
UC Irvine
UC Irvine Previously Published Works

Title
Dynamic Reliability Management in Neuromorphic Computing

Permalink
https://escholarship.org/uc/item/3fb2h6nn

Authors
Song, Shihao
Hanamshet, Jui
Balaji, Adarsha
et al.

Publication Date
2021-05-05

Copyright Information
This work is made available under the terms of a Creative Commons
Attribution License, availalbe at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fb2h6nn
https://escholarship.org/uc/item/3fb2h6nn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

1

Dynamic Reliability Management in Neuromorphic
Computing

SHIHAO SONG, JUI HANAMSHET, ADARSHA BALAJI, and ANUP DAS, Drexel University
JEFFREY L. KRICHMAR and NIKIL D. DUTT, University of California, Irvine
NAGARAJAN KANDASAMY, Drexel University
FRANCKY CATTHOOR, Imec, Belgium

Neuromorphic computing systems execute machine learning tasks designed with Spiking Neural Networks
(SNNs). These systems are embracing non-volatile memory (NVM) to implement high-density and low-
energy synaptic storage. Elevated voltages and currents needed to operate NVMs cause aging of CMOS-based
transistors in each neuron and synapse circuit in the hardware, drifting the transistor’s parameters from
their nominal values. If these circuits are used continuously for too long, the parameter drifts cannot be
reversed, resulting in permanent degradation of circuit performance over time, eventually leading to hardware
faults. Aggressive device scaling increases power density and temperature, which further accelerates the
aging, challenging the reliable operation of neuromorphic systems. Existing reliability-oriented techniques
periodically de-stress all neuron and synapse circuits in the hardware at fixed intervals, assuming worst-case
operating conditions, without actually tracking their aging at run time. To de-stress these circuits, normal
operation must be interrupted, which introduces latency in spike generation and propagation, impacting the
inter-spike interval and hence, performance, e.g., accuracy. We observe that in contrast to long-term aging,
which permanently damages the hardware, short-term aging in scaled CMOS transistors is mostly due to
Bias Temperature Instability (BTI). The latter is heavily workload-dependent and more importantly, partially
reversible. We propose a new architectural technique to mitigate the aging-related reliability problems in
neuromorphic systems, by designing an intelligent run-time manager (NCRTM), which dynamically de-
stresses neuron and synapse circuits in response to the short-term aging in their CMOS transistors during
the execution of machine learning workloads, with the objective of meeting a reliability target. NCRTM
de-stresses these circuits only when it is absolutely necessary to do so, otherwise reducing the performance
impact by scheduling de-stress operations off the critical path. We evaluate NCRTM with state-of-the-art
machine learning workloads on a neuromorphic hardware. Our results demonstrate that NCRTM significantly
improves the reliability of neuromorphic hardware, with marginal impact on performance.

CCS Concepts: • Hardware → Neural systems; Bio-embedded electronics; Aging of circuits and sys-
tems; • Software and its engineering→ Runtime environments.

Additional Key Words and Phrases: Neuromorphic Computing, Machine Learning, Spiking Neural Network
(SNN), Bias Temperature Instability (BTI), Lifetime Reliability, Non-Volatile Memory (NVM), Phase-Change
Memory (PCM), Run-time Manager (RTM).

Authors’ addresses: Shihao Song, shihao.song@drexel.edu; Jui Hanamshet, jh3454@drexel.edu; Adarsha Balaji, ab3586@
drexel.edu; Anup Das, anup.das@drexel.edu, Drexel University, 3101 Market Street, Philadelphia, PA, 19104; Jeffrey L.
Krichmar, jkrichma@uci.edu; Nikil D. Dutt, dutt@ics.uci.edu, University of California, Irvine, 6210 Donald Bren Hall,
Irvine, CA, 92697; Nagarajan Kandasamy, nk78@drexel.edu, Drexel University, 3101 Market Street, Philadelphia, PA, 19104;
Francky Catthoor, Francky.Catthoor@imec.be, Imec, Kapeldreef 75, 3001 Leuven, Belgium.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1550-4832/2021/1-ART1 $15.00
https://doi.org/10.1145/3462330

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

ar
X

iv
:2

10
5.

02
03

8v
1

 [
cs

.N
E

]
 5

 M
ay

 2
02

1

https://doi.org/10.1145/3462330

1:2 Song, et al.

ACM Reference Format:
Shihao Song, Jui Hanamshet, Adarsha Balaji, Anup Das, Jeffrey L. Krichmar, Nikil D. Dutt, Nagarajan Kan-
dasamy, and Francky Catthoor. 2021. Dynamic Reliability Management in Neuromorphic Computing. ACM J.
Emerg. Technol. Comput. Syst. 1, 1, Article 1 (January 2021), 27 pages. https://doi.org/10.1145/3462330

1 INTRODUCTION
Spiking Neural Networks (SNNs) [60] are machine learning approaches designed with spike-based
computations [46] and bio-inspired learning algorithms [15] (See Appendix A for background on
SNNs). SNN-based workloads are typically executed on event-driven neuromorphic hardware such
as TrueNorth [35], Loihi [34], and DYNAP-SE [64]. These hardware platforms are extremely energy-
efficient, thanks to their event-driven activation and their tile-based distributed architecture with
in-place neural computations and synaptic storage [72]. We investigate the internal architecture of
neurons and synapses in DYNAP-SE (see Figures 3b and 4b), and found that these circuits consist
of transistors built using bulk CMOS or FinFet technologies [1, 18, 44].1 When operated at a high
voltage and temperature, the transistor’s parameters strongly drift from their nominal values.
This is called aging. In fact, in scaled technology nodes, this aging happens even under nominal
conditions and from the very start of using the devices leading to the so-called soft breakdown.
The most important breakdown mechanism is the Bias Temperature Instability (BTI) [50, 51, 99].
Strongly depending on the workload, BTI is highly variable and it is largely reversible under
nominal conditions on removal of the stress voltage. So it leads only to parametric time-dependent
variability, affecting mainly delay and leakage power. If the neurons and synapses in a neuromorphic
hardware are used continuously for long duration at elevated operating conditions, the parameter
drifts cannot be reversed [100], leading to permanent functional degradation of the circuit and
eventually, hardware faults [53, 68, 91]. The permanent fault rates in integrated circuits can be
described by the bathtub curve as shown in Figure 1. Post manufacturing, integrated circuits (IC)
are characterized by high failure rates as these circuits are subjected to manufacturing tests, such as
stuck-at, at-speed, burn-in, etc., which filters out defective circuits and circuits with short lifetime.
The probability of the successful circuits surviving for a longer period of time, increases. The failure
rate, therefore, decreases over time. This phase is known as the infant mortality period. This is
followed by a period of constant failure rate, often referred as useful life. The last phase is known
as the wear-out or the aging phase and is characterized by increasing fault rate. Recent studies on
reliability reveal that, if wear-out is not addressed from early device usage stage (e.g., the beginning
of useful life period), circuits can age faster than anticipated with the wear-out phase settling earlier
in life (shown by the red dashed line in the figure).

To address time-dependent variability or aging, circuit designers often set worst-case and hence
highly pessimistic reliability-related extra design margins, which unnecessarily constrain perfor-
mance. Our objective is to analyze the circuit aging in neuromorphic hardware at real-time and
take corrective measures at the architecture-level to reverse the parameter drifts based on the
utilization of neuron and synapse circuits within a machine learning workload.
Recently, Non-Volatile Memory (NVM) is used in neuromorphic hardware to implement high-

density and low-energy synaptic storage [14]. Several NVMs are explored for this purpose – Oxide-
based Resistive RAM (OxRRAM) [62], Phase Change Memory (PCM) [66], Ferro-Electric RAM [65],
and Spin-Transfer Torque Magnetic or Spin-Orbit-Torque RAM (STT- and SoT-MRAM) [97].2
NVMs require either high voltage (OxRRAM, PCM and FeFET) or high current (MRAM) to operate,
which accelerates the aging of transistors in neuron and synapse circuits in a neuromorphic
hardware [2, 55, 83, 84, 88]. Aggressive device scaling increases power density and temperature,
1We believe these architectures are similar for other designs like TrueNorth [35] and Loihi [34].
2Beside neuromorphic computing, NVMs are also used as mainmemory for conventional computing [54, 57, 71, 85, 87, 89, 90].

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3462330

Dynamic Reliability Management in Neuromorphic Computing 1:3

Fa
u

lt
 R

at
e

Time

Infant
Mortality

Useful Life Wear-out

Fig. 1. Bathtub curve for permanent faults.

which makes reliability even worse. Therefore, circuit aging is emerging as one of the primary
reliability concerns for neuromorphic hardware designed with NVMs [16].

The reliability problem we are addressing in this work is due to high voltage operations of NVMs.
That can also occur in other system contexts,3 but it is in particular an issue for SNNs due to the
following reasons. To address this high voltage NVM problem, periodic de-stress of the peripheral
circuit is necessary, which impacts inter-spike interval (ISI) when machine learning models are
executed on these circuits. The performance (e.g., accuracy) of SNNs depends on ISI. Therefore, the
reliability issues of NVMs lead to performance issues in SNNs.
Prior works on mapping machine learning workloads to neuromorphic hardware have mostly

focused on compilation techniques, with the objective of improving machine learning performance
on hardware. Examples of such approaches include hardware utilization-based mapping [3, 4, 8, 10,
11, 24, 40, 47, 48, 86], energy-based mapping [9, 32, 94], and endurance-based mapping [92, 93, 95].
The recently-proposed approach RENEU [88] is the only compile-time based technique that maps
the neurons and synapses to the hardware to improve the long-term, i.e., the lifetime reliability.
Although compile-time based aging mitigation approaches have unique advantages such as low
computation overhead, predictability, and performance guarantee, they are often conservative and
therefore, may miss significant performance and reliability improvement opportunities. Dynamic
approaches are flexible, adaptive, and potentially more effective in a highly dynamic environment,
such as ones where the inference data deviates strongly from training examples. We show that
both performance and reliability can be improved significantly if neuron and synapse circuits are
de-stressed periodically at run-time based on current data.

On the run-time front, very few approaches address the run-time management of neuromorphic
computing.4 In [10], the authors propose a fast approach to remap online learning SNNs on a
neuromorphic hardware after every learning epoch to improve model performance. In DTRO [2],
the authors propose a hybrid approach to estimate the reliability degradation for machine learning
workloads at design-time using training data, and use this information to de-stress all hardware
circuits during run-time at fixed intervals, without actually tracking the circuit aging. The effective-
ness of this approach is limited to supervised techniques only and the availability of representative
training data. To this end, we make the following three key observations.

3BTI issues are also a reliability concern for standard DRAM and SRAMmemories [67]. However, due to the use of transistors
as access devices, the peripheral circuits in DRAM and SRAM can use lower operating voltages ≈ 1.2V. BTI-related reliability
issues in DRAM and SRAM are therefore less severe than in NVM contexts [87, 90].
4There are works that address run-time management for conventional multi-core systems [81].

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Song, et al.

• Observation 1:Workload, which includes synaptic weights and their activation on neuromorphic
hardware, is specific to the machine learning task being executed and its input.

• Observation 2: De-stressing all circuits in the hardware periodically, without tracking the actual
aging, introduces long latency in spike generation and propagation, which impacts inter-spike
interval, leading to information loss in SNNs.

• Observation 3: Compared to long-term aging under elevated stress conditions, which is perma-
nent and irreversible, short-term aging under nominal conditions is heavily workload-dependent
(and hence to some extent controllable), and partially reversible.

Based on these three observations, we introduce NCRTM, a run-time reliability manager for
neuromorphic hardware to de-stress neuron and synapse circuits in the hardware only when
needed, by dynamically tracking their short-term aging during the execution of machine learning
tasks. NCRTM extends our earlier work DTRO [2] with the following new contributions.

• We introduce an intelligent run-time manager NCRTM, which improves the long-term
reliability of neuromorphic hardware by controlling its short-term aging when executing
machine learning tasks.

• We develop a run-time performance monitoring and reliability estimation framework using
statistics collected from the neuromorphic hardware.

• We show that NCRTM can be applied to both supervised and unsupervised machine learning
approaches and scenarios where the number of training examples are limited.

• We evaluate NCRTM with machine learning workloads designed using Convolution Neural
Network (CNN), Multi-layer Perceptron (MLP), and Recurrent Neural Network (RNN) models
on a state-of-the-art neuromorphic hardware simulator.

Overall, NCRTM mitigates the aging-related reliability problems in neuromorphic computing
by dynamically de-stressing neuron and synapse circuits in response to their short-term aging,
with the objective of meeting a reliability target. NCRTM de-stresses these circuits only when it
is absolutely necessary to do so, otherwise reducing the performance impact by scheduling all
de-stress operations off the critical path by tracking the latency impact of de-stress operations on
inter-spike interval (ISI), a key performance measure in SNNs.

2 COMPARISONWITH STATE-OF-THE-ART
Figure 2 illustrates how the proposed approach differs from two reliability-oriented state-of-the-art
approaches. Figure 2a illustrates a design-time approach such as RENEU [88], where neurons and
synapses are mapped to the hardware to increase the long term, i.e., the lifetime reliability. This
approach estimates the aging in neuron and synapse circuits using representative training examples.
There are no corrective online measures in place to control the aging, should the aging exceed a
critical threshold or the workload behavior changes, for instance, when encountering unseen data
at run-time. Figure 2b illustrates a hybrid approach such as DTRO [2], where neurons and synapses
are mapped to the hardware using a reliability-oriented mapping technique (e.g., RENEU [88]).
Additionally, all neuron and synapse circuits in the hardware are periodically de-stressed to control
the aging. The de-stress interval is determined using training examples. The drawbacks of such an
approach are the following. First, by not tracking the actual aging in real-time, such approach can
introduce significant latency in interrupting normal operation, even when the aging is much below
the critical threshold. This is especially critical for SNNs because the performance of machine
learning workloads, e.g., their accuracy, depends on the precise times of spikes (see Appendix A).
Second, the effectiveness of such a hybrid approach depends heavily on the training data, which
may not always be representative. In fact, hybrid approaches present significant limitations for
unsupervised applications or applications with limited training data.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:5

training
data

current
data neuromorphic hardware

tile 3 tile 2 tile 1 tile 0
neuron and synapse mapping

(a) Design-time approach (e.g.,
RENEU [88]).

training
data

current
data neuromorphic hardware

tile 3 tile 2 tile 1 tile 0
run-time manager

neuron and synapse mapping

de-stress

(b) Hybrid approach (e.g.,
DTRO [2]).

training
data

current
data neuromorphic hardware

tile 3 tile 2 tile 1 tile 0
run-time manager

neuron and synapse mapping

ag
in

g

de-stress

(c) Run-time approach (pro-
posed, NCRTM).

Fig. 2. Illustrating the trade-off between neuron aging and SNN performance.

Figure 2c illustrates NCRTM, the proposed run-time approach for reliability management in
neuromorphic hardware. NCRTM tracks the aging in neuron and synapse circuits at real-time
during the execution of machine learning workloads and de-stresses these circuits only when
their aging exceeds a critical threshold. By implementing age tracking and control at run-time, the
de-stress decisions of NCRTM are made based on current data. Therefore, NCRTM is relevant for
both supervised and unsupervised machine learning approaches.

To the best of our knowledge, NCRTM is the first work for run-time reliability management of
neuromorphic hardware. In Section 7, we evaluate NCRTM against these state-of-the-art reliability
management approaches using both supervised and unsupervised machine learning workloads.

3 BACKGROUND
In this section, we introduce the background necessary to understand our proposed run-time
manager NCRTM. Background on SNNs are provided as Appendix.

3.1 Neuromorphic Hardware
We consider tile-based neuromorphic hardware [6, 17], where the tiles are interconnected using
networks-on-chip (NoC) or Segmented Bus [7]. This is similar to several contemporary neuromor-
phic architectures such as DYNAP-SE [64], Loihi [34], and TrueNorth [35]. Each tile in the hardware
consists of a crossbar for synaptic storage, a set of input and output neurons, and a performance
monitoring unit, which in its simplest form is a spike counter (SC). A crossbar, shown in Figure 3a,
is a 3D organization of top electrodes (TEs), which form the rows and bottom electrodes (BEs),
which form the columns. A synaptic cell is connected at a crosspoint, i.e., at the intersection of
each row and column via an access transistor as shown in Figure 3b. Pre-synaptic neurons are
mapped along the TEs and post-synaptic neurons along the BEs. The synaptic weight between
a pre- and a post-synaptic neuron is programmed as conductance of the corresponding synaptic
cell at the crosspoint. A pre-synaptic neuron’s voltage (𝑉𝑖) applied on the TE is multiplied by the
conductance (𝐺𝑖) to generate current 𝐼𝑖 = 𝑉𝑖 ·𝐺𝑖 (according to Ohm’s Law). This current propagates
to the post-synaptic neuron to raise its action potential. Current summation occurs on each BE
according to Kirchoff’s Current Law, when integrating excitation from other pre-synaptic neurons.
This implements ∑

𝑖 𝐼𝑖 =
∑
𝑖 𝑉𝑖 ·𝐺𝑖 . This is the in-memory multiply accumulate logic implemented

inside a crossbar. Figure 3a illustrates the integration of input excitation from two pre-synaptic
neurons to one post-synaptic neuron via the synaptic weights 𝑤1 and 𝑤2, respectively. This forms
the data plane of the neuromorphic hardware. The control plane of the hardware consists of control
signals, which enable specific access transistors (see Figure 3b) to facilitate current flow in the
crossbar. The NVM device of a synaptic cell, shown as a resistive element in Figure 3b, can be
implemented for instance with HfO2-based OxRAM or chalcogenide-based PCM as shown in
Figure 3c. But our approach is not limited to these specific NVM technologies.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Song, et al.

top electrodes
(TEs)

bottom electrodes
(BEs)

NVM cell

𝑤
"

𝑤
#

TiN

Ti

Hfo2

TiN

(OxRAM)

(PCM)

to TE

to BE

control
chalcogenide

resistive
heating element

a. b. c.

NVM

Fig. 3. (a) A crossbar of a neuromorphic hardware, (b) a synaptic cell consisting of a NVM device (a resistive
element) and a transistor, and (c) Hfo2-based OxRAM and chalcogenide-based PCM as NVM device.

Figure 4a shows the currents and voltages on the path from the pre-synaptic neuron 𝑁𝑖 to the
post-synaptic neuron 𝑁 𝑗 . The input current 𝐼 𝑖𝑖𝑛𝑗 is converted into voltage 𝑉 𝑖

𝑠𝑝𝑘
using the neuron

𝑁𝑖 . This voltage is multiplied with the conductance 𝐺𝑖 (representing synaptic weight) to generate
the current 𝐼 𝑗

𝑖𝑛𝑗
. This current is converted to voltage 𝑉 𝑗

𝑠𝑝𝑘
using neuron 𝑁 𝑗 . Figure 4b illustrate the

internal architecture of a Leaky-Integrate-and-Fire neuron [45]. The current 𝐼inj injected into the
neuron is proportional to the weighted sum of excitation from all of its pre-synaptic connections.
The PMOS and NMOS transistors in the neuron and the reference voltages raise the neuron’s
membrane voltage. When the voltage crosses a threshold, a spike is generated. The spike voltage
(𝑉spk) must be sufficiently high to propagate current through the synaptic cell connected at the
output of the neuron.

(a) Current and voltages between
the pre-synaptic neuron 𝑁𝑖 and
the post-synaptic neuron 𝑁 𝑗 .

Vdd

Vsf

Vdd

Vdd

Vrfr

Vdd

Cmem

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

Iinj

Vmem

Vin

Ifb

Vspk

Vdd

Vlk

Vdd

M13

M14

M15

M16

M17M19

M18

M20

Vo1

Vo2

Vadap

IresetIleak Iadap

Vca

Figure 1: Circuit diagram of the integrate-and-fire neuron.

This design, however, is also undermined by large power
consumption, due to the very same problems present in the
Axon-Hillock circuit. In [14] van Schaik proposed a cir-
cuit with an amplifier at the input, to compare the voltage
on the capacitor with a desired spiking threshold voltage.
As the input exceeds the spiking threshold, the amplifier
drives the inverter, making it switch very rapidly. This cir-
cuit consumes less power than previously proposed ones,
but has not been optimized explicitly for power consump-
tion, and still lacks a spike-frequency adaptation mecha-
nism. In [13] Boahen demonstrates how it is possible to
implement spike-frequency adaptation by connecting a four
transistor “current-mirror integrator” in negative-feedback
mode to any I&F circuit. And in [9] the authors specifi-
cally address the problem of power consumption in I&F cir-
cuits (following preliminary results obtained by some of the
participants of the 1999 Neuromorphic Engineering Work-
shop). The I&F circuit proposed in [9] did not include spike-
frequency adaptation mechanisms, nor voltage threshold mo-
dulation ones, nor refractory periods, nor ways to imple-
ment explicit leak currents. The circuit we propose uses the
same design tricks proposed in [9] to minimize power con-
sumption, but also includes all of the properties mentioned
above.

3. CIRCUIT IMPLEMENTATION AND
MEASUREMENTS

The low-power circuit that implements the model of a leaky
I&F neuron is shown in Figure 1. It comprises twenty tran-
sistors and one (explicit) capacitor. Two additional para-
sitic (implicit) capacitors are exploited at nodes Vo2 and Vca

(see text below). The circuit can be subdivided in six main
blocks: a source follower M1-M2, for increasing the linear
integration range and for modulating the neuron’s thresh-
old voltage; an inverter with positive feedback M3-M7,

0 0.005 0.01 0.015 0.02
0

1

2

3

Time (ms)

V
m

em
 (

V
)

0.015 0.0165 0.018

1.5

2

2.5

Figure 2: Measurement data showing a typical shape of a
spike. The inset shows a fit of the measured data with equa-
tion (1).

for reducing the switching short-circuit currents at the in-
put; an inverter with controllable slew-rate M8-M11, for
setting arbitrary refractory periods; a digital inverter M13-
M14, for generating the fast digital pulse that signals the
occurrence of a spike; a transient current-mirror integrator
M15-M19, for implementing the spike-frequency adapta-
tion mechanism, and a minimum size transistor M20 for
implementing a constant current leak.

3.1. Voltage threshold modulation and positive feedback

If Vmem is sufficiently low, the input current Iinj is inte-
grated linearly by Cmem. The source-follower M1-M2,
driven by Vmem generates the signal Vin = κ(Vmem−Vsf),
where Vsf is a constant sub-threshold bias voltage and κ
is the sub-threshold slope coefficient [15]. By changing
Vsf one can change the neuron’s threshold voltage and use
this property to model long-term adaptation effects in cor-
tical cells, or to reproduce traveling waves or global oscil-
lations in the whole population of I&F neurons. As Vmem

increases and Vin approaches the threshold voltage of M5,
the current through M3 starts to increase, and Vo1 starts to
decrease. Consequently the feedback current Ifb starts to
increase Vmem and Vin more rapidly. As Vin (and Vo1) ap-
proach Vdd/2, the feedback current increases, reaching a
maximum value and decreasing again as Vin crosses Vdd/2
while approaching Vdd. The positive feedback has the effect
of making the inverter M3-M5 switch very rapidly, reduc-
ing dramatically its power dissipation. It can be shown that
to a first order approximation the positive feedback has the
effect of changing the profile of Vmem(t) from linear (for a
constant Iinj) into a profile of the type

c1t + c2 ln

(
c3

e(t−t0) − 1

)
(1)

when t is close to the spike emission time t0. The param-
eters c1, c2, and c3 are proportionality constants. Figure 2

(b) Internal architecture of a leaky integrate and fire (LIF) neu-
ron [45], showing different transistors and reference voltages
needed to generate the necessary spike voltage at the output.

Fig. 4. a) Connection between neurons and b) a leaky integrate and fire (LIF) neuron [45].

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:7

Certain NVMs such as PCM, OxRRAM, and FeFET requires high voltages to operate. We consider
the case of PCM-based neuromorphic hardware, which requires ≈ 3V [87] to propagate current
through it. This high voltage causes aging of the access transistor in each synaptic cell in a crossbar
and also of the transistors in each neuron connected along the TEs and the BEs of the crossbar.

3.2 Transistor Aging in Neuromorphic Hardware
High voltage operations of transistors introduce many reliability issues such as Time-Dependent
Dielectric Breakdown (TDDB), Bias Temperature Instability (BTI), and Hot-Carrier Injection (HCI).
These are the dominant causes of aging in scaled technology nodes (45nm and below) [61]. In older
nodes, Electromigration (EM) also plays a key role [23, 25–30, 69, 79].

Transistor aging is accelerated when it is stressed, i.e., exposed to high overdrive voltage, where
overdrive voltage is defined as the voltage between transistor gate and source (𝑉𝐺𝑆) in excess of
the threshold voltage (𝑉th), where 𝑉th is the minimum voltage required between gate and source
to turn the transistor on. With this understanding, we provide a brief background of these three
failure mechanisms.

• TDDB: This is a failure mechanism in a CMOS device, when the gate oxide breaks down
as a result of long-time application of relatively low electric field (as opposed to immediate
breakdown, which is caused by strong electric field) [76]. The lifetime of a CMOS device is
measured in terms of its mean time to failure (MTTF) as

MTTFTDDB = 𝐴.𝑒−𝛾
√
𝑉 , (1)

where 𝐴 and 𝛾 are material-related constants, and 𝑉 is the overdrive gate voltage of the CMOS
device.

• BTI: This is a failure mechanism in a CMOS device where positive charges are trapped at
the oxide-semiconductor boundary underneath the gate [41]. BTI manifests as 1) decrease in
drain current and transconductance, and 2) increase in off current and threshold voltage. The
BTI lifetime of the device is

MTTFBTI =
𝐴

𝑉𝛾
𝑒
𝐸𝑎
𝐾𝑇 , (2)

where 𝐴 and 𝛾 are material-related constants, 𝐸𝑎 is the activation energy, 𝐾 is the Boltzmann
constant, 𝑇 is the temperature, and 𝑉 is the overdrive gate voltage of the CMOS device.

• HCI: This is a failure mechanism in a CMOS device, when a carrier (electron or hole) gains
sufficient kinetic energy to overcome the potential barrier of the conducting channel and gets
trapped in the gate dielectric, permanently changing its switching characteristic [98].

Unlike the TDDB and BTI failure mechanisms, for which silicon-characterized reliability mod-
els are available from foundries, characterized models for HCI failure mechanisms are still in
development for scaled nodes. Among these failure mechanisms, BTI is generally accepted as
the most important mechanism for sub-10 nm nodes [59, 73, 78]. HCI mostly occurs there under
strong voltage/current conditions and TDDB has become less important because technologists
have stopped pursuing ultra-high k values in the dielectric.

4 OBSERVATIONS LEADING TO NCRTM
We expand on the three observations made in Section 1.

4.1 Observation 1: Workload-dependent Activation
To illustrate the application and input-dependent neuron activation, Figure 5 plots the spike firing
rate of 100 randomly-selected neurons in AlexNet [52], a state-of-the-art CNN used for Imagenet
classification. We report results for two randomly-selected training and test images.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Song, et al.

0 20 40 60 80 100

0

10

20

30

40

S
pi

ke
ra

te
(H

z)

train-image-1

train-image-2

test-image-1

test-image-2

Fig. 5. Spike rate of 100 randomly-selected neurons in AlexNet for 2 training images and 2 test images.

We observe that spike firing rates of neurons depend on the image presented to the AlexNet
CNN. Therefore, reliability improvement strategies based on design-time analysis with training
examples may not be optimal when they are applied at run-time to process in-field data, a limitation
of our prior work [2]. We address this limitation by designing our proposed run-time framework
NCRTM, which can adapt its decisions based on current data.

To demonstrate the workload-dependent nature of spike firing rate, Figure 6 plots the minimum,
maximum, and average spike rate of all neurons in 10 machine learning workloads (see Section 6)
for test examples from their respective dataset. We observe that spike rates of neurons are strongly
workload-dependent, and therefore, a workload-specific strategy is needed to optimally control the
reliability aspect. This is precisely the objective of NCRTM.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

M
LP

-M
N

IS
T

Im
gS

m
oo

th

E
dg

eD
et

H
ea

rt
E

st
m

Sp
ee

ch
R

ec
og

V
is

ua
lP

ur
su

it

AV
E

R
A

G
E

0

100

200

300

S
pi

ke
ra

te
(H

z) min max avg

Fig. 6. Minimum, maximum, and average spike rate of all neurons in 10 workloads for test set.

4.2 Observation 2: Performance Trade-off in Reliability Improvement
In SNNs, information is encoded in spike times. Inter-spike interval (ISI) defines the performance
metric in SNNs. To demonstrate how ISI is impacted by reliability-oriented decisions, Figure 7(a)
shows the spike train generated by a neuron in AlexNet when processing a reference image. Each
spike injects current into the crossbar to flow through the NVM cell. Figure 7(b) illustrates the
voltage of the on-chip charge pump that supply the reference voltages in the neuron to generate this
spike train. The charge pump is operated at 1.8𝑉 for the entire 60ms interval, boosting its voltage to
3𝑉 only to generate spikes. Aging of the transistors in the neuron is 8.3 units (see Section 5.3 for
aging computation) and the average ISI is 5.9ms (See Section 5.4 for ISI computation). Figure 7(c)
illustrates the charge pump’s operating voltage when it is discharged to 1.2𝑉 after generating every
spike and boosted again to 1.8𝑉 before generating the next. This is to de-stress the transistors in the
neuron. Once de-stressed, the neuron becomes unavailable to generate spikes, introducing latency

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:9

in the spike train. The average ISI increases to 7.4ms, compared to 5.9ms in Figure 7(b). Changes
in ISI may lead to accuracy loss. Frequently discharging the charge pump, however, reduces the
neuron’s aging to 7.1 units, compared to 8.3 units in Figure 7(b). This reduction in aging leads to an
improvement of MTTF, i.e., the lifetime of the neuron.

0 10 20 30 40 50 60
Time (ms)

 sp
ik

es

(a) Example spike train from a neuron in AlexNet.

0 10 20 30 40 50 60
Time (ms)

1

2

3

Ch
ar

ge
 p

um
p

vo
lta

ge
 (V

) ISI = 5.9ms and aging = 8.3 unit

(b) Charge pump voltage to process the spike train.

0 10 20 30 40 50 60 70
Time (ms)

1

2

3

Ch
ar

ge
 p

um
p

vo
lta

ge
 (V

) ISI = 7.4ms and aging = 7.1 unit

(c) Charge pump reset to 1.2V after processing every spike.

Fig. 7. Trade-off between neuron aging and SNN performance.

Although it is possible to estimate the worst-case ISI degradation at compile-time using SpiNe-
Map [9] and other similar approaches, such estimation can deviate significantly from the actual case
in a highly dynamic environment, where testing data is different from the training examples (see
Figure 5). Therefore, a run-time manager is desirable to dynamically adapt the reliability-oriented
decisions to limit ISI degradation.

4.3 Observation 3: Short-term vs. Long-term Aging
In this work, we demonstrate our approach for BTI-related failures. The general principle ap-
plies to any other failure mechanism. BTI aging manifests as: 1) A decrease in drain current and
transconductance, and 2) An increase in off current and threshold voltage. When operated at a
high voltage and temperature, these parameters strongly drift from their nominal values. In fact, in
scaled technology nodes, this BTI aging happens even under nominal conditions and from the very
start of using the devices leading to the so-called soft breakdown [33, 50, 51, 99].

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Song, et al.

Recent works such as [41, 42, 50, 51, 70, 77, 99] suggest that BTI is the collective response of two
independent defects – the as-grown hole traps (AHTs) and generated defects (GDs). AHTs and a small
proportion of GDs can be recovered by annealing at high temperatures if the BTI stress voltage is
removed (de-stress). Figure 8 illustrates the stress and recovery of the threshold voltage of a CMOS
transistor on application of a high (𝑉spk) and a low voltage (𝑉idle). We observe that both stress and
recovery depends on the time of exposure to the corresponding voltage level. This implies that
when a neuron is idle, the BTI aging of the neuron recovers from stress.

Fig. 8. Demonstration of degradation due to BTI.

Figure 9a shows the shift in threshold voltage of a NMOS transistor in a neuron with a constant
firing rate of 50Hz and the neuron circuit de-stressed once every second (see Section 6 for the
simulation setup). Figure 9b shows the results using the same setup, but with the neuron circuit
de-stressed once every 100ms. As this figure clearly shows, with longer de-stress interval (e.g., once
every second), the transistor aging becomes irreversible. Therefore, the shift in threshold voltage
of the transistor is higher than the case with shorter de-stress interval (e.g., once every 100ms).

5 RUN-TIME MANAGER FOR NEUROMORPHIC COMPUTING (NCRTM)
5.1 A Motivating Example Showing the Need for Run-time Reliability Management
Figure 10 shows an example where four spikes (R1, R2, R3, & R4) are generated from a neuron.
These spikes are generated with some idle time between them (based on its input excitation). The
figure illustrates the hybrid approach DTRO [2] (see Fig. 2b), where the neuron is de-stressed at
run-time after generating 3 spikes. This fixed number is decided statically, considering the neuron’s
activation in some training example. This is illustrated in the top right corner of the figure, where
we observe that the BTI aging (ABTI) exceeds the aging threshold of 10 units after generating three
spikes based on the idle periods between spikes in the training example.

Using this static approach, the de-stress operation is initiated upon generating R3, which delays
the generation of R4 due to the non-zero latency of the de-stress operation. This causes a change in
the ISI, which may lead to performance loss in SNNs (see Appendix B). At the time when the neuron
circuit is being de-stressed, the BTI aging is below the threshold because a CMOS transistor recovers
partially from BTI stress when idle. The length of the idle periods at run-time can be different from
those used at design-time when the analysis is performed as shown in this example. Therefore, the
static approach will unnecessarily introduce performance penalty in such a situation. Using fixed
interval for de-stress (instead of counting the spikes) will also lead to a similar situation because the
number of spikes within the de-stress interval still remains unknown at run-time, being dependent
on the input excitation.
Figure 10 also shows NCRTM, our dynamic reliability management policy, where the de-stress

operation of the neuron circuit is initiated by tracking its aging. NCRTM can generate the spike R4
because the aging of the neuron is lower than the aging threshold at the time of generating the
spike. This is because NCRTM models both the stress and recovery of circuit aging at run-time.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:11

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (years)

0

2

4

6

8

∆
V
th

(%
)

GD

AHT

(a) BTI aging when de-stressing a neuron circuit once every second.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (years)

0

2

4

6

8

∆
V
th

(%
)

GD

AHT

(b) BTI aging when de-stressing a neuron circuit once every 100ms.

Fig. 9. Shift in threshold voltage of a NMOS transistor in a neuron with a constant firing rate of 50Hz and
the neuron circuit de-stressed a) once every second (long-term) and b) once every 100ms (short-term).

de-stress interval = 3 spikes

stress stress recovery stress recovery stress

stress recovery recovery

spikes

R1 R2 R3
R4

static

dynamic

stress recovery de-stress

stress stress stress

aging threshold = 10

stress stress stress

recovery

Fig. 10. Comparing static vs. dynamic reliability management policy.

There is no change in ISI. Therefore, NCRTM is better than the static approach both in terms of
reliability and performance.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Song, et al.

This example demonstrates one scenario with sparse neuron activation. One can also imagine a
counter scenario where the neuron is activated too frequently. In this case, the static policy can lead
violating the critical threshold because it cannot adapt the de-stress interval at run-time. NCRTM
can adjust its de-stress interval at run-time by tracking the aging (both stress and recover). In
Section 7.4 we show only a marginal performance impact for workloads with frequent activation.
Therefore, NCRTM is better than the static policy, when it comes to managing workload-specific
circuit aging.

5.2 High-level Overview
Based on the three observations in Section 4 and the motivating example in Section 5.1, we introduce
NCRTM, a run-time reliability manager for neuromorphic hardware. Figure 11 illustrates NCRTM
designed for tile-based neuromorphic hardware. We show the architecture of DYNAP-SE with 12
tiles, numbered 1, 2, · · · , 12 in the figure. These tiles are connected hierarchically, with groups of
4 tiles connected to a local router R. The local routers can be interconnected via global routers
(not shown in the figure) to facilitate spike communication between any two tiles. The figure also
shows the on-chip charge pump and the voltage delivery network, which supply the reference
voltages for the neuron circuits of each tile.

NCRTM

1

2

3

4

5

6

7

8

9

10

11

12R R R

spike count

In
pu

t

OutputSC
4

crossbar

Charge
Pump

DSQ

Fig. 11. Overview of NCRTM for tile-based neuromorphic hardware.

NCRTM is implemented as a controller to mitigating the aging of neuron circuits in each tile.
To do so, NCRTM estimates maximum aging of the neurons in each tile by recording the number
of spikes within a time window (see our aging formulation in Section 5.3). If the aging of a tile
exceeds a threshold (𝑡ℎ_𝑎),5 NCRTM schedules the de-stress of the tile by making an entry in the
de-stress queue (DSQ). However, the tile may not be de-stressed immediately. NCRTM de-stresses
a tile opportunistically by estimating the change in ISI (called ISI distortion) that may result due
to offlining the tile (see our ISI formulation in Section 5.4). During de-stresses, a very low voltage
is applied to all the neurons in a tile for a time duration 𝑡𝐷𝑆𝐶 (discharge cycle time). This allows
the transistors in the neurons to reverse the threshold voltage drift Δ𝑉th. The recovery time 𝑡𝐷𝑆𝐶 is
modeled using the framework presented in [100].

Fundamental to the aging and ISI computation in NCRTM is a technique to estimate the number
of spikes for each neuron. The spike counter (SC) in each tile can facilitate counting the spikes
in a time interval. However, not all neuromorphic hardware is equipped with SC. Therefore, we
present an alternative software-based technique for implementing spike counting.

5The aging threshold 𝑡ℎ𝑎 is a user-defined parameter used to achieve a given reliability target.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:13

5.2.1 Spike Counting in Software. To understand spike counting in software, we describe the spike
communication mechanism in neuromorphic hardware. Spikes from the post-synaptic neurons in a
tile are converted into an address-event representation (AER) and broadcasted on the interconnect
via the AER encoder. Figure 12 shows an example explaining the principles behind AER. Here, four
neurons in a tile spike at time 3, 0, 1 and 2 time units, respectively. The encoder encodes these four
spikes in order to be communicated on the interconnect.

CHAPTER 2. BACKGROUND KNOWLEDGE

chips. There are several published benchmark reports for different chips. In the following para-
graph, TrueNorth chip is cited as a proof of the significant reduction of power consumption.

TrueNorth is a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via
an intra-chip network that integrates 1 million programmable spiking neurons and 256 million
configurable synapses, designed and fabricated by IBM [24]. Paul A. Merolla et al. ran a multi-
object detection and classification application both on a state-of-art von Neumann computer and
the neuromorphic system built with TrueNorth chip, and compared power consumption. According
to their documented results, TrueNorth consumes 26 pJ per synaptic event with mean neurons
fire at 20 Hz and 128 active synapses, which is 176,000 times less energy per event compared with
the generic-propose microprocessor running the same network [25].

Accelerating neural network applications

Neuromorphic computing is biologically inspired and it is integrating spiking neural networks into
hardware level [8]. As a benefit, the neural network applications, such as image detection and
classification, big data analysis, machine learning etc., are accelerated with the natural imple-
mentation.

TrueNorth continues to be cited as a proof. According to the report of Paul A. Merolla et
al., TrueNorth can deliver 46 billion synaptic operations per second (SOPS) per watt for a typical
network and 400 billion SOPS per watt for networks with high spike rates and high number of
active synapses, whereas todays most energy-efficient supercomputer achieves 4.5 billion floating-
point operations per second (FLOPS) per watt [25]. Although the metric units are different, the
computational capability can by some means be indicated by the number of operations per second.

2.2.3 Synapse communications

This project is conducting the research on communication mechanisms and architecture of neur-
omorphic computing. In this section, some existent and conventional protocols and architectures
are introduced as the basis of this research.

Address event representation protocol

Address-event representation (AER) is a communication protocol originally proposed as a method
to communicate sparse neural events between neuromorphic chips. Massive interconnections
among individual neurons or neuron clusters are allocated to the reduced number of channels
by time division multiplexing. According to the protocol, each spike is represented by its location
and spiking time.

Figure 2.4: A example of AER protocol [2].

Exploration of Dynamic Communication Networks for Neuromorohic Computing 9

Fig. 12. An example AER protocol.

We propose to count the spikes from each neuron by snooping on the interconnect. We implement
counters, one for each neuron of the hardware. When a de-stress operation is initiated for a tile, all
the counters for the neurons in the tile are reset to start counting the spikes for the next interval.
The total storage overhead needed for implementing software-based spike counting for the 12-tile
architecture of Figure 11 is 12 ∗ 128 ∗ 16 bits = 24Kb, with 128 post-synaptic neurons per tile. However,
continuous snooping on the bus can introduce performance overhead. In the future, we plan to
extend the interconnect routers to facilitate recording the spike packets. This will allow NCRTM to
poll these readings periodically. With this necessary background, we now introduce our model for
estimating aging (Section 5.3) and ISI (Section 5.4).

5.3 Aging Computation
Equation 2 equates the MTTF of a CMOS transistor for a given overdrive voltage. BTI failures can
also be modeled using the Weibull distribution with a scale parameter 𝛼 and a slope parameter 𝛽.
Reliability at time 𝑡 can be written as

𝑅 (𝑡) = 𝑒−
(

𝑡
𝛼 (𝑉)

)𝛽
, (3)

with the corresponding MTTF computed as

𝑀𝑇𝑇𝐹 =

∫ ∞

0
𝑅 (𝑡)𝑑𝑡 = 𝛼 (𝑉)Γ

(
1 + 1

𝛽

)
, (4)

where Γ is the Gamma function. Using the expressions for MTTF from Equations 2 and 3, and
rearranging, we obtain the expression for the scale parameter 𝛼 as

𝛼 (𝑉) =
𝐴
𝑉𝛾
𝑒
𝐸𝑎
𝐾𝑇

Γ
(
1 + 1

𝛽

) . (5)

The aging (A), i.e., the degradation of the CMOS transistor can be expressed as

A =

𝑛∑︁
𝑖=1

Δ𝑡𝑖
𝛼 (𝑉𝑖)

, such that 𝑅 (𝑡𝑠) = 𝑒−(A)𝛽 , (6)

where the scaling factor 𝛼 (𝑉𝑖) can be calculated using Eq. 5.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Song, et al.

We note that a neuron suffers aging when generating a spike. Each spike is of fixed voltage
𝑉𝑠𝑝𝑘 (see Figure 4b) and a fixed time duration to the order of few ms. Therefore, both 𝑉𝑖 and 𝑡𝑖 in
Equation 6 are constant. This allows us to express the aging formulation as

A = 𝑛 · Δ𝑡

𝛼 (𝑉) , (7)

where 𝑛 is the number of spikes generated by the neuron, Δ𝑡 is the fixed spike duration, and 𝑉 is the
fixed spike voltage. Equation 7 allows us to represent the aging in terms of the number of spikes
generated by a neuron and the unit aging parameter Δ𝑡

𝛼 (𝑉) , which represents the aging per spike.
This simplified formulation allows to estimate the aging in each neuron by simply counting the
number of spikes it generates. Hence the performance overhead can be kept negligible.

5.4 ISI Computation
To define ISI, we consider a tile consisting of 𝑁 post-synaptic neurons and a finite interval of
time [0,𝑇] for which the tile is active without undergoing a de-stress operation. The post-synaptic
neurons generate 𝐾 spikes in this interval, which are organized based on their generation time and
the source neuron as

{𝑡11 , 𝑡12 , · · · , 𝑡1𝑘1 }, {𝑡
2
1 , 𝑡

2
2 , · · · , 𝑡2𝑘2 }, · · · , {𝑡

𝑁
1 , 𝑡

𝑁
2 , · · · , 𝑡𝑁𝑘𝑁 }, (8)

where 𝑡𝑛
𝑖
is the time of the 𝑖th spike generated by the 𝑛th neuron and 𝐾 =

∑𝑁
𝑖=1 𝑘𝑖 . The instantaneous

ISI of the spike train from the 𝑛th neuron is [43]
𝐼𝑆𝐼𝑛inst (𝑖) = 𝑡

𝑛
𝑖 − 𝑡𝑛𝑖−1 (9)

To estimate the impact of de-stress operation on ISI, we compute two statistics for each neuron –
the instantaneous ISI (Equation 9) and the average ISI, which is computed as the average of all ISIs
for a neuron. Using 𝑡𝐷𝑆𝐶 as the time to de-stress a tile, the change in instantaneous and average ISI
of the 𝑛th neuron are

Δ𝐼𝑆𝐼𝑛inst (𝑖) = 𝐼𝑆𝐼
𝑛
inst (𝑖) + 𝑡𝐷𝑆𝐶 and Δ𝐼𝑆𝐼𝑛avg = 𝑡𝐷𝑆𝐶/𝑘𝑁 (10)

6 EVALUATION METHODOLOGY
Figure 13 illustrates our simulation framework. An SNN-based application is simulated using
CARLsim [20], a GPU accelerated SNN simulator used to train and test SNNmodels. CARLsim reports
spike times for every synapse in the SNN. The spike times are used to performmapping explorations
optimizing some objective, such as performance (PyCARL [8]) and reliability (RENEU [88]). We use
NeuroXplorer [12], a cycle-accurate simulator of neuromorphic hardware such as DYNAP-SE [64].
The neuron and synapse mapping obtained using the mapping exploration framework is applied
to NeuroXplorer to perform cycle-accurate simulation of the application on the hardware model,
using current data. NCRTM is implemented inside NeuroXplorer to estimate the circuit aging
and control it by de-stressing the circuit when the aging exceeds a threshold. The change in spike
latency due to the de-stress operation can be precisely modeled in NeuroXplorer, as shown in [12].

CARLsim
Mapping

Exploration
NeuroXplorer

NCRTM

ML-based
application

aging de-stress

Fig. 13. Our simulation framework.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:15

All simulations are conducted on a system with 8 CPUs, 32GB RAM, and NVIDIA Tesla GPU,
running Ubuntu 16.04.

6.1 Evaluated Applications
We evaluated 10 machine learning applications that are representative of three most commonly
used neural network classes — convolutional neural network (CNN), multi-layer perceptron (MLP),
and recurrent neural network (RNN). These applications are 1) LeNet [56] based handwritten digit
recognition with 28 × 28 images of handwritten digits from the MNIST dataset [37]; 2) AlexNet [52]
for Imagenet classification [36]; 3) VGG16 [82], also for Imagenet classification [36]; 4) ECG-
based heart-beat classification (HeartClass) [5, 31] using electrocardiogram (ECG) data from the
Physionet database [63]; 5) multi-layer perceptron (MLP)-based handwritten digit recognition
(MLP-MNIST) [38] using the MNIST database; 6) image smoothing (ImgSmooth) [20] on 64 ×
64 images; 7) edge detection (EdgeDet) [20] on 64 × 64 images using difference-of-Gaussian; 8)
heart-rate estimation (HeartEstm) [22] using ECG data; 9) gender classification using speech data
(SpeechRecog) [39]; and 10) RNN-based predictive visual pursuit (VisualPursuit) [49]. The former 7
are supervised applications, while the latter 3 are unsupervised applications. Table 1 summarizes
the topology, the number of neurons and synapses of these applications, and their baseline accuracy
on DYNAP-SE using PyCARL [8].6

Table 1. Applications used to evaluate our approach NCRTM.

Class Applications Synapses Neurons Topology Accuracy

CNN

LeNet [56] 159,553 5,576 CNN 94.08%

AlexNet [52] 1,029,286 650,000 CNN 71.7%

VGG16 [82] 2,136,560 18,472 CNN 91.62 %

HeartClass [5] 2,396,521 24,732 CNN 85.12%

MLP

MLP-MNIST [38] 79,400 984 FeedForward (784, 100, 10) 95.5%

EdgeDet [20] 272,628 1,372 FeedForward (4096, 1024, 1024, 1024) 100%

ImgSmooth [20] 136,314 980 FeedForward (4096, 1024) 100%

RNN

HeartEstm [22] 636,578 6,952 Recurrent Reservoir 99.2%

SpeechRecog [39] 39,056 683 Recurrent Reservoir 96.8%

VisualPursuit [49] 3,25,710 5,717 Recurrent Reservoir 89.0%

6.2 Hardware Models
In our cycle-accurate simulator, we model the architecture of the DYNAP-SE neuromorphic hard-
ware [64] with the following configurations.

• A tiled array, with each tile accommodating 128 input and 128 output neurons. There are
65,536 crosspoints in each tile.

• Spikes are digitized and communicated between cores through a mesh routing network using
the Address Event Representation (AER) protocol.

The DYNAP-SE platform uses static random access memory (SRAM) to implement the synaptic
cells in each crossbar. However, in our simulator, we use Phase-Change Memory (PCM) as the
synaptic element. Table 2 reports the major hardware parameters.

In the future, we will demonstrate NCRTM on a real NVM-based silicon neuromorphic system.
6The CNN models LeNet, AlexNet, and VGG16 are converted to spiking domain using our previously proposed converter [5].
For the inference performance of the original model, readers are referred to [74].

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Song, et al.

Table 2. Major simulation parameters extracted from [64] and extrapolated for PCM technology.

Neuron technology 65nm CMOS

Synapse technology PCM

Supply voltage 1.0V

Energy per spike 50pJ at 30Hz spike frequency

Energy per routing 147pJ

Switch bandwidth 1.8G. Events/s

6.3 Evaluated State-of-the-art Techniques
We evaluate the following three approaches.

• PyCARL [8]: This is a performance-oriented approach to map SNN-based applications to
neuromorphic hardware. This approach first generates clusters of neurons and synapses,
where each cluster can fit on to the resources of a tile in the hardware. Then it uses an
optimization algorithm to place these clusters to the hardware, maximizing performance
of the machine learning application on the hardware. CMOS circuits are not de-stressed at
run-time.

• RENEU [88]: This is a reliability-oriented approach to map SNN-based applications to neu-
romorphic hardware. This approach also generates clusters of neurons and synapses from
an application, but maps the clusters to the hardware minimizing the maximum aging while
considering only the training data. CMOS circuits are not de-stressed at run-time.

• DTRO [2]: This is a reliability-oriented approach where neuron and synapse circuits of the
neuromorphic hardware are de-stressed at run-time at fixed interval. This interval is decided
based on analysis performed at design-time using training data.

6.4 Evaluated Metric
We evaluate the following metrics.

• Aging: This is the maximum circuit aging in DYNAP-SE for each machine learning workload.
• ISI: This is average ISI of each machine learning workload.
• Application Performance (accuracy): The performance, e.g., accuracy is defined in terms

of misclassification rate for image-based CNN and MLP applications. For RNN applications
that use time-series data, performance is measured in terms of error rate [22].

• Aging per unit ISI distortion: This is an unified metric reporting the aging per unit ISI
distortion for each workload, defined as

aging per unit ISI distortion = A/Δ𝐼𝑆𝐼 (11)

In formulating the optimization objective of Equation 11, NCRTM aims to optimize (i.e., minimize)
circuit aging A for a given constraint on the ISI distortion. In our earlier works [9, 32], we have
shown the dependency of application performance, e.g., accuracy on ISI due to inter-spike interval-
based information encoding in SNNs. Therefore, any distortion in ISI may lead to a reduction
in performance [9, 32]. Correspondingly, the above optimization problem essentially reduces to
minimizing the aging A for a given constraint on SNN accuracy.

6.5 Aging Parameters
To compute aging, the slope parameter of Weibull distribution is set to 𝛽 = 2, and the operating
temperature is set to 300𝐾 . Other fitting parameters are adjusted to achieve an MTTF of 2 years
in the baseline system (PyCARL), corresponding to a threshold voltage shift of 10%. This is what

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:17

is typically accepted by technologists as the maximum allowed degradation before timing errors
begin to appear.

7 RESULTS AND DISCUSSION
7.1 Summary of Results
Table 3 summarizes the key results.

Table 3. Summary of results.

NCRTM
Aging ∆Vth ∆ ISI Accuracy

(Sec. 7.2) (Sec. 7.3) (Sec. 7.4) (Sec. 7.5)

vs. PyCARL [8] 74%↓ 52.0%↓ 12%↑ 4.52%↓

vs. RENEU [88] 73%↓ 50.7%↓ 11%↑ 4.52%↓

vs. DTRO [2] 60%↓ 31.4%↓ 2%↑ 0.76%↓

7.2 Circuit Aging
Figure 14 plots the aging of the neuron and synapse circuits in DYNAP-SE during the execution of
the machine learning applications for each evaluated approach, normalized to PyCARL. We make
the following three key observations.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

M
LP

-M
N

IS
T

Im
gS

m
oo

th

E
dg

eD
et

H
ea

rt
E

st
m

Sp
ee

ch
R

ec
og

V
is

ua
lP

ur
su

it

AV
E

R
A

G
E

0.0

0.5

1.0

1.5

A
gi

ng
no

rm
al

iz
ed

to
P

yC
A

R
L

RENEU DTRO NCRTM

Fig. 14. Aging at 300K normalized to PyCARL.

First, the aging due to RENEU is lower than PyCARL by an average of 2.5%. This improvement is
due to the aging-aware neuron and synapse mapping policy of RENEU, which balances the aging
of all tiles in the hardware. PyCARL, which balances the utilization of the tiles in the hardware,
has higher aging. However, both PyCARL and RENEU are design-time based policies, i.e., they
do not make any run-time decisions. Second, DTRO is a hybrid approach, which uses the neuron
and synapse mapping of RENEU. Compared to PyCARL and RENEU, DTRO de-stresses all circuits
in the hardware periodically at run-time. The de-stress interval is determined at design-time by
analyzing the training data. The aging of DTRO is therefore lower than both PyCARL (average
35% lower) and RENEU (average 33.5% lower). Third, NCRTM, which is a run-time approach, has
the lowest aging of all. The average aging of NCRTM is 74% lower than PyCARL, 73% lower than
RENEU, and 60% lower than DTRO. The improvement of NCRTM is due to the precise tracking of
aging at run-time using current data, to achieve a target MTTF.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Song, et al.

7.3 Threshold Voltage Shift
Circuit aging manifests as shift in threshold voltage. Figure 15 plots the shift in threshold voltage
(Δ𝑉th) in DYNAP-SE after executing each machine learning application continuously till the end of
its lifetime of 2 years. We normalize the results so that the threshold voltage shift due to PyCARL
is 10%. We make the following key observations.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

M
LP

-M
N

IS
T

Im
gS

m
oo

th

E
dg

eD
et

H
ea

rt
E

st
m

Sp
ee

ch
R

ec
og

V
is

ua
lP

ur
su

it

AV
E

R
A

G
E

0

5

10

15

∆
V
th

(%
)

RENEU DTRO NCRTM

Fig. 15. Threshold voltage shift after 2 years of continuous operation.

We observe that, compared to PyCARL, the average threshold voltage shift when using RENEU is
9.75%, DTRO is 7.0%, and NCRTM is only 4.8%. The threshold voltage shift is the lowest in NCRTM
because the aging of NCRTM is lowest of all the approaches, which we reported in Section 7.2.
Increase in threshold voltage results in the reduction in drive current, which in turn results in
temporal performance degradation of neuron and synapse circuits in the neuromorphic hardware.

7.4 Change in ISI
Figure 16 plots the ISI of themachine learning workloads on DYNAP-SE for each evaluated approach,
normalized to PyCARL. We make the following five key observations.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

M
LP

-M
N

IS
T

Im
gS

m
oo

th

E
dg

eD
et

H
ea

rt
E

st
m

Sp
ee

ch
R

ec
og

V
is

ua
lP

ur
su

it

AV
E

R
A

G
E

0.0

0.5

1.0

1.5

IS
I

no
rm

al
iz

ed
to

P
yC

A
R

L

RENEU DTRO NCRTM

Fig. 16. ISI at 300K normalized to PyCARL.

First, the ISI obtained with RENEU is similar to PyCARL. This is because RENEU generates a
mapping of the workload to the hardware, which improves reliability without significantly hurting
the performance. Since no run-time decisions are made in both these approaches, their performance
at run-time are therefore similar. Second, the ISI obtained with DTRO is higher than RENEU by an
average of 10%. This increase is because DTRO make run-time decision of de-stressing the neuron
and synapse circuits periodically to control their aging. This leads to increase in latency, which

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:19

increases the average ISI (see Equation 10). The advantage in this case is lower aging, which we
analyzed in Section 7.2, leading to a lower drift of the threshold voltage (see Section 7.3). Third, the
ISI using NCRTM is higher than RENEU by an average of 12%. This increase is due to the run-time
de-stresses in NCRTM (similar to DTRO), which introduces latency, impacting the ISI. The ISI using
NCRTM is only 2% higher than DTRO. This increase is because NCRTM never allows the aging to
reach critical levels and therefore, schedules more de-stresses by precisely tracking it at run-time.
However, due to NCRTM’s policy to schedule the de-stresses by tracking their latency impact on
ISI, NCRTM ensures only marginal change in ISI. ISI change may lead to accuracy impact, which
is discussed in Section 7.5. Fourth, the ISI of NCRTM is lower than DTRO for MLP-MNIST. This
is because for this application, the circuit aging is generally lower due to the sparsity of spike
generation in the workload. So, the BTI stress is recovered in the idle period. DTRO cannot track this
recovery and therefore, applies a conservative control, unnecessarily constraining the performance.
Finally, for the three unsupervised applications (HeartEstm, SpeechRecog, and VisualPursuit), the
ISI using NCRTM is on average 10% lower than DTRO. This is because in the absence of training
data for these applications, DTRO applies a conservative policy to de-stress neuron and synapse
circuits frequently to prevent their aging from reaching a critical value. NCRTM, on the other
hand, tracks the aging at run-time based on the data that these models encounter and de-stress the
circuits, only when needed.

We conclude that for machine learning workloads with sparse activation, NCRTM is significantly
better than design-time based approaches both in terms of reliability and performance. For dense
activation, NCRTM improves reliability significantly compared to these approaches, with marginal
impact on performance. Furthermore, NCRTM outperforms any design-time based policy, when the
availability of training data is limited.

7.5 Application Accuracy
Change in ISI manifests as loss in accucay of a machine learning workload. Table 4 reports the
accuracy of each machine learning workload on DYNAP-SE using the evaluated approaches. We
make the following three key observations. First, the accuracy of RENEU and PyCARL are the same.
This is because RENEU maps neurons and synapses of an SNN workload to the hardware resources
statically to minimize the aging. It does so, ensuring that the spike communication latency on the
interconnect does not induce any change in ISI compared to that obtained using PyCARL. Second,
the accuracy of NCRTM is on average 4.52% lower than PyCARL and RENEU, and 0.76% lower
than DTRO. This reduction in accuracy is a direct result of the change in ISI, which we analyzed
in Section 7.4. Third, although NCRTM results in 4.8% lower accuracy than Baseline for AlexNet
(71.7% Baseline accuracy compared to 68.2% accuracy using NCRTM), it reduces circuit aging by
62% compared to Baseline (See Sec. 7.2).

Table 4. Application Accuracy.

Application
Accuracy

Application
Accuracy

RENEU/PyCARL DTRO NCRTM RENEU/PyCARL DTRO NCRTM

LeNet 94.08% 91.7% 90.6% AlexNet 71.7% 69.3% 68.2%

VGG16 91.62% 90.2% 90.1% HeartClass 85.12% 80.7% 80.1%

MLP-MNIST 95.5% 90.1% 90.1% ImgSmooth 100% 99% 99%

EdgeDet 100% 96% 95% HeartEstm 99.1% 92.6% 90.0%

SpeechRecog 96.8% 94.0% 94.1% VisualPursuit 89% 81.5% 81.5%

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Song, et al.

7.6 Platform Exploration
Figure 17 illustrates the reliability impact of increasing the number of tiles in a neuromorphic hard-
ware. The figure plots the aging results of NCRTM on DYNAP-SE with 16 and 32 tiles, normalized
to the aging on DYNAP-SE with the baseline configuration of 12 tiles. We observe that the average
aging with 16 and 32 tiles is 18% and 51% lower than the aging with baseline configuration of 12
tiles, respectively. Circuit aging is lower with more number of tiles. This is because with more tiles
in the hardware, fewer neurons and synapses are mapped to each tile. Therefore, each tile of the
hardware generates fewer spikes, which lowers the aging of its neurons and synapse circuits.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

M
LP

-M
N

IS
T

Im
gS

m
oo

th

E
dg

eD
et

H
ea

rt
E

st
m

Sp
ee

ch
R

ec
og

V
is

ua
lP

ur
su

it

AV
E

R
A

G
E

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

ag
in

g

12 tiles 16 tiles 32 tiles

Fig. 17. Aging of DYNAP-SE with 16 and 32 tiles normalized to the aging with 12 tiles.

7.7 Temperature Dependency of Reliability
Figure 18 illustrates the temperature dependency of the aging in a neuromorphic hardware. We
report the aging results of NCRTM at two elevated temperatures, 320K and 340K, for each of our
machine learning applications. Aging results are normalized to NCRTM at 300K. We observe that
aging increases with an increase in temperature. Aging at 320K and 340K is higher than the aging at
300K by an average of 7% and 30%, respectively. This is due to the exponential dependency of circuit
aging on temperature (Equation 6). We also observe from this equation that aging also depends
on the voltage needed to operate the neurons and synapses in the hardware when generating and
propagating spikes. Therefore, VGG16, ImgSmooth, and VisualPursuit, which have more spikes,
have higher aging at the elevated temperatures than all other applications. Higher aging leads to
higher threshold voltage shift in the transistors.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

M
LP

-M
N

IS
T

Im
gS

m
oo

th

E
dg

eD
et

H
ea

rt
E

st
m

Sp
ee

ch
R

ec
og

V
is

ua
lP

ur
su

it

AV
E

R
A

G
E

0

1

2

N
or

m
al

iz
ed

ag
in

g

300K 320K 340K

Fig. 18. Aging at 320K and 340K normalized to the aging at 300K.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:21

7.8 Aging Per Unit ISI Distortion
To unify the ISI distortion and aging results in one metric, Figure 19 reports the aging per unit
distortion of Equation 11 for the design-time based RENEU and the run-time based NCRTM. We
observe that NCRTM has an average 58% lower aging per unit ISI distortion than RENEU. The
improvement of NCRTM is what we have analyzed before. This result shows that for the same
amount of ISI distortion (i.e., performance impact), NCRTM will lead to significantly lower circuit
aging than RENEU.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

M
LP

-M
N

IS
T

Im
gS

m
oo

th

E
dg

eD
et

H
ea

rt
E

st
m

Sp
ee

ch
R

ec
og

V
is

ua
lP

ur
su

it

AV
E

R
A

G
E

0

5

10

A
gi

ng
p

er
un

it
IS

I
di

st
or

ti
on

[a
.u

.]

DTRO NCRTM

Fig. 19. Aging per unit ISI distortion (lower is better).

8 CONCLUSIONS
This paper introduces NCRTM, a run-time reliability manager for neuromorphic computing. We
observe that neurons and synapses in neuromorphic hardware are exposed to high voltages and/or
currents because of the operating requirements of the Non-Volatile Memory, which are used for high
density and low energy synaptic storage in the hardware.When exposed to these elevated conditions
for too often, the CMOS transistors in the neuron and synapse circuit suffer strong aging, leading to
hard breakdown. But in strongly scaled sub-10nm technology nodes, even under normal workloads,
parametric soft breakdown mechanisms will start drifting the transistor parameters from their
nominal values. In contrast to long-term aging, which permanently damages the hardware, short-
term aging in scaled CMOS transistors ismostly due to BTI. The latter is heavilyworkload-dependent
and more importantly, partially reversible. Based on these observations, NCRTM dynamically de-
stresses neuron and synapse circuits in response to the short-term aging in their CMOS transistors
during the execution of machine learning tasks, with the objective of meeting a reliability target.
NCRTM de-stresses these circuits only when it is absolutely necessary to do so, otherwise reducing
the performance impact by scheduling de-stress operations off the critical path.We evaluate NCRTM
with supervised and unsupervised machine learning applications on a neuromorphic hardware. Our
results demonstrate that that for machine learning workloads with sparse activation, NCRTM is
significantly better than design-time based approaches both in terms of reliability and performance.
For dense activation, NCRTM improves reliability significantly compared to these approaches,
with only marginal impact on performance. We conclude that NCRTM can be easily extended
to incorporate other failure mechanisms. In the future, we plan on implementing NCRTM on
NVM-based DYNAP-SE, when such board will be made publicly available.

9 ACKNOWLEDGMENTS
This work is supported by the National Science Foundation Faculty Early Career Development
Award CCF-1942697 (CAREER: Facilitating Dependable Neuromorphic Computing: Vision, Archi-
tecture, and Impact on Programmability).

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Song, et al.

REFERENCES
[1] M. R. Azghadi, B. Linares-Barranco, D. Abbott, and P. H. W. Leong, “A hybrid CMOS-memristor neuromorphic

synapse,” TBCAS, 2016.
[2] A. Balaji, S. Song, A. Das, N. Dutt, J. Krichmar, N. Kandasamy, and F. Catthoor, “A framework to explore workload-

specific performance and lifetime trade-offs in neuromorphic computing,” CAL, 2019.
[3] A. Balaji and A. Das, “Compiling spiking neural networks to mitigate neuromorphic hardware constraints",” in IGSC

Workshops, 2020.
[4] A. Balaji and A. Das, “A framework for the analysis of throughput-constraints of snns on neuromorphic hardware,” in

ISVLSI, 2019.
[5] A. Balaji, F. Corradi, A. Das, S. Pande, S. Schaafsma, and F. Catthoor, “Power-accuracy trade-offs for heartbeat

classification on neural networks hardware,” JOLPE, 2018.
[6] A. Balaji, S. Ullah, A. Das, and A. Kumar, “Design methodology for embedded approximate artificial neural networks,”

in GLSVLSI, 2019.
[7] A. Balaji, Y. Wu, A. Das, F. Catthoor, and S. Schaafsma, “Exploration of segmented bus as scalable global interconnect

for neuromorphic computing,” in GLSVLSI, 2019.
[8] A. Balaji, P. Adiraju, H. J. Kashyap, A. Das, J. L. Krichmar, N. D. Dutt, and F. Catthoor, “PyCARL: A PyNN interface

for hardware-software co-simulation of spiking neural network,” in IJCNN, 2020.
[9] A. Balaji, A. Das, Y. Wu, K. Huynh, F. G. Dell’anna, G. Indiveri, J. L. Krichmar, N. D. Dutt, S. Schaafsma, and F. Catthoor,

“Mapping spiking neural networks to neuromorphic hardware,” TVLSI, 2020.
[10] A. Balaji, T. Marty, A. Das, and F. Catthoor, “Run-time mapping of spiking neural networks to neuromorphic hardware,”

JSPS, 2020.
[11] A. Balaji, S. Song, A. Das, J. Krichmar, N. Dutt, J. Shackleford, N. Kandasamy, and F. Catthoor, “Enabling resource-aware

mapping of spiking neural networks via spatial decomposition,” ESL, 2020.
[12] A. Balaji, S. Song, T. Titirsha, A. Das, J. Krichmar, N. Dutt, J. Shackleford, N. Kandasamy, and F. Catthoor, “Neuroxplorer

1.0: An extensible framework for architectural exploration with spiking neural networks,” arXiv, 2021.
[13] A. N. Burkitt, “A review of the integrate-and-fire neuronmodel: I. Homogeneous synaptic input,” Biological Cybernetics,

2006.
[14] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola,

L. L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H. Hwang, and Y. Leblebici, “Neuromorphic computing using
non-volatile memory,” Advances in Physics: X, 2017.

[15] N. Caporale and Y. Dan, “Spike Timing–Dependent Plasticity: a Hebbian Learning rule,” Annual Review Neuroscience,
2008.

[16] E. A. Cartier, W. Kim, N. Gong, T. Gokmen, M. M. Frank, D. M. Bishop, Y. Kim, S. Kim, T. Ando, E. Y. Wu, P. Adusumilli,
J. Rozen, P. M. Solomon, W. Haensch, M. J. Brightsky, A. Sebastian, G. W. Burr, and V. Narayanan, “Reliability
challenges with materials for analog computing,” in IRPS, 2019.

[17] F. Catthoor, S.Mitra, A. Das, and S. Schaafsma, “Very large-scale neuromorphic systems for biological signal processing,”
in CMOS Circuits for Biological Sensing and Processing, 2018.

[18] G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Krishnamurthy, “A 4096-neuron 1M-synapse 3.8-pJ/SOP
spiking neural network with on-chip STDP learning and sparse weights in 10-nm FinFET CMOS,” JSSC, 2018.

[19] T. S. Chou, L. D. Bucci, and J. L. Krichmar, “Learning touch preferences with a tactile robot using dopamine modulated
STDP in a model of insular cortex,” Frontiers in Neurorobotics, 2015.

[20] T. S. Chou, H. J. Kashyap, J. Xing, S. Listopad, E. L. Rounds, M. Beyeler, N. Dutt, and J. L. Krichmar, “CARLsim 4: An
open source library for large scale, biologically detailed spiking neural network simulation using heterogeneous
clusters,” in IJCNN, 2018.

[21] Y. Dan and M. M. Poo, “Spike timing-dependent plasticity of neural circuits,” Neuron, 2004.
[22] A. Das, P. Pradhapan, W. Groenendaal, P. Adiraju, R. Rajan, F. Catthoor, S. Schaafsma, J. Krichmar, N. Dutt, and

C. Van Hoof, “Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout,” Neural
Networks, 2018.

[23] A. Das and A. Kumar, “Fault-aware task re-mapping for throughput constrained multimedia applications on noc-based
mpsocs,” in RSP, 2012.

[24] A. Das and A. Kumar, “Dataflow-based mapping of spiking neural networks on neuromorphic hardware,” in GLSVLSI,
2018.

[25] A. Das, A. Kumar, and B. Veeravalli, “Communication and migration energy aware design space exploration for
multicore systems with intermittent faults,” in DATE, 2013.

[26] A. Das, A. Kumar, and B. Veeravalli, “Communication and migration energy aware task mapping for reliable multi-
processor systems,” FGCS, 2014.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:23

[27] A. Das, A. Kumar, and B. Veeravalli, “Temperature aware energy-reliability trade-offs for mapping of throughput-
constrained applications on multimedia MPSoCs,” in DATE, 2014.

[28] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and B. Veeravalli, “Reinforcement learning-based
inter-and intra-application thermal optimization for lifetime improvement of multicore systems,” in DAC, 2014.

[29] A. Das, A. Kumar, and B. Veeravalli, “Reliability and energy-aware mapping and scheduling of multimedia applications
on multiprocessor systems,” TPDS, 2015.

[30] A. Das, G. V. Merrett, M. Tribastone, and B. M. Al-Hashimi, “Workload change point detection for runtime thermal
management of embedded systems,” TCAD, 2015.

[31] A. Das, F. Catthoor, and S. Schaafsma, “Heartbeat classification in wearables using multi-layer perceptron and
time-frequency joint distribution of ECG,” in CHASE, 2018.

[32] A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, and S. Schaafsma, “Mapping of local and global synapses on
spiking neuromorphic hardware,” in DATE, 2018.

[33] A. K. Das, A. Kumar, B. Veeravalli, and F. Catthoor, Reliable and Energy Efficient Streaming Multiprocessor Systems,
2018.

[34] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. K.
Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang, and
H. Wang, “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE Micro, 2018.

[35] M. V. Debole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P. Risk, J. Kusnitz, C. O. Otero, T. K. Nayak,
R. Appuswamy, P. J. Carlson, A. S. Cassidy, P. Datta, S. K. Esser, G. J. Garreau, K. L. Holland, S. Lekuch, M. Mastro,
J. Mckinstry, C. Di Nolfo, J. Sawada, B. Paulovicks, K. Schleupen, B. G. Shaw, J. L. Klamo, M. D. Flickner, J. V. Arthur,
and D. S. Modha, “TrueNorth: Accelerating from zero to 64 million neurons in 10 years,” Computer, 2019.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in
CVPR, 2009.

[37] L. Deng, “The mnist database of handwritten digit images for machine learning research,” SPS, 2012.
[38] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-timing-dependent plasticity,”

Frontiers in Computational Neuroscience, 2015.
[39] M. Dong, X. Huang, and B. Xu, “Unsupervised speech recognition through spike-timing-dependent plasticity in a

convolutional spiking neural network,” PloS One, 2018.
[40] F. Galluppi, X. Lagorce, E. Stromatias, M. Pfeiffer, L. A. Plana, S. B. Furber, and R. B. Benosman, “A framework for

plasticity implementation on the SpiNNaker neural architecture,” Frontiers in Neuroscience, 2015.
[41] R. Gao, Z. Ji, A. B. Manut, J. F. Zhang, J. Franco, S. W. M. Hatta, W. D. Zhang, B. Kaczer, D. Linten, and G. Groeseneken,

“NBTI-Generated defects in nanoscaled devices: Fast characterization methodology and modeling,” TED, 2017.
[42] T. Grasser, M. Waltl et al., “Implications of gate-sided hydrogen release for post-stress degradation build-up after BTI

stress,” in IRPS, 2017.
[43] S. Grün and S. Rotter, Analysis of parallel spike trains, 2010.
[44] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu,

“FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” TED, 2000.
[45] G. Indiveri, “A low-power adaptive integrate-and-fire neuron circuit,” in ISCAS, 2003.
[46] E. M. Izhikevich, “Polychronization: Computation with spikes,” Neural Computation, 2006.
[47] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen, “NEUTRAMS: Neural network transformation and

co-design under neuromorphic hardware constraints,” in MICRO, 2016.
[48] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between neural networks and neuromorphic hardware with a

neural network compiler,” in ASPLOS, 2018.
[49] H. J. Kashyap et al., “A recurrent neural network based model of predictive smooth pursuit eye movement in primates,”

in IJCNN, 2018.
[50] D. Kraak, I. Agbo, M. Taouil, S. Hamdioui, P. Weckx, S. Cosemans, and F. Catthoor, “Degradation analysis of high

performance 14nm FinFET SRAM,” in DATE, 2018.
[51] D. Kraak, M. Taouil, I. Agbo, S. Hamdioui, P. Weckx, S. Cosemans, and F. Catthoor, “Parametric and Functional

Degradation Analysis of Complete 14-nm FinFET SRAM,” TVLSI, 2019.
[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in

NeurIPS, 2012.
[53] H. Kükner, M. Khatib, S. Morrison, P. Weckx, P. Raghavan, B. Kaczer, F. Catthoor, L. der Perre, R. Lauwereins, and

G. Groeseneken, “Degradation analysis of datapath logic subblocks under NBTI aging in FinFET technology,” in
ISQED, 2014.

[54] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-RAM as an energy-efficient main
memory alternative,” in ISPASS, 2013.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Song, et al.

[55] S. Kundu, K. Basu, M. Sadi, T. Titirsha, S. Song, A. Das, and U. Guin, “Special session: Reliability analysis for ML/AI
hardware,” in VTS, 2021.

[56] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL: http://yann. lecun. com/exdb/lenet, 2015.
[57] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a scalable DRAM alternative,” in

ISCA, 2009.
[58] R. Legenstein, D. Pecevski, and W. Maass, “A learning theory for reward-modulated spike-timing-dependent plasticity

with application to biofeedback,” PLoS Computational Biology, 2008.
[59] C. Liu, Y. Sun, P. Ren, D. Gao, W. Luo, Z. Chen, and Y. Xia, “New challenges of design for reliability in advanced

technology node,” in EDTM, 2020.
[60] W. Maass, “Networks of spiking neurons: The third generation of neural network models,” Neural Networks, 1997.
[61] M. M. Mahmoud and N. Soin, “A comparative study of lifetime reliability of planar MOSFET and FinFET due to BTI

for the 16 nm CMOS technology node based on reaction-diffusion model,” Microelectronics Reliability, 2019.
[62] A. Mallik, D. Garbin, A. Fantini, D. Rodopoulos, R. Degraeve, J. Stuijt, A. K. Das, S. Schaafsma, P. Debacker, G. Donadio,

H. Hody, L. Goux, G. S. Kar, A. Furnemont, A. Mocuta, and P. Raghavan, “Design-technology co-optimization for
OxRRAM-based synaptic processing unit,” in VLSIT, 2017.

[63] G. B. Moody, R. G. Mark, and A. L. Goldberger, “Physionet: a web-based resource for the study of physiologic signals,”
Engineering in Medicine and Biology Magazine, 2001.

[64] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture with heterogeneous memory
structures for dynamic neuromorphic asynchronous processors (DYNAPs),” TBCAS, 2017.

[65] H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, and S. Slesazeck, “Novel
ferroelectric FET based synapse for neuromorphic systems,” in VLSIT, 2017.

[66] S. R. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian, and E. Eleftheriou, “A phase-change memory
model for neuromorphic computing,” JAP, 2018.

[67] S. Navarro, C. Navarro, C. Marquez, N. Salazar, P. Galy, S. Cristoloveanu, and F. Gamiz, “Reliability study of thin-oxide
zero-ionization, zero-swing fet 1t-dram memory cell,” EDL, 2019.

[68] S. W. Pae, H. C. Sagong, C. Liu, M. J. Jin, Y. H. Kim, S. J. Choo, J. J. Kim, H. J. Kim, S. Y. Yoon, H. W. Nam, and Others,
“Considering physical mechanisms and geometry dependencies in 14nm FinFET circuit aging and product validations,”
in IEDM, 2015.

[69] D. G. Pierce and P. G. Brusius, “Electromigration: A review,” Microelectronics Reliability, 1997.
[70] K. Puschkarsky, H. Reisinger, T. Aichinger, W. Gustin, and T. Grasser, “Understanding BTI in SiC MOSFETs and its

impact on circuit operation,” TDMR, 2018.
[71] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main memory system using phase-change

memory technology,” in ISCA, 2009.
[72] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou, “Low-Power neuromorphic hardware for

signal processing applications: A review of architectural and system-level design approaches,” SPS, 2019.
[73] S. M. Ramey, C. Prasad, and A. Rahman, “Technology scaling implications for bti reliability,”Microelectronics Reliability,

2018.
[74] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Anderson, M. Breughe, M. Charlebois,

W. Chou et al., “Mlperf inference benchmark,” in ISCA, 2020.
[75] M. Rossum, “A novel spike distance,” Neural Computation, 2001.
[76] P. J. Roussel, A. Chasin, S. Demuynck, N. Horiguchi, D. Linten, and A. Mocuta, “New methodology for modelling

MOL TDDB coping with variability,” in IRPS, 2018.
[77] G. Rzepa, J. Franco, B. O’Sullivan, A. Subirats, M. Simicic, G. Hellings, P. Weckx, M. Jech, T. Knobloch, M. Waltl, and

Others, “Comphy—A compact-physics framework for unified modeling of BTI,” Microelectronics Reliability, 2018.
[78] H. C. Sagong, K. Choi, H. Jiang, J. Park, H. Rhee, and S. Pae, “Reliability of advanced finfet technology nodes beyond

planar,” in EDTM, 2020.
[79] R. Santos, S. Venkataraman, A. Das, and A. Kumar, “Criticality-aware scrubbing mechanism for SRAM-based FPGAs,”

in FPL, 2014.
[80] S. Schliebs and N. Kasabov, “Evolving spiking neural network-a survey,” Evolving Systems, 2013.
[81] R. A. Shafik, A. Das, S. Yang, G. Merrett, and B. M. Al-Hashimi, “Adaptive energy minimization of openmp parallel

applications on many-core systems,” in HiPEAC Workshops, 2015.
[82] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv, 2014.
[83] S. Song and A. Das, “Design methodologies for reliable and energy-efficient PCM systems,” in IGSC Workshops, 2020.
[84] S. Song and A. Das, “A case for lifetime reliability-aware neuromorphic computing,” in MWSCAS, 2020.
[85] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Enabling and exploiting partition-level parallelism (PALP) in phase

change memories,” TECS, 2019.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:25

[86] S. Song, A. Balaji, A. Das, N. Kandasamy, and J. Shackleford, “Compiling spiking neural networks to neuromorphic
hardware,” in LCTES, 2020.

[87] S. Song, A. Das, and N. Kandasamy, “Exploiting inter- and intra-memory asymmetries for data mapping in hybrid
tiered-memories,” in ISMM, 2020.

[88] S. Song, A. Das, and N. Kandasamy, “Improving dependability of neuromorphic computing with non-volatile memory,”
in EDCC, 2020.

[89] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Improving phase change memory performance with data content
aware access,” in ISMM, 2020.

[90] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Aging-aware request scheduling for non-volatile main memory,” in
ASP-DAC, 2021.

[91] S. Taghipour and R. N. Asli, “Aging comparative analysis of high-performance FinFET and CMOS flip-flops,” Micro-
electronics Reliability, 2017.

[92] T. Titirsha and A. Das, “Reliability-performance trade-offs in neuromorphic computing,” in IGSC Workshops, 2020.
[93] T. Titirsha and A. Das, “Thermal-aware compilation of spiking neural networks to neuromorphic hardware,” in LCPC,

2020.
[94] T. Titirsha, S. Song, A. Balaji, and A. Das, “On the role of system software in energy management of neuromorphic

computing,” in CF, 2021.
[95] T. Titirsha, S. Song, A. Das, J. Krichmar, N. Dutt, N. Kandasamy, and F. Catthoor, “Endurance-aware mapping of

spiking neural networks to neuromorphic hardware,” TPDS, 2021.
[96] R. Van Rullen and S. J. Thorpe, “Rate coding versus temporal order coding: What the retinal ganglion cells tell the

visual cortex,” Neural Computation, 2001.
[97] A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler, C. Gamrat, W. S. Zhao, J.-O. Klein, S. Galdin-

Retailleau, and D. Querlioz, “Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuro-
morphic systems,” TBCAS, 2015.

[98] X. Wan, B. Zhu, M. Mohan, K. Wu, D. Choi, and A. Gondal, “HCI Improvement on 14nm FinFET IO Device by
Optimization of 3D Junction Profile,” in IRPS, 2019.

[99] P. Weckx, B. Kaczer, H. Kukner, J. Roussel, P. Raghavan, F. Catthoor, and G. Groeseneken, “Non-Monte-Carlo
methodology for high-sigma simulations of circuits under workload-dependent BTI degradation-application to 6T
SRAM,” in IRPS, 2014.

[100] C. Yilmaz, L. Heiß, C. Werner, and D. Schmitt-Landsiedel, “Modeling of NBTI-recovery effects in analog CMOS
circuits,” in IRPS, 2013.

A INTRODUCTION TO SPIKING NEURAL NETWORKS
Spiking Neural Networks (SNNs) [60] are regarded as the third generation of neural networks (see
Figure 20a). SNNs consist of spiking neurons, which are implemented using integrate and fire [13]
model. In this model, a neuron fires a spike when its membrane voltage exceeds a threshold and
subsequently the membrane voltage is reset. The moment of threshold crossing in a neuron defines
its firing time. Post firing, the neuron goes into a refractory state, where the neuron cannot be
excited to generate a second action potential (no matter how intense the input stimulus be) (see
Figure 20b). Spiking neurons are interconnected via synapses as shown in Figure 20a.

Information Encoding in SNNs: Information in SNNs can be encoded using different tech-
niques [80], prominent among which are rate coding [96] and temporal coding [75]. Rate coding
encodes information as number of spikes within an encoding window without considering the
temporal characteristics of the signal. Temporal coding encodes information as inter-spike interval
(ISI), capturing the spatio-temopral structure of the input signal.

Machine Learning Approaches using SNNs: SNNs can be used to implement many machine
learning approaches. One example is the supervised approach, where an SNN is first trained with
examples from the field and then used for inference with current data. SNNs can also implement
unsupervised, semi-supervised, and reinforcement learning-based machine learning approaches.

Learning Algorithms in SNNs: Currently, spike-based learning rules are limited, compared
to the wide range of learning rules available for analog or rate-based artificial neural networks
(ANNs). Most learning rules are based on unsupervised correlational learning rules, such as spike

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Song, et al.

timing dependent plasticity (STDP) [21], short-term plasticity (STP), and long-term plasticity (LTP).
Other modifications include a localized version of backpropagation suitable for SNNs. However,
these variants are supervisory and takes a while to converge. Attempts have been made to add a
reinforcer to STDP based on the idea that dopamine in the brain carries a reward prediction error
signal. In practice, dopamine modulated STDP (DA-STDP) takes a long time before the network
has a strong enough signal to drive behavior [19]. Recently, a reward-modulated STDP (R-STDP)
learning is developed to train SNN controllers for obstacle avoiding behavior in mobile robots [58].

Fig. 20. Illustration of spiking neural networks.

B IMPACT OF ISI DISTORTION ON PERFORMANCE OF SNNS
To illustrate how ISI distortion and spike disorder impact accuracy, we consider a small SNN
example where three input neurons are connected to an output neuron. In Figure 21, we illustrate
the impact of ISI distortion on the output spike. In the top sub-figure, we observe that a spike
is generated at the output neuron at 22ms due to spikes from the input neurons. In the bottom
sub-figure, we observe that the second spike from input 3 is delayed, i.e., has ISI distortion. As a
result of this distortion, there is no output spike. Missing spikes can impact application accuracy,
as spike timings encode information in SNNs.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Reliability Management in Neuromorphic Computing 1:27
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 3

0 5 10 15 20 25 30 35 40

Time (ms)

Output

Input 3

Input 2

Input 1

N
e

u
ro

n

0 5 10 15 20 25 30 35 40

Time (ms)

Output

Input 3

Input 2

Input 1

N
e

u
ro

n

ISI Distortion

no output spike

(a) Impact of ISI distortion on accuracy. Top sub-figure shows a scenario
where an output spike is generated based on the spikes received from the
three input neurons. Bottom sub-figure shows a scenario where the second
spike from neuron 3 is delayed. There are no output spikes generated.

0 5 10 15 20 25 30

Time (ms)

Output

Input 3

Input 2

Input 1

N
e

u
ro

n

0 5 10 15 20 25 30

Time (ms)

Output

Input 3

Input 2

Input 1

N
e

u
ro

n

A

B

B

A

no output spike

spike disorder

(b) Impact of spike disorder on accuracy. Top sub-figure shows a scenario
where spike A is received at the output neuron before spike B, causing
the out spike at 21ms. Bottom sub-figure shows a scenario where the spike
order of A & B is reversed. There are no output spikes generated as a result.

Fig. 3: Impact of ISI distortion (a) and spike disorder (b) on the output spike for a simple SNN with three input neurons
connected to a single output neuron.

of crossbars in the hardware, latency, ISI, and spike disorder
increases. This is because with increase in the number of
crossbars, spike traffic on the shared interconnect increases,
which increases the congestion, and delays some spikes more
than others. When we use a hardware with 36 small crossbars
arranged in a 6x6 mesh, we observe a significant increase of
latency (average 3.2x), ISI distortion (average 6x), and spike
disorder (average 1.5x) compared to the baseline configuration
of using 4 large crossbars.

From this analysis, we conclude that when more cross-
bars are used for an application, latency, ISI distortion, and
spike disorder increases, which jointly impacts accuracy, as
described next.

Accuracy Impact: To illustrate how ISI distortion and spike
disorder impact accuracy, we consider a small SNN example
where three input neurons are connected to an output neuron.
In Figure 3a, we illustrate the impact of ISI distortion on
the output spike. In the top sub-figure, we observe that a
spike is generated at the output neuron at 22ms due to spikes
from the input neurons. In the bottom sub-figure, we observe
that the second spike from input 3 is delayed, i.e., has ISI
distortion. As a result of this distortion, there is no output
spike. Missing spikes can impact application accuracy, as
spikes encode information in SNNs.

In Figure 3b, we illustrate the impact of spike disorder on
the output spike. In the top sub-figure, we observe that the
spike A from input 2 is generated before the spike B from
input 3, causing an output spike to be generated at 21ms. In the
bottom sub-figure, we observe that the spike order of inputs 2
and 3 is reversed, i.e., the spike B is generated before the spike
A. This spike disorder results in no spike being generated at
the output neuron, which can also lead to a drop in accuracy.

Finally, in Figure 4 we illustrate the drop in digit recognition
accuracy as a combined effect of increase in spike latency, ISI
distortion, and spike disorder. As we can see, the accuracy

2x2
(225)

3x3
(121)

4x4
(64)

5x5
(36)

6x6
(25)

0

20

40

60

80

100

Ha
nd

wr
itt

en
 D

ig
it

Re
co

gn
iti

on
 A

cc
ur

ac
y

(%
)

84.8

70.6 69.7 66.7 66.7

Fig. 4: Handwritten digit recognition accuracy on different
hardware configuration. This accuracy is lower than the 86%
accuracy, which is obtained through software simulation.

drops from 85% on a 2x2 mesh to 66.7% on a 6x6 mesh,
compared to the accuracy of 86% obtained with software sim-
ulation. This clearly motivates the need for efficient mapping
of SNNs on the neuromorphic hardware.

We now describe our mechanism SpiNeMap: Mapping
Spiking Neural Networks on Neuromorphic Hardware.

III. SPINEMAP: SPIKING NEURAL NETWORK MAPPING
ON NEUROMORPHIC HARDWARE

A. High-Level overview and difference with state-of-the-art

In Figure 5a, we illustrate how a neural network application
is conventionally mapped to a neuromorphic hardware. Most
of these conventional approaches are designed for non-spiking
neural networks, and customized for a specific hardware (e.g.,
NEUTRAMS [25] and Eyeriss [27]). The previously-proposed
approach PACMAN [28] for SNNs is (1) not scalable to
large SNNs, (2) customized to SpiNNaker hardware (von
Neumann style computing), which is different from a crossbar-
based neuromorphic hardware with distributed computing and
storage, and (3) does not consider energy consumption and
application accuracy impact due to hardware latencies.

Fig. 21. Impact of ISI distortion on accuracy. Top sub-figure shows a scenario where an output spike is
generated based on the spikes received from the three input neurons. Bottom sub-figure shows a scenario
where the second spike from neuron 3 is delayed. As a result of this ISI distortion, there are no output spikes
generated. Loss of spikes can lead to accuracy drop.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Comparison with State-of-the-art
	3 Background
	3.1 Neuromorphic Hardware
	3.2 Transistor Aging in Neuromorphic Hardware

	4 Observations Leading to NCRTM
	4.1 Observation 1: Workload-dependent Activation
	4.2 Observation 2: Performance Trade-off in Reliability Improvement
	4.3 Observation 3: Short-term vs. Long-term Aging

	5 Run-time Manager for Neuromorphic Computing (NCRTM)
	5.1 A Motivating Example Showing the Need for Run-time Reliability Management
	5.2 High-level Overview
	5.3 Aging Computation
	5.4 ISI Computation

	6 Evaluation Methodology
	6.1 Evaluated Applications
	6.2 Hardware Models
	6.3 Evaluated State-of-the-art Techniques
	6.4 Evaluated Metric
	6.5 Aging Parameters

	7 Results and Discussion
	7.1 Summary of Results
	7.2 Circuit Aging
	7.3 Threshold Voltage Shift
	7.4 Change in ISI
	7.5 Application Accuracy
	7.6 Platform Exploration
	7.7 Temperature Dependency of Reliability
	7.8 Aging Per Unit ISI Distortion

	8 Conclusions
	9 Acknowledgments
	References
	A Introduction to Spiking Neural Networks
	B Impact of ISI distortion on performance of SNNs

