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Highlights 

• We develop personal thermal comfort models using lab grade wearable sensors 

• Median prediction power of the models is 24% /78% /0.79 (Cohen’s kappa/accuracy/AUC) 

• Developed models show strong performance outside thermal neutrality  

• Ankle skin temperature is more predictive than wrist skin temperature 

Abstract 

A personal comfort model is an approach to thermal comfort modeling, for thermal environmental 

design and control, that predicts an individual’s thermal comfort response, instead of the average 

response of a large population. We developed personal thermal comfort models using lab grade 

wearable in normal daily activities. We collected physiological signals (e.g., skin temperature, heart 

rate) of 14 subjects (6 female and 8 male adults) and environmental parameters (e.g., air temperature, 

relative humidity) for 2-4 weeks (at least 20 hours per day). Then we trained 14 models for each subject 

with different machine-learning algorithms to predict their thermal preference. The results show that 

the median prediction power could be up to 24% /78% /0.79 (Cohen’s kappa/accuracy/AUC) with all 

features considered. The median prediction power reaches 21% /71% /0.7 after 200 subjective votes. 

We explored the importance of different features on the prediction performance by considering all 

subjects in one dataset. When all features included for the entire dataset, personal comfort models can 

generate the highest performance of 35% /76% /0.80 by the most predictive algorithm. Personal comfort 

models display the highest prediction power when occupants’ thermal sensations is outside thermal 

neutrality. Skin temperature measured at the ankle is more predictive than measured at the wrist. We 

suggest that Cohen’s kappa or AUC should be employed to assess the performance of personal thermal 

comfort models for imbalanced datasets due to the capacity to exclude random success. 

 

Keywords: thermal preference; heart rate; skin temperature; machine learning; building-occupant 

interaction; 
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Graphical abstract 

 

1. Introduction 

Occupants’ thermal comfort is associated with health [1,2], working productivity [3–6], learning 

performance [4,7] and well-being [8,9]. Indoor thermal environment design and thermostat settings in 

most buildings with mechanical systems rely on air temperature control values based on the existing 

predicted mean vote (PMV) model as described in thermal comfort standards as ASHRAE Standard 55 

[10], EN 15251 [11]  and ISO 7730 [12], while the adaptive model is used for  free-running 

buildings[13]. 

 

Nevertheless, neither PMV nor the adaptive model incorporates individual differences and dynamics in 

thermal perceptions. Also, both models ignore aspects of human thermo-regulation and important 

personal psychophysics influencing the perception of thermal comfort [14,15]. The PMV predicts 

thermal sensation correctly only one out of three times and has a mean absolute error of one unit on the 

thermal sensation scale[16].  The main limitation of both PMV and adaptive models is that these two 

models were developed based on aggregated data from a large population. They were designed to 

predict the average thermal comfort of the entire population rather than an individual. It has been proven 

that their accuracy on predicting thermal comfort for a specific occupant is very low. Kim et al. [17] 

proposed a framework of personal comfort models that can predict an individual’s thermal comfort 

responses by leveraging the Internet of Things (IoT) and machine learning, rather than the responses of 

an “average person.” Such framework has been applied in a few recent studies that aimed to “customize” 

thermal comfort models for each occupant through users’ feedback, IoT and machine learning [18–21]. 

The primary advantage of a personal thermal comfort model lies in its capacity of self-learning and 

updating to suit an individual with a data-driven approach, resulting in higher prediction power.  
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Numerous recent studies have developed personal thermal comfort models by feeding different 

variables into machine learning algorithms. The three primary categories of variables are 1) 

environmental information, 2) occupant behavior, and 3) physiological signals. Probability distributions 

of thermal comfort for each occupant were created over indoor temperature for HVAC controls [22]. A 

similar data-driven method with indoor environment was applied to classify occupants’ personal 

thermal comfort with temperature and humidity sensors [23]. The second option is to track occupants’ 

behaviors to infer thermal comfort and preference, such as adjusting thermostats [24] or changing the 

settings of personal heating/cooling devices [25]. A personal comfort model using only control behavior 

of a personal chair system can generate a prediction AUC of 69% compared to approximately 53% 

(almost random) for the PMV and adaptive model [26]. Along with the behavior-tracking, physiological 

signals, such as skin temperature [27–31], heart rate variability [32], electroencephalogram (EEG) [33], 

skin conductance [34], and accelerometry [35],  show a strong relationship with human thermal 

sensation and comfort. Sim et al. [36] developed personal thermal sensation models based on wrist skin 

temperature measured by wearable sensors.  In addition, studies using more than one category are also 

not uncommon. A “personalized” model can be developed by integrating environment, occupants’ 

physiological and behavioral data [18]. Other recent attempts [37,38] applied commercial wearable 

sensors together with environmental sensors (e.g., temperature, air speed) to predict the comfort of each 

individual occupant. 

 

Even though all the above-reviewed studies claimed an enhanced prediction accuracy over conventional 

PMV and adaptive models, we identify three major drawbacks or limitations in those studies. First, 

subjects involved in the studies were restrained in a climate-controlled laboratory environment for a 

short period of time, usually in hours [36,39,40]. The dynamics of thermal comfort among daily diverse 

activities (e.g., dining, commuting, working, shopping) and their interactions cannot be fully captured 

in steady-state short-term lab tests. Even in a relatively “static” office environment, occupants would 

be engaged in different tasks (e.g., attending meetings, working at computers, doing office chores). As 

such, studies at steady-state conditions could not capture human activity, circadian cycle and mobility. 

The feasibility and accuracy of personal thermal comfort models developed under real-life conditions 

are still unclear. From our literature review, the models developed directly from lab data [32,39] usually 

have a higher prediction power as compared to those from the real environment [18,26], resulting in 

~90% vs ~70%.   

 

Second, most studies evaluated the performance of personal models, which predict categorical 

responses (e.g., cooler, warmer, no change), using accuracy that is the number of correctly predicted 

instances divided by the total number of instances in the dataset. Previous studies using such metric 

reported the prediction accuracy 79% ± 32% (Mean ± SD) for personal comfort models developed from 

physiological data with wearable sensors [18,19,29,32,39,41]. However, this metric is problematic 

because it fails to exclude correct prediction purely due to randomness [42,43]. This issue will be 

discussed in detail in Section 2.8. 

 

Third, previous studies with wearable sensors often employed commercialized low-cost sensors. The 

sensing accuracies of those sensors when they were worn were not known, even though manufacturers 

reported a high accuracy and strong reliance of the embedded sensors. In most situations, the 

manufacture specification was based on laboratory validation in a static environment, which could be 

quite different when sensors were used by end-users. For instance, Empatica E4 (Empatica Inc., USA) 

wristband or similar [44] might be only reliable with less movements, for example, during sleeping and 

sitting at the table.   

 

In the present study, to address the prior identified limitations, we developed personal thermal comfort 

models by machine learning using lab grade wearable sensors that continuously monitor physiological 

signals (skin temperature, heart rate, accelerometry) for a long period in real settings. Since a personal 

comfort model applies individually relevant rather than group-averaged information for thermal 

comfort predictions, it can be better utilized to understand specific comfort needs and desires of 

individual occupants and satisfy their thermal comfort accordingly. With personal comfort models, a 

building system can provide optimal conditions for enhanced thermal satisfaction and energy efficiency 
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[17]. More practically, a personal model is able to evolve by adapting new data collected in future smart 

buildings. We aim to evaluate the prediction power of each personal comfort model using metrics that 

can compensate for randomness. The importance of physiological signals and environmental parameters 

for prediction were also assessed in this study.  

2. Methodology 

Unlike population-average models, a personal comfort model should be specifically developed for an 

individual occupant to account for great variations in personal factors. A personal model for an occupant 

might not be necessarily the same for another, even if its accuracy compared to a population-average 

model may be higher due to its flexibility. As such, personal models are inexplicitly determined using 

data-driven approaches such as continuous training of machine learning algorithms over streaming data 

[17]. In this study, we collected and formatted physiological responses from human subjects and then 

applied machine learning algorithms to train personal thermal comfort models for each subject. Thermal 

sensation and preference from surveys were utilized as ground truth for model training and evaluation. 

The following sub-sections describe our approaches in detail. 

 

2.1 Subjects  

Twenty subjects (half female and half male adults) living in Berkeley and San Francisco, CA, were 

initially recruited through posted announcements and snowball sampling method. All the subjects were 

working or studying in Berkeley. The recruitment procedure excluded people who were having medical 

treatment (e.g., medicine taking), smokers or heavy alcohol drinkers (more than 1000 ml of beer or 

equivalent alcohol per day). Six subjects quit the study before finishing the minimum two-week 

experiment. As such, we only analyzed the data from the fourteen subjects (6 female and 8 male adults) 

to develop personal thermal comfort models for each person. Table 1 describes the anthropometric data 

of the subjects. An “average” subject (27.4 years old, 21.2 kg/m2 BMI) voted 275 times during the entire 

participation. 
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Table 1. Anthropometrics of subjects in this study  

ID Sex  Age 
Height 

(m) 

Weight 

(kg) 

BMI* 

(kg/m2) 

Cold 

extremity 

experience§ 

Sensitivity to 

thermal 

environment† 

Hours for 

working out 

per week 

Cups (240 

ml) of 

coffee 

intake per 

day 

Months of 

living at 

Berkeley 

or San 

Francisco 

Total 

number of 

survey 

taking  Participation period 

1 Male 26 1.71 68 23.3 3.4 3.7 5 0.2 12 152 11/28 - 12/12/2016 

2 Male 25 1.85 86 25.1 2 2.9 5 0.5 1 253 4/2 - 4/23/2017 

3 Male 31 1.7 55 19 1.6 3.5 4 0 >12 323 5/1 - 5/19/2017 

4 Female 38 1.63 54 20.3 0.4 2 14.6 1.1 3 261 5/23 - 6/6/2017 

5 Male 24 1.73 52 17.4 3 3.5 7 0 12 271 10/17 - 11/10/2016 

6 Female 28 1.73 86 28.7 1 3 4 1.3 >12 242 12/5 - 12/20/2016 

7 Female 25 1.8 57 17.6 1.1 3.1 7.5 0.6 >12 393 4/5 - 4/23/2017 

8 Male 23 1.75 57 18.6 3 4 6.2 0.1 7 353 4/30 - 5/17/2017 

9 Male 21 1.81 73 22.3 0 3 12 1.5 2 261 5/19 - 6/8/2017 

10 Female 48 1.63 57 21.5 2 3.7 12 2 >12 256 3/21 - 4/17/2017 

11 Female 20 1.65 52 19.1 1.5 2.5 7 1 8 399 5/14 - 6/28/2017 

12 Male 21 1.75 61 19.9 0 3 1.8 0 4 164 12/2 - 12/19/2016 

13 Male 32 1.8 70 21.6 0 3 4 0 1 198 4/23 - 5/8/2017 

14 Female 22 1.58 56 22.4 1 3 5 0 3 322 5/13 - 6/1/2017 

Average  27.4 1.7 63.1 21.2 1.4 3.1 6.8 0.6 - 275 - 

Standard deviation  7.8 0.1 11.7 3.1 1.1 0.5 3.7 0.7 - 76 - 

*BMI: Body mass index = Weight/Height2 (kg/m2) 
§ Cold extremity experience: continuous scale 0 (Never) to 5 (Always); Question: Have you suffered from cold hands or feet during the past two months? 
† Sensitivity to the thermal environment: continuous scale 0 (Much lower sensitivity) to 5 (to Much higher sensitivity); Question: please indicate how sensitive you think you 

are to thermal conditions. 
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2.2 Surveys 

We asked each subject to take an online survey at least once every hour during the day. They were 

required to take the survey at least 12 times per day to capture the dynamics of thermal conditions, 

especially when their thermal sensations changed, such as after working out or moving to a different 

thermal environment. In addition, we provided extra incentives when a subject took the survey more 

than 12 times a day. The Sub-section 3.4 describes compensations in detail. 

 

Developed with Qualtrics (Qualtrics, LLC), the survey included three “right-now” questions: (1) 

location (Indoor or Outdoor), (2) thermal sensation (continuous ASHRAE scale from -3 cold to 3 hot), 

and (3) thermal preference (Cooler, No change, and Warmer). The questions were randomly displayed 

on the platform that can be accessed using a laptop or cellphone.  

 

2.3 Wearable sensors 

Previous studies found that heart rate, skin temperature, and physical activities (representing 

metabolism) could indicate or reflect occupants’ thermal conditions [18,27,28,32,34,45–47]. Hence, 

this study considered skin temperature at wrist and ankle, heart rate, and wrist accelerometry. Another 

reason is that sensors for these parameters are already mature products available on the market. 

Although skin temperature measurements at more body locations might benefit the prediction, we 

focused on the skin temperature at wrist and ankle only because temperature monitoring at these two 

locations is most likely available in the daily life due to the least disruptiveness. 

 

2.3.1 Sensor selection 

We selected sensors for this study based on three criteria: (1) accuracy, (2) raw data access for research 

support, and (3) convenience to wear for 24/7. The commercial wrist-bands and smartwatches appeared 

as the most suitable due to commercial availability and infusion of multiple sensors, as what were 

employed in previous studies [19,38,48,49]. However, those devices might not measure parameters with 

acceptable accuracies as described in Appendix A1. Therefore, we selected the iButton (DS1923, 

Maxim Integrated Products, U.S.) [50,51] for skin temperature, the Polar H7 strap (Polar Electro, Ltd., 

Finland) for heart rate [52,53] and a small-size cell-phone (POSH Mobile, Ltd., U.S.) in a wrist pocket 

measured accelerometer data to represent activity levels. The built-in inertial sensors in regular 

smartphones were found to be reliable for the measurement of human body motion [54,55]. We 

calibrated the iButton against a refrigerated circulating bath (PD7LR-20, Polyscience, U.S.) in our lab 

beforehand. 

 

2.3.2 Sensors in the experiments 

Polar H7 monitored heart rate every second during participation. Skin temperatures were tracked at a 

wrist and ankle by two iButtons separately with the sampling frequency of 1 min. To capture the 

transition among different thermal environments (e.g., walking from one room to another), we 

monitored air temperature in the body proximity by attaching an extra iButton to a pin-badge with the 

sensing side facing outside. The badge was pinned at the lower pant (slightly above the ankle) to reduce 

the influence of body thermal plume (Figure 1). Subjects took off pants with the sensor badge before 

sleep. The data of the three iButtons was stored on the device memory and downloaded afterwards. The 

sampling frequency of accelerometry was 5 Hz or above, depending on the intensity of the movement. 

The cell-phone also served as a server to upload heart rate data via Bluetooth and 4G. Table 2 and 

Figure 1 describe the specification of the physiological sensors and wearing locations, respectively. All 

the measured data are publicly available on the website (https://doi.org/10.15146/R3S68S). 

 
Table 2. The description of sensors for physiological data 

Model Uncertainty Parameter measurement 

iButton DS 1923 (Maxim 

Integrated Products, Inc., U.S.) 
± 0.2 °C after calibration 

Skin temperature and air temperature close to the 

body  
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Polar H7 Bluetooth Smart Heart 

Rate Sensor (Polar Electro, Ltd., 

Finland) 

Concordance correlation 

coefficient, 0.99 [56] 
Heart rate 

Cell phone POSH built app Micro 

X S240 (POSH Mobile, Ltd., 

U.S.) 

Not available 
Accelerometer data to represent metabolic rates. 

Server to receive heart rate data 

 

 
 
Figure 1. Physiological sensors and wearing locations 

 

2.4 Procedure 

To ensure the sensor reliability and comfortable wearing for almost 24/7, two of the authors participated 

in a preliminary study for approximately 4 weeks to refine the design of the experimental protocol and 

to ensure that the selected sensors met the criteria in the timeframe of participation. The institutional 

review board of University of California, Berkeley approved the experimental protocol (CPHS# 2016-

09-9129). We trained all the subjects prior to their participation to ensure they wore all the sensors 

properly during the experiment. The duration of their participation was 14 days or longer. For each day, 

a subject needed to wear the sensors for at least 20 h and take the right-now survey for at least 12 times 

which were the minimum criteria to satisfy for compensation. The subjects had to compulsorily finish 

14 days (not necessarily consecutive) with meeting the vote and wearing time requirements every day. 

Also, they were allowed to have a few days off during the participation and then make up the missing 

days within 30 days after the start of the participation. 

 

The minimum compensation was $20 per day ($280 in total) contingent to the completion of 14-day 

participation. Some subjects participated up to 4 weeks in order to investigate if a long-term tracking 

improved the performance of personal comfort models. We encouraged the subjects to take the “right-

now” survey as many times as possible, especially when they felt a change of thermal perception or 

preference. We provided $0.5 for each extra survey taking but the maximum payment was limited to 

$25 per day. Subjects received a text reminder with a survey link every hour. 

 

2.5 Machine learning algorithms  

We applied various machine learning algorithms to develop personal thermal comfort models over the 

collected dataset. The predicted response of the models was thermal preference (“Cooler”, “No change” 

or “Warmer”) because it is the most relevant parameter addressing thermal discomfort by specifying 

which action a heating, ventilation, and air conditioning (HVAC) system should take. The dataset 

consisted of numerical variables mainly measured by wearable sensors and subjective votes that were 

numerical (e.g., thermal sensation) or categorical (e.g., thermal preference).  

 

The data cleaning and machine learning were conducted with the package of “caret” under R (version 

1.1.383) [57]. The package considers over 200 algorithms.  In this study, we applied four groups of 
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machine learning algorithms (1) linear methods, (2) non-linear methods, (3) trees and rules, and (4) 

ensembles of trees with each including several commonly used classification algorithms, with a total 

number of 14: 

 

• Linear methods: Linear Discriminant Analysis (abbreviation as “lda”) and Logistic Regression 

(“regLogistic”) 

• Non-Linear methods: Neural Network (“nnet”), Support Vector Machine (“svmRadial”), K-

Nearest Neighbors (“knn”) and Naive Bayes(“nb”) 

• Trees and Rules: Classification and Regression Trees (“rpart”), J48 Decision Tree (“J48”), 

and Rule-Based Classifier (“PART”) 

• Ensembles of Trees: C5.0 (“C5.0”), Bagged Classificaion and Regression Trees (“treebag”), 

Random Forest (“rf”), Random Forest by Randomization (“extraTrees”) and Stochastic 

Gradient Boosting (“gbm”) 

 

This algorithm selection ensured that prediction biases can be well balanced, preventing over- or under- 

prediction resulting from specific algorithms. Each algorithm can be applied to train a personal thermal 

comfort model based on the data-driven method, leading to 196 personal models in total. Some 

algorithms have been successfully applied previously to infer thermal comfort using environmental 

and/or physiological data, such as Classification and Regression Trees [19], Bayesian network [20,58], 

Logistic regression [23,26], J48 decision tree [59,60], and Random forest [26,38,61], and SVM [29]. In 

addition, the missing data in the total dataset were imputed using the K-nearest neighbors (“knn”) 

algorithm.  

 

2.6 Feature selection  

The features for model training were extracted from raw data and consisted of skin temperatures (wrist 

and ankle), heart rate, body-proximity temperature and weather conditions (wind, solar radiation, 

temperature, and humidity). We downloaded weather data from the station 

(https://www.wunderground.com/) near the mostly stayed location of each subject during the 

participation. People spend most of the time indoors, so one may think that these parameters are relevant 

only when people are outdoors. We argue that weather conditions may affect people’s clothing 

conditions, thermal expectation and, to a certain degree, the way how buildings are conditioned. These 

intermediate factors, which were not measured directly, may also cause variation of thermal perception 

and comfort. Nevertheless, we expected that wind and solar would have a low influence because of 

stronger spatial variations. Table 3 summaries the selected features in this study. The total number of 

features is 22. 

 

For skin temperature and heart rate, we considered the average and gradient over the timeframes of 5 

min and 60 min prior to a vote.  The gradient was the slope of local linear regression (time vs variable) 

applied to the data within a timeframe window. A negative gradient of skin temperatures of the 

extremities possibly indicated a cool thermal sensation [27]. Likewise, an increased (positive gradient) 

heart rate and body acceleration might be associated with enhanced metabolism or energy expenditure 

[62,63]. The standard deviation of acceleration suggested the intensity of a physical activity (e.g., 

walking). 

 

The selection of time frame window was based on two assumptions. First, in most real-life situations, 

occupants’ thermal conditions change little within 5 min. Second, physiological signals 60 min ago or 

earlier have little reflection on the present thermal conditions. The Pearson correlation coefficients 

between averaged heart rate over 5 min vs 15 min, 5 min vs 30 min, 5 min vs 60 min, 15 min vs 30 min, 

15 min vs 60 min, and 30 min vs 60 min are 0.95, 0.92, 0.91, 0.96, 0.94, and 0.96, respectively. The high 

correlations imply that finer or more timeframe windows might not be useful to improve prediction 

accuracy. Similar strong correlations can be also found for skin temperatures of both wrist and ankle: 

0.94 (5 min vs 15 min), 0.84 (5 min vs 30 min), 0.67 (5 min vs 60 min), 0.95 (15 min vs 30 min), and 
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0.92 (30 min vs 60 min). In addition, the timeframe windows for the average and gradient of 

meteorological parameters are 1 h and 8 h. 

 
Table 3. Selected features for the development of personal thermal comfort models 

Parameters Features 

Skin temperature at the ankle 

and wrist, body proximity 

temperature, and heart rate 

(Numerical) 

Average over 5 min before a vote 

Gradient (slope of a linear regression) over 5 min before a vote 

Average over 60 min before a vote 

Gradient over 60 min before a vote 

Wrist accelerometry (Numerical) 
Standard deviation over 5 min before a vote 

Standard deviation over 60 min before a vote 

Outdoor temperature, humidity, 

wind speed, and solar radiation 

retrieved from a weather station 

nearby the Berkeley campus 

(Numerical) 

Average over 1 h before a vote 

Average over 8 h before a vote 

 

2.7 Evaluation metrics 

The performance of all the developed personal thermal comfort models from the machine learning 

algorithms was evaluated by three commonly used metrics: Cohen’s kappa [64–66], accuracy 

[18,19,23,67],  and Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) [26]. The 

accuracy (percentage of correct thermal preference prediction) is easy to understand, but it does not 

compensate for the successes that are due to mere chance [68]. Using the metric of accuracy could be 

an issue for an imbalanced dataset. For example, a naive model that always predicts “No change” will 

have a 90% accuracy if 90% of the votes in the dataset are “No change”. The classification accuracy 

assumes equal misclassification costs and class distribution is known for the target environment [43]. 

However, these assumptions are probably not valid in real thermal comfort conditions. By contrast, 

Cohen’s random successes. Cohen’s kappa is defined as 

 

𝑘 =
𝑃0 − 𝑃𝑐
1 − 𝑃𝑐

 

 

Where P0 is the accuracy and Pc is the probability which is due to change. In practice, Cohen’s kappa 

ranges from 0 to 1 with zero being random prediction and 1 perfect prediction. AUC is the area under 

the ROC curve, and it varies between 0 and 1 and the larger the better. AUC of 0.5 is equal to random. 

In this study, we mainly applied Cohen’s kappa to assess the performance of the personal thermal 

comfort models. Accuracy and AUC were also reported to facilitate comparison with previous studies. 

 

K-fold cross-validation (CV) was employed and repeated multiple times to estimate average predictive 

performance [69]. For the entire dataset, the prediction was assessed with 5-fold CV repeated 20 times. 

In other words, a personal model was trained with 80% of the original data and cross-validated using 

the rest 20%. Nevertheless, lower folds (2-fold) CV repeated 150 times was employed to analyze the 

influence of data size on the prediction power because of possibly small data sizes. This approach 

follows the one described in [26].  

3. Results 

3.1 Dataset overview 

We collected an extensive amount of high-quality data (n = 3848) comprised of physiological signals, 

meteorological information, and subjective votes on thermal comfort. Table 4 summarizes the statistics 

of the dataset of all the subjects during the participation. The outdoor temperature was 15.2 (12.7, 
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18.3) °C [median (Q1, Q3)] during the day (0600 - 1800), while 13.0 (11, 15.2) °C during the night 

time (1800 - 0600). Wrist skin temperature, mean (M) = 30.9 °C and standard deviation (SD) = 4.2 °C, 

was significantly (t = 72.7, p < 0.000) higher than but practically equal to ankle skin temperature (M = 

30.3 °C, SD = 4.1 °C). Nevertheless, the two skin temperatures are only slightly correlated (Pearson ρ 

= 0.15).  Figure 2 displays the relationship between wrist skin temperature and ankle skin temperature 

averaged over 5 min prior to a vote for 14 subjects. The majority of the data-points are in the range 

from 25 to 35 ˚C.  

 

Additionally, the votes for “Cooler”, “No change”, and “Warmer” accounted for 15.0%, 68.5%, and 

16.5% respectively, suggesting that people want a different thermal environment one-third of their time. 

Approximately 14% of the votes were conducted outdoors. The average voted right-now thermal 

sensation was 0.04 (SD = 0.7) indoors and 0.16 (SD = 1.0) outdoors.  The results show that subjects’ 

physiological data and self-reported thermal comfort varied during the whole day. Figure 3 presents the 

simultaneous skin temperature, heart rate, activity, location, thermal sensation and preference of a 

subject (ID = 11) for one day. 
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Table 4. Summary of monitored physiological, meteorological, and survey data for each subject during participation 

  ID 1 2 3 4 5 6 7 

P
h

y
si

o
lo

g
ic

a

l 
si

g
n

a
ls

 

Skin T. at ankle (°C) 33.7 (32.3, 34.6)* 29.8 (28.0, 33.5) 30.3 (27.3, 33.0) 30.8 (28.9, 34.0) 29.6 (27.5, 33.8) 31.3 (29.0, 33.5) 32.2 (30.0, 34.3) 

Air T. at pant (°C) 19.7 (17.1, 22.8) 19.3 (17.5, 21.0) 21.2 (19.3, 22.9) 21.4 (19.9, 23.0) 21.4 (20.2, 22.8) 19.3 (17.1, 22.3) 17.9 (16.3, 21.4) 

Skin T. at wrist (°C) 32.6 (30.4, 33.7) 32.7 (30.5, 34.0) 33.5 (31.6, 34.6) 31.4 (29.7, 34.2) 31.8 (29.9, 33.5) 31.7 (30.2, 32.9) 31.9 (29.5, 34.6) 

Heart rate (bpm) 76 (68, 84) 61 (55, 70) 74 (63, 85) 68 (59, 77) 74 (61, 77)  89 (81, 101) 70 (58, 89) 

W
ea

th
er

 d
u

ri
n

g
 t

h
e 

p
a

rt
ic

ip
a

ti
o

n
 

Temperature (°C) - Day (6 

AM- 6 PM) 
11.2 (11.1, 13.6) 13.9 (11.7, 15.7) 15.2 (12.6, 18.2) 14.3 (12.1, 16.8) 16.6 (15.22, 19) 10.7 (8.8, 13.2) 13.7 (11.7, 15.5) 

Humidity (%) - Day (6 AM- 

6 PM) 
78 (55, 90) 71 (54.5, 84) 65 (52, 80) 81 (74, 89) 76 (66, 86) 79 (57, 93) 73 (59, 85) 

wind speed (m/s) - Day (6 

AM- 6 PM) 
0.9 (0.9, 1.8) 1.3 (0.9, 2.2) 1.3 (0.9, 1.8) 1.3 (0.9, 1.8) 0.9 (0.4, 1.8) 0.9 (0.4, 1.8) 1.3 (0.9, 2.2) 

Maximum solar (W/m2) - 

Day (6 AM- 6 PM) 
57 (69, 130) 314 (132, 594) 671 (331, 870) 526 (192, 826) 99 (42, 214) 49 (11.3, 119.8) 309 (132, 589) 

Temperature (°C) - Night 

(6 PM - 6 AM) 
9.7 (9.8, 11.8) 11.8 (10.3, 13.7) 11.3 (10.3, 15.7) 11.3 (10.6, 12.4) 15.3 (14.4, 16.9) 8.9 (7.2, 11.8) 11.7 (9.9, 13.7) 

Humidity (%) - Night (6 

PM - 6 AM) 
80 (67, 92) 79 (65.25, 92) 77 (65, 89) 91 (86, 95) 81 (69, 89) 81 (68, 93) 81 (69, 93) 

wind speed (m/s) - Night (6 

PM - 6 AM) 
0.4 (0.4, 1.3) 0.9 (0, 1.8) 0.9 (0.4, 1.8) 0.9 (0.4, 1.8) 0.4 (0, 1.3) 0.9 (0.4, 1.8) 0.9 (0.4, 1.8) 

V
o

te
 

Number of survey taking 152 253 323 261 271 242 393 

Thermal sensation -0.3 (-0.5, 0.3) 0.1 (-0.3, 0.4) -0.1 (-0.3, 0.4) 0.5 (-0.6, 0.8) 0.7 (-0.5, 1,2) -0.6 (-1.1, 1) 0.4 (0.2, 0.6) 

% of votes for Cooler 11.2 28.5 18.6 5.9 9.6 28.5 21.6 

% of votes for No change 51.3 56.5 67.2 87.0 63.5 21.5 67.9 

% of votes for Warmer 37.5 15.0 14.2 7.0 26.9 50.0 10.4 

% of votes for Indoor 96.1 90.9 79.6 91.9 80.8 91.7 83.7 

% of votes for Outdoor 3.9 9.1 20.4 8.1 19.2 8.3 16.3 

Note:* median (Q1, Q3) 
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Table 4. Summary of monitored physiological, weather, and survey data for each subject during participation (Cont.) 

  ID 8 9 10 11 12 13 14 

P
h

y
si

o
lo

g
ic

a
l 

si
g
n

a
ls

 

Skin T. at ankle (°C) 31.7 (29.4, 33.2)* 30 (27.7, 33.4) 31.1 (29.1, 33.6) 30.8 (29.2, 33.0) 29.5 (25.2, 33.9) 31.9 (30.2, 34.0) 31.1 (22.4, 33.3) 

Air T. at pant (°C) 22.2 (19.5, 24.8) 23.2 (21.7, 24.8) 20.7 (19.0, 24.0) 22.5 (20.6, 24.3) 17.1 (15.6, 18.5) 22.3 (21.2, 23.5) 20.4 (19.4, 22.1) 

Skin T. at wrist (°C) 31.2 (29.0, 33.2) 30.2 (27.5, 32.2) 33.3 (31.9, 34.8) 32 (30.3, 33.5) 32.5 (30.8, 33.6) 32.3 (31.1, 33.3) 32.2 (21.4, 33.6) 

Heart rate (bpm) 81 (67, 92) 69 (55, 82) 70 (61, 83) 85 (64, 98) 91 (77, 103) 66 (56, 76) 65 (59, 78) 

W
ea

th
er

 d
u

ri
n

g
 t

h
e 

p
a

rt
ic

ip
a

ti
o

n
 

Temperature (°C) - Day (6 

AM- 6 PM) 
15.1 (12.6, 18.2) 15.3 (12.9, 18.5) 12.8 (11, 14.9) 16.3 (13.3, 19.3) 11 (9.2, 13.3) 16.4 (13.2, 21.6) 14.6 (12, 17.1) 

Humidity (%) - Day (6 AM- 

6 PM) 
65 (51, 80) 79 (65, 86) 72.5 (61, 87) 76 (62, 85) 76 (55, 91) 62 (45, 80) 77 (62.5, 87) 

wind speed (m/s) - Day (6 

AM- 6 PM) 
1.3 (0.9, 2.2) 1.3 (0.9, 1.8) 1.8 (0.9, 2.2) 0.9 (0.9, 1.8) 1.3 (0.4, 1.8) 1.3 (0.9, 1.8) 1.3 (0.9, 1.8) 

Maximum solar (W/m2) - 

Day (6 AM- 6 PM) 
679 (347, 876) 559.5 (205.3, 836) 254.5 (95.3, 469) 630 (240, 856) 50 (12, 125) 634.5 (270, 863.3) 585 (201.5, 843) 

Temperature (°C) - Night (6 

PM - 6 AM) 
11.2 (10.2, 15.2) 11.8 (10.7, 13.8) 11.3 (9.8, 13.1) 12.7 (11.1, 15.2) 9.6 (7.4, 12.6) 12.8 (10.8, 16.7) 11.2 (10.3, 13.1) 

Humidity (%) - Night (6 PM 

- 6 AM) 
80 (68, 89) 90 (81, 95) 82 (70, 93) 88 (76, 93) 79 (67, 92) 73 (60, 86) 89 (75, 94) 

wind speed (m/s) - Night (6 

PM - 6 AM) 
0.9 (0.4, 1.8) 0.9 (0.4, 1.3) 0.9 (0.4, 1.8) 0.9 (0.4, 1.3) 0.4 (0.4, 1.8) 0.4 (0, 1.3) 0.9 (0.4, 1.8) 

V
o

te
 

Number of survey taking 353 261 256 399 164 198 322 

Thermal sensation 0 (0, 0) -0.3 (-0.6, 0.4) 0.25 (-0.4, 0.8) 0.2 (-0.2, 0.3) -0.4 (-0.9, 0) -0.3 (-0.5, 0.3) -0.1 (-0.4, 0.4) 

% of votes for Cooler 7.1 8.4 23.0 12.0 3.0 31.3 3.7 

% of votes for No change 87.0 80.1 62.1 75.9 62.2 67.7 82.3 

% of votes for Warmer 5.9 11.5 14.8 12.0 34.8 1.0 14.0 

% of votes for Indoor 81.9 92.3 83.2 77.7 95.1 95.5 81.4 

% of votes for Outdoor 18.1 7.7 16.8 22.3 4.9 4.5 18.6 

Note:* median (Q1, Q3) 
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Figure 2. The relationship between wrist skin temperature and ankle skin temperature (averaged over 5 min 

prior to a vote) for 14 subjects with different colors; The Pearson correlation between the two temperatures is ρ 

= 0.15. The solid curve is local polynomial regression (LOESS) fit with 95% confidence interval (shaded area) 

 

 
 

 
Figure 3. Monitored physiological signals and “right now” votes at a typical day for a subject (ID = 11)  
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3.2 Thermal sensation and preference 

The plots in Figure 4 show the overall thermal sensation and preference (sorted by the percentage of 

“No change”) for each subject. Consistent to a larger scale meta-data (the Comfort Database [70]), the 

median thermal sensations for all participants are within the thermal neutrality (-0.5< TS < 0.5) except 

for the subject (ID = 5, TSmedian = 0.7) and the subject (ID = 6, TSmedian = -0.6). However, the range of 

thermal sensations varies extensively among them. For instance, the participant (ID = 6) has a thermal 

sensation of -0.6 (-1.1, 1) [median (Q1, Q3)], compared to the participant (ID = 4) of 0.5 (-0.6, 0.8). We 

assessed the relationship between the variance of the thermal sensation deviation from the center of 

neutral sensation (TS= 0), in the form of 𝑃𝑁𝐶 = (∑(𝑇𝑆 − 0)2)0.5/𝑁 (N is the number of votes), and the 

percentage of “No change” preference. The calculated correlation is ρ = -0.53 (p = 0.05) implying that 

the subjects who had experienced smaller varieties of thermal sensation deviation from thermal 

neutrality tended to vote for “No change” more frequently. Moreover, the self-reported sensitivity to 

thermal environment collected from the background survey (Table 1) was not strongly correlated (ρ = 

-0.03, p = 0.91) to the variance of thermal sensation deviation from the center of neutrality. 

 

 

 
 

Figure 4. Thermal sensation and preference of each subject. Subject ID is sorted based on the increase of the 

percentage of “No change” thermal preference. 

Thermal sensation is correlated with the skin temperature at wrist or ankle. Local polynomial 

regressions (LOESS) in Figure 5 denotes that thermal sensation does not linearly change with skin 

temperature at extremities, especially for wrist skin temperature. The data in Figure 5 is a subset with 

heart rate lower than 90 bpm (representing low activity levels) and when participants were indoors. 

Ankle skin temperature is more correlated with thermal sensation compared with wrist skin temperature. 

The results suggest that ankle skin temperature could be more predictive for thermal sensation for office 

workers or students. It is worth noting that the regression curves are developed based on the data of all 

subjects. Thus, the relationships using aggregate average data may not be generalized for an individual 

subject. 
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Figure 5. The relationship between skin temperatures and thermal sensation. Skin temperature is averaged over 

5 min prior to a vote. The solid curves are local polynomial regression (LOESS) fit with 95% confidence 

interval (shaded areas) 

 

3.3 Prediction power of personal thermal comfort models 

Table 5 summarizes prediction performance with the metrics of Cohen’s kappa/accuracy/AUC using 

14 machine-learning algorithms for all participants. For all these subjects, the median prediction 

Cohen’s kappa of personal comfort models is 20% with coincidence accuracy of 68% and AUC of 0.69.  

When only the best performing algorithm for each subject is considered, the median (based on kappa) 

prediction power is 24%/78%/0.79 (Cohen’s kappa/accuracy/AUC). Kim et al. [26] reported the median 

prediction AUC of personal models, 0.73, by analyzing the heating and cooling behavior of  34 out of 

38 occupants in an office building.  

 

The results show that prediction power fluctuates among subjects and algorithms. The personal thermal 

comfort model of Subject 2 shows the highest median prediction power (44%/69%/0.73). By contrast, 

the model of Subject 4 displays the weakest performance (6%/85%/0.62), almost random “guessing” in 

terms of the low Cohen’s kappa. Worthy to notice here that the accuracy would be misleading (Subject 

4 has a higher accuracy than Subject 2) because of the imbalanced dataset. Subject 4’s data were 

probably problematic, because we found that the subject always responded with “No change” for three 

consecutive days. In addition, preferring “Warmer” while feeling warm (TS = 1.4), and “Cooler” while 

cold (TS = -1.5), existed in the survey answers. As thermal comfort is subjective, we cannot conclude 

that those data are faulty. However, we can hypothesize that the subject did not answer carefully, and 

this could be a reason for the low prediction power. Another possibility is that some people might be 

less predictable than others. 
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Table 5. Prediction power (Cohen’s kappa/accuracy/AUC) for each participant with 14 common algorithms 

SubID /Data size 1/152 2/253 3/323 4/261 5/271 6/242 7/393 

Lda 21%/56%/0.66 24%/61%/0.7 45%/74%/0.79 2%/83%/0.53 37%/69%/0.77 11%/48%/0.58 20%/68%/0.69 

regLogistic 17%/56%/0.68 22%/62%/0.73 40%/75%/0.82 0%/87%/0.57 30%/69%/0.79 15%/53%/0.64 15%/70%/0.7 

nnet 21%/56%/0.68 26%/62%/0.73 50%/77%/0.86 7%/78%/0.62 38%/70%/0.79 15%/51%/0.62 18%/68%/0.7 

svmRadial 15%/54%/0.58 19%/60%/0.72 44%/76%/0.84 0%/87%/0.64 32%/70%/0.76 17%/55%/0.61 13%/69%/0.67 

knn 11%/52%/0.61 24%/59%/0.71 43%/76%/0.83 1%/86%/0.65 29%/69%/0.76 15%/51%/0.59 17%/68%/0.62 

nb 13%/49%/0.62 22%/55%/0.7 47%/72%/0.81 5%/75%/0.6 32%/63%/0.74 14%/45%/0.6 21%/65%/0.65 

rpart 7%/49%/0.55 45%/71%/0.65 31%/71%/0.74 3%/85%/0.55 30%/68%/0.66 10%/50%/0.56 17%/66%/0.58 

J48 7%/46%/0.55 52%/72%/0.61 40%/71%/0.7 9%/82%/0.53 31%/68%/0.66 10%/48%/0.55 13%/69%/0.54 

PART 9%/47%/0.56 43%/68%/0.63 39%/71%/0.72 8%/82%/0.54 29%/64%/0.65 12%/46%/0.56 13%/61%/0.59 

C5.0 10%/50%/0.61 65%/80%/0.73 47%/75%/0.85 6%/86%/0.63 32%/66%/0.78 21%/53%/0.58 19%/66%/0.65 

treebag 11%/51%/0.61 49%/73%/0.73 46%/75%/0.84 6%/85%/0.65 34%/68%/0.76 16%/51%/0.6 17%/68%/0.66 

gbm 19%/55%/0.67 54%/75%/0.78 50%/77%/0.85 7%/85%/0.68 4%/71%/0.8 16%/52%/0.62 20%/69%/0.68 

extraTrees 19%/57%/0.67 51%/74%/0.78 50%/78%/0.88 7%/86%/0.73 37%/70%/0.8 17%/53%/0.63 21%/70%/0.7 

rf 17%/55%/0.64 51%/74%/0.75 48%/76%/0.86 7%/87%/0.68 34%/68%/0.8 18%/54%/0.62 18%/69%/0.68 

SubID /Data size 8/353 9/261 10/256 11/399 12/164 13/198 14/322 

lda 40/87%/0.76 18%/77%/0.68 17%/62%/0.65 34%/79%/0.74 22%/64%/0.71 33%/71%/0.66 8%/80%/0.7 

regLogistic 6%/87%/0.76 2%/80%/0.7 7%/62%/0.69 22%/79%/0.76 8%/62%/0.74 41%/75%/0.83 2%/82%/0.71 

nnet 34%/85%/0.78 20%/74%/0.72 21%/64%/0.68 31%/79%/0.77 16%/62%/0.74 37%/73%/0.76 11%/78%/0.72 

svmRadial 25%/88%/0.82 4%/79%/0.72 5%/62%/0.64 32%/80%/0.76 0%/60%/0.69 35%/75%/0.78 1%/82%/0.73 

knn 9%/87%/0.75 15%/76%/0.73 17%/60%/0.66 18%/77%/0.7 6%/59%/0.63 40%/75%/0.7 0%/82%/0.68 

nb 35%/84%/0.79 20%/70%/0.69 16%/48%/0.66 32%/71%/0.76 24%/62%/0.72 41%/73%/0.78 16%/74%/0.72 

rpart 19%/84%/0.59 16%/75%/0.64 12%/61%/0.58 24%/76%/0.68 11%/60%/0.55 34%/72%/0.66 6%/75%/0.55 

J48 27%/84%/0.58 22%/74%/0.61 11%/61%/0.56 20%/72%/0.63 19%/62%/0.64 37%/74%/0.65 6%/77%/0.57 

PART 27%/85%/0.58 21%/75%/0.62 13%/55%/0.57 21%/72%/0.65 15%/62%/0.64 35%/72%/0.62 5%/77%/0.58 

C5.0 27%/88%/0.8 23%/78%/0.75 16%/59%/0.65 33%/77%/0.76 19%/63%/0.67 38%/74%/0.69 6%/77%/0.66 

treebag 30%/87%/0.78 21%/79%/0.77 18%/63%/0.65 30%/78%/0.76 18%/63%/0.71 42%/75%/0.78 3%/79%/0.66 

gbm 31%/88%/0.79 24%/78%/0.79 15%/61%/0.67 37%/79%/0.79 19%/63%/0.74 47%/77%/0.81 6%/79%/0.71 

extraTrees 33%/88%/0.84 21%/79%/0.81 20%/64%/0.7 32%/80%/0.8 18%/63%/0.76 46%/78%/0.81 4%/80%/0.75 

rf 29%/87%/0.81 23%/79%/0.8 18%/63%/0.67 33%/79%/0.78 18%/64%/0.76 45%/76%/0.8 1%/80%/0.7 
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An algorithm that performs well for a subject might not necessarily the best for another. Figure 6 depicts 

that the most frequent algorithms with high prediction power are Stochastic Gradient Boosting 

(“gbm”), Random Forest by Randomization (“extraTrees”), C5.0 (“C5.0”), and Random Forest (“rf”). 

All of them belong to the category of “Ensembles of Trees”. The “gbm” algorithm produces the highest 

median prediction power, approximately 25%/73%/74% (Cohen’s kappa/accuracy/AUC). 

 

 
 
Figure 6. Prediction power of different algorithms. Bar plots and error bars represent the average and standard 

deviation of prediction power (Cohen’s kappa/accuracy/AUC) across 14 participants respectively. 

 

3.4 Importance of features 

Many wearable sensors, such as wristbands, on the market have the capacity to measure skin 

temperature, heart rate, and activity, albeit the sampling accuracy is still a concern. Technically, 

incorporating additional functions such as extracting real-time weather data into wristbands is not 

difficult for thermal comfort model development. Nevertheless, understanding what features are the 

most contributing would help optimize the sampling efficiencies with wearable sensors. 

 

We evaluated the predictive performance by starting with an individual parameter (e.g., wrist skin 

temperature) and then adding more until all features were included in terms of a step-wise approach. 

The added parameters were ordered based on the efforts involved in the data collection by the state-of-

the-art wearable sensors on the market. For instance, sampling activity might need few efforts compared 

to body-proximity temperature because of the capacities of existing commercial wristbands. 

 

Figure 7 shows the maximum prediction power (Cohen’s kappa/accuracy/AUC) of the personal thermal 

comfort models using 14 algorithms, which represents the highest performance we could obtain by 

selecting the best algorithm.  The models were trained on the entire dataset of all the 14 subjects instead 

of each subject and then averaged. In general, applying each individual feature or feature combinations 
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generates a prediction power greater than the conventional PMV/adaptive model that has a very low 

prediction power on thermal preference (AUC≈0.5) [16,26].  

 

The baseline offers a maximum prediction power of 35% /76% /0.80. The features include time, weather 

(air temperature, wind speed, solar radiation, and relative humidity), body-proximity temperature and 

physiological signals (heart rate, wrist skin temperature, ankle skin temperature, and wrist movement 

acceleration).  The time and weather data that can be extracted from the cloud using IoT can produce 

an accuracy of 18% /68% /0.66 that is only 51% of the baseline based on Cohen’s kappa. In other words, 

the weather data only would not provide us compelling prediction performance from the limited dataset 

from this study. 

 

Most wristbands on the market can measure wrist movement acceleration and heart rate. These features 

together with time predict thermal preference at the performance only 18% /71% /0.67, similar accuracy 

to that with weather and time.  However, the wristbands could be easily updated with more functions, 

such as streaming weather data from the cloud and embedding a sensor to measure wrist skin 

temperature. By infusing these new functions, wristbands can produce prediction accuracy of up to 43% 

/77% /0.78, even slightly higher than the baseline based on Cohen’s kappa. One might raise the question 

why the prediction power is higher with less features. We argue that the training error of unstructured 

and heterogeneous dataset using the data-driven approach accumulates especially when some features 

considered have a high level of sparsity. Still, the high accuracy of wristbands expanded with new 

functions might be a promising approach to achieve higher prediction power for personal thermal 

comfort models. 

  

Another option is smart shoes. Sensors of feet movement acceleration, heart rate, and ankle skin 

temperature can be embedded into the shoes (i.e., shoe heel notch or top line). Based on the dataset of 

the study, the prediction accuracy of smart shoes can achieve 36% /78% /0.79, almost equivalent to the 

baseline performance. Note that we used wrist movement acceleration as the approximation of ankle 

acceleration and we used the ankle skin temperature. The temperature at the feet could carry even more 

information given that is an extremity.  One advantage of smart shoes is that they are less intrusive than 

wristbands since most people wear shoes but not wristband. Considering all the factors regarding 

intrusiveness, possible market penetration, and prediction power, we think that smart shoes might be 

more suitable to implement personal thermal comfort models in the future smart personal environment 

control. Furthermore, Figure 7(d) shows the prediction performance of air temperature and skin 

temperature. The maximum power is 22% /69% /0.74, approximately 63% of the baseline’s 

performance. 

 

 

 

Building and Environment, August 2019 19 https://doi.org/10.1016/j.buildenv.2019.106281 
https://escholarship.org/uc/item/3fb0p5gk



  
Figure 7. Maximum prediction power with variable feature combinations using 14 algorithms. The circle size denotes the prediction power relative to the baseline with all 

features considered. (a) and (b) prediction power of features (heart rate, time, acceleration) included in current wristbands and enhanced prediction performance when the 

wristbands are expanded with other functions; (c) Prediction power of smart shoes; (d) Prediction power of skin temperature and air temperature. 
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Figure A2 in the Appendix compares the normalized importance on a scale of 100 for each individual 

parameter and its derivations (e.g., gradient, standard deviation) determined by SVM classification 

algorithm. Please note that the order of importance might be slightly different for another algorithm. 

Overall, the results show that outdoor wind speed and relative humidity, as expected, are not very 

important. Furthermore, the standard deviation of the variables is a weak indicator of thermal preference 

prediction. 

 

3.5 Comparison of prediction power for different thermal sensations and classification methods  

We observed in the Comfort Database [70] that thermal preference is strongly correlated with thermal 

sensation only when people are outside the thermal neutrality. In specific, the Pearson correlation 

between thermal sensation and thermal preference was only -0.06 within the thermal neutrality (-0.5 to 

0.5) as compared to -0.67 when thermal sensation was not neutral. We used a narrow definition of 

thermal neutrality to assess how the models work in the most challenging conditions. In practice, 

thermal sensation between -1.5 and 1.5 may be considered acceptable. Since physiological variables are 

strongly related to thermal sensation, thermal preference within thermal neutrality might be difficult to 

infer through physiological signals. As such, we hypothesize that wearable sensors may not be reliable 

for thermal preference inference within thermal neutrality. Rather, personal comfort models with 

wearable sensors might be most effective to bring people back to thermal neutrality when they are 

outside it. To test the hypothesis, we evaluated the prediction performance of personal models on the 

sub-datasets with thermal neutrality (-0.5 to 0.5) and non-neutrality.  

 

Figure 8 shows that the median Cohen’s kappa is only 3 % (slightly higher than random) on the dataset 

of thermal neutrality. The results suggest that the thermal preference prediction using wearable sensors 

could be very challenging when occupants’ thermal sensation is neutral. The prediction accuracy is 

nevertheless as high as 82.4%, which is caused by the coincidently increased possibility of voting “No 

change.” This is another example of why accuracy is not an appropriate metric to assess prediction 

power for an imbalanced dataset.  When the thermal sensation is outside of neutrality, however, 

prediction power can be considerably enhanced (Cohen’s kappa from 3% to 29%). The results also 

partially explain why prediction power is weaker for field studies than climate-controlled laboratory 

experiments, which dedicatedly exposed subjects to cold and/or hot environments more frequently than 

what was supposed to be in real life. 

 

The PMV model has its highest prediction accuracy in the thermal neutral zone and it decays towards 

the extremes of thermal sensation scale [16]. We showed that personal thermal comfort models using 

wearable sensors do exactly the opposite. They have the highest prediction at the extremes. In addition, 

Figure 8 shows that the prediction power is significantly increased when only considering the subset 

data consisting of “Warmer” and “Cooler.”  
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Figure 8. Prediction with different thermal sensations and classification methods 

4. Discussions 

Through this study, we identify many challenges when wearable sensors are applied to develop personal 

thermal comfort models. We will discuss them in this section as well as making suggestions for future 

studies. 

 

4.1 The challenge of personal thermal comfort models within thermal neutrality 

Figure 9 depicts the density plots of thermal preferences varying with thermal sensation, ankle skin 

temperature, wrist skin temperature, and heart rate. These plots show the overlapping regions for 

different thermal preferences. For the thermal sensation graph, it can be deduced that in the low 

prediction accuracy regions, even at the same self-reported thermal sensation, a subject likely prefers a 

different thermal environment. We believe that these overlapping regions near thermal neutrality are 

the fundamental reason for poor prediction presented in Section 4.5 using physiological signals and all 

other variables that could be related to thermal sensation.  

 

According to the size of overlapping regions, ankle skin temperature appears more sensitive to thermal 

preference than wrist skin temperature or heart rate in intermediate ranges. The results imply that ankle 

skin temperature is more predictive in normal situations, while heart rate could be a strong predictor (of 

wanting cooler) at a high value. The preference of “No change” might be quite difficult to predict as 

the region is almost overlapped with “Cooler” or “Warmer” for both skin temperature and heart rate. 

An occupant is most likely to prefer “Warmer” when ankle skin temperature is lower than 

approximately 28 ˚C, wrist skin temperature lower than 31˚C, or heart rate blow 65 bpm. The cutoff 

value for “Cooler” preference is 31 ˚C for ankle skin temperature or wrist skin temperature, and 105 

bpm for heart rate. In the middle ranges between the cutoff values (ankle skin temperature 29 - 31 ˚C 

or heart rate 65 -105 bpm), “No change” is preferred at the highest probability. However, the wrist skin 

temperature for “No change” preference might be indistinctive from those for other preferences. 
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Figure 9. The distributions of thermal preference votes against thermal sensation, skin temperature and heart 

rate; overlapped areas of thermal preference are associated with low prediction accuracy 

 

We further hypothesize hereof that using wearable sensors that monitor physiological data would not 

be an efficient and reliable way to predict thermal preference and control HVAC systems when a 

subject’s thermal sensation is mainly neutral. Instead, it is much easier to predict thermal preference 

when occupants are cold or hot. Figure 10 illustrates the theoretical prediction power (“U” curve) of 

personal thermal comfort models varying over different thermal sensations. 

 

 

 

Figure 10. The diagram of the theoretical prediction performance of personal thermal comfort models using 

wearable sensors 
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4.2 Influence of data size on prediction power 

Different from conventional thermal comfort models, such as PMV and adaptive model, personal 

thermal comfort models necessity model training and development based on a data-driven approach. 

Overall, a predictive model relies on a sufficient number of data points. As suggested by Kim et al. [26], 

dynamic machine learning models with cloud computing capacity would be updated when new data 

arrive. Figure 11 shows the median prediction power (Cohen’s kappa/accuracy/AUC) of 14 algorithms 

varying with the training data size for each participant. The solid dark curves are the curve-fitted power 

of all subjects’ models with 95% confidence intervals (shaded areas) using local polynomial regression 

(LOESS).  

 

The aggregated curves show that prediction power can be improved by enlarging trained data. The 

aggregated prediction power shows that performance of 21% /71% /0.7 can be achieved after 200 votes. 

However, individual models display various sensitivities to the dataset size. For instance, Cohen’s 

kappa curves of two subjects’ models (ID  = 4 and ID = 12) are almost flat over different data sizes, 

also possibly due to bad data. It is difficult to find a curve plateau to determine model convergence. In 

addition, a model might be only converged locally because new data could alter existing model patterns.  

 

 
Figure 11. Median prediction accuracy varies with data size. The individual’s values are the median Cohen’s 

kappa/accuracy/AUC calculated with different personal comfort models. The solid curves are local polynomial 

regression (LOESS) fit with 95% confidence interval (shaded areas) 

 
4.3 Exit survey, limitations, and future studies 

Subjects took a short exit survey after they completed the participation. The average overall satisfaction 

(Likert scale from 1 to 7) with thermal environments of their home and offices is 5.3 ± 1.25 (Mean ± 

SD) and 4.8 ± 1.2, respectively. The Pearson correlation coefficient between their satisfaction and 

percentage of voting “No change” is 0.16 for offices and 0.14 for home. The weak correlations suggest 

that an occupant who is highly satisfied with the indoor environment in general (such as during post-

occupancy survey) would still desire a probably mild “warmer” or “cooler” environment in daily life. 

The responses also consolidate that the ability to control micro-environment based on personal thermal 

comfort models is appreciated for occupants.  

 

This study has a few limitations. First, the quality and quantity of the sampled data could be improved 

to gain highly predictive personal thermal comfort models. Although 14 subjects participated in the 

study for a few weeks, the average vote number of each one was only 275 because asking them to vote 

more frequently would interfere with their daily activities, even though incentives were provided for 

extra votes. In addition, the whole dataset has roughly 14% missing data resulting from the unstable 

sensing (e.g., loss of Internet or sensor batteries). Also, personal models can be vulnerable to “bad” data 

provided by randomly given votes. Continuous vote collection from occupants and model updating with 

steamed data would likely increase the prediction power after the model implementation into HVAC 

systems. Second, the accuracy of the models presented can be further improved more thorough feature 

engineering or hyperparameter tuning, as our feature engineering is just sufficient to justify the major 

goal, demonstrating the enhanced prediction power of personal models as opposed to the conventional 

PMV or adaptive models. Lastly, the models in this study share the common limitations (one-time batch 

learning and equal misclassification costs) as in previous works [26].   

Building and Environment, August 2019 24 https://doi.org/10.1016/j.buildenv.2019.106281 
https://escholarship.org/uc/item/3fb0p5gk



 

Future studies need to deal with the following issues. Using wearable sensors are still challenging to 

develop personal models due to sensor intrusiveness to occupants, data collection cost, and prediction 

power for thermal comfort. To our knowledge, many manufacturers do not allow users to access the 

raw data. Another important challenge is to detect bad data, especially subjective votes while model 

training, which would ruin in prediction accuracy. 

5. Conclusions 

Predicting thermal comfort/preference using physiological data could be potentially incorporated into 

HVAC system control for occupants’ satisfaction and energy saving. The low-cost wearable sensors 

and cloud computing allow real-time thermal comfort/preference prediction using physiological and 

environmental data. We developed personal thermal comfort models for 14 participants using lab-grade 

wearable sensors. Based on physiological and meteorological data monitored for 2-4 weeks, we trained 

14 personal comfort models using different machine learning algorithms for each participant. The 

results lead to the following conclusions: 

 

• The developed personal thermal comfort models with long-term tracking of physiological and 

environmental data lead to a median prediction power of 24% /78% /79% (Cohen’s 

kappa/accuracy/AUC) that is significantly greater than conventional PMV and adaptive 

models.  

• The algorithm category of “Ensembles of Trees” such as Stochastic Gradient Boosting (“gbm”), 

Random Forest by Randomization (“extraTrees”), C5.0 (“C5.0”) and Random Forest (“rf”) 

showed the best performance to develop personal comfort models.  

• The PMV model has its highest prediction accuracy in the thermal neutral zone and it decays 

towards the extremes of thermal sensation scale. We showed that personal thermal comfort 

models using wearable sensors do exactly the opposite. They have the highest prediction 

outside thermal neutrality. This is very useful in practice because we want to avoid people being 

over-cooled and over-heated. 

• When the data from all subjects are merged together and all the features are included, the 

prediction power is 35% /76% /0.80 (baseline). Current smart wristbands with the data of time, 

heart rate, acceleration can generate a maximum prediction power of 18% /71% /0.67, only 

51% of the baseline. However, the prediction performance can be enhanced to 43%/77%/0.78 

when skin temperature sensing and weather data streaming are infused into the wristbands. 

• Smart shoes might be suitable platforms to implement personal thermal comfort models. The 

maximum accuracy with the features of acceleration, ankle skin temperature, heart rate and 

weather is 36% /78% /0.79, equivalent the baseline.   

• The prediction performance of personal comfort models with wearable sensors could reach 21%  

/71% /0.7 (Cohen’s kappa/accuracy/AUC) after approximately 200 votes. 

• Cohen’s kappa and AUC are more appropriate metrics to evaluate the prediction performance 

of personal thermal comfort models because accuracy does not compensate for successes that 

are due to mere chance for an imbalanced dataset, especially when instance distribution is 

unknown beforehand. In addition, bad data should be detected and removed during model 

development with machine learning or other data-driven approaches.  
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Appendix 

A1. Accuracy comparison among sensors 

Previous studies reported that off-the-shelf wristbands or smartwatches might not measure 

physiological signals accurately. For instance, Basis Peak (Intel, Corp., U.S.) and Fitbit Charge HR 

(Fitbit, Inc., U.S.) inaccurately measure heart rate during exercise [56]. Moreover, wristband might have 

a higher sensitivity to wrist motion than Electrocardiography (ECG) chest strap to the motion of the 

torso. The percentage of correctly detected heart beats by Empatica E4 (Empatica Inc., U.S.) was 68% 

during sitting and only 9% during household work by tracking 25 male subjects [71]. Even if some 

parameters can be measured accurately by a wristband or smartwatch, to our knowledge, no 

comprehensive studies have been reported to validate all the embedded parameter sensors (e.g., skin 

temperature, heart rate) in one single wearable device. The inaccuracies of the measurements for some 

parameters could result in significant biases to personal thermal comfort models. 

 

In this study, we evaluated the eligibility of two commercial wristbands, Empatica E4 and Polar V800 

(Polar Electro, Ltd., Finland). The infusion of multiple sensors (e.g., heart rate, skin temperature, 

accelerometry) would cause minimum intrusiveness to occupants. The assessment of the two wristbands 

was conducted by comparing with already validated sensors described in Section 3.3. 

 

Empatica E4 was claimed to measure skin temperature at a manufacturing accuracy of 0.2 °C within 

36-39 °C, according to the specification. The accuracy of heart rate (derived from blood volume pulse) 

was not specified. For the Polar V800, the embedded temperature sensor was designed to measure air 

temperature since it was not completely contacted with skin. However, the sensor was positioned on 

the skin-contact side of the wristband and the air gap in between was only a few millimeters. Therefore, 

the measurement by the sensor could be strongly correlated to skin temperature.    

 

Figure A1 shows the measured skin temperature and heart rate of four sensors (E4, V800, H7, and 

iButton) for approximately 10 h by one of the authors who was working in an office. Statistically 

significant deviations of the measurements between commercial wristbands (E4 and V800) and baseline 

sensors (iButton and H7) were observed. In addition, the “spearman” correlation of skin temperature 

is rs = 0.918 between iButton and V800, and rs = 0.572 between iButton and E4. The correlation of 

heart rate is even lower, rs = 0.242, between H7 and E4. The inaccuracy of the commercial wristbands 

can be partially attributed to body movement that loosened the contact, while the iButton was fastened 

on the skin using a medical tape and H7 strap was damped and slightly tight on the chest. The measures 

ensured better contact with the skin during movement. As such, the results although based on one person 

for several hours imply that the current commercial wristbands might not be sufficiently accurate for 

physiological signal tracking during daily life, especially when extensive body movement occurs. 
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Figure A1. Comparison of measured daily skin temperature and heart rate by different sensors for one subject  

 

A2. Correlation matrix among features 

Figure A2 shows the correlation matrix of various parameters. The correlations between thermal 

sensation and other variables ordered from the highest to lowest are, 0.267 (outside air temperature), 

0.226 (ankle skin temperature), 0.187 (close-proximity temperature), 0.184 (heart rate), 0.134 (wrist 

skin temperature), and 0.002 (activity). It is worth noting that these correlations are calculated using the 

entire dataset of the 14 participants. In addition, the correlations vary on the clusters of thermal 

preference (“Cooler”, “No change”, and “Warmer”).  

 

 

Building and Environment, August 2019 32 https://doi.org/10.1016/j.buildenv.2019.106281 
https://escholarship.org/uc/item/3fb0p5gk



 
Figure A2. Correlation matrix among different variables. TS: thermal sensation; TP: thermal preference; 

HR_5_avg (bpm): average HR over 5 min; T_60_avg_out (°C): average outdoor air temperature over 1 h; 

T_5_avg_wrist (°C): average wrist skin temperature over 5 min; T_5_avg_ankle (°C): average ankle skin 

temperature over 5 min; Acc_5_sd (m/s2): standard deviation of wrist acceleration over 5 min. 

A3. Importance of features for prediction performance 

Figure A3 displays the relative importance of each feature contributing to the performance of personal 

models using SVM classification. The order of the features would slightly vary when using another 

classification algorithm. The values were used as the first screen check for feature selections. It is 

observed from the chart that the standard deviation of variables is less important than the average or 

gradient. Also, unimportant features derived from some time frames can also be eliminated. The 

analysis yielded a number of 22 features for personal model development. 
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Figure A3. Importance of different features for prediction performance using SVM classification based on the 

whole dataset  
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