er

si
o

n
9
5

1
0
,0
0
0

7
5
3
7
–
1
5
,2
7
1

C
o
ll
ec
ti
o
n
si
ze
,
R
L
C
S
A
si
ze

w
it
h
o
u
t
su
ffi
x
ar
ra
y
sa
m
p
le
s,
n
u
m
b
er

o
f
d
o
cu
m
en
ts
,
av
er
ag
e
d
o
cu
m
en
t
le
n
g
th
,
n
u
m
b
er

o
f
p
at
te
rn
s,
av
er
ag
e
n
u
m
b
er

o
f
o
cc
u
rr
en
ce
s
an
d
d
o
cu
m
en
t

o
cc
u
rr
en
ce
s,
an
d
th
e
ra
ti
o
o
f
o
cc
u
rr
en
ce
s
to

d
o
cu
m
en
t
o
cc
u
rr
en
ce
s.
F
o
r
th
e
sy
n
th
et
ic

co
ll
ec
ti
o
n
s
(D

N
A
,

C
o

n
ca

t,
an
d

V
er

si
o
n
),
m
o
st
o
f
th
e
st
at
is
ti
cs

v
ar
y
g
re
at
ly

272 Inf Retrieval J (2017) 20:253–291

123

intentional. In this line of research, being able to easily evaluate variations of the funda-

mental idea is more important than the speed or memory usage of construction. As a result,

many of the construction algorithms build an explicit suffix tree for the collection and store

various kinds of additional information in the nodes. Better construction algorithms can be

designed once the most promising ideas have been identified. See ‘‘Appendix 2’’ for

further discussion on index construction.

Real collections We use various document collections from real-life repetitive scenar-

ios. Some collections come in small, medium, and large variants. Page and Revision are

repetitive collections generated from a Finnish-language Wikipedia archive with full

version history. There are 60 (small), 190 (medium), or 280 (large) pages with a total of

8834, 31,208, or 65,565 revisions. In Page, all the revisions of a page form a single

document, while each revision becomes a separate document in Revision. Enwiki is a non-
repetitive collection of 7000, 44,000, or 90,000 pages from a snapshot of the English-

language Wikipedia. Influenza is a repetitive collection containing 100,000 or 227,356

sequences from influenza virus genomes (we only have small and large variants). Swis-
sprot is a non-repetitive collection of 143,244 protein sequences used in many document

retrieval papers (e.g., Navarro et al. 2014b). As the full collection is only 54 MB, only the

small version of Swissprot exists. Wiki is a repetitive collection similar to Revision. It is
generated by sampling all revisions of 1% of pages from the English-language versions of

Wikibooks, Wikinews, Wikiquote, and Wikivoyage.

Synthetic collections To explore the effect of collection repetitiveness on document

retrieval performance in more detail, we generated three types of synthetic collections,

using files from the Pizza & Chili corpus.8 DNA is similar to Influenza. Each collection

has d = 1, 10, 100, or 1000 base documents, 100,000/d variants of each base document,

and mutation rate p = 0.001, 0.003, 0.01, 0.03, or 0.1. We take a prefix of length 1000

from the Pizza & Chili DNA file and generate the base documents by mutating the prefix at

probability 10p under the same model as in Fig. 5. We then generate the variants in the

same way with mutation rate p. Concat and Version are similar to Page and Revision,
respectively. We read d = 10, 100, or 1000 base documents of length 10,000 from the

Pizza & Chili English file, and generate 10,000/d variants of each base document with

mutation rates 0.001, 0.003, 0.01, 0.03, and 0.1, as above. Each variant becomes a separate

document in Version, while all variants of the same base document are concatenated into a

single document in Concat.

7.1.2 Queries

Real collections For Page and Revision, we downloaded a list of Finnish words from the

Institute for the Languages in Finland, and chose all words of length C5 that occur in the

collection. For Enwiki, we used search terms from an MSN query log with stopwords

filtered out. We generated 20,000 patterns according to term frequencies, and selected

those that occur in the collection. For Influenza, we extracted 100,000 random substrings

of length 7, filtered out duplicates, and kept the 1000 patterns with the largest occ=df ratios.
For Swissprot, we extracted 200,000 random substrings of length 5, filtered out duplicates,

and kept the 10,000 patterns with the largest occ=df ratios. For Wiki, we used the TREC

2006 Terabyte Track efficiency queries9 consisting of 411,394 terms in 100,000 queries.

8 http://pizzachili.dcc.uchile.cl.
9 http://trec.nist.gov/data/terabyte06.html.

Inf Retrieval J (2017) 20:253–291 273

123

http://pizzachili.dcc.uchile.cl
http://trec.nist.gov/data/terabyte06.html

Synthetic collections We generated the patterns for DNA with a similar process as for

Influenza and Swissprot. We extracted 100,000 substrings of length 7, filtered out

duplicates, and chose the 1000 with the largest occ=df ratios. For Concat and Version,
patterns were generated from the MSN query log in the same way as for Enwiki.

7.1.3 Test environment

We used two separate systems for the experiments. For document listing and document

counting, our test environment had two 2.40 GHz quad-core Intel Xeon E5620 processors

and 96 GB memory. Only one core was used for the queries. The operating system was

Ubuntu 12.04 with Linux kernel 3.2.0. All code was written in C??. We used g??

version 4.6.3 for the document listing experiments and version 4.8.1 for the document

counting experiments.

For the top-k retrieval and tf-idf experiments, we used another system with two 16-core

AMD Opteron 6378 processors and 256 GB memory. We used only a single core for the

single-term queries and up to 32 cores for the multi-term queries. The operating system

was Ubuntu 12.04 with Linux kernel 3.2.0. All code was written in C?? and compiled

with g?? version 4.9.2.

We executed the query benchmarks in the following way:

1. Load the RLCSA with the desired sample period for the current collection into

memory.

2. Load the query patterns corresponding to the collection into memory and execute find
queries in the RLCSA. Store the resulting lexicographic ranges [‘..r] in vector V.

3. Load the index to be benchmarked into memory.

4. Iterate through vector V once using a single thread and execute the desired query for

each range [‘..r]. Measure the total wall clock time for executing the queries.

We divided the measured time by the number of patterns, and listed the average time per

query in milliseconds or microseconds and the size of the index structure in bits per

symbol. There were certain exceptions:

• LZ and Grammar do not use a CSA. With them, we iterated through the vector of

patterns as in step 4, once the index and the patterns had been loaded into memory. The

average time required to get the range [‘..r] in CSA-based indexes (4-6 ls, depending
on the collection) was negligible compared to the average query times of LZ (at least

170 ls) and Grammar (at least 760 ls).
• We used the existing benchmark code with SURF. The code first loads the index into

memory and then iterates through the pattern file by reading one line at a time. To

reduce the overhead from reading the patterns, we cached them by using cat[/dev/
null. Because SURF queries were based on the pattern instead of the corresponding

range [‘..r], we executed find queries first and subtracted the time used for them from

the subsequent top-k queries.

• In our tf-idf index, we parallelized step 4 using the OpenMP parallel for
construct.

• We used the existing benchmark code with Terrier. We cached the queries as with

SURF, set trec.querying.outputformat to NullOutputFormat, and set

the logging level to off.

274 Inf Retrieval J (2017) 20:253–291

123

7.2 Document listing

We compare our new proposals from Sects. 3.3 and 4.1 to the existing document listing

solutions. We also aim to determine when these sophisticated approaches are better than

brute-force solutions based on pattern matching.

7.2.1 Indexes

Brute force (Brute) These algorithms simply sort the document identifiers in the range

DA½‘::r� and report each of them once. Brute-D stores DA in n lg d bits, while Brute-L
retrieves the range SA½‘::r� with the locate functionality of the CSA and uses bitvector B

to convert it to DA½‘::r�.
Sadakane (Sada) This family of algorithms is based on the improvements of Sadakane

(2007) to the algorithm of Muthukrishnan (2002). Sada-L is the original algorithm, while

Sada-D uses an explicit document array DA instead of retrieving the document identifiers

with locate.
ILCP (ILCP) This is our proposal in Sect. 3.3. The algorithms are the same as those of

Sadakane (2007), but they run on the run-length encoded ILCP array. As for Sada, ILCP-
L obtains the document identifiers using locate on the CSA, whereas ILCP-D stores array

DA explicitly.

Wavelet tree (WT) This index stores the document array in a wavelet tree (Sect. 2.2) to

efficiently find the distinct elements in DA½‘::r� (Välimäki and Mäkinen 2007). The best

known implementation of this idea (Navarro et al. 2014b) uses plain, entropy-compressed,

and grammar-compressed bitvectors in the wavelet tree-depending on the level. Our WT
implementation uses a heuristic similar to the original WT-alpha (Navarro et al. 2014b),

multiplying the size of the plain bitvector by 0.81 and the size of the entropy-compressed

bitvector by 0.9, before choosing the smallest one for each level of the tree. These con-

stants were determined by experimental tuning.

Precomputed document lists (PDL) This is our proposal in Sect. 4.1. Our implemen-

tation resorts to Brute-L to handle the short regions that the index does not cover. The

variant PDL-BC compresses sets of equal documents using a Web graph compressor

(Hernández and Navarro 2014). PDL-RP uses Re-Pair compression (Larsson and Moffat

2000) as implemented by Navarro10 and stores the dictionary in plain form. We use block

size b = 256 and storing factor b = 16, which have proved to be good general-purpose

parameter values.

Grammar-based (Grammar) This index (Claude and Munro 2013) is an adaptation of a

grammar-compressed self-index (Claude and Navarro 2012) to document listing. Con-

ceptually similar to PDL, Grammar uses Re-Pair to parse the collection. For each non-

terminal symbol in the grammar, it stores the set of identifiers of the documents whose

encoding contains the symbol. A second round of Re-Pair is used to compress the sets.

Unlike most of the other solutions, Grammar is an independent index and needs no CSA
to operate.

Lempel-Ziv (LZ) This index (Ferrada and Navarro 2013) is an adaptation of a pattern-

matching index based on LZ78 parsing (Navarro 2004) to document listing. Like

Grammar, LZ does not need a CSA.

10 http://www.dcc.uchile.cl/gnavarro/software.

Inf Retrieval J (2017) 20:253–291 275

123

http://www.dcc.uchile.cl/gnavarro/software

We implemented Brute, Sada, ILCP, and the PDL variants ourselves11 and modified

existing implementations of WT, Grammar, and LZ for our purposes. We always used

the RLCSA (Mäkinen et al. 2010) as the CSA, as it performs well on repetitive collec-

tions. The locate support in RLCSA includes optimizations for long query ranges and

repetitive collections, which is important for Brute-L and ILCP-L. We used suffix array

sample periods 8, 16, 32, 64, 128 for non-repetitive collections and 32, 64, 128, 256, 512

for repetitive ones.

When a document listing solution uses a CSA, we start the queries from the lexico-

graphic range [‘..r] instead of the pattern P. This allows us to see the performance dif-

ferences between the fastest solutions better. The average time required for obtaining the

ranges was 4–6 ls per pattern, depending on the collection, which is negligible compared

to the average time used by Grammar (at least 760 ls) and LZ (at least 170 ls).

7.2.2 Results

Real collections Figures 6 and 7 contain the results for document listing with small and

large real collections, respectively. For most of the indexes, the time/space trade-off is

given by the RLCSA sample period. The trade-off of LZ comes from a parameter specific

to that structure involving RMQs (Ferrada and Navarro 2013). Grammar has no trade-off.

Brute-L always uses the least amount of space, but it is also the slowest solution. In

collections with many short documents (i.e., all except Page), we have occ=df\4 on the

average. The additional effort made by Sada-L and ILCP-L to report each document only

once does not pay off, and the space used by the RMQ structure is better spent on

increasing the number of suffix array samples for Brute-L. The difference is, however,

very noticeable on Page, where the documents are large and there are hundreds of

occurrences of the pattern in each document. ILCP-L uses less space than Sada-L when

the collection is repetitive and contains many similar documents (i.e., on Revision and

Influenza); otherwise Sada-L is slightly smaller.

The two PDL alternatives usually achieve similar performance, but in some cases PDL-
BC uses much less space. PDL-BC, in turn, can use significantly more space than Brute-
L, Sada-L, and ILCP-L, but is always orders of magnitude faster. The document sets of

versioned collections such as Page and Revision are very compressible, making the col-

lections very suitable for PDL. On the other hand, grammar-based compression cannot

reduce the size of the stored document sets enough when the collections are non-repetitive.

Repetitive but unstructured collections like Influenza represent an interesting special case.

When the number of revisions of each base document is much larger than the block size b,

each leaf block stores an essentially random subset of the revisions, which cannot be

compressed very well.

Among the other indexes, Sada-D and ILCP-D can be significantly faster than PDL-
BC, but they also use much more space. From the non-CSA-based indexes, Grammar
reaches the Pareto-optimal curve on Revision and Influenza, while being too slow or too

large on the other collections. We did not build Grammar for the large version of Page, as
it would have taken several months.

In general, we can recommend PDL-BC as a medium-space alternative for document

listing. When less space is available, we can use ILCP-L, which offers robust time and

space guarantees. If the documents are small, we can even use Brute-L. Further, we can

11 http://jltsiren.kapsi.fi/rlcsa.

276 Inf Retrieval J (2017) 20:253–291

123

http://jltsiren.kapsi.fi/rlcsa

Ti
m

e
(m

s
/ q

ue
ry

)

Page
Brute−L
Brute−D
Sada−L
Sada−D
ILCP−L
ILCP−D
PDL−BC
PDL−RP
WT
LZ
Grammar

Revision

Ti
m

e
(m

s
/ q

ue
ry

)

Enwiki

Size (bps)
0 4 8 12 16 20 24 28 32

Influenza

Size (bps)

Ti
m

e
(m

s
/ q

ue
ry

)

0 4 8 12 16 20 24 28 32

0.
01

0.
1

1
10

10
0

10
00

0.
01

0.
1

1
10

10
0

10
00

0.
01

0.
1

1
10

10
0

10
00 Swissprot

Fig. 6 Document listing on small real collections. The total size of the index in bits per symbol (x) and the
average time per query in milliseconds (y)

Inf Retrieval J (2017) 20:253–291 277

123

use fast document counting to compare df with occ = r - ‘ ? 1, and choose between

ILCP-L and Brute-L according to the results.

Synthetic collections Figures 8 and 9 show our document listing results with synthetic

collections. Due to the large number of collections, the results for a given collection type

and number of base documents are combined in a single plot, showing the fastest algorithm

for a given amount of space and mutation rate. Solid lines connect measurements that are

the fastest for their size, while dashed lines are rough interpolations.

The plots were simplified in two ways. Algorithms providing a marginal and/or

inconsistent improvement in speed in a very narrow region (mainly Sada-L and ILCP-L)
were left out. When PDL-BC and PDL-RP had a very similar performance, only one of

them was chosen for the plot.

On DNA, Grammar was a good solution for small mutation rates, while LZ was good

with larger mutation rates. With more space available, PDL-BC became the fastest

algorithm. Brute-D and ILCP-D were often slightly faster than PDL, when there was

enough space available to store the document array. On Concat and Version, PDL was

Ti
m

e
(m

s
/ q

ue
ry

)

Page
Brute−L
Brute−D
Sada−L
Sada−D
ILCP−L
ILCP−D
PDL−BC
PDL−RP
WT
LZ
Grammar

Revision

Size (bps)

Ti
m

e
(m

s
/ q

ue
ry

)

0 4 8 12 16 20 24 28 32

0.
01

0.
1

1
10

10
0

10
00

0.
01

0.
1

1
10

10
0

10
00

Enwiki

Size (bps)
0 4 8 12 16 20 24 28 32

Influenza

Fig. 7 Document listing on large real collections. The total size of the index in bits per symbol (x) and the
average time per query in milliseconds (y)

278 Inf Retrieval J (2017) 20:253–291

123

usually a good mid-range solution, with PDL-RP being usually smaller than PDL-BC. The

exceptions were the collections with 10 base documents, where the number of variants

(1000) was clearly larger than the block size (256). With no other structure in the col-

lection, PDL was unable to find a good grammar to compress the sets. At the large end of

the size scale, algorithms using an explicit document array DA were usually the fastest

choices.

7.3 Top-k retrieval

7.3.1 Indexes

We compare the following top-k retrieval algorithms. Many of them share names with the

corresponding document listing structures described in Sect. 7.2.1.

Brute force (Brute) These algorithms correspond to the document listing algorithms

Brute-D and Brute-L. To perform top-k retrieval, we not only collect the distinct

M
ut

at
io

n
ra

te

None

Br
ut

e−
L

WT
Br

ut
e−

D
Sada−D

None Brute−L

Grammar

LZ PD
L−

BC

Brute−D

ILCP−D

M
ut

at
io

n
ra

te

None

Br
ut

e−
L

PDL−RP

WT

Br
ut

e−
D

Sada−D

None Brute−L

LZ

PDL−RP

Brute−D

Size (bps)

M
ut

at
io

n
ra

te
0.

00
1

0.
00

3
0.

01
0.

03
0.

1
0.

00
1

0.
00

3
0.

01
0.

03
0.

1
0.

00
1

0.
00

3
0.

01
0.

03
0.

1

None

Br
ut

e−
L

Sada−L

PDL−BC

Brute−D

Size (bps)
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

None Brute−L

LZ

PDL−RP

Brute−D

Fig. 8 Document listing on synthetic collections. The fastest solution for a given size in bits per symbol and
a mutation rate. From top to bottom: 10, 100, and 1000 base documents with Concat (left) and Version
(right). None denotes that no solution can achieve that size

Inf Retrieval J (2017) 20:253–291 279

123

document identifiers after sorting DA½‘::r�, we also record the number of times each one

appears. The k identifiers appearing most frequently are then reported.

Precomputed document lists (PDL) We use the variant of PDL-RP modified for top-

k retrieval, as described in Sect. 4.2. PDL-b denotes PDL with block size b and with

document sets for all suffix tree nodes above the leaf blocks, while PDL-b1F is the same

with term frequencies. PDL-b-b is PDL with block size b and storing factor b.
Large and fast (SURF) This index (Gog and Navarro 2015b) is based on a conceptual

idea by Navarro and Nekrich (2012), and improves upon a previous implementation

(Konow and Navarro 2013). It can answer top-k queries quickly if the pattern occurs at

least twice in each reported document. If documents with just one occurrence are needed,

SURF uses a variant of Sada-L to find them.

We implemented the Brute and PDL variants ourselves12 and used the existing

implementation of SURF.13 While WT (Navarro et al. 2014b) also supports top-k queries,

the 32-bit implementation cannot index the large versions of the document collections used

in the experiments. As with document listing, we subtracted the time required for finding

the lexicographic ranges [‘..r] using a CSA from the measured query times. SURF uses a

CSA from the SDSL library (Gog et al. 2014), while the rest of the indexes use RLCSA.

7.3.2 Results

Figure 10 contains the results for top-k retrieval using the large versions of the real col-

lections. We left Page out of the results, as the number of documents (280) was too low for

M
ut

at
io

n
ra

te
0.

00
1

0.
00

3
0.

01
0.

03
0.

1

N
on

e

B
ru

te
−L

G
ra

m
m

ar

LZ

PDL−BC

N
on

e

Brute−L

G
ra

m
m

ar

LZ

PDL−BC

ILCP−D

Brute−D

Size (bps)

M
ut

at
io

n
ra

te
0.

00
1

0.
00

3
0.

01
0.

03
0.

1

None
Brute−L

Grammar

LZ

PDL−BC

ILCP−D

Brute−D

Size (bps)
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

None

Brute−L

G
ra

m
m

ar

LZ

PDL−
RP

PDL−BC

Brute−D

Fig. 9 Document listing on synthetic collections. The fastest solution for a given size in bits per symbol and
a mutation rate. DNA with 1 (top left), 10 (top right), 100 (bottom left), and 1000 (bottom right) base
documents. None denotes that no solution can achieve that size

12 http://jltsiren.kapsi.fi/rlcsa.
13 http://github.com/simongog/surf/tree/single_term.

280 Inf Retrieval J (2017) 20:253–291

123

http://jltsiren.kapsi.fi/rlcsa
http://github.com/simongog/surf/tree/single%5fterm

Ti
m

e
(m

s
/ q

ue
ry

)

Revision Revision

Ti
m

e
(m

s
/ q

ue
ry

)

Enwiki Enwiki

Size (bps)

Ti
m

e
(m

s
/ q

ue
ry

)
0.

01
0.

1
1

10
10

0
10

00
0.

01
0.

1
1

10
10

0
10

00
0.

01
0.

1
1

10
10

0
10

00 Influenza

Size (bps)
0 8 16 24 32 40 48 0 8 16 24 32 40 48

Influenza

Brute−L
Brute−D
PDL−64
PDL−256
PDL−64+F
PDL−256+F
PDL−256−2
PDL−256−4
SURF

Fig. 10 Single-term top-k retrieval on real collections with k = 10 (left) and k = 100 (right). The total size
of the index in bits per symbol (x) and the average time per query in milliseconds (y)

Inf Retrieval J (2017) 20:253–291 281

123

meaningful top-k queries. For most of the indexes, the time/space trade-off is given by the

RLCSA sample period, while the results for SURF are for the three variants presented in

the paper.

The three collections proved to be very different. With Revision, the PDL variants were

both fast and space-efficient. When storing factor b was not set, the total query times were

dominated by rare patterns, for which PDL had to resort to using Brute-L. This also made

block size b an important time/space trade-off. When the storing factor was set, the index

became smaller and slower and the trade-offs became less significant. SURF was larger

and faster than Brute-D with k = 10 but became slow with k = 100.

On Enwiki, the variants of PDL with storing factor b set had a performance similar to

Brute-D. SURF was faster with roughly the same space usage. PDL with no storing factor

was much larger than the other solutions. However, its time performance became com-

petitive for k = 100, as it was almost unaffected by the number of documents requested.

The third collection, Influenza, was the most surprising of the three. PDL with storing

factor b set was between Brute-L and Brute-D in both time and space. We could not build

PDL without the storing factor, as the document sets were too large for the Re-Pair

compressor. The construction of SURF also failed with this dataset.

7.4 Document counting

7.4.1 Indexes

We use two fast document listing algorithms as baseline document counting methods (see

Sect. 7.2.1): Brute-D sorts the query range DA½‘::r� to count the number of distinct doc-

ument identifiers, and PDL-RP returns the length of the list of documents obtained. Both

indexes use the RLCSA with suffix array sample period set to 32 on non-repetitive

datasets, and to 128 on repetitive datasets.

We also consider a number of encodings of Sadakane’s document counting structure

(see Sect. 5). The following ones encode the bitvector H0 directly in a number of ways:

• Sada uses a plain bitvector representation.

• Sada-RR uses a run-length encoded bitvector as supplied in the RLCSA implemen-

tation. It uses d-codes to represent run lengths and packs them into blocks of 32 bytes

of encoded data. Each block stores how many bits and 1s are there before it.

• Sada-RS uses a run-length encoded bitvector, represented with a sparse bitmap

(Okanohara and Sadakane 2007) marking the beginnings of the 0-runs and another for

the 1-runs.

• Sada-RD uses run-length encoding with d-codes to represent the lengths. Each block in
the bitvector contains the encoding of 128 1-bits, while three sparse bitmaps are used to

mark the number of bits, 1-bits, and starting positions of block encodings.

• Sada-Gr uses a grammar-compressed bitvector (Navarro and Ordóñez 2014).

The following encodings use filters in addition to bitvector H0:

• Sada-P-G uses Sada for H0 and a gap-encoded bitvector for the filter bitvector F. The

gap-encoded bitvector is also provided in the RLCSA implementation. It differs from

the run-length encoded bitvector by only encoding runs of 0-bits.

• Sada-P-RR uses Sada for H0 and Sada-RR for F.

• Sada-RR-G uses Sada-RR for H0 and a gap-encoded bitvector for F.

• Sada-RR-RR uses Sada-RR for both H0 and F.

282 Inf Retrieval J (2017) 20:253–291

123

• Sada-S uses sparse bitmaps for both H0 and the sparse filter FS.

• Sada-S-S is Sada-S with an additional sparse bitmap for the 1-filter F1

• Sada-RS-S uses Sada-RS for H0 and a sparse bitmap for F1.

• Sada-RD-S uses Sada-RD for H0 and a sparse bitmap for F1.

Finally, ILCP implements the technique described in Sect. 3.4, using the same encoding as

in Sada-RS to represent the bitvectors in the wavelet tree.

Our implementations of the above methods can be found online.14

7.4.2 Results

Due to the use of 32-bit variables in some of the implementations, we could not build all

structures for the large real collections. Hence we used the medium versions of Page,
Revision, and Enwiki, the large version of Influenza, and the only version of Swissprot
for the benchmarks. We started the queries from precomputed lexicographic ranges [‘..r] in
order to emphasize the differences between the fastest variants. For the same reason, we

also left out of the plots the size of the RLCSA and the possible document retrieval

structures. Finally, as it was almost always the fastest method, we scaled the plots to leave

out anything much larger than plain Sada. The results can be seen in Fig. 11. Table 5 in

‘‘Appendix 1’’ lists the results in further detail.

On Page, the filtered methods Sada-P-RR and Sada-RR-RR are clearly the best

choices, being only slightly larger than the baselines and orders of magnitude faster. Plain

Sada is much faster than those, but it takes much more space than all the other indexes.

Only Sada-Gr compresses the structure better, but it is almost as slow as the baselines.

On Revision, there were many small encodings with similar performance. Among

those, Sada-RS-S is the fastest. Sada-S is somewhat larger and faster. As on Page, plain
Sada is even faster, but it takes much more space.

The situation changes on the non-repetitive Enwiki. Only Sada-RD-S, Sada-RS-S, and
Sada-Gr can compress the bitvector clearly below 1 bit per symbol, and Sada-Gr is much

slower than the other two. At around 1 bit per symbol, Sada-S is again the fastest option.

Plain Sada requires twice as much space as Sada-S, but is also twice as fast.

Influenza and Swissprot contain, respectively, RNA and protein sequences, making

each individual document quite random. Such collections are easy cases for Sadakane’s

method, and many encodings compress the bitvector very well. In both cases, Sada-S was

the fastest small encoding. On Influenza, the small encodings fit in CPU cache, making

them often faster than plain Sada.
Different compression techniques succeed with different collections, for different rea-

sons, which complicates a simple recommendation for a best option. Plain Sada is always

fast, while Sada-S is usually smaller without sacrificing too much performance. When more

space-efficient solutions are required, the right choice depends on the type of the collection.

Our ILCP-based structure, ILCP, also outperforms Sada in space on most collections, but it

is always significantly larger and slower than compressed variants of Sada.

7.5 The multi-term tf-idf index

We implement our multi-term index as follows. We use RLCSA as the CSA, PDL-2561F
for single-term top-k retrieval, and Sada-S for document counting. We could have

14 http://jltsiren.kapsi.fi/rlcsa and http://github.com/ahartik/succinct.

Inf Retrieval J (2017) 20:253–291 283

123

http://jltsiren.kapsi.fi/rlcsa
http://github.com/ahartik/succinct

Ti
m

e
(µ

s
/ q

ue
ry

)

0.
1

1
10

10
0

10
00

Page Brute−D
PDL−RP
Sada
Sada−P−G
Sada−P−RR
Sada−RR
Sada−RR−G
Sada−RR−RR

Sada−Gr
Sada−RS
Sada−RS−S
Sada−RD
Sada−RD−S
Sada−S
Sada−S−S
ILCP

Ti
m

e
(µ

s
/ q

ue
ry

)

0.
1

1
10

10
0

10
00

Revision

Ti
m

e
(µ

s
/ q

ue
ry

)

0.
1

1
10

10
0

10
00

Enwiki

Ti
m

e
(µ

s
/ q

ue
ry

)

Influenza

Size (bps)

Ti
m

e
(µ

s
/ q

ue
ry

)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Swissprot

Fig. 11 Document counting on different datasets. The size of the counting structure in bits per symbol
(x) and the average query time in microseconds (y). The baseline document listing methods are presented as
having size 0, as they take advantage of the existing functionalities in the index

284 Inf Retrieval J (2017) 20:253–291

123

integrated the document counts into the PDL structure, but a separate counting structure

makes the index more flexible. Additionally, encoding the number of redundant documents

in each internal node of the suffix tree (Sada) often takes less space than encoding the total

number of documents in each node of the sampled suffix tree (PDL). We use the basic

tf-idf scoring scheme.

We tested the resulting performance on the 1432 MB Wiki collection. RLCSA took

0.73 bps with sample period 128 (the sample period did not have a significant impact on

query performance), PDL-2561F took 3.37 bps, and Sada-S took 0.13 bps, for a total of

4.23 bps (757 MB). Out of the total of 100,000 queries in the query set, there were matches

for 31,417 conjunctive queries and 97,774 disjunctive queries.

The results can be seen in Table 3. When using a single query thread, the index can

process 136–229 queries per second (around 4–7 ms per query), depending on the query

type and the value of k. Disjunctive queries are faster than conjunctive queries, while larger

values of k do not increase query times significantly. Note that our ranked disjunctive

query algorithm preempts the processing of the lists of the patterns, whereas in the con-

junctive ones we are forced to expand the full document lists for all the patterns; this is

why the former are faster. The speedup from using 32 threads is around 18x.

Since our multi-term index offers a functionality similar to basic inverted index queries,

it seems sensible to compare it to an inverted index designed for natural language texts. For

this purpose, we indexed the Wiki collection using Terrier (Macdonald et al. 2012)

version 4.1 with the default settings. See Table 4 for a comparison between the two

indexes.

Note that the similarity in the functionality is only superficial: our index can find any

text substring, whereas the inverted index can only look for indexed words and phrases.

Thus our index has an index point per symbol, whereas Terrier has an index point per

word (in addition, inverted indexes usually discard words deemed uninteresting, like

stopwords). Note that PDL also chooses frequent strings and builds their lists of docu-

ments, but since it has many more index points, its posting lists are 200 times longer than

Table 3 Ranked multi-term queries on the Wiki collection

Query k 1 thread 8 threads 16 threads 32 threads

Ranked-AND 10 152 914 1699 2668

100 136 862 1523 2401

Ranked-OR 10 229 1529 2734 4179

100 163 1089 1905 2919

Query type, number of documents requested, and the average number of queries per second with 1, 8, 16,
and 32 query threads

Table 4 Our index (PDL) and an inverted index (Terrier) on the Wiki collection

Index Vocabulary Posting lists Collection Size (MB) Queries/s

PDL 39.2M
substrings

8840M
documents

1500M
symbols

757 229
(k = 10)

163
(k = 100)

Terrier 0.134M
tokens

42.3M
documents

133M
tokens

90.1 231
(k = 10)

228
(k = 100)

The size of the vocabulary, the posting lists, and the collection in millions of elements, the size of the index
in megabytes, and the number of Ranked-OR queries per second with k = 10 or 100 using a single thread

Inf Retrieval J (2017) 20:253–291 285

123

those of Terrier, and the number of lists is 300 times larger. Thanks to the compression of

its lists, however, PDL uses only 8 times more space than Terrier. On the other hand, both
indexes have similar query performance. When logging and output was set to minimum,

Terrier could process 231 top-10 queries and 228 top-100 queries per second under the

tf-idf scoring model using a single query thread.

8 Conclusions

We have investigated the space/time tradeoffs involved in indexing highly repetitive string

collections, with the goal of performing information retrieval tasks on them. Particularly,

we considered the problems of document listing, top-k retrieval, and document counting.

We have developed new indexes that perform particularly well on those types of collec-

tions, and studied how other existing data structures perform in this scenario, and in which

cases the indexes are actually better than brute-force approaches. As a result, we offered

recommendations on which structures to use depending on the kind of repetitiveness

involved and the desired space usage. As a proof of concept, we have shown how the tools

we developed can be assembled to build an efficient index supporting ranked multi-term

queries on repetitive string collections.

We do not aim to outperform inverted indexes on natural language text collecions,

where they are unbeatable, but rather to offer similar capabilities on generic string col-

lections, where inverted indexes cannot be applied. Our developments are at the level of

algorithmic ideas and prototypes. In order to have our most promising structures scale up to

real-world information systems, where inverted indexes are now the norm, various research

problems must be faced:

1. Our construction algorithms scale up to a few gigabytes. This limits the collection

sizes we can handle, even if they are repetitive and thus the final structures are much

smaller. For example, our PDL structure first builds the classical suffix tree and then

samples it. Using construction space proportional to that of the final structures in the

case of repetitive scenarios, or building efficiently using the disk, is an important

research problem.

2. When the datasets are sufficiently large, even the compressed structures will have to

operate on disk. Inverted indexes are extremely disk-friendly, which makes them

perform well on huge text collections. We have not yet studied this aspect of our

structures, although PDL seems well-suited to this case: it traverses one or a few

contiguous lists (which should be decompressed in main memory) or a contiguous area

of the suffix array.

3. Our data structures are static, that is, they must be rebuilt from scratch when

documents are inserted in the collection or deleted from it. Inverted indexes tolerate

updates much better, though they are not fully dynamic either. Instead, since in many

scenarios updates are not so frequent, popular solutions combine a large part of the

collection that is indexed and a small recent part that is traversed sequentially. It is

likely that our structures will also perform well under such a scheme, as long as we

manage to rebuild the index periodically within controlled space and time.

4. We showed that our structures can handle multi-term queries under the simple tf-idf
scoring scheme. While this can be acceptable in some applications for generic string

collections, information retrieval on natural language texts uses, nowadays, much

more sophisticated formulas. Inverted indexes have been adapted to successfully

286 Inf Retrieval J (2017) 20:253–291

123

support those formulas that are used for a first filtration step, such as BM25. Studying

how to extend our indexes to handle these is another interesting research problem.

5. One point where our indexes could outperform inverted indexes is in phrase queries,

where inverted indexes must perform costly list intersections. Our suffix-array based

indexes, instead, need not do anything special. For a fair comparison, we should regard

the text as a sequence of tokens (i.e., the terms that are indexed by the inverted index)

and build our indexes on them. The resulting structure would then only answer term

and phrase queries, just like an inverted index, but would be must faster at phrases.

Acknowledgements This work was supported in part by Academy of Finland Grants 268324, 258308,
250345 (CoECGR), and 134287; the Helsinki Doctoral Programme in Computer Science; the Jenny and
Antti Wihuri Foundation, Finland; the Wellcome Trust Grant 098051, UK; Fondecyt Grant 1-140796, Chile;
the Millennium Nucleus for Information and Coordination in Networks (ICM/FIC P10-024F), Chile; Basal
Funds FB0001, Conicyt, Chile; and European Unions Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie Grant Agreement No. 690941. Finally, we thank the reviewers for their
useful comments, which helped improve the presentation, and Meg Gagie for correcting our grammar.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Detailed results

Table 5 shows the precise numerical results displayed in Fig. 11, to allow for a finer-

grained comparison.

Table 5 Document counting on different datasets

Page Revision Enwiki Influenza Swissprot

Brute-D 59.419 ls 124.286 ls 714.481 ls 4557.310 ls 9.392 ls

0.000 b 0.000 b 0.000 b 0.000 b 0.000 b

PDL-RP 43.356 ls 217.804 ls 1107.470 ls 6221.610 ls 24.848 ls

0.000 b 0.000 b 0.000 b 0.000 b 0.000 b

Sada 0.218 ls 0.213 ls 0.250 ls 0.624 ls 0.246 ls

2.094 b 2.094 b 2.094 b 2.093 b 2.091 b

Sada-P-G 2.030 ls 1.442 ls 1.608 ls 1.291 ls –

1.307 b 2.469 b 2.694 b 2.466 b –

Sada-P-RR 0.852 ls 0.882 ls 1.572 ls 1.356 ls –

0.146 b 2.455 b 2.748 b 2.466 b –

Sada-RR 1.105 ls 0.506 ls 1.013 ls 0.581 ls 0.779 ls

5.885 b 0.125 b 1.223 b 0.007 b 0.076 b

Sada-RR-G 2.268 ls 1.535 ls 2.001 ls 1.046 ls –

1.297 b 0.070 b 1.088 b 0.007 b –

Sada-RR-RR 1.088 ls 0.974 ls 1.960 ls 1.108 ls –

0.136 b 0.056 b 1.142 b 0.007 b –

Sada-Gr 23.750 ls 21.643 ls 18.542 ls 33.502 ls 25.236 ls

0.086 b 0.024 b 0.439 b 0.005 b 0.034 b

Inf Retrieval J (2017) 20:253–291 287

123

http://creativecommons.org/licenses/by/4.0/

Appendix 2: Index construction

Our construction algorithms prioritize flexibility over performance. For example, the

construction of the tf-idf index (Sect. 6) proceeds as follows:

1. Build RLCSA for the collection.

2. Extract the LCP array and the document array from the RLCSA, traverse the suffix

tree by using the LCP array, and build PDL with uncompressed document sets.

3. Compress the document sets using a Re-Pair compressor.

4. Build the Sada-S structure using a similar algorithm as for PDL construction.

See Table 6 for the time and space requirements of building the index for the Wiki
collection.

Scaling the index up for larger collections requires faster and more space-efficient

construction algorithms for its components. There are some obvious improvements:

Table 6 Building the tf-idf index for the Wiki collection

RLCSA PDL Re-Pair
Sada-S Total

Time (min) 10.5 39.2 123 74.7 248

Memory (GB) 19.6 111 202 92.8 202

Construction time in minutes and peak memory usage in gigabytes for RLCSA construction, PDL con-
struction, compressing the document sets using Re-Pair, Sada-S construction, and the entire construction

Table 5 continued

Page Revision Enwiki Influenza Swissprot

Sada-RS 0.742 ls 0.396 ls 0.688 ls 0.584 ls 0.538 ls

5.991 b 0.222 b 1.180 b 0.006 b 0.082 b

Sada-RS-S 0.897 ls 0.492 ls 0.923 ls 0.767 ls 0.545 ls

1.042 b 0.059 b 0.424 b 0.005 b 0.082 b

Sada-RD 1.019 ls 0.521 ls 1.119 ls 0.856 ls 0.792 ls

3.717 b 0.088 b 0.942 b 0.006 b 0.062 b

Sada-RD-S 1.205 ls 0.641 ls 1.316 ls 1.005 ls 0.799 ls

0.989 b 0.046 b 0.374 b 0.005 b 0.062 b

Sada-S 0.604 ls 0.269 ls 0.525 ls 0.439 ls 0.396 ls

5.729 b 0.209 b 1.079 b 0.006 b 0.078 b

Sada-S-S 0.735 ls 0.380 ls 0.755 ls 0.624 ls 0.399 ls

3.432 b 0.142 b 0.823 b 0.006 b 0.078 b

ILCP 4.399 ls 4.482 ls 6.033 ls 7.252 ls 3.414 ls

18.454 b 0.484 b 4.575 b 0.525 b 0.992 b

The average query time in microseconds and the size of the counting structure in bits per symbol. Results on
the Pareto frontier have been highlighted. The baseline document listing methods Brute-D and PDL-RP are
presented as having size 0, as they take advantage of the existing functionalities in the index. We did not
build Sada-P-G, Sada-P-RR, Sada-RR-G, and Sada-RR-RR for Swissprot, because the filter was empty
and the remaining structure was equivalent to Sada or Sada-RR

288 Inf Retrieval J (2017) 20:253–291

123

• RLCSA construction can be done in less memory by building the index in multiple

parts and merging the partial indexes (Sirén 2009). With 100 parts, the indexing of a

repetitive collection proceeds at about 1 MB/s using 2–3 bits per symbol (Sirén 2012).

Newer suffix array construction algorithms achieve even better time/space trade-offs

(Kärkkäinen et al. 2015).

• We can use a compressed suffix tree for PDL construction. The SDSL library (Gog

et al. 2014) provides fast scalable implementations that require around 2 bytes per

symbol.

• We can write the uncompressed document sets to disk as soon as the traversal returns to

the parent node.

• We can build the H array for Sada-S by keeping track of the lowest common ancestor

of the previous occurrence of each document identifier and the current node. If node

v is the lowest common ancestor of consecutive occurrences of a document identifier,

we increment the corresponding cell of the H array. Storing the array requires about a

byte per symbol.

The main bottleneck in the construction is Re-Pair compression. Our compressor requires

24 bytes of memory for each integer in the document sets, and the number of integers

(8.9 billion) is several times larger than the number of symbols in the collection

(1.5 billion). It might be possible to improve compression performance by using a spe-

cialized compressor. If interval DA½‘::r� corresponds to suffix tree node u and the collection
is repetitive, it is likely that the interval DA½‘0::r0� corresponding to the node reached by

taking the suffix link from u is very similar to DA½‘::r�.

References

Anick, P. G., & Flynn, R. A. (1992). Versioning a full-text information retrieval system. In Proceedings of
the 15th annual international ACM conference on research and development in information retrieval
(SIGIR) (pp. 98–111).

Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern information retrieval (2nd ed.). Reading: Addison-
Wesley.

Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., & Raffinot, M. (2015). Composite repetition-aware data
structures. In Proceedings of the 26th annual symposium on combinatorial pattern matching (CPM)
(pp. 26–39).

Broder, A., Eiron, N., Fontoura, M., Herscovici, M., Lempel, R., McPherson, J., et al. (2006). Indexing
shared content in information retrieval systems. In Proceedings of the 10th international conference on
extending database technology (EDBT), LNCS 3896 (pp. 313–330).

Büttcher, S., Clarke, C., & Cormack, G. (2010). Information retrieval: Implementing and evaluating search
engines. Cambridge: MIT Press.

Clark, D. (1996). Compact PAT trees. PhD thesis, University of Waterloo, Canada.
Claude, F., Fariña, A., Martı́nez-Prieto, M., & Navarro, G. (2010). Compressed q-gram indexing for highly

repetitive biological sequences. In Proceedings of the 10th international conference on bioinformatics
and bioengineering (BIBE) (pp. 86–91).

Claude, F., Fariña, A., Martı́nez-Prieto, M., & Navarro, G. (2016). Universal indexes for highly repetitive
document collections. Information Systems, 61, 1–23.

Claude, F., & Munro, I. (2013). Document listing on versioned documents. In Proceedings of the 20th
international symposium on string processing and information retrieval (SPIRE), LNCS 8214 (pp.
72–83).

Claude, F., & Navarro, G. (2010). Self-indexed grammar-based compression. Fundamenta Informaticae,
111(3), 313–337.

Claude, F., & Navarro, G. (2012). Improved grammar-based compressed indexes. In Proceedings of the 19th
international symposium on string processing and information retrieval (SPIRE), LNCS 7608 (pp.
180–192).

Inf Retrieval J (2017) 20:253–291 289

123

Dhaliwal, J., Puglisi, S. J., & Turpin, A. (2012). Practical efficient string mining. IEEE Transactions on
Knowledge and Data Engineering, 24(4), 735–744.

Do, H. H., Jansson, J., Sadakane, K., & Sung, W. K. (2014). Fast relative Lempel–Ziv self-index for similar
sequences. Theoretical Computer Science, 532, 14–30.

Ferrada, H., & Navarro, G. (2013). A Lempel–Ziv compressed structure for document listing. In Pro-
ceedings of the 20th international symposium on string processing and information retrieval (SPIRE),
LNCS 8214 (pp. 116–128).

Fischer, J., & Heun, V. (2011). Space-efficient preprocessing schemes for range minimum queries on static
arrays. SIAM Journal on Computing, 40(2), 465–492.

Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., & Puglisi, S. J., (2012a) A faster grammar-based
self-index. In Proceedings of the 6th international conference on language and automata theory and
applications (LATA), LNCS 7183 (pp. 240–251).

Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., & Puglisi, S. J. (2014). LZ77-based self-indexing
with faster pattern matching. In Proceedings of the 11th Latin American theoretical informatics
symposium (LATIN), LNCS 8392 (pp. 731–742).

Gagie, T., Hartikainen, A., Kärkkäinen, J., Navarro, G., Puglisi, S. J., & Sirén, J. (2015). Document counting
in compressed space. In Proceedings of the 25th data compression conference (DCC) (pp. 103–112).

Gagie, T., Karhu, K., Navarro, G., Puglisi, S. J., & Sirén, J. (2013). Document listing on repetitive col-
lections. In Proceedings of the 24th annual symposium on combinatorial pattern matching (CPM),
LNCS 7922 (pp. 107–119).

Gagie, T., Navarro, G., & Puglisi, S. J. (2012b). New algorithms on wavelet trees and applications to
information retrieval. Theoretical Computer Science, 426–427, 25–41.

Gog, S., Beller, T., Moffat, A., & Petri, M. (2014). From theory to practice: Plug and play with succinct data
structures. In Proceedings of the 13th international symposium on experimental algorithms (SEA),
LNCS 8504 (pp. 326–337).

Gog, S., & Navarro, G. (2015a). Improved single-term top-k document retrieval. In Proceedings of the 17th
workshop on algorithm engineering and experiments (ALENEX) (pp. 24–32).

Gog, S., & Navarro, G. (2015b). Improved single-term top-k document retrieval. In Proceedings of the 17th
Workshop on Algorithm Engineering and Experiments (ALENEX) (pp. 24–32).

Grossi, R., Gupta, A., & Vitter, J. (2003). High-order entropy-compressed text indexes. In Proceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 841–850).

He, J., & Suel, T. (2012). Optimizing positional index structures for versioned document collections. In
Proceedings of the 35th international ACM conference on research and development in information
retrieval (SIGIR) (pp. 245–254).

He, J., Yan, H., & Suel, T. (2009) Compact full-text indexing of versioned document collections. In
Proceedings of the 18th ACM international conference on information and knowledge management
(CIKM) (pp. 415–424).

He, J., Zeng, J., & Suel, T. (2010). Improved index compression techniques for versioned document
collections. In Proceedings of the 19th ACM international conference on information and knowledge
management (CIKM) (pp. 1239–1248).

Hernández, C., & Navarro, G. (2014). Compressed representations for web and social graphs. Knowledge
and Information Systems, 40(2), 279–313.

Hon, W. K., Patil, M., Shah, R., Thankachan, S. V., & Vitter, J. S. (2013). Indexes for document retrieval
with relevance. Space-Efficient Data Structures, Streams, and Algorithms, LNCS, 8066, 351–362.

Kärkkäinen, J., Kempa, D., & Puglisi, S. J. (2015). Parallel external memory suffix sorting. In Proceedings
of the 26th annual symposium on combinatorial pattern matching (CPM), LNCS 9133 (pp. 329–342).

Konow, R., & Navarro, G. (2013). Faster compact top-k document retrieval. In Proceedings of the 23rd data
compression conference (DCC) (pp. 351–360).

Kreft, S., & Navarro, G. (2013). On compressing and indexing repetitive sequences. Theoretical Computer
Science, 483, 115–133.

Larsson, N. J., & Moffat, A. (2000). Off-line dictionary-based compression. Proceedings of the IEEE,
88(11), 1722–1732.

Macdonald, C., McCreadie, R., Santos, R., & Ounis, I. (2012). From puppy to maturity: Experiences in
developing Terrier. In Proceedings of the SIGIR 2012 workshop in open source information retrieval
(pp. 60–63).

Mäkinen, V., Navarro, G., Sirén, J., & Välimäki, N. (2010). Storage and retrieval of highly repetitive
sequence collections. Journal of Computational Biology, 17(3), 281–308.

Manber, U., & Myers, G. (1993). Suffix arrays: A new method for on-line string searches. SIAM Journal on
Computing, 22(5), 935–948.

290 Inf Retrieval J (2017) 20:253–291

123

Marschall, T., et al (2016). Computational pan-genomics: Status, promises and challenges. Tech. rep., Cold
Spring Harbor bioRxiv. http://biorxiv.org/content/early/2016/03/29/043430.

Muthukrishnan, S. (2002). Efficient algorithms for document retrieval problems. In Proceedings of the 13th
annual ACM–SIAM symposium on discrete algorithms (SODA) (pp. 657–666).

Navarro, G. (2004). Indexing text using the Ziv–Lempel trie. Journal of Discrete Algorithms, 2(1), 87–114.
Navarro, G. (2014). Spaces, trees and colors: The algorithmic landscape of document retrieval on sequences.

ACM Computing Surveys, 46(4), article 52.
Navarro, G., & Mäkinen, V. (2007). Compressed full-text indexes. ACM Computing Surveys, 39(1),

article 2.
Navarro, G., & Nekrich, Y. (2012). Top-k document retrieval in optimal time and linear space. In Pro-

ceedings of the 23rd annual ACM–SIAM symposium on discrete algorithms (SODA) (pp. 1066–1078).
Navarro, G., & Ordóñez, A. (2014). Grammar compressed sequences with rank/select support. In Pro-

ceedings of the 21st international symposium on string processing and information retrieval (SPIRE),
LNCS 8799 (pp. 31–44).

Navarro, G., Puglisi, S. J., & Sirén, J. (2014a). Document retrieval on repetitive collections. In Proceedings
of the 22nd annual european symposium on algorithms (ESA B), LNCS 8737 (pp. 725–736).

Navarro, G., Puglisi, S. J., & Valenzuela, D. (2014b). General document retrieval in compact space. ACM
Journal of Experimental Algorithmics, 19(2), article 3.

Okanohara, D., & Sadakane, K. (2007). Practical entropy-compressed rank/select dictionary. In Proceedings
of the 9th workshop on algorithm engineering and experiments (ALENEX) (pp. 60–70).

Raman, R., Raman, V., & Rao, S.S. (2007). Succinct indexable dictionaries with applications to encoding k-
ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4), article 43.

Rochkind, M. (1975). The source code control system. IEEE Transactions on Software Engineering, 1(4),
364–370.

Sadakane, K. (2007). Succinct data structures for flexible text retrieval systems. Journal of Discrete
Algorithms, 5, 12–22.

Sirén, J. (2009). Compressed suffix arrays for massive data. In Proceedings of the 16th symposium on string
processing and information retrieval (SPIRE), LNCS 5721 (pp. 63–74).

Sirén, J. (2012). Compressed full-text indexes for highly repetitive collections. PhD thesis, University of
Helsinki.

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., et al. (2015). Big data:
Astronomical or genomical? PLoS Biology, 13(7), e1002,195.

Szpankowski, W. (1993). A generalized suffix tree and its (un)expected asymptotic behaviors. SIAM Journal
on Computing, 22(6), 1176–1198.

Välimäki, N., & Mäkinen, V. (2007) Space-efficient algorithms for document retrieval. In Proceedings of
the 18th annual symposium on combinatorial pattern matching (CPM), LNCS 4580 (pp. 205–215).

Weiner, P. (1973). Linear pattern matching algorithm. In Proceedings of the 14th annual IEEE symposium
on switching and automata theory (pp. 1–11).

Inf Retrieval J (2017) 20:253–291 291

123

http://biorxiv.org/content/early/2016/03/29/043430

	Document retrieval on repetitive string collections
	Abstract
	Introduction
	Preliminaries
	Suffix trees and arrays
	Rank and select on sequences
	Document listing

	Interleaved LCP
	The ILCP array
	ILCP on repetitive collections
	Document listing
	Document counting

	Precomputed document lists
	Document listing
	Top-k retrieval

	Engineering a document counting structure
	The basic bitvector
	Compressing the bitvector
	Analysis

	A multi-term index
	Experiments and discussion
	Experimental setup
	Document collections
	Queries
	Test environment

	Document listing
	Indexes
	Results

	Top-k retrieval
	Indexes
	Results

	Document counting
	Indexes
	Results

	The multi-term {{\textsf{tf}}}{{\hbox{-}}}{{\textsf{idf}}} index

	Conclusions
	Acknowledgements
	Appendix 1: Detailed results
	Appendix 2: Index construction
	References

