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Observation weights unlock bulk RNA-seq
tools for zero inflation and single-cell
applications
Koen Van den Berge1,2†, Fanny Perraudeau3†, Charlotte Soneson4,5, Michael I. Love6,
Davide Risso7, Jean-Philippe Vert8,9,10,11, Mark D. Robinson4,5, Sandrine Dudoit3,12†

and Lieven Clement1,2†*

Abstract

Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an
excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the
development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have
shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We
introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts
and generates gene- and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting
performance for scRNA-seq.

Keywords: Single-cell RNA sequencing, Differential expression, Zero-inflated negative binomial, Weights

Background
Transcriptomics has become one of the standard tools
in modern biology for unraveling the molecular basis
of biological processes and diseases. One of the most
common applications of transcriptome profiling is the
discovery of differentially expressed (DE) genes, which
exhibit changes in expression levels across conditions
[1–3]. Over the last decade, transcriptome sequencing
(RNA-seq) has become the standard technology for tran-
scriptome profiling, enabling researchers to study average
gene expression over bulks of thousands of cells [4, 5].
The advent of single-cell RNA-seq (scRNA-seq) enables
high-throughput transcriptome profiling at the resolution
of single cells and allows, among other things, research on
cell developmental trajectories, cell-to-cell heterogeneity,
and the discovery of novel cell types [6–11].
In scRNA-seq, individual cells are first captured, their

RNA is then reverse-transcribed into cDNA, which is
greatly amplified from the minute amount of starting

*Correspondence: lieven.clement@ugent.be
†Equal contributors
1Department of Applied Mathematics, Computer Science and Statistics, Ghent
University, Krijgslaan 281, S9, 9000 Ghent, Belgium
2Bioinformatics Institute Ghent, Ghent University, 9000 Ghent, Belgium
Full list of author information is available at the end of the article

material, and the resulting library is finally sequenced
[12]. Transcript abundances are typically estimated by
counts that represent the number of sequencing reads
mapping to an exon, transcript, or gene. Many scRNA-
seq protocols have been published for such core steps
[13–18], but despite these advances, scRNA-seq data
remain inherently noisy. Dropout events cause many
transcripts to go undetected for technical reasons, such
as inefficient cDNA polymerization, amplification bias,
or low sequencing depth, leading to an excess of zero read
counts compared to bulk RNA-seq data [18, 19]. In addi-
tion, excess zeros can also occur for biological reasons,
such as transcriptional bursting [20]. There are, therefore,
two types of zeros in scRNA-seq data: biological zeros,
when a gene is simply not expressed in the cell, and
technical zeros (i.e., dropouts), when a gene is expressed
in the cell but not detected. Zero inflation, i.e., excess
zeros compared to standard count distributions (e.g.,
negative binomial) used in bulk RNA-seq, occurs for both
biological and technical reasons and disentangling the
two sources is not trivial. In addition, scRNA-seq counts
are inherently more variable than bulk RNA-seq counts
because the transcriptional signal is not averaged across
thousands of individual cells (Additional file 1: Figure S1),
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making cell-to-cell heterogeneity, cell-type mixtures, and
stochastic expression bursts important contributors to
between-sample variability [7, 21].
Typical scRNA-seq data analysis workflows often

involve identifying cell types in silico using tailored clus-
tering algorithms [22, 23] or ordering cells along devel-
opmental trajectories, where cell types are defined as
terminal states of the developmental process [6, 24–26].
A natural subsequent step is the discovery of marker
genes for the defined cell types by assessing differential
gene expression between these groups. Another common
setting is the identification of marker genes for a pri-
ori known cell types. DE analysis between homogeneous
cell populations, as in the aforementioned scRNA-seq
applications, is the use case for our method.
Popular bulk RNA-seq DE tools, such as those imple-

mented in the Bioconductor R packages EDGER [2] and
DESEQ2 [1], assume a negative binomial (NB) count
distribution across biological replicates, while limma-
voom [3] uses linear models for log-transformed counts
and observation-level weights to account for the mean–
variance relationship of the transformed count data. Such
tools can also be applied for scRNA-seq DE analysis [27].
However, dropouts, transcriptional bursting, and high
variability in scRNA-seq data raise concerns about their
validity. This has triggered the development of novel dedi-
cated tools, which typically introduce an additional model
component to account for the excess of zeros through, for
example, zero-inflated (SCDE, Kharchenko et al. [28]) or
hurdle (MAST, Finak et al. [19]) models. However, Jaakkola
et al. [29] and Soneson and Robinson [30] have recently
shown that these bespoke tools do not provide systematic
benefits over standard bulk RNA-seq tools in scRNA-seq
applications.
We argue that standard bulk RNA-seq tools, however,

still suffer in performance due to zero inflation with
respect to the NB distribution. We illustrate this using
biological coefficient of variation (BCV) plots [31], which
represent the mean–variance relationship of the counts.
Note that the BCV plots of scRNA-seq data exhibit
striped patterns (Fig. 1a,b and Additional file 1: Figure
S2 for scRNA-seq datasets subsampled to ten cells),
which are indicative of genes with few positive counts
(Additional file 1: Figure S3) and very high dispersion
estimates. Randomly adding zeros to bulk RNA-seq data,
likewise consisting of ten samples, also results in similar
striped patterns (Fig. 1c,d). NB models, as implemented
in DESEQ2 and EDGER, will, thus, accommodate excess
zeros by overestimating the dispersion parameter, which
jeopardizes the power to infer DE. However, by correctly
identifying the excess zeros and downweighting them
in the dispersion estimation and model fitting, one can
reconstruct the original mean–variance relationship
(Fig. 1e), thus recovering the power to detect DE (Fig. 1f).

Hence, identifying and downweighting excess zeros are
the key to unlocking bulk RNA-seq tools for scRNA-seq
DE analysis. Note that methods based on a zero-inflated
negative binomial (ZINB) model naturally implement
such an approach. Excess zeros are attributed weights
through the zero-inflation probability and inference can
focus on the mean of the NB count component.
We, therefore, propose a weighting strategy based on

ZINB models to unlock bulk RNA-seq tools for scRNA-
seq DE analysis. In this manuscript, we build on the ZINB-
based wanted variation extraction (ZINB-WaVE) method
of Risso et al. [23], designed specifically for scRNA-seq
data. ZINB-WaVE efficiently identifies excess zeros and
provides gene- and cell-specific weights to unlock bulk
RNA-seq pipelines for zero-inflated data. As most bulk
RNA-seq DE methods are based on generalized linear
models (GLMs), which readily accommodate observation-
level weights, our approach seamlessly integrates with
standard pipelines (e.g., EDGER, DESEQ2, and LIMMA).
Our method is shown to outperform competing meth-
ods on simulated bulk and single-cell RNA-seq datasets.
We also illustrate our method on two publicly available
real datasets. As detailed in “Software implementation,”
our approach is implemented in open-source Bioconduc-
tor R packages and the code for reproducing the analyses
presented in this manuscript is provided in a GitHub
repository.

Results
ZINB-WaVE extends bulk RNA-seq tools to handle
zero-inflated data
We argue that standard bulk RNA-seq methods for infer-
ring differential gene expression suffer from zero infla-
tion with respect to the assumed NB distribution when
applied to scRNA-seq data. We propose instead modeling
scRNA-seq data using a zero-inflated model and perform
inference on the count component of the model, which
is equivalent to standard NB regression where excess
zeros are downweighted based on posterior probabilities
(weights) inferred from a ZINB model. Such weights play
a central role in many estimation approaches for ZINB
models (e.g., [32]). In this contribution, we show that the
weights can effectively unlock bulk RNA-seq methods
for zero-inflated data, allowing us, in particular, to bor-
row strength across genes to estimate dispersion parame-
ters. Here, we use weights derived from the ZINB-WaVE
method of Risso et al. [23], which is a general and flexible
framework for the extraction of a low-dimensional signal
from scRNA-seq read counts, accounting for zero infla-
tion (i.e., dropouts and bursting), over-dispersion, and the
discrete nature of the data. Note that although we focus
on ZINB-WaVE weights, our weighted DE approach is
generic and researchers can choose to adopt their own
weights.
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Fig. 1 Zero inflation results in overestimated dispersion and jeopardizes power to discover differentially expressed genes. a–e Scatterplots of the
estimated biological coefficient of variation (BCV, defined as the square root of the negative binomial dispersion parameter φ) against average log
counts per million (CPM) computed using EDGER. a BCV plot for the real Buettner et al. [7] scRNA-seq dataset subsampled to n = 10 cells. b BCV plot
for the real Deng et al. [66] scRNA-seq dataset subsampled to n = 10 cells. Both panels (a) and (b) show striped patterns in the BCV plot, which
significantly distort the mean–variance relationship, as represented by the red curve. c BCV plot for a simulated bulk RNA-seq dataset (n = 10),
obtained from the Bottomly et al. [67] dataset using the simulation framework of Zhou et al. [57]. Dispersion estimates generally decrease smoothly
as gene expression increases. d BCV plot for a simulated zero-inflated bulk RNA-seq dataset, obtained by randomly introducing 5% excess zero
counts in the dataset from (c). Zero inflation leads to overestimated dispersion for the genes with excess zeros, resulting in striped patterns, as
observed also for the real scRNA-seq data in panels (a) and (b). e BCV plot for simulated zero-inflated bulk RNA-seq dataset from (d), where excess
zeros are downweighted in dispersion estimation (i.e., weights of 0 for excess zeros and 1 otherwise). Downweighting recovers the original
mean–variance trend. f True positive rate vs. false discovery proportion for the simulated zero-inflated dataset of (d). The performance of EDGER (red
curve) deteriorates in a zero-inflated setting due to overestimation of the dispersion parameter. However, assigning the excess zeros a weight of
zero in the dispersion estimation and model fitting result in a dramatic performance boost (orange curve). Hence, downweighting excess zero
counts is the key to unlocking bulk RNA-seq tools for zero inflation. BCV biological coefficient of variation, CPM counts per million, ZI zero inflated

A ZINB distribution is a two-component mixture
between a point mass at zero and a NB distribution.
Specifically, the density function for the ZINB-WaVE
model is

fZINB
(
yij;μij, θj,πij

) = πijδ0
(
yij

) + (
1 − πij

)
fNB

(
yij;μij, θj

)
, (1)

where yij denotes the read count for cell i and gene j, πij the
mixture probability for zero inflation, fNB(·;μij, θj) the NB
probability mass function with meanμij and dispersion θj,
and δ0 the Dirac delta function (see Eqs. 3 and 4).
The ZINB-WaVE parameterization of the NB mean μ

and zero-inflation probability π in Eq. 4 allows us to adjust
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for both known (e.g., treatment, batch, and quality control
measures) andunknown (RUV (remove unwanted variation))
[33, 34] cell-level covariates, i.e., supervised and unsu-
pervised normalization, respectively. It also allows us to
adjust for known gene-level covariates (e.g., length and
GC content). The ZINB-WaVE model and its associated
penalized maximum likelihood estimation procedure are
described more fully in “Methods” and in Risso et al. [23].
From the ZINB-WaVE density of Eq. 1, one can read-

ily derive the posterior probability that a count yij was
generated from the NB count component:

wij =
(
1 − πij

)
fNB

(
yij;μij, θj

)

fZINB
(
yij;μij, θj,πij

) . (2)

We propose using these probabilities as weights in
bulk RNA-seq DE analysis methods, such as those
implemented in the Bioconductor R packages EDGER,
DESEQ2, and LIMMA (limma-voom method with the

voom function). All of these methods are based on
the methodology of GLMs, which readily accommo-
dates inference based on observation-level weights.
Note that although the ZINB-WaVE weights are gene-
and cell-specific, the GLMs are fitted gene by gene.
Hence, for a given gene, the cell-specific weights are
used as observation-specific weights in the GLMs. The
implementation of the weighting strategy for EDGER,
DESEQ2, and limma-voom is described in greater detail
in “Methods.”

Impact of zero inflation on the mean–variance relationship
We have already noted that adding zeros to bulk RNA-
seq data results in an overestimation of the dispersion
parameter. This leads to striped patterns in the BCV plot
(Fig. 2a), which are indicative of genes with many zeros
(Additional file 1: Figure S3) and very high dispersion
estimates. Our ZINB-WaVE method, however, identifies
many of the introduced excess zeros as such (Fig. 2a,b),

Fig. 2 Impact of zero inflation on mean–variance relationship for simulated bulk RNA-seq and Islam scRNA-seq datasets. Zero inflation distorts the
mean–variance trend in (single-cell) RNA-seq data, but is correctly identified by the ZINB-WaVE method. The top panels represent simulated data
based on the Bottomly et al. [67] bulk RNA-seq dataset (as in Fig. 1), for a two-group comparison with five samples in each group, where 5% of the
counts were randomly replaced by zeros. The bottom panels represent the scRNA-seq dataset [35] from Islam et al. [16]. a The BCV plot shows that
randomly replacing 5% of the read counts with zeros induces zero inflation and distorts the mean–variance trend through overestimating the
dispersion parameters. Points are color-coded according to the average ZINB-WaVE posterior probability for all zeros for a given gene and the blue
line represents the mean–variance trend estimated with EDGER. b Receiver operating characteristic (ROC) curve for identifying excess zeros by the
ZINB-WaVE method. A very good classification precision is obtained. c Downweighting excess zeros using the ZINB-WaVE posterior probabilities
recovers the original mean–variance trend (as indicated with the red line) and inference on the NB count component will now no longer be biased
because of zero inflation. The light blue line represents the estimated mean–variance trend for ZINB-WaVE-weighted EDGER. The blue line is the
trend estimated by unweighted EDGER on zero-inflated data as in panel (a). d The BCV plot for the Islam et al. [16] dataset illustrates the higher
variability of scRNA-seq data compared to bulk RNA-seq data. Note the difference in y-axis scales between (a) and (d). As in (a), zero inflation
induces striped patterns leading to an overestimation of the NB dispersion parameter. e ROC curve for the identification of excess zeros by the
ZINB-WaVE method for scRNA-seq data simulated from the Islam dataset using the simulation framework described in “Methods.” A good
classification precision is obtained, but note the difference with bulk RNA-seq data. The noisier scRNA-seq dataset makes identification of excess
zeros harder. f Using the ZINB-WaVE posterior probabilities as observation weights results in lower estimates of the dispersion parameter, unlocking
powerful differential expression analysis with standard bulk RNA-seq differential expression methods. Note that since many zeros are identified as
excess, the scale of the BCV plot is now similar to that of a standard bulk RNA-seq dataset. The red line is the mean–variance trend for unweighted
EDGER, as in panel (d), and the light blue line is the mean–variance trend for ZINB-WaVE-weighted EDGER. A similar pattern is observed for the
simulated Islam dataset (Additional file 1: Figure S26). BCV biological coefficient of variation, CPM counts per million, NB negative binomial, ROC,
receiver operating characteristic, ZINB zero-inflated negative binomial
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by classifying them in the zero-inflation component
of the ZINB mixture distribution. Using our posterior
probabilities as observation-level weights in EDGER recov-
ers the original BCV plot and mean–variance trend
(Fig. 2c), illustrating the ability of our method to account
for zero inflation. Hence, observation weights provide
the key to unlocking standard bulk RNA-seq tools for
zero-inflated data.
The BCV plot for the Islam et al. [16] scRNA-seq dataset

(Fig. 2d) [35] shows similar striped patterns as for zero-
inflated bulk RNA-seq data. Such patterns are observed
in many single-cell datasets (Additional file 1: Figure S2).
ZINB-WaVE identifies many zeros to be excess for the
Islam dataset. It also provides good classification power
for excess zeros for data simulated from the Islam dataset
(Fig. 2e). Incorporating the ZINB-WaVE weights in an
EDGER analysis removes the striped patterns and yields
a BCV plot that is similar to that for bulk RNA-seq data
(Fig. 2f), suggesting that zero inflation was indeed present
and accounted for.

High power and false positive control on simulated
(sc)RNA-seq data
We provide a scRNA-seq data simulation paradigm that
retains gene-specific characteristics as well as global asso-
ciations across all genes (see “Methods” for details). More
specifically, we first estimate dataset-specific associations
between zero abundance, sequencing depth, and average
log counts per million (CPM), and then explicitly account
for these associations in our simulation model (Additional
file 1: Figures S4, S5).
The scRNA-seq simulation study is based on three

datasets: the Islam et al. [16] dataset [35], comparing
48 embryonic stem cells to 44 embryonic fibroblasts in
mouse; a subset of the Trapnell et al. [36] dataset, compar-
ing differentiating human myoblasts at the 48 h (85 cells)
and 72 h (64 cells) timepoints; and a 10x Genomics
peripheral blood mononuclear cell (PBMC) dataset (see
“Real datasets” in “Methods” for details). The datasets dif-
fer in throughput, sequencing depth, and extent of zero
inflation. For example, Additional file 1: Figure S6 shows
a higher proportion of excess zeros in the Islam dataset
compared to the Trapnell dataset, an observation further
supported because the Islam and Trapnell datasets con-
tain ∼65% and ∼48% zeros, respectively. 10x Genomics
datasets are known to contain even more zeros. The eval-
uated subset of the PBMC dataset contains ∼87% zeros.
The simulated datasets successfully mimic the charac-
teristics of the original datasets, as evaluated with the
R package COUNTSIMQC [37] (Additional files 2, 3,
and 4). This diverse range of datasets is, therefore, rep-
resentative of scRNA-seq datasets that occur in prac-
tice and it is a suitable basis for method evaluation and
comparison.

We evaluate the performance of the method in terms
of sensitivity and false positive control using false discov-
ery proportion vs. true positive rate (FDP-TPR) curves.
Figure 3 (Additional file 1: Figure S7) illustrates that
manymethods break down on the simulated Islam dataset
due to a high degree of zero inflation. Surprisingly, even
methods specifically developed to deal with excess zeros,
like SCDE and METAGENOMESEQ, suffer from poor per-
formance, with MAST being a notable exception. The
DESEQ2 methods, however, are able to cope with the
high degree of zero inflation. Note that, in general, it is
a good strategy to disable the outlier imputation step in
DESEQ2, since it deteriorates performance on scRNA-seq
data (Additional file 1: Figure S8).

Fig. 3 Comparison of differential expression methods on simulated
scRNA-seq data. a scRNA-seq data simulated from the Islam et al. [16]
dataset (n = 90). b scRNA-seq data simulated from the Trapnell et al.
[36] dataset (n = 150). Differential expression methods are compared
based on scatterplots of the true positive rate (TPR) vs. the false
discovery proportion (FDP). Zoomed versions of the FDP-TPR curves
are shown here and the full curves are in Additional file 1: Figure S7.
Circles represent working points on a nominal 5% FDR level and are
filled if the empirical FDR (i.e., FDP) is below the nominal FDR.
Methods based on ZINB-WaVE weights clearly outperform other
methods for both simulated datasets. Note that the methods differ in
performance between datasets, possibly because of a higher degree
of zero inflation in the Islam dataset. The SCDE and METAGENOMESEQ
methods, which were specifically developed to deal with excess
zeros, are outperformed in both simulations by ZINB-WaVE-based
methods and by DESEQ2. The DESEQ2 curve in panel (a) is cut off due
to not available NA (not available) adjusted p-values resulting from
independent filtering. The behavior in the lower half of the curve for
MAST in (b) is due to a smooth increase in true positives with an
identical number of false positives over a range of low FDR cut-offs.
The curve for NODES is not visible on this figure. It is shown only in the
full FDP-TPR curves. FDP false discovery proportion, FDR false
discovery rate, TPR true positive rate
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SEURAT, limma-voom, and SCDE have very low sensitiv-
ity. The methods based on ZINB-WaVE weights dominate
all competitors in terms of sensitivity and specificity, pro-
viding high power, good false discovery rate (FDR) con-
trol, and sensible p-value distributions (Additional file 1:
Figure S9). Note that the remaining methods also suffer
from poor FDR control.
Since zero inflation is fairly modest for the Trapnell

dataset, most methods perform better than for the Islam
simulation (Fig. 3). The ZINB-WaVE-based methods and
DESEQ2 outperform the remaining methods in terms
of sensitivity and provide good FDR control. EDGER is
their closest competitor. The remaining methods pro-
vide much lower sensitivity and/or very liberal FDR con-
trol. Note how bespoke scRNA-seq methods seem to
break down on datasets with a lower degree of zero
inflation, often providing too liberal or too conserva-
tive p-value distributions, while ZINB-WaVE-basedmeth-
ods, in general, show a reasonable p-value distribution,
with an enrichment of low p-values and approximately
uniformly distributed larger p-values (Additional file 1:
Figure S10).
Typical 10x Genomics datasets contain a high num-

ber of cells with shallow sequencing depth, due to the
extreme multiplexing of libraries. As a result, counts
and hence, estimated NB means are lower, making zeros
more plausible according to the NB distribution and
excess zeros, thus, harder to identify. This is picked up
by the simulation framework, where only ∼8% of the
genes were simulated to have at least one excess zero in
n = 1200 samples. Bulk RNA-seq methods can, hence, be
expected to be among the top performers. Figure 4 shows
FDP-TPR curves for the 10x Genomics simulation study,
demonstrating the good performance of bulk RNA-seq
methods EDGER and DESEQ2. ZINB-WaVE EDGER and
ZINB-WaVE DESEQ2 are among the top performers, hav-
ing comparable or slightly lower performance compared
to their unweighted counterparts. MAST is their closest
competitor, providing good sensitivity and FDR control.
SCDE, NODES, METAGENOMESEQ, and limma-voom
have lower sensitivity and/or very liberal FDR control
compared to the dominant methods. These results sug-
gest that, in a scenario of low counts or low degree of
zero inflation, ZINB-WaVE-weighted EDGER/DESEQ2
reduce to standard unweighted EDGER/DESEQ2, while
other bespoke scRNA-seq tools may deteriorate in
performance. This is further supported by results on sim-
ulated bulk RNA-seq data, where ZINB-WaVE-weighted
EDGER/DESEQ2 have similar performance as standard
unweighted EDGER/DESEQ2 in the absence of zero
inflation (Additional file 1: Figure S11). Hence, adopting
ZINB-WaVE-based DE methods provides a performance
boost in zero-inflated applications, while performance is
similar in the absence of zero inflation.

Fig. 4 Comparison of differential expression methods on simulated
scRNA-seq datasets. Differential expression methods are compared
based on FDP-TPR curves for data simulated from a 10x Genomics
PBMC single-cell RNA-seq dataset (n = 1200). Zoomed versions of the
FDP-TPR curves are shown here and full curves are in Additional file 1:
Figure S12. Circles represent working points on a nominal 5% FDR
level and are filled if the empirical FDR (i.e., FDP) is below the nominal
FDR. 10x Genomics sequencing typically involves high-throughput
and massive multiplexing, resulting in very shallow sequencing
depths and thus, low counts, making it extremely difficult to identify
excess zeros. Unweighted and ZINB-WaVE-weighted EDGER are tied
for best performance, followed by ZINB-WaVE-weighted DESEQ2. In
general, bulk RNA-seq methods perform well in this simulation,
probably because the extremely high zero abundance in
combination with low counts can be reasonably accommodated by
the negative binomial distribution. The behavior in the lower half of
the curve for NODES is due to a smooth increase in true positives with
an identical number of false positives over a range of low FDR
cut-offs. FDP false discovery proportion, FDR false discovery rate,
PBMC peripheral blood mononuclear cell, TPR true positive rate

All analyses performed in this work are based on esti-
mating one common dispersion parameter across all
genes for the ZINB-WaVE model. ZINB-WaVE allows the
estimation of genewise dispersion parameters; however,
this approach is much more computationally intensive
and can be an order of magnitude slower. Additional
file 1: Figures S7 and S12 show that estimating genewise
dispersion parameters does not seem to be required for
calculating the ZINB-WaVE weights, since no gain in per-
formance is achieved when doing so. Note that genewise
dispersions are still estimated by EDGER and DESEQ2 in
the final DE inference procedure.
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False positive rate control
We compared our ZINB-WaVE-weight-based method to
commonly used DEmethods for mock comparisons based
on two publicly available real scRNA-seq datasets. We
assessed performance based on the per-comparison error
rate (PCER), defined as the proportion of false positives
(i.e., type I errors) among all genes being considered for
DE, where a gene is declared DE if its nominal unadjusted
p-value is less than or equal to 0.05.
The first dataset, referred to as the Usoskin [11] dataset,

is for 622 mouse neuronal cells from the dorsal root gan-
glion, classified into 11 categories. The authors acknowl-
edge the existence of a batch effect related to the picking
session for the cells. We find that the batch effect is
not only associated with expression measures, but also
influences the relationship between sequencing depth and
zero abundance (Fig. 5a) [38]. The large differences in
sequencing depths between batches attenuate the over-
all association with zero abundance when cells are pooled
across batches (Fig. 5a). We, therefore, added a covari-
ate to account for the batch effect in both the NB

mean (μ) and the zero-inflation probability (π ) of the
ZINB-WaVE model used to produce the weights for
DE analysis. Adjusting for the batch yields weights with
a slightly higher mode near zero, suggesting a more
informative discrimination between excess and NB zeros
(Fig. 5b). Although the batch effect is small in terms of
the weights, this illustrates the generality and flexibility
of our ZINB-WaVE weighting approach. With a suitable
parameterization of both the NB mean and zero-inflation
probability, one can adjust for effects that can bias the
weights and hence the DE results.
For the Usoskin dataset, we assessed false positive con-

trol by comparing the actual vs. the nominal PCER for
mock null datasets where none of the genes are expected
to be DE. Specifically, we generated 30 mock datasets
where, for each dataset, two groups of 45 cells each were
created by sampling 15 cells at random without replace-
ment from each of the three picking sessions. Sampling
cells within batch allows us to control for potential con-
founding by the batch variable. For each of the 30 mock
datasets, we considered seven methods to identify genes

Fig. 5 False positive control onmock null Usoskin datasets (n = 622 cells). a The scatterplot and GLM fits (R glm function with family=binomial),
color-coded by batch (i.e., picking sessions Cold, RT-1, and RT-2), illustrate the association of zero abundance with sequencing depth. The three
batches differ in their sequencing depths, causing an attenuated global relationship when pooling cells across batches (blue curve). Adjusting for
the batch effect in the ZINB-WaVE model allows us to account for the relationship between sequencing depth and zero abundance properly.
b Histogram of ZINB-WaVE weights for zero counts for original Usoskin dataset, with (white) and without (green) including batch as a covariate in
the ZINB-WaVE model. The higher mode near zero for batch adjustment indicates that more counts are classified as dropouts, suggesting a more
informative discrimination between excess and negative binomial zeros. c Box plot of per-comparison error rate (PCER) for 30 mock null datasets for
each of seven differential expression methods. ZINB-WaVE-weighted methods are highlighted in blue. d Histogram of unadjusted p-values for one
of the datasets in (c). ZINB-WaVE was fitted with the intercept, cell-type covariate (actual or mock), and batch covariate (unless specified otherwise)
in X, V = 1J , K = 0 forW, common dispersion, and ε = 1012. GLM generalized linear model, PCER per-comparison error rate
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that are DE between the two groups and declared a gene
DE if its nominal unadjusted p-value was less than or
equal to 0.05. For these mock datasets, any gene declared
DE between the two groups is a false positive. Thus, for
each method, the nominal PCER of 0.05 is compared to
the actual PCER, which is simply the proportion of genes
declared DE (Fig. 5c,d).
The seven methods considered are: unweighted and

ZINB-WaVE-weighted EDGER, unweighted and ZINB-
WaVE-weighted DESEQ2, unweighted limma-voom
(ZINB-WaVE-weighted limma-voom was found to per-
form poorly in the simulation study and hence, is not
considered here), MAST, and SCDE (see “Methods” for
details). EDGER and DESEQ2 with ZINB-WaVE weights
and unweighted EDGER controlled the PCER close to
its nominal level (Fig. 5c). The unweighted versions of
DESEQ2, MAST, and SCDE tended to be conservative,
whereas limma-voom tended to be anti-conservative. In
addition, the weighted versions of EDGER and DESEQ2
and unweighted EDGER yielded near uniform p-value
distributions (as expected under this complete null
scenario), while unweighted DESEQ2, MAST, and SCDE
tended to yield conservative p-values (mode near 1) and
limma-voom yielded anti-conservative p-values (mode
near 0) (Fig. 5d).
We also replicated the original analysis of Usoskin et

al. [11], by performing one-against-others tests of DE for
each cell type (Additional file 1: Figure S13). limma-voom
found a high number of DE genes, confirming our results
from the mock evaluations where it was too liberal. The
ZINB-WaVEmethods tended to find a high number of DE
genes, which is promising combined with the good PCER
control seen in the mock comparisons. While introducing
ZINB-WaVE weights in DESEQ2 leads to a higher number

of significant genes on average, the effect is less clear with
EDGER and seems to depend on the contrast.
Similar results were observed for a 10x Genomics

PBMC dataset comprising 2700 single cells sequenced on
an Illumina NextSeq 500 (Additional file 1: Figure S14),
with the distinction that we found a conservative p-value
distribution for ZINB-WaVE-weighted DESEQ2. Since no
information was provided about potential batch effects,
we did not consider batch covariates for this dataset.
Additionally, we examined the PCER and p-value dis-

tributions on mock comparisons while varying the regu-
larization parameter (ε) for the ZINB-WaVE estimation
procedure. Not surprisingly, we observed that the PCER
decreases with increasing ε, i.e., as the parameters of
the ZINB-WaVE model are subjected to more “shrinking”
(Additional file 1: Figures S15 and S16 for the Usoskin and
10x Genomics PBMC datasets, respectively).

Biologically meaningful clustering and DE results
To analyze the 2700 cells from the 10x Genomics PBMC
dataset (see “Methods”), we followed the tutorial available
at http://satijalab.org/seurat/pbmc3k_tutorial.html and
used the R package SEURAT [39]. The major steps of
the pipeline were quality control, data filtering, identifi-
cation of high-variance genes, dimensionality reduction
using the first ten components from principal compo-
nent analysis (PCA), and graph-based clustering. The final
step of the pipeline was to identify genes that are DE
between clusters, to derive cell-type signatures. Two dif-
ferent parameterizations were used for the SEURAT clus-
tering. With one parameterization, a single cluster was
identified for CD4+ T cells, while with another, two CD4+
T-cell subclusters were identified, corresponding to CD4+
naive T cells and CD4+ memory T cells (gold and red

Fig. 6 Biologically meaningful DE results for the 10x Genomics PBMC dataset. a Scatterplot of the first two t-SNE dimensions obtained from the first
ten principal components. Cells are color-coded by clusters found using the SEURAT graph-based clustering method on the first ten principal
components. Pseudo-color images on the right display normalized enrichment scores after gene set enrichment analysis for cell types related to
CD4+ T cells (see “Methods”), for clustering based on b the first ten principal components and cW from ZINB-WaVE with K = 20. For dimensionality
reduction, ZINB-WaVE was fitted with X = 1n , V = 1J , K = 20 forW (based on the Akaike information criterion), common dispersion, and ε = 1012.
To compute the weights for differential expression analysis, ZINB-WaVE was fitted with intercept and cell-type covariate in X, V = 1J , K = 0 forW,
common dispersion, and ε = 1012. Normalized enrichment scores for more cell types are shown in Additional file 1: Figure S17. PCA principal
component analysis

http://satijalab.org/seurat/pbmc3k_tutorial.html
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clusters in Fig. 6a, respectively). At the end of the tuto-
rial, the authors concluded that the memory/naive split
was weak and more cells would be needed to give a better
separation between the two CD4+ T-cell subclusters.
To find DE genes between the two CD4+ T-cell sub-

clusters, we used SEURAT, unweighted EDGER, ZINB-
WaVE-weighted EDGER, MAST, and limma-voom. We
then sought to identify cell types using gene set enrich-
ment analysis (GSEA), with the function fgsea from
the Bioconductor R package FGSEA [40] and gene sets
for 64 immune and stroma cell types from the R pack-
age XCELL [41]. While unweighted EDGER found that one
cluster was enriched in both CD4+ memory and naive T
cells compared to the other cluster, our weighted EDGER
method as well as SEURAT and limma-voom found that
the cluster was enriched in CD4+ T-effector memory,
CD4+ T-central memory, and CD4+ memory T cells, and
depleted in CD4+ naive T cells. MAST found that the
cluster was depleted in CD4+ memory T cells and CD4+
naive T cells, but enriched in CD4+ T-effector mem-
ory and CD4+ T-central memory T cells (see Fig. 6b
and Additional file 1: Figure S17). This suggests that
our ZINB-WaVE weights can successfully unlock EDGER
for zero-inflated data, leading to biologically meaningful
DE genes.
While ZINB-WaVE can be used to compute weights

in a supervised setting with a priori known cell types,
it can also be used to perform dimensionality reduction
in an unsupervised setting. To demonstrate the ability
of our method to find biologically relevant clusters and
DE genes, we performed dimensionality reduction using
ZINB-WaVE with K = 20 unknown covariates (matrix
W, see “Methods”), where K = 20 was chosen using
the Akaike information criterion (AIC) (Additional file 1:
Figure S18). We then usedW, instead of the first ten com-
ponents of PCA as in the SEURAT tutorial, to cluster the
cells using SEURAT graph-based clustering.We found sim-
ilar clusters as the SEURAT clusters, except for the NK-cell
and B-cell clusters, which were partitioned differently and
the cluster with CD4+ T cells (Additional file 1: Figure
S19). Using this new clustering, GSEA showed a better
separation between CD4+ naive T cells and CD4+ mem-
ory T cells for all the methods, suggesting a biologically
meaningful clustering using ZINB-WaVE dimensionality
reduction instead of PCA. The CD4+ T-effector memory,
CD4+ T-central memory, and CD4+ memory cell types
were enriched using limma-voom, unweighted EDGER,
MAST, and SEURAT, but only the CD4+ T-central memory
cell type was depleted using our weighted EDGER method
(Fig. 6c and Additional file 1: Figure S17). As we do not
have prior knowledge about the cells in the different clus-
ters, we are unable to say whether the cluster is more
representative of the CD4+ T-effector memory cell type
or if our method missed the enrichment in the CD4+ T-

central memory cell type. However, it is interesting that
using ZINB-WaVE to account for zero inflation in the
clustering allowed EDGER to find results that seem more
biologically meaningful than without accounting for zero
inflation.
Finally, using a Benjamini and Hochberg [42] adjusted

p-value cut-off of 0.05, limma-voom declared 433 and 194
DE genes and weighted EDGER 371 and 151, for clus-
tering based on, respectively, the first ten PCs and W
fromZINB-WaVE.We additionally showed onmock com-
parisons for the same 10x Genomics PBMC dataset that
limma-voom had a greater actual PCER than weighted
EDGER (Additional file 1: Figure S14), suggesting that
some of the DE genes found by limma-voom are likely to
be false positives. This belief is reinforced by the skewed
distribution of limma-voom p-values (Additional file 1:
Figure S20).

Alternative approaches to weight estimation
ZINB-WaVE is one particular approach for fitting a
ZINB model to scRNA-seq data. However, our proposed
data analysis strategy for unlocking conventional RNA-
seq tools with ZINB observation-level weights is not
restricted to ZINB-WaVE-based workflows. In particular,
we illustrate the use of weights estimated by the ZINGER
method, an expectation-maximization algorithm, which
we developed earlier and which builds upon EDGER for
estimating the NB parameters of the ZINB model [43].
The ZINB-WaVE and ZINGER approaches differ in the
following respects. The ZINGER weights are based on a
constant cell-specific excess zero probability πi for each
cell i, while the ZINB-WaVE excess zero probability πij
is both cell- and gene-specific, a strategy that has also
been advocated in recent methods [19, 22]. Secondly, the
ZINB-WaVE NB mean μ and zero-inflation probability
π are modeled in terms of both wanted and unwanted
cell- and gene-level covariates, allowing normalization for
a variety of nuisance technical effects. Thirdly, differ-
ent parameter estimation strategies are adopted. Param-
eters from the ZINGER model are estimated with an
expectation-maximization algorithm, whereas those from
the ZINB-WaVE model are estimated using a penalized
maximum likelihood approach. Finally, methods based on
ZINGER weights have the property of converging to their
unweighted counterparts in the absence of zero inflation.
In terms of performance, based on the simulation study

on full-length protocols, ZINGER workflows dominate
both bulk RNA-seq and dedicated scRNA-seq methods,
but were found to be inferior in terms of sensitivity to
ZINB-WaVE workflows (Additional file 1: Figure S21).
However, for the Usoskin dataset, ZINGER seems to find
a higher number of DE genes than ZINB-WaVE and
its bulk RNA-seq counterparts (Additional file 1: Figure
S22), while also controlling the PCER in mock evaluations
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(Additional file 1: Figure S23). Due to the computational
burden of the ZINGER method, we were unable to apply
it to large-scale datasets, such as those from the 10x
Genomics platform, thus limiting our comparison.

Computational time
The better performance of our ZINB-WaVE-weighted DE
method comes at a computational cost, since we first fit
ZINB-WaVE to the entire cells-by-genes matrix of read
counts to compute the weights and then use a weighted
version of DESEQ2 or EDGER for inferring DE. To give
the reader an idea of how different methods scale in
terms of computation time, we benchmarked three differ-
ent datasets: the Islam dataset (92 cells), one of the mock
null Usoskin datasets used in Fig. 5 (90 cells), and the
CD4+ T-cell cluster of the 10x Genomics PBMC dataset
(1151 cells). For each dataset, 10,000 genes were sampled
at random and the two cell types were used as covariates.
For the Usoskin dataset, batch was added as a covariate
for all methods. For all datasets, the fastest method was
limma-voom followed by EDGER (Additional file 1: Figure
S24). As DESEQ2 was slower than EDGER, not surprisingly
weighted DESEQ2 was also slower than weighted EDGER,
especially for the 10x Genomics PBMC dataset.

Discussion
This manuscript focused on adapting standard bulk RNA-
seq DE tools to handle the severe zero inflation present
in scRNA-seq data. We proposed a simple and general
approach that integrates seamlessly with a range of pop-
ular DE software packages, such as EDGER and DESEQ2.
Themain idea is to use weights for zero inflation in the NB
model underlying bulk RNA-seq methods. In particular,
the weights are based on the ZINB-WaVEmethod of Risso
et al. [23]. The general and flexible ZINB-WaVE frame-
work allows us to extract a low-dimensional signal from
scRNA-seq read counts, accounting for zero inflation (e.g.,
dropouts), over-dispersion, and the discrete nature of the
data. In particular, the ZINB-WaVE model allows for read
count normalization through an appropriate parameteri-
zation of the NB means and zero-inflation probabilities in
terms of both gene- and cell-level covariates.
Our results complement the findings of Jaakkola et al.

[29] and Soneson and Robinson [30] that bespoke scRNA-
seq tools do not systematically improve upon bulk RNA-
seq tools. Although MAST, METAGENOMESEQ, and SCDE
were explicitly developed to handle excess zeros, they suf-
fer from poor performance in a high zero-inflation setting,
as demonstrated in the simulation study.
The value of our method was demonstrated for scRNA-

seq protocols relying on both standard (Islam, Usoskin,
and Trapnell datasets) and unique molecular identifier
(UMI) (10x Genomics PBMC dataset) read counting.
UMIs were recently proposed to reduce measurement

variability across samples [15]. In UMI-based protocols,
transcripts are labeled with a small random UMI barcode
prior to amplification. After amplification and sequenc-
ing, one enumerates the unique UMIs found for every
transcript, which correspond to individual sequenced
UMI-labeled transcripts. There is some evidence in the
literature that zero inflation is less of a problem for UMI-
based than for full-length protocols and that UMI read
counts could follow a NB distribution [44, 45]. Hence,
our method also provides good results for UMI-based
data with limited zero inflation, demonstrating its broad
applicability.
In the simulation study, power to detect DE was gen-

erally lower for 10x Genomics UMI datasets (Fig. 4) than
for full-length protocol datasets (Fig. 3). While the 10x
Genomics platform has the advantage of an extremely
high throughput, allowing many cells to be character-
ized, the resulting datasets often have the disadvantage
of low library sizes, a logical consequence of UMI count-
ing and of the trade-off between sequencing depth and
number of cells to be sequenced in one sequencing run.
As a result, the sequencing depth of these datasets is
much lower than that of bulk RNA-seq datasets, making
it harder to identify excess zeros and assess DE, even in
large sample size settings. Although the 10x Genomics
platform may be well suited for hypothesis generation,
e.g., through cell-type discovery or lineage trajectory stud-
ies, full-length protocols may be more appropriate for
discovering marker genes between inferred cell types or
trajectories, an approach that has also been adopted in
previous studies [46].
We have used ZINB-WaVE in conjunction with either

EDGER or DESEQ2. However, the ZINB-WaVE poste-
rior probabilities could be used as weights to unlock
other standard RNA-seq workflows in zero-inflation sit-
uations. Additional file 1: Figure S7 shows that ZINB-
WaVE weights combined with heteroscedastic weights in
limma-voom also increase power in a scRNA-seq con-
text, although this may be at the expense of type I
error control.
The ZINB-WaVE method penalizes the L2 norm of

the parameter estimates for regularization purposes. It
requires a penalty parameter ε that is rescaled differently
for gene-specific parameters, cell-specific parameters,
and dispersion parameters [23]. All analyses in this
manuscript were performed with ε = 1012, to provide
consistently comparable results. However, the optimal
value of ε is dataset-specific and further research is
needed to provide a data-driven approach for select-
ing an optimal ε. Indeed, based on our simulations,
the value of the penalty parameter can have a pro-
found influence on the results (Additional file 1: Figure
S25), but we found ε = 1012 to have generally good
performance.
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ZINB-WaVE has an option to infer latent variables W,
which may correspond to either unmeasured confound-
ing covariates or unmeasured covariates of interest. The
observational weights were computed with the number of
unknown covariates K = 0, i.e., no latent variables were
inferred. To cluster the real datasets, we inferred an opti-
mal choice of K using the AIC (Additional file 1: Figure
S18). However, further investigation is needed to confirm
that the AIC is appropriate for selecting K.
In principle, our proposed ZINB-WaVE model could

also be used to identify DE genes both in terms of the
NB mean and the zero-inflation probability, reflecting,
respectively, a continuum in DE and a more binary (i.e.,
presence or absence) DE pattern. In this context, the
parameters of interest are regression coefficients β corre-
sponding to known sample-level covariates in the matrix
X used in eitherμ or π (Eq. 4). DE genes may be identified
via likelihood ratio tests or Wald tests, with the standard
errors of estimators of β obtained from the inverse of the
Hessian matrix of the likelihood function. However, both
types of tests would be computationally costly, as likeli-
hood ratio tests would require refitting the entire model
for each gene and Wald tests would require the Hessian
matrix to be computed and inverted.
In this contribution, we have proposed estimating the

weights using ZINB-WaVE, but other approaches are pos-
sible. It is important to note that while methods such
as ZINB-WaVE and ZINGER can successfully identify
excess zeros, they cannot, however, readily discriminate
between their underlying causes, i.e., between techni-
cal (e.g., dropout) and biological (e.g., bursting) zeros.
Although we cannot make this distinction with the
weights, an increase in bursting rates between cell types,
characterized by higher counts and more zeros [47], can,
however, be picked up by the count component of the
ZINB model.

Conclusion
In summary, we provide a realistic simulation framework
for scRNA-seq data and use the well-tested ZINB-WaVE
method to identify excess zeros successfully and yield
gene- and cell-specific weights for DE analysis in scRNA-
seq experiments. The tools we have developed allow
an integrated workflow for normalization, dimensional-
ity reduction, cell-type discovery, and the identification
of cell-type marker genes. We confirmed that state-of-
the-art scRNA-seq tools do not improve upon common
bulk RNA-seq tools for DE analysis based on scRNA-
seq data. Our workflow, however, outperforms current
methods and has the merit that its performance does not
deteriorate in the absence of zero inflation. The infer-
ence of DE is focused on the count component of the
ZINB model and our method produces posterior proba-
bilities that can be used as observation-level weights by

bulk RNA-seq tools. Hence, our approach unlocks widely
used bulk RNA-seq DE workflows for zero-inflated data
and will assist researchers, data analysts, and developers
in improving power to detect DE in the presence of excess
zeros. The framework is general and applicable beyond
scRNA-seq, to zero-inflated count data structures arising
in applications such as metagenomics [48, 49].

Methods
ZINB-WaVE: Zero-inflated negative binomial-based
wanted variation extraction
Zero-inflated distributions
A major difference between single-cell and bulk RNA-
seq data is arguably the high abundance of zero counts
in the former. Traditionally, excess zeros are dealt with
using hurdle or zero-inflatedmodels, as recently proposed
by Finak et al. [19], Kharchenko et al. [28], and Paulson
et al. [48]. A zero-inflated count distribution is a two-
component mixture distribution between a point mass at
zero and a count distribution, in our case, the NB distribu-
tion, which has been used successfully for bulk RNA-seq
[1–3, 50].
The probability mass function fZINB for the ZINB distri-

bution is given by

fZINB (y;μ, θ ,π) = πδ0(y) + (1 − π) fNB (y;μ, θ) , ∀y ∈ N,
(3)

where π ∈ [0, 1] denotes the mixture probability for zero
inflation, fNB (·;μ, θ) the NB probability mass function
with mean μ and dispersion θ = 1/φ, and δ0(·) the Dirac
function [δ0(y) = +∞ when y = 0 and 0 otherwise and δ0
integrates to one over R, i.e., has cumulative distribution
function equal to I(y ≥ 0)]. Here, π can be interpreted as
the probability of an excess zero, i.e., inflated zero count,
with respect to the NB distribution.
Under a ZINB model, the posterior probability that a

given count y arises from the NB count component is
given by Bayes’ rule:

w = (1 − π) fNB (y;μ, θ)

fZINB (y;μ, θ ,π)
.

As described below, such posterior probabilities can be
used as weights in standard bulk RNA-seq workflows, for
a suitable parameterization of the zero-inflation probabil-
ity and NB mean.

ZINB-WaVEmodel
Given n observations (typically, n single cells) and J fea-
tures (typically, J genes) that can be counted for each
observation, let Yij denote the count of feature j (j =
1, . . . , J) for observation i (i = 1, . . . , n). To account for
various technical and biological effects frequent in single-
cell sequencing technologies, we model Yij as a random
variable following a ZINB distribution with parameters
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μij, θij, and πij, and consider the following regressionmod-
els for these parameters:

ln
(
μij

) =
(
Xβμ + (

Vγμ

)� + Wαμ + Oμ

)

ij
, (4)

logit
(
πij

) =
(
Xβπ + (Vγπ)� + Wαπ + Oπ

)

ij
,

ln(θij) = ζj.

Both the NB mean expression level μ and the zero-
inflation probability π are modeled in terms of observed
sample-level and gene-level covariates (X and V, respec-
tively), as well as unobserved sample-level covariates (W )
that need to be inferred from the data. Oμ and Oπ are
known matrices of offsets. The matrix X can include
covariates that induce a variation of interest, such as cell
types, or covariates that induce unwanted variation, such
as batch or quality control measures. It can also include
a constant column of ones for an intercept that accounts
for gene-specific global differences in mean expression
level or dropout rate. The matrix V can include gene-
level covariates, such as length or GC content. It can
also accommodate an intercept to account for cell-specific
global effects, such as size factors representing differences
in library sizes (i.e., total number of reads per sample).
The unobserved matrix W contains unknown sample-
level covariates, which could correspond to unwanted
variation as in RUV [33, 34] (e.g., a priori unknown
batch effects) or could be of interest as in cluster analy-
sis (e.g., a priori unknown cell types). The model extends
the RUV framework to the ZINB distribution (thus far,
RUV had only been implemented for linear [33] and
log-linear regression [34]). It differs, however, in interpre-
tation from RUV in theWα term, which is not necessarily
considered unwanted and generally refers to unknown
low-dimensional variation. It is important to note that
althoughW is the same, the matrices X and V could differ
in themodeling ofμ and π , if we assume that some known
factors do not affect both.
As detailed in Risso et al. [23], the model is fitted using

a penalized maximum likelihood estimation procedure.

Using ZINB-WaVE weights in DE inference methods
We consider only statistical inference on the count com-
ponent of the mixture distribution, that is, we are con-
cerned with identifying genes whose expression levels
are associated with covariates of interest as parameter-
ized in the mean μ of the NB component. Most popular
bulk RNA-seq methods are based on the methodology of
GLMs, which readily accommodates inference based on
observation-level weights (R function glm), e.g., the NB
model in Bioconductor R packages EDGER and DESEQ2.
Note that although the ZINB-WaVEweights are gene- and
cell-specific, the GLMs are fitted gene by gene. Hence,

for a given gene, the cell-specific weights are used as
observation-specific weights in the GLMs.

EDGER
We extended the EDGER package [2, 50] by fitting a NB
model genewise, with ZINB-WaVE posterior probabili-
ties as observation-level weights in the weights slot of
an object of class DGEList, and estimating the disper-
sion parameter by the usual approximate empirical Bayes
shrinkage. Downweighting is accounted for by adjusting
the degrees of freedom of the null distribution of the test
statistics. Specifically, we reintroduced the moderated F
test from a previous version of EDGER, where the denomi-
nator residual degrees of freedom dfj for a particular gene
j are adjusted by the extent of zero inflation identified for
this gene, i.e., dfj = ∑

i wij − p, where wij is the ZINB-
WaVE weight for gene j in cell i and p the number of
parameters estimated in the NB GLM. This weighted F
test is implemented in the function glmWeightedF from
the Bioconductor R package ZINBWAVE.

DESEQ2
We extended the DESEQ2 package [1] to accommodate
zero inflation by providing the option to use observation-
level weights in the parameter estimation steps. In this
case, the ZINB-WaVEweights are supplied in the weight
slot of an object of class DESeqDataSet.
DESEQ2’s default normalization procedure is based on

geometric means of counts, which are zero for genes with
at least one zero count. This greatly limits the number
of genes that can be used for normalization in scRNA-
seq applications [51].We, therefore, use the normalization
method suggested in the PHYLOSEQ package [52], which
calculates the geometric mean for a gene using only its
positive counts, so that genes with zero counts could still
be used for normalization. The PHYLOSEQ normaliza-
tion procedure can now be applied by setting the argu-
ment type equal to poscounts in the DESEQ2 function
estimateSizeFactors. For single-cell UMI data, for
which the expected counts may be very low, the likeli-
hood ratio test implemented in nbinomLRT should be
used. For other protocols (i.e., non-UMI), the Wald test in
nbinomWaldTest can be used, with null distribution a t
distribution with degrees of freedom corrected for down-
weighting. In both cases, we recommend the minimum
expected count to be set to a small value (minmu=1e-6).
The Wald test in DESEQ2 allows for testing contrasts of
the coefficients.

limma-voom
For the limma-voom approach [3], implemented in the
voom function from the LIMMA package, heteroscedas-
tic weights are estimated based on the mean–variance
relationship of the log-transformed counts. We adapt
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limma-voom to zero-inflated situations bymultiplying the
heteroscedastic weights by the ZINB-WaVE weights and
using the resulting weights in weighted linear regression.
To account for the downweighting of zeros, the resid-
ual degrees of freedom of the linear model are adjusted,
such as with EDGER, before the empirical Bayes vari-
ance shrinkage and are, therefore, also propagated to the
moderated statistical tests. Both the standard and ZINB-
WaVE-weighted versions of limma-voomwere considered
in the simulation study. The latter was not considered
for the real datasets due to its poor performance in the
simulation study.

Multiple testing
For the simulation study, to reduce the number of tests
performed [53], we apply the independent filtering proce-
dure implemented in the GENEFILTER package and used
in DESEQ2 [1]. As in DESEQ2, we exclude from the multi-
ple testing correction any gene whose average expression
strength (i.e., average of fitted values) is below a thresh-
old chosen to maximize the number of DE genes. Note
that the filtering procedure can affect each method dif-
ferently, due to differences in fitted values and p-value
distributions. Unless specified otherwise, the p-values for
all methods are then adjusted using the Benjamini and
Hochberg [42] procedure for controlling the FDR.

Performance assessment
We assess performance based on scatterplots of the TPR
vs. the FDP, as well as receiver operating characteristic
(ROC) curves of the TPR vs. the false positive rate (FPR),
according to the following definitions

FDP = FP
max(1, FP + TP)

FPR = FP
FP + TN

TPR = TP
TP + FN

,

where FN, FP, TN, and TP denote, respectively, the num-
bers of false negatives, false positives, true negatives, and
true positives. FDP-TPR curves and ROC curves are
implemented in the Bioconductor R package ICOBRA [54].

DEmethod comparison
We compared our weighted DE approach to state-of-the-
art bulk RNA-seq methods implemented in the packages
EDGER (v3.20.1) [2, 50], DESEQ2 (v1.19.8) [1], and LIMMA
(v3.34.0) [3]. We also considered dedicated scRNA-
seq tools from the packages SCDE (v2.6.0) [28], MAST
(v1.4.0) [19], and NODES (v0.0.0.9010) [55], as well as
METAGENOMESEQ (v1.18.0) [48], which was developed to
account for zero inflation in metagenomics applications.

A ZINBmodel is also implemented in SHRINKBAYES [56],
but the method does not scale to the typical sample sizes
encountered in scRNA-seq and has many tuning param-
eters, so we did not include it in our comparison. In
DESEQ2, we disable the outlier imputation step and allow
for shrinkage of fold-changes by default. In addition, for
large 3′-end sequencing datasets like the Usoskin and 10x
Genomics PBMC datasets, we set the minimum expected
count estimated by DESEQ2 to 10−6, allowing the method
to cope with large sample sizes and low counts. We use
the recommended gene-filtering procedures for NODES
and MAST, except for the computing time benchmark,
where no genes are filtered out to allow a fair compari-
son. For all other methods, arguments were set to their
default values.

scRNA-seq data simulation
We extended the framework of Zhou et al. [57] for
scRNA-seq applications. In the GitHub repository
linked to this manuscript (https://github.com/statOmics/
zinbwaveZinger), we provide user-friendly R code to
simulate scRNA-seq read counts. The user can input a
real scRNA-seq dataset to infer gene-level parameters for
read count distributions. Library sizes for the simulated
samples are by default resampled from the real dataset,
but can also be user-specified. The simulation paradigm
randomly resamples parameters estimated from the
original dataset, where all parameters of a given gene are
resampled jointly to retain gene-specific characteristics
present in the original dataset.
In scRNA-seq, dropouts and bursting lead to bias in

parameter estimation if not properly accounted for. Our
simulation framework alleviates this problem by using
zero-truncated negative binomial (ZTNB) method-of-
moments estimators [58, 59] on the positive counts to
estimate the expression fraction λj = E[Yij/Ni], with
Ni = ∑

j Yij the sequencing depth of cell i, and the NB
dispersion θj = 1/φj. Specifically, initial NB-based estima-
tors are iteratively updated according to the ZTNB-based
estimators provided by

λ̂newj =
∑

i Yij
(
1 − fNB

(
0; λ̂jNi, θ̂j

))

∑
i Ni

,

θ̂newj =
∑

i

(
λ̂jNi

)2

∑
i Y 2

ij

(
1 − fNB

(
0; λ̂jNi, θ̂j

))
− ∑

i

(
λ̂jNi

)2 − ∑
i

(
λ̂jNi

) .

(5)

Note that, when Yij is zero, it does not contribute to the
estimators of λj and θj. These estimates are then used to
simulate counts according to a NB distribution.
We additionally simulate excess zeros by modeling the

empirical zero abundance pij = I(Yij = 0) as a function

https://github.com/statOmics/zinbwaveZinger
https://github.com/statOmics/zinbwaveZinger
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of an interaction between the gene-specific expression
intensity, measured as average log CPM:

Âj ≈ log2
106

n

n∑

i=1

Yij
Ni

(as calculated using the aveLogCPM function from
EDGER), and the cell-specific sequencing depth Ni, using
a semi-parametric additive logistic regression model:

pij ∼ B
(
ρij

)
,

ln
(

ρij

1 − ρij

)
= s

(
Âj

)
+ ln (Ni) + s

(
Âj

)
× ln (Ni) ,

(6)

where B(ρij) denotes the Bernoulli distribution with
parameter ρij and s(·) is a non-parametric thin-plate
spline [60]. We then compare, for every gene, the esti-
mated probability of zero counts based on the model
in Eq. 6 to the corresponding NB-based probability
fNB

(
0; μ̂ij, θ̂j

)
with μ̂ij = λ̂jNi, and randomly add excess

zeros whenever the former probability is higher than
the latter. The model in Eq. 6 is motivated by dataset-
specific associations observed in real scRNA-seq datasets
(Additional file 1: Figures S4, S5).
This framework acknowledges both gene-specific char-

acteristics as well as broad dataset-specific associations
across all genes and provides realistic scRNA-seq data
for evaluating methods. We assessed the performance of
various DE methods using data simulated based on the
Islam et al. [16] dataset, a subset of the Trapnell et al. [36]
dataset, and a 10x Genomics PBMC dataset. See “Real
datasets” for information on these datasets.

Gene set enrichment analysis
To identify cell types corresponding to the two CD4+ T-
cell subclusters of the 10x Genomics PBMC dataset, we
used GSEA with the function fgsea from the Biocon-
ductor R package FGSEA (v1.4.0) [40] and gene sets for 64
immune and stroma cell types from the R package XCELL
(v1.1.0) [41]. For each DE method, the input to fgsea
is a list of genes ranked by a test statistic comparing
expression in the two CD4+ T-cell subclusters.
To facilitate comparison between DE methods, the test

statistic used here is a transformation of the unadjusted
p-values (p) with the sign of the log-fold-change (lfc):
−1(1 − p/2) sign(lfc), where (·) denotes the standard
Gaussian cumulative distribution function. As suggested
by FGSEA, all genes were used for the analysis. To assess
the enrichment/depletion of one cluster compared to the
other cluster, we used the normalized enrichment score.
The enrichment score is the same as in the broad GSEA
implementation [61] and reflects the degree to which a
gene set is overrepresented at the top or bottom of a

ranked list of genes. Briefly, the enrichment score is calcu-
lated by walking down the ranked list of genes, increasing
a running-sum statistic when a gene is in the gene set and
decreasing it when it is not. A positive enrichment score
indicates enrichment at the top of the ranked list; a nega-
tive enrichment score indicates enrichment at the bottom
of the ranked list. The enrichment score is then normal-
ized by the mean enrichment of random samples of genes,
where genes are permuted from the original ranked list
(10,000 permutations were used).

Real datasets
Usoskin dataset
This dataset is for mouse neuronal cells from the dorsal
root ganglion, sequenced on either an Illumina Genome
Analyzer IIx or HiSeq 2000 [11]. The cells were roboti-
cally picked in three separate sessions and the 5′ end of
the transcripts sequenced. The expression measures were
downloaded from supplementary data accompanying the
original manuscript (http://linnarssonlab.org/drg/). After
quality control and sample filtering (removal of non-single
cells and non-neuronal cells), the authors considered 622
cells, which were classified into 11 neuronal cell-type cat-
egories. Only genes with more than 20 non-zero counts
were retained, for a total of 12,132 genes.
There is a batch effect related to the picking session

for the cells. For the DE analysis, the picking session was,
therefore, included as a batch covariate in all models.
To mimic a null dataset with no DE, we created two

groups of 45 cells each, where, for each group, 15 cells
were sampled at random, without replacement (over all
cell types) from each picking session. For each of 30
such mock null datasets, we considered seven methods to
identify genes that are DE between the two groups and
declared a gene DE if its nominal unadjusted p-value was
less than or equal to 0.05. For these mock datasets, any
gene declared DE between the two groups is a false posi-
tive. The nominal PCER of 0.05 for each method is com-
pared to its actual PCER, which is simply the proportion
of genes declared DE.

10x Genomics PBMC dataset
We analyzed a dataset of PBMCs that is freely avail-
able from 10x Genomics (https://support.10xgenomics.
com/single-cell-gene-expression/datasets/1.1.0/pbmc3k)
[62]. We downloaded the data from https://s3-us-
west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/
pbmc3k_filtered_gene_bc_matrices.tar.gz, which cor-
respond to 2700 single cells sequenced on an Illumina
NextSeq 500 using UMIs. We clustered cells following the
tutorial available at http://satijalab.org/seurat/pbmc3k_
tutorial.html and using the R package SEURAT (v2.1.0)
[39]. The major steps of the pipeline are quality con-
trol, data filtering, identification of high-variance genes,

http://linnarssonlab.org/drg/
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dimensionality reduction using the first ten components
from PCA, and graph-based clustering. To identify cluster
markers, we used our ZINB-WaVE-weighted DE method
instead of the method implemented in SEURAT.
We created 30 mock null datasets and identified DE

genes in these as for the Usoskin dataset, i.e., we created
two groups of 45 cells each, by sampling at random, with-
out replacement from the 2700 cells of the real dataset (no
batch information available).

Islam dataset
The count table for the Islam et al. [16] dataset was down-
loaded from theGene ExpressionOmnibus with accession
number GSE29087 [35]. The Islam dataset represents 44
embryonic fibroblasts and 48 embryonic stem cells in the
mouse, sequenced on an Illumina Genome Analyzer II.
Negative control wells were removed and only the 11,796
genes with at least five positive counts were retained for
analysis. For the simulation, we generated datasets with
two groups of 40 cells each.

Trapnell dataset
The dataset from Trapnell et al. [36] was downloaded
from the preprocessed single-cell data repository CON-
QUER (http://imlspenticton.uzh.ch:3838/conquer). Cells
were sequenced on either an Illumina HiSeq 2000 or
HiSeq 2500. We used only the subset of cells correspond-
ing to the 48 h and 72 h timepoints of differentiating
human myoblasts to generate two-group comparisons.
Wells that did not contain one cell or that contained
debris were removed. We used a more stringent gene-
filtering criterion than for the Islam dataset and retained
the 24,576 genes with at least ten positive counts. The
simulated datasets contain two conditions with 75 cells in
each condition, thereby replicating the sample sizes of the
Trapnell dataset.

Software implementation
An R software package for our novel scRNA-seq
simulation framework is available from the GitHub
repository for this manuscript (https://github.com/
statOmics/zinbwaveZinger). Additionally, all analy-
ses and figures reported in the manuscript can be
reproduced using code in this GitHub repository. The
ZINB-WaVE weight computation is implemented in
the computeObservationalWeights function
of the Bioconductor R package ZINBWAVE. ZINB-
WaVE-weighted EDGER can be implemented using the
glmWeightedF function from the ZINBWAVE package,
while ZINB-WaVE-weighted DESEQ2 can be imple-
mented using the native nbinomWaldTest function
from the DESEQ2 package. More details of the ZINB-
WaVE-weighted analysis can be found in the ZINBWAVE
vignette (http://bioconductor.org/packages/zinbwave/).

Additional files

Additional file 1: Supplementary figures. This file contains all
supplementary figures to the manuscript. (PDF 8839 kb)

Additional file 2: COUNTSIMQC evaluation of simulated Islam dataset.
(HTML 11,492 kb)

Additional file 3: COUNTSIMQC evaluation of simulated Trapnell dataset.
(HTML 11,639 kb)

Additional file 4: COUNTSIMQC evaluation of simulated 10x dataset.
(HTML 9933 kb)
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