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Abstract of the Dissertation 

 

Bayesian Non/Semi-Parametric Methods for Latent Growth Mixture Models 

 

by 

Yuzhu Yang 

 

Doctor of Philosophy in Quantitative Psychology 

 

University of California, Merced, 2018 

Professor Sarah Depaoli, Chair 

 

This dissertation consists of two studies that introduce and investigate two Bayesian 

non/semi-parametric estimation methods for latent growth mixture modeling (LGMM). 

LGMM is a useful statistical tool for modeling latent classes or unobserved subgroups in 

longitudinal data analysis. One of the major challenges of fitting an LGMM is deciding 

on the number of latent classes that exist in the population from which data were 

collected. In this dissertation, I introduce two non/semi-parametric estimation methods, 

that is Reversible jump Markov chain Monte Carlo (RJMCMC) and Dirichlet process 

modeling (DP) for LGMM. Specifically, I examined the estimation performance of these 

two non/semi-parametric methods along with traditional estimation methods, such as 

maximum likelihood (ML) and the Bayesian estimation framework. I also investigated 

some commonly discussed topics within the LGMM context, such as class enumeration 

and the impact of class separation. In particular, Study 1 examines the ability of 

RJMCMC, DP, and ML to recover the model parameters, especially the number of 

classes and class sizes via a simulation study. Simulation results showed that RJMCMC 

and DP performed comparable to ML and even better under some conditions for some 

parameters. An empirical example is included in Study 1 as an illustration of how to 

apply RJMCMC and DP; the example uses an education-related data set and covers how 

to interpret the results. In Study 2, the investigation is focused on the impact of class 

separation on class enumeration and model parameter recovery. Specifically, different 

degrees of class separation and several separation conditions were investigated. The 

performance of RJMCMC, DP and two Bayesian estimation methods with different prior 

specifications were examined for the LGMM via a simulation study. Results of Study 2 

showed that RJMCMC and DP performed comparable to the Bayesian estimators under 

different degrees of class separation. Findings of the two studies suggested that 

RJMCMC and DP can be used as alternatives to traditional ML and Bayesian estimation 



 

 

 

 

xiv

methods in accurately recovering the number of latent classes for LGMM under most 

conditions. However, there are added benefits to the use of RJMCMC and DP over the 

other approaches. Other implications, suggestions for applied researchers, limitations, 

and future directions are also discussed. 
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Chapter 1                                                        

Overview of Dissertation 

Latent growth mixture modeling (LGMM) has been a useful tool for identifying 

multiple unobserved subgroups and describing longitudinal change within each subgroup 

in social and behavior sciences. In this dissertation, I will introduce Bayesian non/semi-

parametric methods into the latent growth mixture modeling framework. Specifically, I 

will discuss the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm and 

the Dirichlet Process (DP) technique as non/semi-parametric methods on deciding on the 

number of classes for latent growth mixture models. I will compare the performance of 

these two Bayesian non/semi-parametric methods with the frequentist method, as well as 

the Bayesian estimation method. Ultimately, I am interested in the capability of the 

Bayesian non/semi-parametric methods to detect the number of latent classes, specifically 

in the context of different class separation conditions (i.e., assessing the performance 

when classes are more alike versus more disparate).  

This dissertation consists of two separate studies. The first study is entitled “Deciding 

on the Number of Classes for LGMM using Bayesian Non/Semi-Parametric Methods”. 

The primary goal of the first study is to examine the performance of RJMCMC and DP 

on extracting the correct number of latent classes for LGMM. Another goal of the first 

study is to compare these two methods with a commonly used implementation (i.e., the 

frequentist method) of the LGMM. The third goal is to provide an empirical example to 

illustrate how to apply RJMCMC and DP through a case study using a real world data set. 

The second study is entitled “Class Enumeration under Various Levels of Class 

Separation: Bayesian Non/Semi-Parametric Methods vs. a traditional Bayesian 

Approach”. In the second study, the main goal is to investigate the performance of the 

RJMCMC algorithm and the DP technique under various degrees of class separation 

conditions. A full Bayesian estimation method with different prior specifications is also 

examined as comparisons to the Bayesian non/semi-parametric methods.  

This dissertation is structured as follows. First I will discuss the general formulation 

of LGMM that is examined in the two studies. Then I will introduce the RJMCMC 

algorithm and the DP technique and their applications on LGMM. Next, two studies will 

be presented aiming to: 1) examine the performance of the two methods in the context of 

mixture models (Study 1 of the dissertation), and 2) address specific issues linked to class 

separation (Study 2 of the dissertation). Finally, I will conclude by discussing the 

implications of using the two Bayesian non/semi-parametric methods for mixture 

modeling, as well as provide recommendations for use in applied research settings.  
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Chapter 2                                                    

General Introduction 

2.1 Basic Formulation of Latent Growth Mixture Modeling 

In this section, I will briefly introduce LGMM and its basic formulation that will be 

examined using different modeling techniques presented in this dissertation.  

LGMM is a statistical tool for capturing multiple latent (unobserved) subpopulations 

and examining the change within and between subpopulations over time (Muthén, 2001). 

In other words, LGMM identifies the unobserved subpopulations, describes the 

longitudinal change within the subpopulations, and tests the difference among the 

subpopulations.  

LGMM incorporates the features of both latent growth curve models (LGCMs) and 

finite mixture models (FMMs) within one modeling technique. LGCM models the change 

over time and tests hypotheses about between-individual differences and within-

individual change (Muthén, 2001). FMM, on the contrary, focuses on identifying and 

accounting for the unobserved heterogeneity in the data and assigning individuals into 

latent groups. I will present a brief introduction to LGCMs and FMMs in the following 

subsections. 

2.1.1 Latent Growth Curve Models 

As a useful tool for the longitudinal data analysis, LGCMs keep track of separate 

trajectories of each individual as well as capture the average growth trajectory for the 

whole group (Bollen & Curran, 2005). In other words, LGCMs summarize the group 

growth intercept and slope using parameters such as mean and variances while allowing 

each individual to have a distinct intercept and slope to simultaneously describe the 

unique path.  

Following Bollen and Curran (2005)’s notation, the basic formulation of a LGCM can 

be specified as: 

 

 ��� = �� +  ��	� + 
��, (1) 

 

where ��� is the variable y for the case � at time 
, �� and 	� are the random intercept and 

the random slope for case i, and 
�� represents the random error. The �� parameter is a 

constant, which is commonly coded as �� = 0 , and �� = 1, and �� = 
 − 1 for all 
 in a 

linear growth model. The random intercept and the random slope can further be modeled 

with the following equations: 

 

 �� = �� + ��� , (2) 

 

 	� = �� + ��� , (3) 
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where �� and �� are the mean intercept and mean slope across all cases, and ���  and ��� 
are disturbances for �� and 	�, respectively. When we combine the two levels of models 

into a single model, we get: 

 

 ��� = ��� + ����� + ���� + ����� + 
���. (4) 

 

In this single-level model, �� + ���� is referred to as the fixed coefficients, while ��� + ����� + 
�� is random. It is assumed that the disturbance variables have a mean of 

zero and variances of ��� and ���, and the covariance between the intercept and slope is 

denoted as ���.  It is also assumed that the variance of the disturbance for case � at time 
 

is ���� .  

2.1.2 Finite Mixture Models  

FMMs are a data-driven approach (as opposed to a substantive theory-based approach) 

to the modeling of random phenomena that consist of mixtures of distributions. This type 

of modeling can be very useful in classifying cases into discrete groups in the social and 

behavioral sciences.  

We can write a basic FMM in the following form using notation partially from 

McLanchlan and Peel (2000) and Depaoli (2013). First, we assume that data are 

generated from a finite mixture distribution, �(��; "), in this case a normal distribution. 

This mixture distribution can be represented by the following mixture density function 

for mixture class c such that  

 
�(��; ") = $ %&�&(��; '&),(

&)�  (5) 

 

where �� is a vector of repeated measure outcomes for case � with � = 1,2, … , ,, %& 

represents the unknown mixture class proportion for the cth latent class with - = 1,2, … , ., ∑ %& = 1(&)� , and  �& (for - =  1,2, … , .) are the densities of the C latent 

classes that are assumed to be multivariate normal (MVN): ��|- ~ 234(�& , 5&), and �& 

and 5& are the mean vector and the covariance matrix of the multivariate normal 

distribution from which the random samples �� are drawn for the cth class. Further, " =(%, ') represents a vector of unknown parameters, which includes the mixture class 

proportions % = %�, %�, … , %( and the unknown parameter vectors ' = '�, '�, … , '(. The 

parameter '& for each cth latent class contains a vector of model specific parameters, 

such as means and variances of regression coefficients in a regression model. We then 

introduce an assignment parameter 6�, which is a vector of associated component-labels 

for each y8 with 6 = 6�, 6�, … 69. The parameter 6� is defined to be 1 when �� is in class c 

or 0 when �� is not in class c for cth class.  



 

 

 

4

2.1.3 Latent Growth Mixture Models  

In the social and behavioral sciences, it is common for research questions to involve 

classifying cases based on their repeated measures over time when their group 

membership is unknown. LGMMs provide a tool that combines the LGCM and FMM 

and makes use of the features from both modeling techniques. This type of model 

classifies cases into unobserved groups and estimates the latent growth curve of each 

group simultaneously (Bollen & Curran, 2005) 

 

I use the formulation in Bollen and Curran (2005) (but with different notation from 

their book) to illustrate the specification of the LGMM below. The 2-level model can be 

written as 

 
��� = $ %�&:��& + ��&	�& + 
��&;(

&)� , (6) 

 

 ��& = ��< + ���< , (7) 

 

 	�& = ��< + ���< , (8) 

 

where ��� is the measure of variable � for case � at time 
,  %�&is the probability that the 

ith case belongs to the cth group with all %�& ≥ 0 and ∑ %�&(&)� = 1, and the subscript c 

denotes the latent class each parameter belongs to. ��& represents the coding of time 
 for 

all cases in class c; in the two studies of this dissertation, ��& = 0,1,2,3.  

Therefore in the expression of the LGMM, ��� can be seen as a function of a vector of 

unknown parameters, which are the growth trajectories with parameters dictating each 

group, ', and the probability that the case belongs to that group, %. In the case of an 

unconditional linear growth model, ' includes the means of the random intercept and the 

random slope (��& and ��&), the variances of ��& and 	�& (���and ���), the covariance 

between ��& and 	�& (���), and variances of disturbance for case � at time 
 is ���� . 

Although in many situations, ���, ���, ���, and ����  can vary across latent classes, they 

are constrained to be equal in the studies in this dissertation for the purposes of model 

simplification.  

This basic LGMM of four time points with an intercept and a linear slope will be 

examined with the RJMCMC algorithm and the DP technique, as well as other modeling 

methods in this dissertation.  

2.2 Reversible Jump Markov Chain Monte Carlo 

In this dissertation, two types of Bayesian non/semi-parametric methods are 

examined for LGMMs. The first method is the reversible jump Markov chain Monte 
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Carlo (RJMCMC) process. RJMCMC is a type of random sweep Metropolis-Hastings 

(MH) algorithm; it extends the MH algorithm to more general state spaces (Richardson & 

Green, 1997). RJMCMC constructs Markov chains using the reversible jumping rules 

and enables jumps between the parameter subspaces, whose dimensions can vary across 

iterates of the Markov chain. For example, jumps are allowed to take place between two 

adjacent iterates or sweeps, in which the dimension of the mixture component parameter 

(i.e., latent classes1) is different from one iterate to the other in the case of mixture 

modeling. 

One of the advantages of RJMCMC is that it allows jumps between parameter 

subspaces of differing dimensionality. This feature of RJMCMC makes it a very useful 

tool for solving statistical problems with inferences that are not fixed, such as the 

unknown number of models being selected, of mixture components, or of changing times 

and rates.  

The Bayesian non/semi-parametric methods discussed in this dissertation are the 

modeling techniques that focus on estimating the number of mixture components. This 

process is different from other types of non/semi-parametric methods, which examine the 

functional form(s) of the relationship between variables; that method is not a topic 

addressed in this dissertation. 

2.2.1 The Development of RJMCMC 

 Green (1995) applied RJMCMC as a solution to Bayesian model selection in several 

types of modeling contexts. In a Bayesian multiple change-point analysis, RJMCMC was 

used to compute the number of points in the step functions, which was allowed to vary 

instead of being fixed. In the next example, the researcher extended the usefulness of 

RJMCMC to an image segmentation process that was essentially a form of a two-

dimensional step function. An RJMCMC algorithm was modified from the previous one-

dimensional change-point problem and used on the multidimensional step function. In 

this same paper, Green then further used RJMCMC in a model partition problem for 

binomial data in Bayesian analysis of factorial experiments. Specifically, the number of 

the partition of the subgroups was unfixed and estimated based on the “birth and death” 

algorithm.  

In the context of mixture modeling, RJMCMC treats the mixture representations as an 

unknown and hence varying component and models the number of mixture component 

and other model parameters in one process. RJMCMC has been intensively applied in 

estimating the number of mixture components for different types of mixture models, but 

this process has rarely been examined within the social or behavioral sciences.  

Richardson and Green (1997) used RJMCMC to estimate the number of mixture 

components of a univariate normal mixture model. This mixture model was formulated in 

a hierarchical form, where the number of mixture components and other model 

                                                 
1 Latent classes are also called “mixture components” in the literature of mixture modeling (e.g., 

McLachlan and Peel, 2000) and these two terms are used interchangeably in this dissertation. 
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parameters were regarded as unknown and were drawn from the prior distributions, 

respectively. The model can be written in the following form2:  

 

 
�� ∼ $ %&�(��|'&),(

&)� indepently for � = 1,2, … , , and - = 1,2, … , ., (9) 

 

where �(��|') represents a given density function parameterized by a generic vector '. 

Here in the univeriate normal mixture model, the unknown parameters include: ', which 

is a vector of a pair of means and variances, �& and �&�
, and the mixture component 

weight (i.e., latent class proportion), %&, for a specific class c. The class membership 

(also regarded as the group label or the latent allocation variable) is denoted as 6� for each ��,. The class membership represents the latent class where the observation is drawn from 

and is unknown. The 6� values are independently drawn from a distribution, where 

 

 L(6� = -) = %&, for - = 1,2, … , .. (10) 

 

The observations �� can then be seen as drawn from their respective individual 

subpopulations c, given 6�: 
 

 L(��| 6) ~�(��|'M�), (11) 

 

which, in the univariate normal modeling context, can be expanded as 

 

 
�(��|'&) = �(��|�& , N&�) =  1O(2%)N& exp Q− (�� − �&)�2N&� R .  (12) 

 

In the Bayesian framework, the unknown parameters -, 6, %, and ' are drawn from 

appropriate prior distributions. Given the above formulas, the joint distribution of this 

model can be expressed as 

 

 L(-, 6, %, ', �) = L(-)L(%|-)L(6|%, -)L('|-)L(�|', 6).  (13) 

 

The prior distributions for ' = �& , N&� are  

 

 �&~4(STU,, VUW�U,-T) (14) 

 and 
 

                                                 
2 The original notations from Richardson and Green (1997) are not used here because some of them are 

conflict with the formulation in the current dissertation. Therefore I reconstructed the formulas from 

Richardson & Green (1997) in a way such that all the notation follows the formulation in this dissertation. 
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 N&�~X(Y�, Y�), (15) 

 

where �& is drawn from a normal distribution with a hyperparameter mean, denotaed as STU,, and a hyperparameter variance, denoted as VUW�U,-T; N&� follows a inverse 

gamma distribution with shape and scale parameters Y� and Y�, respectively. The 

proportion weight parameter % is drawn from a Dirichlet distribution  

 

 %~Z�W�-ℎ\T
(]�, ]�, …, ]() (16) 

 

And the prior distribution for the number of latent class C is a uniform distribution 

between 1 and an integer, .^_` denoted the maximum number of latent classes being 

specified in the analysis.  

Richardson and Green (1997) described the process of RJMCMC for the univariate 

normal model as follows. Using a to denote the current state of the vector of the 

unknown parameters, including ', %, U,b -, with a posterior probability L(ba). When a 

type of move m is proposed, it would take the state to a′, with a probability d^(a, ba′), 

which is called the Markov transition kernel (Green, 1995). The move m from state a to a′ is accepted with probability  

 

 

 
U^(a, ae) = min Q1, L(bae)d^(ae, ba)L(ba)d^(a, bae) R , (17) 

 

where L(bae) is the posterior probability of ae, d^(ae, ba) is the probability of moving 

from state ae to state a. Based on this generic formula, an acceptance probability for 

dimension-changing moves in the mixture modeling context can be written as 

 

 

 
U^(a, ae) = min Q1, L(ae|�)Ŵ (ae)L(a|�)Ŵ (a)d(g) h ia′i(a, g)hR, (18) 

 

where L(ae|�) =  L(bae) and L(a|�) represent the posterior probabilities of state a and 

state ae; Ŵ  is a probability of choosing move type m when in state a, and d(g) is the 

density function of an auxiliary variable, u, included to ensure the dimension-matching 

(i.e., to match the degrees of freedom of joint variation of the state and proposal as the 

dimension changes with c) in the dimension-changing moves; j ia′k(`,l)j is the determinant 

of the Jacobian matrix (i.e., regarded as “the Jacobian” in the literature) for the change of 

variable from (a, g) to ae (Richardson & Green,1997).  

Richardson and Green (1997) illustrated the performance of RJMCMC for the 

univariate normal mixture model with several real data sets. They presented the 

predictive densities both conditional and unconditional on the number of the mixture 

components c and chose the proper number of components based on the results. This 
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study also discussed the sensitivity of the posterior distribution for c to the prior 

distributions for the means and the variances. They found that the posterior distribution of 

c was insensitive to the hyperparameters of the fixed effects used to specify the prior 

distribution of the variance.  

Ho and Hu (2008) extended the application of RJMCMC from the univariate normal 

model to the random effects normal mixture model. In this study, they provided an 

RJMCMC algorithm for a linear random effects model with a random intercept and a 

random slope. This Gaussian (normal) mixture random-effects model was specified in the 

form of a Bayesian hierarchical model. Equations 6-8 in the univariate normal mixture 

model became, for � = 1, … , , and m = 1, … , n,  

 

 ��o = ��o + ���g�o + 	�p��o + 	�p��o + ⋯ + 	rpr�o + 
�o, (19) 

 

 
�o~4(0, N�), (20) 

 

 ��~∑ 4�(�& , 5s).(&)�  (21) 

 

In the above formulas, 4� represents a bivariate (multivariate) normal distribution; (�& , 5s) are the hyperparameters for the mean and the covariance matrix, respectively; 

and N� is the variance of the error term in the level 1 model. The {g�o , p��o, … , pr�o} 

parameters are known covariates associated with observed data {��o}. �� =(���, ���)x represents a matrix of random effects. For each random-effects vector ��, a 

latent group label variable 6� is provided, which takes values {1, … , .}. This group label 

variable (or allocation variable) is drawn from a distribution that is specified in Equation 

11.  

Similar to the univariate normal mixture models, the estimation of this Gaussian 

mixture random effects model can be considered as a general semi-parametric density 

analysis using ��|6� as a Gaussian random vector to construct efficient Gibbs samplers 

(Ho & Hu, 2008). The joint distribution of all parameters in Equation 13, now become 

 

 L(�, �, 	, N�, %, -, z, 6) = 

(22) 

 L(N�, 	)L(-)L(z|-)L(%|S)L(6|%, S)L(�|z, 6) × L(�|�, 	, N�), 

 

where,  

 

 

� = |��o}, � = {��, … �9}, 	 = |	�, … , 	r}, % = {%�, … %(}, 6 

    = {6�, … 69}, and z = {(��, 5�), … , (�( , 5()}. (23) 

 

Ho and Hu (2008) adopted the methods from Richardson and Green (1997) for 

calculating the acceptance probability for the moves, which is specified in Equations 17 
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and 18. However, the dimension of the model parameters now has increased as the model 

changed from univariate to multivariate. Therefore, the “combine” and “split” moves in 

the RJMCMC process also need to be adjusted for the computation of the moment 

conditions. Specifically, Ho and Ho (2008) calculated the moment conditions in a 

“combined” move for the Gaussian random effect mixture model in the following way: 

 

 %o = %o� + %o�, (24) 

 

 %o�o = %o��o� + %o��o�, (25) 

 

 %o�5o + �o�ox� = %o��5o� + �o��o�x � + %o��5o� + �o��o�x �. (26) 

 

The above expressions are the RJMCMC transformation for generating the zeroth, 

first, and second moments for the density of a “combined” component based on its 

previous state. Specifically, Equation 24 creates the class proportions of the new 

component, Equation 25 creates the expectation of the density of the new component (i.e., 

mean), and Equation 26 creates the covariance matrix of the density. 

The “split” move takes a more complex form, where an auxiliary variable g is 

introduced in order to assist with the dimension matching as the dimensions of the model 

parameters increased in a split move. In Ho and Hu (2008), g was set to be drawn from a 

beta distribution such that g~YT
U(2,2). Then two proportion components parameters for 

the new component can be created by:  

 

 %o� = g%o , %o� = (1 − g)%o . (27) 

Then the expectations of the new component are created by Cholesky decomposition 

 

 5o = ~�~ox , (28) 

 

where  

 

 

 
~o = �\��o 0\��o \��o �. (29) 

 

A random 2 × 1 vector p = (p�, p�)x is created for splitting the mean vector for the 

new component. The p� parameter in Ho and Hu (2008) was set in a way such that p� =���������������, and that the Euclidean norm �|p|� < 1. Therefore, the means are 
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�o� = �o − �1 − gg ~oν, (30) 

 

 

 
�o� = �o + �1 − gg ~oν. (31) 

 

The covariance matrix for the new component then can be computed with assistance 

from some extra auxiliary variables as follows: 

 

 

 
%o�5o + �o�ox� = %o� �5o� + ��o − �%o�%o� ~op� ��o − �%o�%o� ~op�x�  

 

 
+ %o� �5o� + ��o − �%o�%o� ~op� ��o − �%o�%o� ~op�x�, (32) 

 

 %o�5o − ~oppx~ox� = %o�5o� + %o�5o�. (33) 

 

Let �o = 5o − �o������ and by Cholesky decomposition, �o = �o�ox , where �o is the 

lower triangular matrix with positive diagonal entries. A positive definite matrix � is 

drawn from a multivariate 	 distribution such that �~23� �9�� , 9�� � with ,� ≥b and ,� ≥ b, where b is the dimension of the parameter. Then the covariance matrices 

of the density for the new component are  

 

 

 

5o� = %o%o� .o�.ox , (34) 

 

 5o� = %o%o� .o(� − �).ox . (35) 

  

Ho and Hu (2008) evaluated the performance of the RJMCMC algorithm for the 

Gaussian mixture random effects model on simulated data sets. In the simulation study, 

they examined the effect of the hyperparameter values of two parameters: 1) the precision 

of the normal prior distribution for the fixed effect coefficient �o, and 2) the positive 
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definite matrix of the inverse Wishart prior distribution for the covariance matrix. Their 

findings were consistent with previous studies (e.g., Richardson and Green, 1997 and Ho, 

1995) in that the posterior number of components of the random effects distribution 

would be moderately affected by the hyperparameter values, while the fixed effects 

estimation results were almost unchanged.  

The specification of the prior distributions for the Bayesian inferences was based on 

Richardson and Green (1997) and Lee and Song (2003). The Dirichlet prior distribution 

was assigned on the mixture component parameter, and both informative and 

uninformative priors were assigned for other model parameters. In the RJMCMC 

implementation process, they followed the steps and moves in the previous studies (e.g., 

Richardson & Green, 1997; Boys & Henderson, 2001; Papastamoulis & Iliopoulos, 2009; 

and Roberts et al,2000.) and proposed the combined and split moves for the dimension-

changing in the mixture structure equation modeling (SEM).  

Unlike the treatments of the steps in the implementation in some of the previous 

studies, Liu and Song (2017) discussed the unnecessary use of the birth-and-death step 

that was originally proposed in Green (1995) and was commonly used in the RJMCMC 

literature. They hence excluded the birth-and-death steps from their implementation.  

In their simulation studies, Liu and Song (2017) examined recovery of the number of 

mixture components (e.g., comparing a one, two, and four class solution) using different 

prior specifications on model parameters.  They also calculated the deviance information 

criterion for the models with different numbers of mixture components, and they 

compared the DIC approach with the RJMCMC methods. They found that the RJMCMC 

algorithm was highly computationally efficiency and that it yielded relatively small bias 

levels and root mean square values. Their simulation results concluded that the model 

selection and estimation results were not very sensitive to the prior specifications under 

consideration.  

RJMCMC has also been widely used in Bayesian model averaging (e.g., Green, 1995; 

Hastie & Green, 2012; Huelsenbeck, Larget, & Alfaro, 2004; etc.), neural networks 

(Andrieu, de Freitas, & Doucet, 2001; Holmes & Mallick, 1998) and signal processing 

(Andrieu & Doucet, 1999; Larocque & Reilly, 2002). The advantages of using RJMCMC 

for Bayesian mixture modeling were discussed in several studies (e.g., Richardson and 

Green, 1997; Ho and Hu, 2008, Liu and Song, 2017, etc.). First, RJMCMC yields 

convenient, accurate and flexible outcomes compared with other analytic approximations 

or MCMC techniques. Second, mixture modeling is conventionally considered as the 

estimation of separate models. Model comparison criteria or other non/semi-Bayesian 

tests are used to infer the number of mixture components. On the contrary, RJMCMC 

provides full Bayesian treatments of mixture estimation. It models not only the model 

parameters but also the number of mixture components by treating the number of mixture 

components as random variables that are drawn from a distribution. Third, RJMCMC 

solves the technical issues that are associated with the sampling methods for the posterior 

distribution. RJMCMC enables the jumps between states that are of different 

dimensionalities. It provides the means of computing moments for the density functions 

when a new component is created.  

Despite its popularity in the literature of statistics and computer sciences, RJMCMC 

has seldom been applied in social and behavioral sciences. Therefore, in this dissertation, 
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I will introduce this Bayesian non/semi-parametric method to LGMMs, which are 

commonly implemented within the social and behavioral sciences. My main focus will be 

on using this approach to aid in the estimation of the number of latent classes. A specific 

emphasis will be placed on how this approach can benefit substantive research being 

conducted within Psychology and related fields. 

In the next few subsections, I will present and discuss the procedure of the RJMCMC 

method for the LGMM in the two studies in this dissertation. 

2.2.2 RJMCMC for LGMM  

2.2.2.1 Prior Specifications 

The formulation of the LGMM is presented in Equations 6-8, which can be written in 

the Bayesian hierarchical model format: 

 

 ��� = ���� + ID�� + 
��, (36) 

 

 
��~4(0, N�), (37) 

 

 

 
��~ $ %�&234(�& , Σ)(

&)� , for � = 1, … , ,; 
 = 0, … ,3, (38) 

 

where on the level-1 model, �� is a vector of time that is coded as �� = 0,1,2,3, and ID is 

a vector of the identification number of the observation coded as ID = 1, … , ,. �� is a 

vector of fixed effects coefficients, and �� = (��& , 	�&) represents a matrix of random 

coefficients that can be modeled with a level-2 model, where � follows a multivariate 

normal distribution with the mean of �& and covariance matrix of 5 for each latent class c. 

On the level-2 model, �& = ���& , ��&� represents the mean vector for the multivariate 

normal distribution in class c, whereas Σ = ¡��� 0��� ���¢ represents the covariance 

matrix, which is invariant across the latent classes.  

The prior distributions assigned on the model parameters in the LGMM are specified 

as follows.  

- �&~234(£, Z). The mean vector follows a multivariate normal distribution, with £ as the hyperparameter mean and Z as the hyperparameter covariance matrix. 

- 5~�¤(L, ¥). The covariance matrix follows the inverse Wishart distribution, with 

the degrees of freedom L and a positive definite matrix ¥.  

- N�~�¦(Y�, Y�). The residual variance follows an inverse gamma prior with the 

shape and scale hyperparameters (Y�, Y�).  

- (%�…,%()~Z�W�-ℎ\T
(]�, … ](). The mixture class proportions are drawn from 

the Dirichlet distribution with the hyperparameter ], which is linked to the class size. 

- ��~4(��, Z�). The fixed effect coefficients follow a normal distribution with 

mean hyperparameter �� and hyperparameter covariance matrix Z�. 
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2.2.2.2 Steps in the RJMCMC algorithm  

Similar to the standard MCMC algorithm, the transitions of RJMCMC follow the 

detailed balance condition, which ensures that moves from State 1 to State 2 are made as 

often as moves from State 2 to State 1 (Gelman et al, 2014). Let a denote the state 

variable, and L(ba) denote the target distribution, which represents the posterior 

distribution of the model parameters given the observed data. When the current state is a, 

with a move type S being made and the destination state a′ being proposed, the joint 

distribution probability is L(a, bae).  We can construct the Markov transition kernel with L(a, ba′), which should satisfy the detailed balance condition:§ § L(ba)L(a, bae)¨ =©§ § L(bae)L(a′, ba)©¨ , for all appropriate subspaces A and B (Green 1995).  

Based on the Gibbs sampler and the Metropolis-Hastings method, the probability that 

the move (from state a to state a′) is accepted can be calculated by Equation 17. With the 

measure U^(a, ae), the move is accepted; otherwise, no move is attempted and the 

current values are retained.  

The steps of an RJMCMC sweep can be constructed as follows: 

- Initialize latent class c and corresponding model parameters, including %& , �& , Σ, N�and the allocation 6� at iteration = 1. 

- When iteration > 1, for the within-model move, within a fixed model c, update 

parameters (%& , �& , Σ, N�). 

- Still when iteration > 1, for the between-model move, conduct a “combine” or a 

“split” move that either combines two mixture components into one or splits one 

into two according to the acceptance mechanism described above. Simultaneously 

update other model parameters (%& , �& , Σ, N�) and 6�. 
- While the number of iterations < total number of iteration, increment iteration = 

iteration + 1 and repeat steps 2-4. 

We adopted the approach from Ho and Hu (2008) for moments matching for the 

density in the new mixture component in the “combine” and “split” moves. Specifically, 

the zeroth moment (proportion weight), the first moment (mean), and the second moment 

(covariance matrix) become 

 

 %& = %&� + %&� , (39) 

 

 %&�& = %&��&� + %&��&� , (40) 

 

 %&(5& + �&�&x) = %&��5&� + �&��&�x � + %&��5&� + �&��&�x �, (41) 

 

in the “combine” move, where components -� and -� are combined into a new 

component c. In the “split” move,  

 

 %&� = g%& , %&� = (1 − g)%& , (42) 
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 �&� = �& − �1 − gg ~&ν, (43) 

  

 �&� = �& + �1 − gg ~&ν, (44) 

 

 5&� = %&%&� .&�.&x , (45) 

 

 5&� = %&%&� .&(� − �).&x , (46) 

 

where component c is split into two new components  -� and -�. For the details of the 

transformation and the auxiliary variables, see Equations 29-35 and Ho & Hu (2008). 

The acceptance probability specified in Equation 17 then can be computed as follows. 

Let A denote the acceptance probability, pr denotes the prior ratio, mp denotes the move 

probability, pp denotes the proposal distribution probability, and |n|denotes the 

determinant of the Jacobian matrix: 

 

 LW = ®(^��)®(^) (S + 1) ¡¯°�±²�³´°�¯°�±²�³´°�¢
¯°±²�³´°¨(µ,^µ) , (47) 

 

 SL = 12%|Z|�� exp :− 12 {��o� − £�xZ¶���o� − £� + ��o� −  £�x
 

Z¶���o� − £� − ��o − £�xZ¶���o − £�};, (48) 

 

 LL = ��·���|¸|·�¹�º�� »(��(¼��¶�)) × j½°�� j·³¾� j½°�²�j(·³¾)/�
j½°²�j(·³¾)/�  , (49) 

 

 |n| = ¯°�½°����¶||�||��¾/�
À , (50) 
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 Á = (lieklihood ratio) × LW ×  SL × LL × |n|. (51) 

 

Then the acceptance probability for the “split” move is S�,(1, Á), and the acceptance 

probability of the “combine” move is S�,(1, Á¶�) . 
2.2.2.3 Label Switching Issues  

Label switching issues occur when the posterior distribution is invariant under 

permutations in the labeling of the parameter (Chung & Schafer, 2004). This results in 

the parameters having identical marginal posterior distributions. Label switching causes 

problems in the interpretation of the MCMC output since parameter estimates do not 

necessarily represent those from a single latent class.  

One conceptually simple solution to the label switching problem is to impose 

artificial identifiability constraints on the parameters. For example, putting a constraint 

on the mean parameters, �&, of a normal mixture model such as �� < … < �&. Another 

approach is to handle the non-identifiability in the post-processing of MCMC output. 

Some studies proposed inferential methods based on the relabeling of components or 

adopted fully decision-theoretic methods in order to minimize the posterior expected loss 

or construct an appropriate loss function (e.g., Stephens, 2000; Celeux et al, 2000; Hurn 

et al, 2003; Sisson and Hurn, 2004, Sisson and Fan, 2010, etc.). Each of these methods 

can be computationally expensive. In this dissertation, I have used the former approach 

where the constraint is put on the parameters to handle label switching.  

2.3 Dirichlet Process Mixture Modeling for LGMM 

The Dirichlet process models are a family of non/semi-parametric Bayesian models, 

which are commonly used for density estimation, non–parametric and semi-parametric 

modeling, and model selection or averaging. DP is non-parametric in the sense that it 

allows the model to contain an infinite number of parameters and “let the data speak for 

themselves.” In other words, DP does not require the specification of the number of latent 

classes a priori because it assumes that the number is infinite. It also allows the mixture 

model to adapt (i.e., increase or decrease) the number of “active” (i.e., non-empty) 

classes as more data are fed in the model over time (Teh, Dirichlet Process, 2011). The 

non-parametric feature of DP can also be used in finite mixture models and I elaborate on 

this point in the following subsections. 

2.3.1 Dirichlet Distribution  

The Dirichlet distribution can be seen as a distribution over multinomial distributions. 

Specifically, it is a distribution over the C-dimensional simplex, (%�, … %(),where 5&%& = 1 and %& ≥ 0. (%�, … %() follows a Dirichlet distribution: 

 

 (%�, … %()~Z�W�-ℎ\T
(U�, … U(), (52) 
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with parameters (U�, … U(). The likelihood function of the Dirichlet distribution can be 

specified as: 

  

 L(%�, … %() = Γ(Σ&U&)ΠÆΓ(U&) Ç %&_<¶�(
&)� . (53) 

2.3.2 Dirichlet Process  

The Dirichlet process is defined as a distribution over distributions, or a measure on 

measures. Let ¦ be a function that is assumed to have infinite dimensions, and ¦~ZÈ(. |U, ¦É). ¦É represents a base distribution. Based on the properties of the Dirichlet 

distribution discussed earlier, we can derive, for all (%�, … %(), 

 

 ¦(%�), … , ¦(%()~Z�W�-ℎ\T
(U(¦É(%�), … , U(¦É(%()). (54) 

 

Samples from a Dirichlet process are discrete with probability one: 

 

 ¦(�) = $ %�&�(�&)∞
&)� , (55) 

 

where �(�&) represents a generic mixture model that is assumed with to have infinite 

number of classes, and � is the parameter vector of the model. One advantage of using 

DP as a prior distribution is that DPs are conjugate to themselves. That is, the posterior of 

a DP is also a DP: 

 

 È(¦|�) = ZÈ ¡ UU + 1 ¦É + 1U + 1 �(�), U + 1¢. (56) 

 

DP has been widely used in statistics and machine learning. Teh (2010) summarized 

some simple and prevalent applications of DPs, including Bayesian model validation, 

density estimation and clustering via mixture models. In the validation of model fit 

process, a base model that is assumed to generate the observed data is compared with 

other possible models. The Bayesian non-parametric approach uses the space of all 

possible distributions in comparison with a prior over these distributions. DP is a popular 

prior distribution in this case. In the comparison process, a given parametric model is 

chosen as the base model, while DP serves as a non-parametric relaxation around this 

parametric model. If the parametric model performs as well as or better than DP relaxed 

model, then the validity of the model is convinced (Teh, 2010; also see e.g., Carota, 

Filippone, & Polettini, 2018). Another application of DP is in density estimation, where 

the interest lies in modeling the density from which a given set of observations is drawn. 

DP as a Bayesian nonparametric method is often chosen as a prior over all densities. 

When using DP for density estimation, the draws from the Dirichlet distribution are 

usually smoothed out with a kernel. (see e.g., Escobar & West, 1995; Lo, 1984) Let  
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¦~ZÈ(. |U, ¦É), and let �(�|�) be a family of densities (kernels) indexed by �. Then the 

nonparametric density of the observed data y can be presented as: 

 

 L(�) = § �(�|�)¦(�)b(�). (57) 

 

This smoothing function is also equivalent to the DP mixture models, which I will 

discuss in the following few sections.  

2.3.3 DP Mixture Models  

DP mixture models are commonly used in the context of infinite mixture models, 

where the mixture has an infinite but countable number of clusters or classes. The 

advantage of DP mixture models is that the number of classes is not fixed and can be 

automatically inferred from data using the Bayesian posterior inference framework 

(Neal,2000). For finite mixture models, where the number of classes is fixed, there can be 

different approaches to the inference of clustering. One approach is equivalent to model 

selection or model averaging for appropriate number of clusters (see e.g., Gershman and 

Blaei, 2011; Kim, Tadesse, and Vannucci, 2006; Wang and Dunson, 2011).  

Another approach for the finite mixture models using DP is to treat the number of 

clusters as a very large value, which nearly approaches infinity. But note that even under 

the assumption that the number of clusters in a finite mixture model is nearly infinite, the 

actual number of active clusters (the clusters with at least one observation) cannot be 

greater than the number of observations. This treatment of the number of clusters allows 

us to apply DP on the finite mixture models and to avoid the complicated operation of the 

model selection and averaging approach.  

Various computation solutions for implementing DP mixture models have been 

proposed in the fields of statistics and computer sciences. Blei and Jordan (2006) 

compared a mean-field inference algorithm to the Gibbs sampling methods for DP 

mixtures of Gaussians and presented an application to a large-scale image analysis 

problem. The authors used the variational inference method to compute the posterior 

distribution under a DP mixture prior. With a simulation study and an image data 

example, the authors concluded that the variational inference methods ran faster than the 

two Gibbs samplers (i.e., collapsed Gibbs and blocked Gibbs sampler). Gelfand and 

Kottas (2012) proposed a computational approach to obtain the posterior distribution for 

more general functions for the underlying distributions for mixture models using DP as a 

Bayesian nonparametric method. The authors investigated the extreme value distributions 

associated with a single population, compared the medians in a k-sample problem, and 

applied their methods in a survival data analysis example.  

Teh et al (2012) applied DP on a hierarchical model (i.e., multilevel model) with 

groups of data where observations within each group were drawn from a mixture model. 

They assumed that the number of mixture components was unknown a priori and was to 

be inferred from the data. DP was used as a non-parametric prior on the parameters of the 

hierarchical mixture model. This paper presented three schemes of the construction of the 

hierarchical DP, including the stick-breaking representation, the “Chinese restaurant 

franchise” representation, and a presentation of the process in terms of an infinite limit of 
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finite mixture models. The authors demonstrated the application of the hierarchical DP 

mixture model on document modeling. They also compared the performance of the 

hierarchical DP combined with hidden Markov models (HMM) with other non-DP HMM 

approaches. Based on the results of their experiments, this paper concluded that this 

hierarchical nonparametric Bayesian approach to clustering provided a generally useful 

extension of model-based clustering.  

Miller and Harrison (2016) used the analogues of the mixture of finite mixtures 

(MFM) to estimate the unknown number of mixture components for DP mixture models. 

The paper reviewed some essential properties of MFM, including the clustering 

algorithms that were also exhibited in DP mixture models. The authors compared the 

MFMs and the DP mixture methods through a simulation study and the discriminate 

cancer subtypes data. They concluded that the methods for inference in DP mixtures 

(such as the exchangeable partition distribution, the Chinese restaurant process, the 

random discrete measure formulation, etc.) could be implemented on MFM in a simpler 

manner.  

Despite the application of DP mixture models in statistics and machine learning (see 

Maceachern & Muller, 1998, Gelfand, Kottas, & MacEachern, 2005, Jiang, Kulis, & 

Jordan, 2012, etc. for more examples), it has not been introduced into the structural 

equation modeling framework. Therefore, I am proposing to adopt this Bayesian non-

parametric method and apply it to the LGMM. 

2.3.4 Model Specification for a DP Mixture Model 

We assume a generic mixture model with a density that can be specified as: 

 

 �(�) = $ %&�(�|'&)(ËÌÍ
&)� , (58) 

 

where �(�|'&) is a generic function of the model with the parameter vector, '&, and %& 

denotes the mixture weights. A mixed-effects normal (or Gaussian) mixture model can be 

parameterized in the form of the DP mixture modeling in the following way: 

 

 ��~Î, (59) 

 

 Î~¦, (60) 

 

 ¦ ~ DP(U¦É), (61) 

 

 ¦É~4(�& , Σ), (62) 

 

where F is a density function, in this dissertation, a mixed-effects normal function with 
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 Î = ��& + ��&	�& + 
��&, (63) 

 

 ��& = ��& + ���< , (64) 

 

 	�& = ��& + ���< . (65) 

 

This model formulation can be illustrated with a diagram in Figure 1.  

 

 
 

 Figure 1. Diagram of a Generic DP Mixture Model 

 

In this diagram, the observation data �� given the parameter vector �&follows the 

mixed-effects normal function F, that is, ��|�&~Î(�&). ¦ is a distribution of �& and ¦~Z�W�-ℎ\T
(U, ¦É). In other words, the mixture models are sampled from DP with 

parameter U and ¦É, with �&~¦ independently for c = 1,…, ∞, and ¦É denotes the base 

distribution that θ& is drawn from. U is the dispersion parameter, or precision parameter 

that determines the number of clusters or classes we are going to obtain. Larger values for U tend to lead to a greater number of clusters. ¦É can be further modeled as ¦É =$ %&]Ñ<
Ò
&)� . ] specifies that when ] = ]∗, this term will take the value 1, otherwise it 

will take zero. ]∗is the parameter estimate for the class membership of a specific class. In 

an infinite mixture model, ¦É is the unknown mixing measure. The finite mixture models 

can be considered as a special case of infinite mixture models. In this case, ¦É can be 

treated as discrete with masses at a finite number of c components, C, and then we can 

obtain a finite mixture model as was discussed in the previous section (Gelman, et al., 

2014).   
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2.3.5 Algorithms of DP Mixture Models  

2.3.5.1 Blackwell-MacQueen Urn Scheme  

The Blackwell-MacQueen urn scheme is commonly used to represent a Dirichlet 

process. It is based on the Polya urn model that can be considered as the opposite of 

sampling with replacement. In the Polya um model, we assume that we have an urn with 

colored marbles and we draw the marbles randomly from the urn. Each time we draw a 

marble, we observe the color. We put it back in the urn and add an additional marble of 

the same color. We use the similar scheme proposed by Blackwell-MacQueen (Blackwell 

& MacQueen, 1973) to construct the Dirichlet process. 

Consider drawing an i.i.d. sequence of ��, … , �9 from ¦, where ¦~ZÈ(U, ¦É). The 

conditional probabilities of drawing a �9 given its previous draws is �9��|��:9~ _ÕÖ�½µ×�_�9 . 

In this scheme, we assume ¦Éis a distribution over colors and each �9 represents the 

marble that is added in the urn. The posterior base distribution given ��, … , �9 is also the 

predictive distribution of �9��. This sequence of predictive distributions for ��, … , �9forms the MacQueen urn scheme. 

Given the conditional probabilities of ��, … , �9, we may construct a distribution over 

sequences ��, … , �9 by iteratively drawing each �� given ��, … , �^. The joint distribution 

of ��, … , �^ is invariant to any finite permutations, and thus it is exchangeable (see Teh, 

2010 for the details of the proof). Then according to Finetti’s theorem, for any infinitely 

exchangeable sequence ��, … , �9, there is a random distribution ¦ such that the sequence 

is composed of i.i.d. draws from it: 

 

 È(��, … , �9) = § Ç ¦(��)bÈ(¦).9
�)�  (66) 

 

In this specification, the prior over the random distribution È(¦) is the Dirichlet 

Process ZÈ(U, ¦É). 

2.3.5.2 Chinese Restaurant Process 

The Blackwell-MacQueen scheme can be proved mathematically equivalent to the 

Chinese restaurant process (CRP). CRP describes the distribution over partitions. Imagine 

we have an empty restaurant with an infinite numbers of tables. Then here comes the first 

costumer. The probability that this costumer will go to the first table is 1 and to other 

tables is 0. Then comes the 2nd costumer, with the probability she will go to the first table 

and share with the 1 customer begin set at 
���_. The probability she will take a new table 

is 
_��_ . Then the (, + 1)th customer always has 2 choices: she can either share an 

occupied table or take a new table. The probability of taking a new table is 
_9�_, and the 

probability of sharing an occupied table is 
&9�_; n is the number of customers before her, 

and c is the number of customers already sitting at the table. Essentially, the Chinese 

restaurant process is the distribution over the partition. 
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When we use DP on a mixture model, we assume that P, in this case the number of 

mixture components, is infinite. Then we no longer have joint conjugacy in which the 

posterior of P since �9 = ��, … �9. A solution to this problem is to marginalize out P to 

obtain an induced prior distribution on the model parameter �. By doing this, we obtain 

the Polya urn predictive rule (Gelman, et al., 2014), 

 

 L(��|��, … ��¶�)~ � UU + � − 1� ÈÉ(��) + Ø( 1U + � − 1) ]Ñ�
9

�)�
. (67) 

 

This conditional prior distribution consists of a mixture of the base measure ÈÉ and 

probability at the previous subject’s parameter values. The Chinese restaurant process 

describes this scheme. Consider a restaurant with an infinite number of tables. The first 

customer sits at a table with dish ��. The second customer sits at the first table with 

probability 
__�� or a new table with probability 

�_��. This process continues with the ith 

customer sitting at an occupied table with the probability proportional to the number of 

previous customers at that table and sitting at a new table with probability proportional to �. In this process, each occupied table in the restaurant represents a different cluster of 

subjects, with new clusters added at a rate proportional to �log (,) in the asymptotic limit. 

Therefore, the number of clusters depends on the number of subjects n with new clusters 

introduced as needed and as additional subjects are added to the sample (Miller & 

Harrison, 2016).  

2.3.5.3 Gibbs Sampler  

The Chinese restaurant process can be implemented using Gibbs sampler:  

1) First randomly assign the cluster ID 6� to a £, while keep other cluster IDs fixed.  

2) Calculate the probability using the CRP algorithm to determine which cluster 

should this observation £ should be associated with, and then assign a new cluster ID 6o to £, where m ≠ �.   
3) Update the parameters.  

4) Repeat this process until it converges. 

 

2.3.5.4 Prior Specification for DP  

The formulation of the LGMM, which is presented in Equations 6-8, can be written in 

the Bayesian hierarchical model format: 

 

 ���~4(���� + ID��, 
��), (68) 

 

 
��~4(0, N�), (69) 
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where 

 

 ��~¦, (70) 

 

 ¦~ZÈ(U, ¦É), (71) 

 

and  

 

 ¦É~ ∑ %�&234(�& , Σ)(&)� , for � = 1, … , ,; 
 = 0, … ,3. (72) 

 

The prior distributions assigned to the model parameters in the LGMM can be 

specified as follows: 

- �&~234(£, Z). The mean vector follows a multivariate normal distribution, with £ as the hyperparameter mean and Z as the hyperparameter covariance matrix. 

- Σ~�¤(L, ¥). The covariance matrix follows the inverse Wishart distribution, with 

the degrees of freedom L and a positive definite matrix ¥.  

- N�~�¦(Y�, Y�). The residual variance follows an inverse gamma prior with the 

shape and position hyperparameters (Y�, Y�).  

- ��~4(��, Z�). The fixed effect coefficients follow a normal distribution with 

mean hyperparameter �� and hyperparameter covariance matrix Z�. 

- BÜ~¦ and ¦~ZÈ(U, ¦É). ¦ represents a probability function, specifically a 

normal distribution, over a parameter space and can be written as ¦~ZÈ�a, 4(�, Σ)�, 
where a is the dispersion parameter of the DP mixture, which can take on a single 

value, such as 1, or follow a gamma distribution such that U~¦USSU(U�, U�). In the 

probability density function of normal mixture models (i.e., Gaussian mixture models) ¦ can be marginalized out. Taking the integral of function ¦ with respect to �, the 

random effects coefficient �� then follows an integrated function such that BÜ~§ 4(�, 5Ý)(b�). In this distribution, 5Ý~�¤(νÞ, ßÝ). 
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Chapter 3  

Study 1: Deciding on the Number of 

Classes for LGMM using Bayesian 

Non/Semi -Parametric Methods                                                 

3.1 Introduction 

LGMM is a useful method in the structure equation modeling (SEM) framework for 

modeling latent classes in longitudinal data. Despite its usefulness in the social and 

behavioral sciences, one major challenge is deciding on the number of latent classes that 

exist; there are several techniques used to help drive this decision (e.g., comparative 

indices such as information criteria). Parallel to the existing methods used to decide on 

the number of classes, Bayesian non/semi-parametric methods, such as RJMCMC and 

DP, have been developed and popularized in statistics and computer science. These two 

modeling techniques may prove useful within the LGMM framework by contributing to 

the practice of “testing” the number of latent classes.  

The primary goal of Study 1 is to examine the performance of RJMCMC and the DP 

on extracting the number of latent classes for LGMM. Another goal is to compare these 

two Bayesian non-parametric methods with the traditional (i.e., frequentist) 

implementation of the LGMM. Study 1 is structured as follows. First I will briefly 

discuss the traditional approaches to assessing the number of latent classes for mixture 

models and the issues (i.e., problems) linked to them. Then I will present a simulation 

study that examines the performance of RJMCMC and the DP and compare these 

approaches with the frequentist estimation framework. The simulation study is followed 

by an empirical example in which RJMCMC and the DP are applied to an LGMM using 

a real life data set. Study 1 will conclude with a discussion of the performance of the 

Bayesian non-parametric methods for LGMMs, as well as a discussion of the 

implications for applied researchers implementing these methods. 

3.1.1 Assessing the Number of Classes for Finite Mixture Models  

When researchers have no a priori information about the classes (e.g., the substantive 

differences between the classes, the number of classes, or the substantive interpretation of 

classes), then the number of classes has to be inferred from the data; the parameters in the 

component (i.e., class) densities are estimated from the data. In this case, the selection of 

the number of classes is akin to cluster analysis (Roeder & Wasserman, 1997). Several 

problems may arise from this cluster analysis approach. First, the separation (or 

distinction) between classes must be large enough in order to detect that they are indeed 
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distinct classes. This large degree of separation is not always the case in applied settings, 

and classes can be difficult to identify when the sample size is relatively small 

(McLachlan & Peel, 2000). Second, the distribution of the data may influence class 

separation. For example, non-normally distributed repeated measures may lead to the 

extraction of multiple classes when only a single class exists in the population (Bauer & 

Curran, 2003).  

Another approach to selecting the number of classes is to use a number of statistical 

tests and model fit measures. Some popular information-based fit indices are the 

Bayesian information criterion (BIC), the sample size adjusted BIC (SBIC; Sclove, 

1987), Akaike’s information criterion (AIC; Akaike, 1987), and the consistent AIC 

(CAIC; Bozdogan, 1987). In addition to the information-based indices, the mixture 

models can also be examined and compared using the nested model tests, such as the 

likelihood-ratio (LR) test and the Lo-Mendell-Rubin test (LMR; Lo, Mendell, & Rubin, 

2001), as well as some goodness of fit tests (e.g., the multivariate skewness test (MST) 

and the multivariate kurtosis test (MKT) proposed by Muthén, 2003).   

Simulation studies that examined some of these fit indices within the LGMM context 

arrived at conflicting conclusions. For example, Tofighi and Enders (2008) suggested that 

SBIC and LMR consistently performed well, whereas other tests and measures (e.g., BIC 

and CAIC) tended to provide inconsistent information on the number of extracted latent 

classes. Tofighi and Enders (2008) also examined the bootstrap likelihood ratio test 

(BLRT; McLachlan & Peel, 2000) and found that it outperformed the other indices in 

detecting the correct number of latent classes. Nylund et al. (2007) obtained some 

contrasting results regarding LGMM class enumeration. For instance, the BIC was found 

to be superior to all other information criteria for LGMMs for correctly identifying the 

true number of classes. They also found that the BLRT performed as well as BIC, and 

both of these indices performed better than the others in the mixture model context.  

Despite their popularity, the statistical tests and model fit measures also have several 

challenges when being used for class enumeration purposes. The major issue is the 

disagreement among the statistical tests and the fit measures, which can make the 

determination of the number of classes highly subjective and sometimes difficult (or even 

impossible). The simulation studies by Tofighi and Enders (2008) and Nylund et al. 

(2007) can be considered as the two primary investigations on model comparison 

measures. The model fit indices and statistical tests examined in these two studies are 

regularly used for deciding on the number of latent classes in the SEM literature. 

However, as detailed earlier, Tofighi and Enders (2008) and Nylund et al. (2007) 

concluded with contradicting findings on which comparison measure(s) performed the 

best for class enumeration for LGMMs. The contradictions in simulation findings may 

cause confusion and difficulties for substantive researchers trying to decide on the 

number of latent classes when implementing the LGMM.  

Another issue with the model comparison measures is that the result of the class 

solution can be sensitive to the model estimation method being implemented. For 

instance, the starting values for maximum likelihood estimation and the informativeness 

of the prior specification for Bayesian estimation can each impact the final model results 

and class structure obtained. Moreover, the performance of statistical tests and fit 

measures can depend on factors such as class separation, sample size, and class 
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proportions (Nylund, et al, 2007). This artifact makes the implementation of these 

measures highly dependent on the specific settings or features of a particular application. 

Thus, generalizability of the performance of these indices may not be appropriate.  

As I have discussed, the traditional clustering methods and the model selection 

approach, which are dependent on the statistical tests and fit measures, have their 

disadvantages and challenges. Therefore, in this study, I propose the alternative 

approaches to selecting the number of latent classes via Bayesian non/semi-parametric 

methods. RJMCMC and DP, as non/semi-parametric methods, are able to circumvent the 

issues rooted in the traditional clustering and model selection approaches when 

determining the number of classes. Most importantly, RJMCMC and DP do not require a 

presumption of the number of classes; instead, this is estimated. Therefore RJMCMC and 

DP may effectively avoid the potential contradicting conclusions that are derived from 

the comparisons of different models based on some statistical tests or fit measures. This 

feature of RJMCMC and DP can make them more efficient and straightforward compared 

with the traditional approaches. In the next section, I detail the simulation design used to 

examine these claims more thoroughly.  

3.2 Design of Study 1 

In Study 1, I evaluated the ability of RJMCMC and DP to accurately detect the 

number of latent classes for LGMM via a simulation study. I also compared these two 

Bayesian non-parametric methods with the traditional model estimation approach, which 

is the maximum-likelihood estimation through the expectation maximization algorithm 

(ML/EM) with regards to the accuracy of parameter recovery.  

3.2.1 Population Values  

In this simulation study, data were generated and analyzed using an LGMM with four 

time points, with one latent intercept and one latent linear slope. To minimize model 

complexity, the covariance structure was held equal across latent classes.3 The generative 

model was constructed based on Equations 6-8. In total, 2000 replications of datasets 

were generated based on this model; a small sensitivity analysis was conducted to ensure 

the Monte Carlo study converged with 2000 replications. 

I empirically derived the parameter population values for the data generation model 

from Kaplan (2002). Kaplan (2002) examined data from the Early Childhood 

Longitudinal Study-Kindergarten (ECLS-K) ([NCES], 2001) using a growth curve model 

with multiple time points. I used estimates for the latent factor means and covariance 

matrix from Kaplan (2002) as the population values for the intercept and the slope terms 

for the first latent class in this study. Population values for the remaining latent classes 

were determined statistically in order to create certain levels of class separation. 

Specifically, the multivariate Mahalanobis distance (MD) was used to measure the class 

separation between two adjacent latent classes.4  The MD value was set to MD =1.5 for 

                                                 
3
 Note that this structure can also be allowed to vary across classes if desired. 

4
 The multivariate MD is calculated by: MD = O(�� − ��)xâ¶�(�� − ��), where �� and �� are two vectors that represent the means of the latent growth factors (i.e., the intercept 
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all simulation conditions in Study 1 to mimic a situation with a moderate level of class 

separation. All of the population values that were used to generate the data are listed in 

Table 1, and data were generated using Mplus 8 (Muthén & Muthén, 1998-2017). 

 

Table 1. Population Values of Growth Parameters in Study 1 and Study 2. 

 

 
 

3.2.2 Simulation Conditions 

Factors that were varied in this simulation study included: the sample size (3 levels), 

the number of latent classes (3 levels), and the class proportions (2 levels for 2-class 

conditions and 3 levels for 3-class conditions).  

There were three levels of sample size included here as to mimic small, medium, and 

large data sets that are commonly found in the social and behavioral sciences literature, 

as well as the LGMM simulation literature (see e.g., Depaoli, Yang, & Felt, 2017; 

Depaoli & Boyajian, 2014). I selected the following sample size conditions to reflect the 

following levels: , = 200, , = 400, and , = 600. The three levels of the number of 

classes include: C = 1, C = 2, and C = 3. Condition C = 1 represents a latent growth 

curve model (i.e., without a mixture structure). Conditions C = 2 and C = 3 represent 

LGMMs with 2 latent classes and 3 latent classes, respectively. This factor allowed me to 

assess the performance of these estimation approaches with and without the presence of a 

mixture structure. 

For the conditions implementing C = 2, I specified two levels of class proportions. 

The first level held classes at equal sizes in the population (Proportions = 50%/50%), and the second assessed the impact of a minority class containing only 20% of the cases (Proportions = 80%/20%). For the conditions implementing C = 3, I specified 

three levels of class proportions: Proportions = 33%/33%/33%, Proportions = 

                                                                                                                                                 

and the slope) in two adjacent latent classes, and S represents the covariance matrix of the 

latent factors. 
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45%/45%/10% (testing the impact of a true minority class), and Proportions = 70%/20%/10% (testing the impact of a true majority class).  
3.2.3 Model Estimation Techniques 

3.2.3.1 RJMCMC  

Three different model estimation techniques were examined in Study 1, which were: 

RJMCMC, DP, and ML/EM. In the RJMCMC conditions, generated data were analyzed 

using the RJMCMC technique. The RJMCMC algorithm for analyzing the LGMM was 

developed based on the RJMCMC technique described in Ho and Hu (2008) that is 

detailed in the Introduction. This algorithm was created with R code and the functions for 

the analysis were modified based on the R package “miscF” (Feng, 2016).5 The 

maximum number of models in the analysis process was set to 30. The program 

performed 5000 iterations for each MCMC run, with the first 2500 iterations designated 

as the burn-in phase; issues related to convergence are discussed in the Results section.  

The RJMCMC analysis model can be written in the Bayesian hierarchical model format 

(i.e., Equations 36-38). The prior specifications of the model parameters represent weakly 

informed prior distributions, which indicate some degree of uncertainty or not having 

“sufficient” information in the nature of an exploratory study (Gelman, et al, 2008). The 

prior distributions can be specified as follows: 

- �& represents the vector of the means of the growth parameters (i.e., the latent 

intercept and slope terms). This vector follows a multivariate normal distribution, �&~234(£, Z), where £ represents the mean hyperparameter vector of the 234 

prior distribution and Z represents the covariance matrix hyperparameter of the 234 prior distribution.  

o For all the two-class model conditions, £ = (33,2). The first element of the 

vector £ represents the mean hyperparemeter of the intercept; it is calculated 

by averaging the population values of the growth parameters across two latent 

classes. For example, the population values for the means of the intercept in a 

two-class model were 31.75 and 35.73 for C1 and C2, respectively (all 

population values are listed in Table 1). The mean hyperparameter of the 

intercept was therefore calculated by 
( ë�.ìí�ëí.ìë)� = 33.74. Then the result, 

33.74, was truncated to an integer, 33, and used as the hyperparameter of the 

intercept in the £ vector. The second element of the  ξ vector represents the 

mean hyparameter of the slope; it is calculated in the similar way as for the 

mean hyparameter of the intercept. That is, averaging the population values of 

the latent classes. In two-class conditions, the mean hyperaparameter of the 

slope was 
( �.ïÉ��ë.ëí)� = 2.58, then truncated to 2 and used as the second 

element of the £ vector. In 3-class conditions, £ = (35,3), where 35 is the 

mean hyperparameter of the intercept and 3 is the mean hyperparameter of the 

slope. They were calculated in the similar way as in the two-class conditions, 

                                                 
5
 A proof of concept simulation was conducted to ensure that all code was working 

correctly. More information about this proof of concept can be found in the next section. 



 

 

 

22

Specifically, the mean hyperparameter of the intercept was ( ë�.ìí�ëí.ìë�ðÉ.Éñ)ë = 35.86, then was truncated to 35 as the mean 

hyperparameter of the intercept in the £ vector. The mean hyperparameter of 

the slope was 
( �.ïÉ��ë.ëí�ð.ïï)ë = 3.34, then was truncated to 3. These two 

mean hyperparameters formed the £ vector (35, 3) for the mean 

hyperparameters for the growth factors in the 3-class model conditions. The 

hyperparameters of the growth factors (i.e., intercept and slope) were created 

in this way because RJMCMC did not assume and specify the number of 

latent classes a priori. Therefore, the hyperparameters were not implemented 

on the specific growth parameters in each latent class. In other words, there 

was only one set of mean hyperparameters for the growth parameters 

specified in the prior implementation (i.e., one for the intercept and one for the 

slope), regardless of the number of latent classes. To average the population 

values across all latent classes was a simple and reasonable way to derive the 

hyperparameters.  

o Z = :10 00 10; were implemented on the covariance matrix, where the 

variances were fixed at 10 and the covariance at 0 as to provide some degrees 

of infomrativeness. 

- 5 is the covariance structure of the growth parameters and 5~�¤(L, ¥), where L = 2 , representing the number of parameters in the covariance matrix, and ¥ =:10 00 10;; this specification represents an �¤ prior distribution with little 

information.  

- N� is the residual variance on level-1 model and N�~�¦(Y�, Y�), where Y� = .01 

and Y� = .01, which represents an uninformative prior distribution. 

- �� is a fixed effect coefficient and ��~4(��, â�), where �� = 0, and â� = 10. 

This specification of hyperparameters provides a normal distribution with very 

little information.  

- The mixture class proportions π were drawn from a Dirichlet distribution where (%�…,%()~Z�W�-ℎ\T
(10, … 10), where the values of % represent the number of 

cases in each latent class, and this particular specification of the prior distribution 

can be considered uninformative since very few cases are assigned to a given 

class under this specification; note that % = 10 was the default Dirichlet prior 

implemented in Mplus as to avoid the situations (such as when %&~Z�W�-ℎ\T
(1,1)) in which the formation of small or inadmissible class 

solutions might occur. (Muthén & Muthén, 1998-2017). 

3.2.3.2 DP  

The second Bayesian non-parametric model estimation technique being examined is 

DP. In the DP conditions, I implemented the DP process mixture modeling technique for 

the LGMM, and I used the R package “DPpackage” (Jara, Hanson, Quintana, Mueller, & 

Rosner, 2017) for data analysis. In each MCMC run, I requested 5000 total iterations in 

the chain, with the first 2500 iterations discarded as the burn-in phase. In the DP 
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conditions, I also implemented the weakly informed prior distributions on the model 

parameters, which are described as follows: 

- � represents the vector of means for the latent growth parameters (i.e., the 

intercept and the slope). It follows a multivariate normal distribution �&~234(£, Z), where £ = (33,2) for 2-class conditions and £ = (35,3) for the 

3-class conditions, and Z = :10 00 10;. The hyperparameters in the DP conditions 

were specified and calculated in the same manner as in the RJMCMC conditions. 

Specifically, the mean hyperparameters of the intercept and the slope were 

calculated by averaging the population values of the means of the intercept and 

the slope across latent classes, respectively. The hyperparameter of the covariance 

matrix represents an informative prior specification.  

- 5 is the covariance structure of the growth parameters and 5~�¤(L, ¥), where L = 2 and ¥ = :10 00 10;. The degrees of freedom L and the ¥ parameter of the �¤ prior represent an uninformative prior specification.   

- N� is the residual variance on level-1 model and N�~�¦(Y�, Y�), where Y� = .01 

and Y� = .01, which represents an uninformative prior specification. 

- �� is a fixed effect coefficient and ��~4(��, â�), where �� = 0, and â� = 10, 

which represents an uninformative prior specification. 

- ��~¦ and ¦~ZÈ(U, ¦É). ¦ represents the linear normal mixture where the 

parameters were drawn from, and ¦É represents a base distribution of the DP 

mixture, which is a normal distribution in this study. ¦ therefore follows a DP 

distribution written as ¦~ZÈ�U, 4(�, 5)�, where a is the dispersion parameter of 

the DP mixture, which takes on a value of 1 in this study. In the probability 

density function of normal mixture models (i.e., Gaussian mixture models), after ¦ has been integrated out (with respect to �), the random effects coefficient �� 

then follows an integrated function such that ��~§ 4(�, 5Ý)(b�). In this 

distribution, 5Ý~�¤(pÝ , ßÝ), where pÝ = 2 and ßÝ = :10 00 10;. In this IW prior 

specification, pÝ represents the degrees of freedom, which is equal to the number 

of parameters, 2, and ßÝ represents an uninformative prior specification.      

3.2.3.3 ML/EM 

The third model estimation technique I evaluated in this study is the conventional 

frequentist approach, ML/EM, which was used to compare to the Bayesian non-

parametric methods. In the ML/EM conditions, data analysis was implemented using 

Mplus 8. The number of perturbations of user-specified starting values was set at 100, 

and the number of final stage optimizations was set at 25. This ratio was used in order to 

achieve proper convergence for LGMMs (see e.g, Hipp and Bauer, 2006). 

All of the manipulated factors in the simulation were fully crossed with these three 

model estimation techniques, which resulted in 18 cells for each estimation technique.  



 

 

 

24

3.3 Proof of Concept Simulation Study for RJMCMC and DP 

In order to illustrate the performance of the software programs that were used to 

conduct the analysis for RJMCMC and DP, I included a proof of concept simulation 

study in this section. The goal of this proof of concept study was to ensure that the two 

programs, including the R code that was adopted from the R package “miscF” (Feng, 

2016) for RJMCMC and the functions from R package “DPpackage” (Jara et al, 2017) 

for DP produce valid and reasonable results for the simulation studies in this dissertation. 

So far, there is no existing R packages or functions for applying RJMCMC on LGMMs 

so the code that was developed and used in this dissertation was a novel approach. The R 

script for conducting RJMCMC and DP for LGMM is available upon request from the 

author.   

The proof of concept study was conducted through a brief simulation, where the same 

models that were examined in the dissertation were used to generate and analyze the data. 

In this brief simulation study, I generated one data set of n = 10000 cases (i.e., mimicking 

a population study) using a two-class growth mixture model with 50/50% class 

proportion and MD = 1.5 class separation. Data were generated using Mplus version 8. 

The population values of the generative model were specified as follows. The means of 

the intercept and the slope were 31.37 and 1.802 in Class 1 and 35.73 and 3.35 for Class 

2. The variances for the growth parameters were 16 and 2 and the covariance between the 

intercept and the slope was 0.3. The residual variance was 0.5. All the population values 

are listed in Table 1.  

Then I tested the programs for RJMCMC and DP on the generated data using the 

two-class growth mixture model. For the RJMCMC condition, the analytic model is 

specified in Equations 36-38. The prior specifications are as follows. £ = (33,2) and Z =ó10 00 10ô; 5~�¤(2, ¥) and ¥ = :10 00 10;; N�~�¦(0.01,0.01); ��~4(0,10); and (%�…,%()~Z�W�-ℎ\T
(10, … 10). A detailed description and explanation of the prior 

specifications are included in the Methods section in Study 1 (Section 3.2.3). In the 

RJMCMC model, one Markov chain with 5000 iterations was requested, of which the 

first 2500 iterations were discarded as burn-in. In the DP condition, the generated data 

were analyzed on the model specified in Equations 58-65. The priors of the DP model are 

specified as follows. £ = (33,2) and Z = ó10 00 10ô; 5~�¤(2, ¥) and ¥ = :10 00 10;; N�~IG(0.01,0.01); ��~4(0,10); ��~¦ and ¦~ZÈ�U, 4(�, Σ)� where U = 1, ��~§ 4(�, ΣÞ)(b�), and ΣÞ~�¤(2, ßÝ) where ßÝ = :10 00 10;. Please see Section 3.2.3 

for the detailed description and explanation of the prior specifications of the DP condition.  

The results with respect to the parameter estimate and the percent bias of the 

parameter estimate for each model parameter are listed and compared with the population 

values in Table. In the DP conditions, the estimate of the parameter of the number of the 

latent classes is 1.84, which can be rounded to the integer 2. The class proportions are 51% 

in Class 1 and 49% in Class 2. Simply looking at the parameter estimates for the number 

of latent classes and the class proportions, we can see that the DP technique produced an 

estimate of the number of the classes that was approximately accurate. Although the 
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parameter estimate was a decimal number, it was very close to the population value after 

being rounded to an integer. The class proportions (prop = 51%/49% for a 50%/50% 

condition) were also estimated accurately by DP. Based on the percent bias levels of the 

estimates, the means of the growth parameters in the DP condition were recovered well. 

Only the bias level of the mean in Class 2 exceeded 10%, which can be considered as 

“relatively high.” However, the percent bias levels of the covariance matrix indicated that 

the variances and the covariance of the growth parameters were recovered poorly; they 

were all greater than 20%. The residual variance was recovered well.  

 

Table 2. Parameter Estimates and Percent Bias for Proof of Concept Study

 
 

 

 In the RJMCMC condition, the number of latent classes and the class proportions 

were estimated very accurately. The percent bias levels of the parameter estimates 

indicated that all the parameters were recovered well, except the covariance with a bias 

level of 10%.  

The results of the proof of concept simulation study suggested that the programs used 

to conduct the analysis for the DP and RJMCMC performed in an approximately accurate 

way. Although the covariance matrix was recovered poorly in the DP condition, this 

technique was still able to accurately estimate the number of latent classes, class 

proportions, mean parameters of the growth factors and the residual variance. The 

estimation issues for the covariance matrix did not only occur in the DP condition, they 

also appeared in other model estimation conditions. I will elaborate on these issues in the 

Results sections presented below.  

When the DP and RJMCMC techniques were implemented in the main simulation 

studies via the R code, one issue needs to be noted. This proof of concept simulation 

study was conducted on a data set that contains a sample size of n = 10000, which is far 

greater than the actual sample size in each condition. Therefore, the accuracy of 

estimation might decrease to some extent as the sample size decreases. But the goal of 

this brief simulation study was to prove that these two techniques were feasible to 

implement with the currently developed programs using a large sample size; the results 

showed that the goal was achieved. 
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3.4 Results of Study 1  

In Study 1, I examined the performance of ML, RJMCMC, and DP on recovering the 

number of latent classes, class proportions, and the means and covariance structure of the 

growth parameters. The final estimate of each parameter was calculated by averaging the 

estimates across all iterations. Specifically, the estimate for the number of classes was the 

average of all estimates from total number of post burn-in iterations; the estimates for the 

growth parameter means and variances were averaged across all iterations where the 

certain class solution was extracted. For example, the intercept means of a 2-class model 

were calculated by averaging the estimates of the intercept means in iterations that 

extracted 2 classes. The estimate of the number of classes was an integer within each 

iteration.  

 

I evaluated the accuracy of the recovery of the parameter estimates by computing the 

relative percentage bias, where values greater than 10% were deemed problematic and 

are represented with bold values in the tables.6 In addition to the parameter estimates and 

the percent bias levels, I also present the mean square error (MSE) for the means and 

covariance structure of the growth parameters as a composite measure of accuracy and 

efficiency. All of the simulation results in Study 1 are listed in Tables 3-8. Tables for 

MSE values (Tables A1 and A2) are presented in Appendix A.  

3.4.1 Convergence 

In Study 1, I used the Geweke (1992) statistic to assess whether the sampling 

procedure had converged to the target distribution within a Markov chain for the 

RJMCMC and DP conditions. The Geweke diagnostic evaluates the convergence for the 

Markov chains based on a test for equality of the means of the first 10% and the last 50% 

of a Markov chain (as to ensure that the two sections of the chain being compared are 

well separated, and presumably independent from one another). The test statistic of a 

Geweke diagnostic is a standard z-score, which is calculated by taking the difference 

between the two sample means and then dividing by its estimated standard error. If the 

samples are drawn from the stationary distribution of the chain, then the two means are 

equal and Geweke’s statistic (i.e., the z-score) is asymptotically normally distributed. If 

the chain reaches convergence, then the z-score should have a relatively small value, for 

instance less than 2. The Geweke statistic for the means and covariance structure of the 

growth parameters was calculated using the “coda” package in R (Plummer, Best, Cowles, 

& Vines, 2006). The z-scores were all less 2.000 for all parameters in the RJMCMC and 

DP conditions in Study 1. I also included the trace plots for the estimates of the intercept 

and the slope parameter in the 2-class 80/20 condition as a proof of Markov chain 

convergence. Trace plots are presented in Figures 2 and 3.  

                                                 
6
 Relative percentage bias is computed using the following equation: 

ö÷ø8ùúøû¶üýþ��úø8ý� �ú��ûüýþ��úø8ý� �ú��û × 100% 



 

 

 

27

             

 

              

 

Figure 2. Trace Plots for the Growth Parameters in 2-Class 80/20 Condition for 

RJMCMC in Study 1. Top row: intercepts of Class 1 and Class 2 under RJMCMC; 

bottom row: slopes of Class 1 and Class 2 under RJMCMC. 
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Figure 3. Trace Plots for the Growth Parameters in 2-Class 80/20 Condition for DP in 

Study 1. Top row: intercepts of Class 1 and Class 2 under DP; bottom row: slopes of 

Class 1 and Class 2 under DP. 
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In addition to the chain convergence for all of the parameters in RJMCMC and DP, 

model convergence was also obtained for 2000 out of 2000 replications being requested 

in each simulation cell. All conditions for the three model estimation techniques had a 

100% model convergence rate. All results that are presented here were calculated using 

the parameter estimates from the 2000 converged replications.  

3.4.2 Class Enumeration and Parameter Estimate 

3.4.2.1 GCM 

Results of the parameter estimates and the percent bias values for the GCM with ML, 

RJMCMC, and DP in Study 1 are presented in Tables 3 and the top section of Table A1. 

Since the number of latent classes was predetermined by the ML estimation method, the 

latent class parameter was only estimated by RJMCMC and DP. In the DP conditions, the 

number of latent classes was estimated accurately with decimal numbers that are very 

close to 1 (i.e., indicating only one class emerged). DP yielded quit low bias levels for 

this parameter. In addition to the number of classes, RJMCMC also provided the 

percentage of the number of iterations that picked this specific number of class in each 

replication,7 presented in the parentheses in Tables 3-38 of the parameter estimates. This 

feature of RJMCMC can be greatly useful as it provides us with the certainty of the final 

class solution, as well as the number of classes extracted. For instance, in the RJMCMC n 

= 200 condition, the estimate for the number of classes was 1.002, indicating that the 

percentage of iterations within the RJMCMC algorithm selecting a 1-class solution was 

99.8%. The high percent of picking a specific number of class solutions could represent a 

high confidence of our determination of the final class enumeration. Another way of 

phrasing this could be that if this percentage of selecting a particular class solution was 

markedly lower, then our confidence in the final class solution would also be diminished. 

The growth parameter means were well recovered by ML, RJMCMC, and DP. The 

percent bias levels were all below 10% for all three sample sizes. The covariance 

structure was recovered very well in the ML conditions with low bias levels. However, 

both RJMCMC and DP produced moderate-to-high bias levels for the covariance 

structure. The MSE values are quite small, some close to 0, for the means and the 

covariance structure parameters in GCM with ML, RJMCMC, and DP. 

 

 

 

 

 

 

 

 

 

                                                 
7 This percentage is calculated in 3 steps: 1) counting the number of iterations that selected a certain of 

number of class, 2) dividing the number by the total number of iterations in each replicate, and 3) averaging 

the percentages across all 2000 replications.  
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Table 3. Parameter Estimates and Percent Bias for GCM 
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3.4.2.2 2-Class Prop=50/50 Conditions 

Results for the parameter estimates and percent bias levels in the 2-class prop = 50/50 

conditions are presented in Table 4 and the middle section of Table A1. RJMCMC and 

DP yielded accurate estimates of the number of classes. In the RJMCMC conditions, the 

percent of picking a 2-class solution out of all 2000 iterations improved as the sample 

size increased (e.g., from 65.1% for n = 200 to 94.2% for n = 600). This trend indicates 

that we can be more certain that the final class solution estimated by RJMCMC is 2 when 

the sample size is larger compared to when it is relatively smaller. In other words, we 

would expect proper class enumeration to be more difficult under smaller sample sizes, 

and the RJMCMC algorithm provides an indication that this is indeed true. The class 

proportions parameter was recovered well for all three estimation methods across 

different sample sizes. Only the RJMCMC n = 200 condition produced bias levels that 

were slightly higher than 10% for the 2-class proportion parameters.  

The means of the intercept parameters were estimated with low bias levels for ML, 

RJMCMC, and DP, while the means of the slopes had relatively high bias levels for ML 

and DP in some conditions. All three estimation methods yielded moderate-to-high bias 

levels for the covariance structure. The MSE values for all the parameters were relatively 

low (below 2) across estimation methods and sample sizes. The few exceptions were the 

variance of the intercept parameter for DP, which had relatively larger MSE values (i.e., 

above 5).  
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Table 4. Parameter Estimates and Percent Bias for 2-Class 50/50 
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3.4.2.3 2-Class Prop=80/20 Conditions 

Results for the parameter estimates and percent bias levels in the 2-class prop = 80/20 

conditions are presented in Table 5 and the bottom section of Table A1. The estimate of 

the number of classes in the RJMCMC and DP conditions was 2, which was accurately 

recovered. In the RJMCMC conditions, the percentage of a 2-class solution was higher 

when the sample size was 600 compared to n = 200 or 400. ML, RJMCMC, and DP 

recovered the class proportions poorly when n = 200, especially for the minority class 

(i.e., prop = 20%). While ML and DP tended to overestimate the minority class, 

RJMCMC tended to underestimate it. The recovery of the class proportions improved as 

the sample increased; overall, RJMCMC and DP were slightly better than ML. 

The means of the intercepts were recovered well for all three estimation methods. ML 

yielded slightly higher bias (higher than 10%) for the slope parameter means when n = 

200 and n = 400. RJMCMC and DP yielded lower bias levels (lower than 10%), except 

for RJMCMC when n = 600, where the bias level was around 35%. The covariance 

structure parameters were estimated poorly, with high bias levels (all above 90%) for all 

three estimation methods across all simple sizes. Only ML yielded lower bias levels for 

the covariance structure as the sample size became larger. All three estimation methods 

produced low MSE values (below 2) for all parameters, while DP still had higher MSE 

values for the variance of the intercept parameter (around 5-23).  
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Table 5. Parameter Estimates and Percent Bias for 2-Class 80/20 
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3.4.2.4 3-Class Prop=33/33/33 Conditions 

Results for the parameter estimates and percent bias levels in the 3-class prop = 

33/33/33 conditions are presented in Table 6 and the top section of Table A2. RJMCMC 

and DP estimated the number of classes accurately. RJMCMC yielded a higher 

percentage (above 16%) of a 3-class solution as the sample size increased from n = 200 to 

n = 400. ML poorly recovered the class proportions across sample sizes, bias levels all 

above 17%. The class proportion estimates improved for RJMCMC as sample sizes 

increased from n = 400 to n = 600. DP performed comparatively better, with lower bias 

levels than ML and RJMCMC, in recovering the class proportions; this was especially the 

case when sample sizes were larger.  

The estimates for the growth parameter means had low bias levels in all three 

estimation methods. The growth parameter variances were recovered well by ML but had 

relatively higher bias levels (about 43%) for RJMCMC and DP when the sample sizes 

were n = 200 and n = 400. The covariance structure was estimated poorly in all 

estimation methods (i.e., bias levels were extremely high, all were above -34%). The 

MSE values for all parameters were relatively low (all below 3) except for the variance of 

the intercept in the DP conditions (which were around 7 to 67).  
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Table 6. Parameter Estimates and Percent Bias for 3-Class 33/33/33 
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3.4.2.5 3-Class Prop=45/45/10 Conditions 

Results for the parameter estimates and percent bias levels in the 3-class prop = 

45/45/10 conditions are presented in Table 7 and the middle section of Table A2. The 

number of classes was estimated accurately in RJMCMC and DP. ML consistently 

overestimated the minority class for the class proportion parameters with moderate-to-

high bias levels (around 16%-80%) across sample sizes. While RJMCMC also slightly 

overestimated the minority class for n = 200 and n = 400 conditions (e.g., bias levels 

were around 11% to 17%), it estimated the class proportions accurately when the sample 

size was 600 (bias levels decreased to below 10%). DP consistently performed the best 

among all three estimation methods, with low bias levels (all levels were under 10% bias) 

for the class proportions.  

The intercept growth parameter means were estimated well in all three estimation 

methods across sample sizes (bias levels all under 10%). The slopes growth parameter 

means had slightly higher bias levels (e.g., slightly higher than 10%) when n = 200, but 

parameter recovery was improved as the sample size increased. The growth parameter 

variances was estimated with relatively high bias levels for all estimation methods when 

n = 200 (e.g., bias levels were slightly higher than 10% under ML and RJMCMC and 

were over 66% under DP); the bias of the variances decreased under ML and RJMCMC 

but maintained relatively high levels under DP (e.g., above 20%), even as the sample size 

increased to n = 200. The covariance parameter bias levels were consistently high (all 

levels were above -72%) for all estimation methods across sample sizes. The MSE values 

were relatively smaller for most parameters (e.g., MSE < 3.2) except for the intercept 

variance, which had relatively high MSE values (higher than 10) in the DP condition. 
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Table 7. Parameter Estimates and Percent Bias for 3-Class 45/45/10 
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3.4.2.6 3-Class Prop=70/20/10 Conditions 

Results for the parameter estimates and percent bias levels in the 3-class prop = 

70/20/10 conditions are presented in Table 8 and the bottom section of Table A2. The 

number of classes was estimated accurately by RJMCMC and DP. The percentage of 

selecting a 3-class solution yielded by RJMCMC was relatively low in the n = 200 

condition (i.e., 55.4%) and the n = 400 condition (i.e., 58%), compared to the percentage 

in the n = 600 condition (i.e., 84.4%). This pattern suggests that we have greater certainty 

in the number of classes as sample sizes are increased. The class proportions were 

recovered with relatively high bias levels by ML and RJMCMC when n = 200 (bias 

levels were around 15% to 103% under ML and around 11% to -32% under RJMCMC). 

Class proportion recovery under ML and RJMCMC was improved slightly as the sample 

size increased to n = 200 (e.g., bias levels decreased to as low as -23% under ML and to 

slightly higher than 10% under RJMCMC). DP performed well across sample sizes in 

estimating the class proportions with relatively low bias levels (bias levels never 

exceeded 19%). The class size in the majority class was consistently underestimated by 

ML (e.g., it was -31.763% for the n = 200 condition) and was slightly over estimated by 

RJMCMC (e.g., it was 11.143% for the n = 200 condition). 

The growth parameter means were estimated with relatively low bias levels (most did 

not exceed 13.5% bias) except for a few slope mean parameters in ML and RJMCMC 

under n = 200 (these bias levels were all over -16%). ML recovered the covariance 

structure poorly, but bias levels decreased as the sample size increased. The performance 

of RJMCMC and DP was inconsistent across sample sizes in estimating the covariance 

structure. The MSE values are small (e.g., below 2) for most parameters in all three 

estimation methods conditions, but they were relatively high (e.g., some of the MSE 

values were higher than 64) for the intercept variance under RJMCMC and DP. 
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Table 8. Parameter Estimates and Percent Bias for 3-Class70/20/10 
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3.5 An Empirical Example 

This section provides a simple example as a tutorial to illustrate the application of the 

Bayesian non/semi-parametric methods in a substantive research area. I applied 

RJMCMC and DP on an LGMM using a dataset from the Early Childhood Longitudinal 

Study, Kindergarten Class program (ECLS-K; [NCES], 2001). This dataset includes a 

sample from the ECLS-K program that focuses on children’s early school experiences 

beginning with kindergarten and following children through middle school. It consisted 

of approximately 1000 schools in the U.S., with a series of longitudinal measurements of 

students, teachers, and schools.  

The subset of the ECLS-K data I used in this example included n = 400 cases that 

were randomly drawn from the original dataset. This subset consisted of four waves (i.e., 

time points) of measures: fall-kindergarten, spring-kindergarten, fall-first grade, and 

spring-third grade. The base year was Fall, 1998 and the spacing of the four waves was 

handled in the code to represent the unequal time spacing when data were collected (see 

for more details on time spacing: Kaplan, 2002). The outcome measure of this study was 

reading assessment (i.e., children’s item response theory (IRT) scores on reading). The 

reading IRT scores in the ECLS-K data set were assumed normally distributed with 

means (and standard deviations in the parentheses) for the four waves: 22.67 (8.58), 

32.47 (10.85), 37.97 (12.67), and 54.77 (14.17) (ECLS-K; [NCES], 2001). 

The model used to analyze the data was an LGMM of 4 time points with an unknown 

number of latent classes to be tested. The estimation methods for data analysis were 

RJMCMC and DP. In the RJMCMC condition, the analytic model is specified in 

Equations 36-38. The priors in the RJMCMC condition were specified in a way such that 

very little information was incorporated so as to reflect a scenario where the researcher 

knows very little about the population. The prior specifications are as follows: £ = (0,0) 

and Z = ó10 00 10ô; 5~�¤(2, ¥) and ¥ = :10 00 10;; N�~�¦(0.01,0.01); ��~4(0,10); 

and (%�…,%()~Z�W�-ℎ\T
(10, … ,10). A detailed description and explanation of the prior 

specification of RJMCMC are included in the Methods section in Study 1 (Section 3.2.3). 

One Markov chain with 5000 iterations was requested, of which the first 2500 iterations 

were discarded as burn-in. In the DP condition, the data were analyzed with the model 

specified in Equations 59-65. Akin to the RJMCMC condition, the non-informative priors 

were also implemented in the DP condition: £ = (0,0) and Z = ó10 00 10ô; 5~�¤(2, ¥) 

and ¥ = :10 00 10;; N�~�¦(0.01,0.01); ��~4(0,10); ��~¦ and ¦~ZÈ�U, 4(�, Σ)� 

where U = 1, ��~§ 4(�, ΣÞ)(b�), and 5Ý~�¤(2, ßÝ) where ßÝ = :10 00 10;. A detailed 

description and explanation of the prior specifications of DP can be found in the Methods 

section in Study 1 (Section 3.2.3).  

Results of the parameters estimates (mean and standard deviation) of the LGMM for 

RJMCMC and DP are presented in Table 9. RJMCMC and DP yielded conflicting 

outcomes. In the RJMCMC condition, the estimate of the number of latent classes was 

1.991 according to the algorithm and around 89.1% out of all the iterations selected the 2 

class solution. This indicates that there was strong support, according to RJMCMC, that 
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the number of classes was 2. The class proportions estimated by RJMCMC were 13.7% 

in Class 1 and 86.3% in Class2. This suggests that majority of the children fell within one 

group in terms of the growth of the reading ability, while a few children were in another 

group. The intercept mean was 23.750 for Class 1 and 37.199 for Class 2, indicating the 

reading ability started at different points for the two latent classes. The slope mean for 

Class 1 was 4.308 and the slope for Class 2 was 4.753, which suggests that the growth 

rates of the reading ability for the two latent classes were close. The covariance structure 

was constrained equal across the two classes for ease of estimation for this example. The 

intercept parameter variance was 18.289, indicating a relatively large variation around the 

starting point. The slope parameter variance was 0.612 which suggests a relatively small 

variation of the growth rate. Overall, the separation between the classes appeared to be 

mostly at the fall-kindergarten reading level (i.e., through the intercept).  

In the DP condition, the estimate of the number of classes was 1.443, which can be 

rounded to an integer of 1. This indicates that only 1 class was selected by DP estimation 

algorithm. Within this one class, the mean of the intercept was 29.961 and the mean of 

the slope was 3.940. The intercept parameter variance was close to the estimate in the 

RJMCMC condition, suggesting a large variation around the starting point. The estimate 

of the slope parameter variance, 13.832, indicates a relatively large variation in the 

growth rate among the individuals. 

Overall, this example highlights how the results from RJMCMC and DP can be 

interpreted. It may be, as was the case here, that results do not align across estimation 

methods. This finding is perfectly fine, and the researcher would need to use substantive 

context to aid in selecting the final model solution to interpret. The element that 

RJMCMC and DP have that is lacking in the traditional approach to model testing (i.e., 

comparing competing class solutions via information criteria and other fit measures) is 

that these approaches actually estimate the number of latent classes. Then the approaches 

provide an index that allows the research to establish a level of (un)certainty in the final 

model. This level of (un)certainty can be defined through the raw estimate of the number 

of classes (i.e., RJMCMC = 1.991, DP = 1.443), as well as the number of iterations that 

favored a particular class solution. These features are potentially more informative and 

interpretable compared to the traditional approach to model selection.  

 

Table 9. Parameter Estimates of the LGMM on the Reading IRT Scores 
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3.6 Study 1 Discussion 

In Study 1, the performance of ML, RJMCMC, and DP was examined in terms of the 

recovery of number of latent classes, class proportions, and the growth parameter means 

and the covariance structure. Then an empirical example was presented to illustrate the 

application of RJMCMC and DP using a substantive dataset. The findings of Study 1 are 

discussed as follows. 

3.6.1 Estimation Methods 

Overall, RJMCMC and DP performed as well as, or better than, compared to ML for 

the recovery of some model parameters. First, RJMCMC and DP were able to provide the 

correct estimates of the number of latent classes. RJMCMC and DP extracted the number 

of classes through their internal algorithm instead of comparing multiple models based on 

statistical and fit measures that are usually employed by ML. Therefore, RJMCMC and 

DP are more efficient than ML.  

Second, the useful feature that is specifically linked to RJMCMC is able to provide 

the percentage of selecting a particular class solution through the algorithm. This 

percentage may be used as the likelihood or degree of (un)certainty about this particular 

class solution. It can provide the researcher with some form of guideline when making 

the decision of the number of classes. For instance, the researcher would be more certain 

or confident about her decision for a 2-class solution if 95% of the RJMCMC iterations 

selected the 2-class solution compared to if only 75% selected the 2-class solution.  

Third, when estimating the class proportions, RJMCMC and DP outperformed ML, 

which tended to underestimate the class size of the minority class. DP performed 

particularly better than ML and RJMCMC on recovering class proportions, regardless of 

whether a majority or a minority class existed.  

Fourth, RJMCMC and DP outperformed ML in recovering the growth parameter 

means, especially for the 2-class models. However, RJMCMC and DP performed worse 

than ML in recovering the covariance structure of the growth parameters in most 

conditions.  
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3.6.2 Model Parameter Recovery 

Model parameters were recovered with varied degrees of accuracy under different 

conditions. RJMCMC and DP correctly detected the number of classes under all 

conditions. The percentage of selecting a certain class solution by RJMCMC was higher 

in GCMs than in the 2-class and 3-class LGMMs. Within the LGMMs, the percentage 

tended to increase as the sample size increased under the same conditions. The split of the 

class proportions did not affect the percentage of selecting a class solution. 

The class proportions were recovered better under RJMCMC and DP than under ML, 

as I discussed earlier. While ML tended to underestimate the minority class size, 

RJMCMC tended to overestimate the minority class size and underestimate the majority 

class size under some conditions (e.g., in the 33%/33%/33% condition when n = 200). 

DP performed well in recovering the class proportions under almost all conditions. The 

recovery of the class proportions usually improved as the sample size increased. The 

class proportions were recovered better under the evenly split class proportions (i.e., 

50%/50%) than under the unevenly split class proportions (i.e., 80%/20%) in 2-class 

models. In 3-class models, the split of the class proportions was not a factor that clearly 

affected the recovery of class proportions.  

Among all of the model parameters, the intercept means were recovered the best 

under all estimation methods across all sample sizes. DP outperformed ML and 

RJMCMC in recovering the growth parameter means under almost all conditions. The 

slope means were recovered best in the GCMs and better in the 3-class models compared 

to the 2-class models. Within the 2-class models, the unevenly split class proportions (i.e., 

80%/20%) had better recovered slope means compared to the evenly split class 

proportions (i.e., 50%/50%). Within the 3-class models, the recovery of the slope means 

under the 70%/20%/10% conditions were slightly worse than the other two class 

proportion conditions. The estimation of the slope means usually improved as the sample 

size increased.  

The growth parameter covariance structure was recovered worse than other 

parameters. In general, ML performed better than RJMCMC and DP, while DP 

performed the worst out of the three estimation methods in recovering the covariance 

structure and the residual variances. The growth parameter variances were recovered 

better under ML and RJMCMC compared to DP in most conditions. The recovery of the 

growth parameter variances tended to slightly improve as the sample size increased in the 

3-class models, while they were not affected by the sample size in the 2-class models. 

The covariance was recovered poorly under all three estimation methods in almost all 

conditions; it was recovered well only under ML in the GCMs. The residual variances 

were recovered well under ML and DP and poorly recovered under RJMCMC in most 

conditions. The exception was in the GCMs, where the residual variances were recovered 

better under RJMCMC than under DP. The sample size did not affect the recovery of the 

covariance structure or the residual variances. The split of the class proportions did not 

seem to be a factor affecting the recovery of covariance structure or the residual variances. 

3.6.3 Empirical Example 

In the example, DP and RJMCMC were implemented through an LGMM on the 4-

wave reading IRT scores from the ECLS-K dataset. The results of the data analysis 
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showed contradicting findings. Specifically, RJMCMC extracted 2 latent classes, while 

DP extracted only 1 class.  

When the estimates of RJMCMC are different from those of DP in terms of the 

number of latent classes, the percentage of selecting a certain class solution can be quite 

informative and useful. In this case, 89.1% of the iterations selected the 2-class solution, 

which suggests a relatively high proportion of a 2-class model versus other class 

solutions. This information provides us not only the possible number of classes being 

extracted but also the likelihood of this class solution appearing in all of the iterations. 

Therefore, the researcher can conclude that, since a relatively high majority (i.e., 89.1%) 

of the RJMCMC iterations selected the 2-class solution, she can be quite certain to make 

a decision on the 2-class solution as opposed to other numbers of classes.  

The number of latent classes extracted by DP in this example can be tricky to 

interpret. The estimate for the class solution parameter is 1.443, which can 

conventionally be rounded to an integer 1. However, this value (1.443) is also very close 

to 1.5 and is therefore close to being rounded to 2, which will result in a completely 

different model and parameter estimates (not to mention a different substantive 

interpretation of the findings). It is common for non-parametric methods, such as DP and 

RJMCMC, to provide the estimate for the number of classes as a decimal value. This fact 

can make the decision making on the class solution quite arbitrary. An estimate such as 

1.443 is normally decided as a 1-class solution and meanwhile it can also be considered 

as (or at least very close to) a 2-class solution considering some rounding errors during 

the data analysis process. These two different decisions will result in two different 

models, and the interpretations and substantive implications derived from the two models 

can be quite different and even contradictory. Therefore, applied researchers need to be 

very careful when making the decision on the final number of classes when they 

implement DP and get a more ambiguous estimate. In any case, substantive knowledge 

about the dataset should always be taken into account, along with the statistical outcomes.  

3.6.4 Implications 

There are a few implications of the findings of Study 1. First, the performance of 

RJMCMC and DP indicated they are reliable and efficient alternatives for the traditional 

ML estimation method that relies on model selection approaches. In the simulation study, 

I did not test multiple class solutions for ML. Instead I used ML with true models (i.e., 

models with the true number of classes as in the population) and compared them with 

RJMCMC and DP. The simulation study suggested that RJMCMC and DP yielded results 

that were comparably valid as the model selection approach could have done. Yet, 

RJMCMC and DP did not require running extra models with more competing class 

solutions.  

Second, RJMCMC provided information about the number of classes that is not 

available from ML. Specifically, the percentage of selecting a certain number of classes 

quantifies the degree of certainty in a class solution. This information can provide us with 

some form of “guideline” in class enumeration for LGMMs.   

Third, RJMCMC and DP provided an estimate for the class solution parameter as a 

decimal value, which should be interpreted with caution. As I previously discussed, 

decimal values can be interpreted arbitrarily. Applied researchers should always base 
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their decision of the final class solution in part on the substantive information of their 

study, instead of being dictated solely by the statistical models.  

Fourth, simulation results suggested that the covariance structure, especially the 

covariance parameter linked to the growth parameter means, was not recovered very well 

by RJMCMC and DP. One of the reasons that the covariance parameter had relatively 

high bias levels (i.e., almost always greater than 10%) could be that the bias was inflated 

by the population value of the covariance, which is relatively small (i.e., 0.3). In addition, 

the difficulties in estimating the covariance structure have been an issue in the mixture 

modeling context (see e.g., Depaoli, 2013). Unfortunately, RJMCMC and DP, with the 

current model and prior specifications in Study 1, are not likely to be a solution to this 

problem. 
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Chapter 4                   

Class Enumeration under Various Levels 

of Class Separation: Bayesian Non/Semi-

Parametric Methods versus a Traditional 

Bayesian Approach  

4.1 Introduction 

In Study 2, I will focus on one of the most important issues that is linked to mixture 

modeling: namely, the influence of class separation. I am specifically interested in how 

class separation impacts the proper recovery of the mixture component parameter and the 

class-specific model parameters.  

Class separation is usually characterized as degree of similarity (or difference) in the 

growth trajectories for multiple latent classes. Poor class separation may cause estimation 

issues in mixture modeling. For example, cases (or people) may be inaccurately assigned 

to the latent classes, causing the class size and growth parameters to be inaccurately 

estimated (see e.g., Tofighi & Enders, 2008; Nylund et al, 2007; Depaoli, 2013). In this 

dissertation, I will detail how class separation is an issue that is tied directly to class 

enumeration. Previous work has indicated that poor separation may produce a collapsed 

class structure (i.e., improper class enumeration) that may be substantively problematic 

(see e.g., van de Schoot et al, 2018). 

Class separation has been studied via frequentist methods, as well as the Bayesian 

framework for various types of mixture models (e.g., Depaoli, 2013; Nylund et al, 2007; 

Tofighi & Enders, 2008; Tueller & Lubke, 2010, etc). In this study, I would like to 

extend the examination to the Bayesian non/semi-parametric methods (i.e., RJ MCMC 

and DP) and to compare their performance with the traditional Bayesian estimation 

methods.  

The purpose of this study is to investigate the performance of the Bayesian non/semi-

parametric methods under various degrees of class separation conditions. Specifically, I 

will examine how RJ MCMC and DP recover the number of latent classes and 

corresponding growth parameters under different levels of class separation and sample 

sizes. In addition, I will also include several Bayesian estimation methods as a 

comparison.  

Study 2 is structured as follows. First, I will discuss the issues of class separation and 

its connection with class enumeration in mixture models. Second, I will conduct a 
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simulation study on the performance of the Bayesian non/semi-parametric and the 

traditional Bayesian estimation methods for LGMMs. Third, I will present the results of 

the simulation in terms of the recovery of the number of latent classes and parameter 

estimates, percentage bias, and MSE of the model parameters.  

4.1.1 Class Separation for Mixture Models 

In LGMM, class separation may refer to the amount of overlap of the growth 

trajectories in each of the latent classes. Depending on the degree of overlap in the 

trajectories, the class separation can vary from poor to high. For example, when the 

classes are separated well in an LGMM, the growth trajectories between two classes will 

be clearly apart from each other in the intercept, growth trend, or both of these factors. In 

contrast, when class separation is poor, the trajectories from different latent classes may 

largely overlap, making them harder to distinguish statistically and substantively from 

one another. There are often other scenarios in between these two extreme conditions, 

where the growth trajectories do not have clear boundaries nor do they completely 

overlap; these middle-ground situations are likely more representative of the applied 

literature.  

One of the measures that can be used to capture class separation is the (multivariate) 

Mahalanobis distance (MD). We can assume a two-component latent growth model with 

univariate normal mixtures. The MD value for the latent classes can be calculated with 

the following formula:  

 

 MD = O(�� − ��)xâ¶�(�� − ��), (73) 

 

where �� and �� are two vectors that represent the means of the latent growth factors (i.e., 

the intercept and the slope) in two adjacent latent classes, and S represents the covariance 

matrix of the latent factors. 

Previous studies have investigated the influence of different MD levels on the model 

parameter recovery for several types of mixture models. For example, findings for 

structural equation mixture models suggested that a smaller MD (i.e., poorer class 

separation) could produce a larger estimate bias when the sample size was also small 

(Tueller & Lubke, 2010). Depaoli (2013) assessed the recovery of the mixture 

components and other parameters using frequentist and Bayesian estimation methods. 

Her findings suggested that, although separation was important, class separation did not 

affect the parameter estimates as much as the estimation methods (e.g., ML or Bayes) or 

other factors (e.g., sample size and class proportions) did.  

Class separation is an important issue that is tied to the enumeration of latent classes 

in mixture models. For example, a simulation study by Tofighi and Enders (2008) 

indicated that class separation had a dramatic impact on the enumeration of growth 

mixture models. Specifically, well-separated trajectories of latent classes made it easier to 

correctly identify the number of classes.  

Previous studies, whether employing frequentist estimation methods or the Bayesian 

framework, presume the number of latent classes before the analysis. Thus, the 

determination of the number of classes can be crucial. In substantive areas, the 



 

 56

enumeration of classes can be accomplished by taking into account the substantive 

theories or findings from previous studies. In Study 1, I have introduced the Bayesian 

non/semi-parametric methods, which do not require knowledge of the number of classes 

a priori. I therefore would like to examine how class separation may affect these 

Bayesian non-parametric methods. Within this investigation, I will compare these 

methods to the traditional Bayesian approach under different prior settings representing 

different levels of (un)certainty about the class structure.  

4.2 Design of Study 2 

In Study 2, I investigated how class separation might affect the accuracy of class 

enumeration when implementing the RJMCMC and DP estimation methods. I also 

compared these Bayesian non-parametric methods to a traditional Bayesian approach 

under different prior settings, representing different levels of informativeness about the 

latent class structure. 

4.2.1 Population Values and Simulation Conditions 

In this simulation study, I used the same model specified in Study 1 (based on 

Equations 6-8) as the population model and the analysis models. In total, 2000 

replications of datasets were generated using Mplus 8 (Muthén & Muthén, 1998-2017). 

The population values used to generate the data were the same as in Study 1 except for 

values tied to the mechanism controlling class separation. Different from Study 1, the 

MD values became one of the factors being examined in this simulation study, which will 

be elaborated in detail. All population values of Study 2 are listed in Table 1. 

Factors being investigated in this study include: the number of latent classes (2 levels), 

sample size (3 levels), class proportions (2 levels for 2-class conditions and 3 levels for 3-

class conditions), and class separation (3 levels for 2-class conditions and 4 levels for 3-

class conditions). The three levels of sample size examined were n = 200, n = 400, and n = 600. The number of latent classes (C =2 and C = 3) was crossed with class proportions, 

resulting in five levels of class proportions (prop = 50%/50%, prop = 80%/20%, prop = 30%/33%/33%, prop = 45%/45%/45%, and prop = 70%/20%/10%).  
Finally, as in Study 1, I was interested in the impact of class separation on the 

accuracy of results obtained through these approaches. Class separation was measured 

using the multivariate MD with seven different levels of separation specified. Specifically, 

I altered the degree of separation (through varying MD values), as well as the location of 

higher versus lower separation. In the 2-class conditions, I examined three levels of 

separation. That is, MD values that were specified between two latent classes were MD = 1, MD = 2, and MD = 3. The levels of separation were crossed with the class proportions. 

See Columns 2 and 3 in Table 10 for detailed specification.  
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Table 10. Simulation Conditions for the Number of Class, Class Proportions, and Class 

Separation Levels 

 

 
 

 

In the 3-class conditions, I assessed separation level, as well as the location of 

separation. According to the MD values specified between Class 1 and Class 2 and 

between Class 2 and Class 3, there could be different types of separation location. The 

degree of separation could be “high” and “high” between classes (i.e., MD = 3 between 

Class 1 and Class 2, and MD = 3 between Class 2 and Class 3). The degree of separation 

could also be “low” and “low” (i.e., MD = 1 between Class 1 and Class 2, and MD = 1 

between Class 2 and Class 3). There could also be “low” separation between two adjacent 

classes and “high” separation between the other two adjacent classes (i.e., MD = 1 

between Class 1 and Class 2, and MD = 3 between Class 2 and Class 3, vice versa.)  

For the 3-class conditions with equal class sizes (33%/33%/33%), I examined two 

levels of separation (“high” and “low”) and three separation locations. Take the 33%/33%/33% condition for example. First, two “low” separation levels were 

specified between latent classes, that is, MD = 1 between Class 1 and Class 2 and MD = 1 between Class 2 and Class 3. Second, two “high” separation levels (MD=3) were 

specified between Class 1 and Class 2 and between Class 2 and Class 3, respectively. 

Last, one “low” separation (MD = 1) was specified between Class 1 and Class 2 and one 

“high” separation (MD = 3) was specified between Class 2 and Class 3. Details of 

specification are listed in Column 4 in Table 10.  

For other 3-class conditions with unequal class sizes, two levels of class separation 

and four separation locations were assessed. For example, the first three types of 

separation location in the 45%/45%/10% condition were akin to the 33%/33%/33% 

condition. Then the fourth type of separation location for the 45%/45%/10% condition 

switched the two MD values between Class 1 and Class 2 and between Class 2 and Class 

3 as to manipulate the location of the low versus high separation. Details of 45%/45%/10% condition and other conditions are listed in Table 10. The MD values 

between latent classes were varied and arranged in such way that I could assess the 

location of class separation as it was linked to different class sizes.  
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4.2.2 Model Estimation Techniques 

In this study, I also examined the performance of four types of model estimation 

techniques, including RJMCMC, DP, ML, and Bayesian estimation with two levels of 

prior specification. Simulation conditions were fully crossed with these model estimation 

techniques, which resulted in 204 simulation cells in total.  

4.2.2.1 Prior Specifications for RJMCMC and DP 

The analysis models for the RJMCMC and DP techniques used in this study were the 

same as in Study 1. The model for the RJMCMC algorithm was specified in Equations 

36-38. The prior distributions are the same as described in Study 1. Specifically, �&~234((322 ), :10 00 10;), 5~�¤(2, :10 00 10;), N�~�¦(0.01,0.01), ��~4(0,10), and (%�…,%()~Z�W�-ℎ\T
(1, … 1). The model for the DP conditions was specified in 

Equations 58-65. Prior specifications implemented in Study 1 were also used in this study: �&~234((322 ), :10 00 10;), 5~�¤(2, :10 00 10;), N�~IG(0.01,0.01), ��~4(0,10), ¦~ZÈ(1, 4(�, Σ)), and ΣÞ~�¤ �2, :10 00 10;� (See the Methods section in Study 1 for 

notation and interpretation details).  

The R package “miscF” (Feng, 2016) was used for conducting data analysis with 

RJMCMC, and the package “DPpackage” (Jara, Hanson, Quintana, Mueller, & Rosner, 

2017) was used in the DP conditions. In total, I requested 5000 samples for each chain, 

with the first 2500 iterations discarded as the burn-in phase for the RJMCMC and DP 

conditions. ML conditions were conducted using Mplus 8, with 100 perturbations of user-

specified staring values and 25 final stage optimizations. Likewise, the traditional 

Bayesian methods (with two sets of prior specifications) were also conducted using 

Mplus 8, and I describe these details next. 

4.2.2.2 Prior Specifications for Bayesian Estimation Methods 

4.2.2.2.1 Diffuse Priors 

I implemented the Bayesian estimation framework using two different sets of priors: 

diffuse priors and weakly informed priors. Conditions with both prior specifications were 

conducted in Mplus. In the conditions implementing diffuse priors (B-Diff), prior 

distributions with less information were implemented in order to reflect uncertainty 

regarding the model and the population(s) in an exploratory study. The default diffuse 

prior specifications in Mplus were implemented on model parameters in the conditions 

with diffuse priors (Muthén & Muthén, 1998-2017). Specifically, the prior distributions 

for the growth parameters and the latent class proportions were specified as follows. 

- �&~4(0,10�É), which was implemented for the intercept and slope means for 

each latent class under the B-Diff condition. This prior specification provided 

very little information about the parameter.  

- 5~�¤(0, −4), which was implemented on the covariance matrix in the B-Diff 

condition. 

- %&~Z�W�-ℎ\T
(10,10), which was implemented for the class proportions in the B-

Diff condition, indicating at minimum 10 cases in each class. This prior 
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specification was the default Dirichlet prior implemented in Mplus so as to avoid 

the situations (such as when %&~Z�W�-ℎ\T
(1,1)) in which the formation of small 

or inadmissible class solutions might occur. 

- N�~�¦(−1,0), which was implemented on the residual variance with little 

information.  

4.2.2.2.2 Weakly informed priors 

In the Bayesian estimation conditions implementing weakly informed priors (B-

Weak), prior distributions with a “moderate” amount (or weak amount) of information 

were implemented as to reflect some degree of certainty with regards to the model and 

the population(s).8 The weakly informed priors were derived by combining the values of 

diffuse priors in B-Diff conditions and population values in the generative model. 

Specifically, the hyperparameters of means of the growth factors were derived from the 

population mean, while the other parameters, such as the Dirichlet priors, the covariance 

matrix and the residual variance were implemented using the prior specifications from B-

Diff condition. The weakly informed priors were specified in such way that it allowed me 

to mimic the situation where the researcher is likely to take a “best guess” on some model 

parameters and use the “default” settings for others.  

As mentioned earlier, the class proportions followed a Dirichlet distribution that was 

specified as a default diffuse prior in Mplus with %&~Z(10,10) for all simulation cells. 

With the same reason stated in the previous subsection, hyperparameters 10 and 10 were 

specified here as to prevent formations of small or inadmissible class solutions. The 

covariance matrix was also implemented with the default diffuse priors in Mplus. It 

followed an inverse Wishart distribution with 5~�¤(0, −4).  Priors for the growth 

parameter means varied across simulation cells according to the different conditions. The 

mean hyperparameter in the normal prior distributions for the means of the growth 

factors was set at each parameter’s population value as to center the prior distribution on 

the population value. The variance hyperparameter for the same parameters were fixed at 

100, which suggests some variation around the center of the distribution but not 

completely diffuse, compared with the default diffuse specification in Mplus, 10�É. This 

combination of mean and variance hyperparaemters for the mean of the growth factors 

suggested a normal prior distribution with some information about the center of the true 

value while still incorporated with some degree of uncertainty with its variation around 

the center.  

For example, in the conditions of 2-class and MD = 1, the mean of the intercept in 

Class 1 followed a normal distribution with hyperparameters of 31.37 and 100 (see Row 

3, Column 3 in Table 11). The mean of the slope in Class 1 in the same condition 

followed a normal distribution with hyperparameters of 1.802 and 100 (see Row 3, 

Column 6 in Table 11). Similarly, in the 3-class conditions where MD = 1 between Class 

1 and Class 2 and MD = 3 between Class 2 and Class 3, the prior of the mean of the 

intercept was N(31.37,100) in Class 1, N(34.29,100) in Class 2 and N(43.01,100) in 

Class 3 (see Row 7, Columns 3-5 in Table 11). The details of the prior specification for 

the growth parameters in B-Weak conditions can be found in Table 11. 

                                                 
8
 Weakly informed priors are defined as priors that reflect less information than the 

researcher “actually has”. (Gelman, Jakulin, Pittau, Pittau, & Su, 2008). 
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Table 11. Hyperparameter Values for Growth Parameters in Study 2 

 

 

4.3 Results of Study 2 

In Study 2, I investigated the effect of class separation on the accuracy of class 

enumeration and model parameter estimation when implementing RJMCMC, DP, and 

two Bayesian estimation methods including diffuse priors (B-Diff) and weakly informed 

priors (B-Weak). I assessed how well the number of classes, the class proportions, and 

the growth parameters were recovered under various levels of class separation. Akin to 

Results from Study 1, I present the accuracy of the estimation in terms of percent bias 

and the MSE values for the growth parameters. All of the simulation results in Study 2 

are listed in Tables 12-39. Tables for MSE values (Tables A3-A16) are presented in 

Appendix A.  

4.3.1 Convergence 

In Study 2, I used two forms of convergence diagnostics to assess the convergence of 

the sampling procedure within and between the Markov chains. The first form of 

diagnostic is the Geweke (1992) statistic, which was computed in R and used for 

RJMCMC and DP. The second form is the Potential Scale Reduction (PSR) factor 

provided in Mplus for the B-diff and B-weak conditions (Muthén, 2010).  

As described in Section 3.4.1, the Geweke diagnostic evaluates the convergence for a 

single Markov chain using a standard z-score. If the z-score is a small value (e.g., less 

than 2), then the chain can be considered reaching the convergence. The z-scores were 

less than 2.000 for all parameters in all simulation conditions in Study 2.  

The PSR diagnostic is used when there is more than one Markov chain requested. It 

compares the parameter variation within each chain to that between chains, which is 

similar to a classical analysis of variance approach (Muthén, 2010). The PSR criterion 

requires the between-chain variation to be small relative to the total of between- and 

within-chain variation (Gelman & Rubin, 1992). In Mplus, the default convergence 

criterion is that a PSR factor is 1.05 for each replication, which was used for the 

convergence diagnostic in this study. Any replication with a PSR value higher than 1.05 
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was marked as un-converged and was removed from the final estimation process. 

Therefore, The PSR values in the B-Diff and B-Weak conditions were all below 1.05 for 

all of the converged replications.  

In addition to the Markov chain convergence being assessed for each parameter, I 

also monitored the model convergence of the total 2000 replications. All RJMCMC and 

DP conditions reached 100% model convergence, while the Bayesian estimation 

conditions achieved at least 85% convergence out of 2000 replications. All results that 

are presented here were calculated with the parameter estimates from the converged 

replications. 

4.3.2 Class Enumeration and Parameter Estimates 

4.3.2.1 2-Class Prop=50/50 MD=1 Conditions  

Results for the parameter estimates and percent bias levels in the 2-class prop = 50/50 

MD = 1 conditions are presented in Table 12 and the top section of Table A3. The 

number of classes was estimated accurately for RJMCMC and DP across sample sizes. 

The percentages of selecting a 2-class solution by RJMCMC were below 70%, which 

indicates that the confidence of a 2-class solution when MD is 1 was moderate based on 

the estimation of RJMCMC. The class proportions were recovered well for all estimation 

methods.  

The intercept parameter means were recovered well for all estimation methods. 

However, the slope parameter means had relatively higher bias for B-Diff (around -15% 

to 23%) and B-Weak (around -14% to 23%), compared with those for DP (around 4% to 

23%). RJMCMC yielded slightly high bias (around 13% to 26%) for the slope parameter 

means for the n = 200 condition and improve as the sample size increased (bias levels 

were around -5% to -8% when n = 600). The intercept parameter variance was estimated 

well, except for DP when n = 600 with a bias level around 23%. The slope variance was 

recovered well in B-Diff and B-Weak but was overestimated by RJMCMC and DP in the 

n = 200 condition and by DP in the n = 400 condition (bias levels were around 12% to 

39%). The covariance parameter was consistently poorly recovered by all estimation 

methods across sample sizes (bias levels were around -54% to 280%). The MSE values 

are small for all parameters, except for the intercept variance in the DP condition for n = 

600 (bias was around -14%). 
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Table 12. Parameter Estimates and Percent Bias for 2-Class 50/50 MD=1 
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4.3.2.2 2-Class Prop=50/50 MD=2 Conditions  

Results for the parameter estimates and percent bias levels in the 2-class prop = 50/50 

MD = 2 conditions are presented in Table 13 and the top section of Table A4. The 

number of classes was estimated accurately by RJMCMC and DP. The percentages of 

selecting a 2-class solution by RJMCMC were all above 80%, which suggested a higher 

certainty about the 2-class solution compared to the conditions when MD = 1 (where the 

percentages were only around 64% to 67%). The class proportions were recovered well 

by all estimation methods across sample sizes. 

The intercept parameter means were recovered with low bias levels (all below 10%) 

by all estimation methods for all sample sizes. The slope parameter means were estimated 

with slightly higher bias (around 12% to 22%) when the sample size was relatively small, 

but it was improved when n = 600 (bias was below 10%). The growth parameter 

variances were poorly recovered by B-Diff and B-Weak in the n = 200 and n = 400 

conditions (bias levels were around 12% to 82%) and the bias levels decreased when n = 

600 for both Bayesian estimation methods (bias was below 10%). The bias levels (around 

52% to 82%) for the variance parameters were high for DP across sample sizes and held 

an inconsistent pattern for RJMCMC. The covariance was consistently poorly recovered 

by all estimation methods across sample sizes (bias levels were all above 80%). The MSE 

values were small for most parameters, although some intercept variances had relatively 

large MSE values (around 76). 
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Table 13. Parameter Estimates and Percent Bias for 2-Class 50/50 MD=2 

 

 

  



 

 

 

65

4.3.2.3 2-Class Prop=50/50 MD=3 Conditions  

Results for the parameter estimates and percent bias levels in the 2-class prop = 50/50 

MD = 3 conditions are presented in Table 14 and the top section of Table A5. The 

number of classes was recovered accurately by RJMCMC and DP for all sample sizes. 

The percentages of selecting a 2-class solution by RJMCMC were relatively high, 

especially for larger sample sizes (around 85% to 93%). The class proportions were 

recovered well by all estimation methods for all sample sizes.  

The growth parameter means were estimated very well with one exception for 

RJMCMC when n = 200, which had slightly higher bias (around -16%) for the slope in 

Class 2. The growth parameter variances were recovered well for B-Diff and B-Weak 

across sample sizes (bias levels were all below 10%). However, RJMCMC and DP 

produced higher bias levels (around -12% to 70%) for the variance parameters when n = 

200. The bias decreased as the sample size increased (e.g., decreased to as low as 1.024% 

when n = 600). The covariance was consistently poorly estimated for all estimation 

methods for all sample sizes (around 15% to over 900%). The MSE values were small 

except for the variance of the intercept in the DP condition when n = 200 (MSE value 

was around 56). 
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Table 14. Parameter Estimates and Percent Bias for 2-Class 50/50 MD=3 
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4.3.2.4 2-Class Prop=80/20 MD=1 Conditions   

Results for the parameter estimates and percent bias levels in the 2-class prop = 80/20 

MD = 1 conditions are presented in Table 15 and the bottom section of Table A3. The 

number of classes was estimated accurately by RJMCMC. However, when n = 200, DP 

was not able to correctly detect the number of classes and yielded a decimal number that 

was rounded to 1 (i.e., 1.376). The percentage of selecting a 2-class solution by 

RJMCMC was relatively low when the sample sizes were smaller (i.e., around 56% for n 

= 200 and 67% for n = 400). Combining the performance of DP and RJMCMC in 

estimating the number of classes when n = 200, it appeared that a 2-class solution might 

not be the optimal option based on the estimation of the two Bayesian non-parametric 

methods. It might indicate that the Bayesian non-parametric methods, especially DP, had 

difficulty in accurately enumerating the latent classes when there was a majority class 

and when the sample size was relatively small (and separation was poor with MD = 1). 

The class proportions were recovered with high bias levels (all above -34%) by B-Diff 

and B-Weak across sample sizes. RJMCMC yielded slight high bias for the minority 

class when the sample size was relatively small (bias the level was around -18%) but 

improved when the sample size reached 600 (bias level was below 10%). Overall, DP 

underestimated the size of the minority class; it was not able to produce the estimates for 

the class proportions for the n = 200 condition.  

The intercept parameter means were estimated well for B-Diff, B-Weak, and 

RJMCMC. DP did not provide an estimate of the mean of a second class in the n = 200 

condition. B-Diff and B-Weak yielded low bias for the slope parameter means in the 

majority class but underestimated the minority class for all sample sizes (bias levels were 

around -27%). RJMCMC produced slightly high bias levels (around 10% to 21%) for the 

slope parameter means in the minority class, and low bias (below 10%) for those in the 

majority class. DP did not provide an estimate for the slope parameter mean in the 

(minority) second class. The growth parameter variances were estimated well by B-Diff 

and B-Weak and had high bias levels (around 7% to -29%) in the RJMCMC and DP 

conditions for all sample sizes. The covariance parameter was poorly recovered by all 

estimation methods across sample sizes (bias levels were around 24% to over 500%). The 

MSE values were small for most mean and variance parameters, but they were higher for 

some of the intercept variances (e.g., MSE around 22). 
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Table 15. Parameter Estimates and Percent Bias for 2-Class 80/20 MD=1 
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4.3.2.5 2-Class Prop=80/20 MD=2 Conditions    

Results for the parameter estimates and percent bias levels in the 2-class prop = 80/20 

MD = 2 conditions are presented in Table 16 and the bottom section of Table A4. Both 

RJMCMC and DP were able to accurately estimate the number of classes. The percentage 

of selecting a 2-class solution by RJMCMC was slightly higher when n = 600 (i.e., 

81.6%) than when the sample sizes were 200 and 400 (i.e., 71.3% and 75%, respectively). 

The class proportions were recovered poorly by B-Diff and B-Weak when n = 200 (bias 

levels were around -25% to 101%), but the bias levels decreased as the sample size 

increased (around -8% to 31% when n = 600). RJMCMC tended to overestimate the 

minority class in the n = 200 and n = 400 conditions (bias levels were around 15% to 

19%) but underestimated in the n = 600 condition (bias levels were around -27%). DP 

recovered the class proportions with relatively high bias when n = 200 (bias levels were 

around -14% to 60%) and improved as the sample size increased (bias levels were around 

3% to -13% when n = 600).  

The intercept parameter means were estimated with low bias by all estimation 

methods for all sample sizes. B-Diff, B-Weak, and RJMCMC yielded high bias levels (as 

high as -28%) for the slope parameter means when n = 200 and n = 400; estimation 

accuracy improve when the sample size reached 600 (bias levels were below 10%). DP 

produced slightly higher bias levels (around -17%) for the slope parameter means when 

the sample size was 400 and lower bias levels (below 10%) for other sample sizes. 

Variances were recovered with slightly higher bias levels (around 13% to 15%) by B-Diff 

and B-Weak when the sample size was 200 and was improved (bias levels decreased to 

below 10%) when the sample size increased to 400 and 600. DP consistently estimated 

the variances with high bias levels (around 12% to 58%) All estimation methods yielded 

high bias levels (around 15% to 590%) for the covariance parameter. The MSE values 

were small for most parameters, except for a few large values (around 16 to 34) for the 

variances of the intercept. 
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Table 16. Parameter Estimates and Percent Bias for 2-Class 80/20 MD=2 
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4.3.2.6 2-Class Prop=80/20 MD=3 Conditions     

Results for the parameter estimates and percent bias levels in the 2-class prop = 80/20 

MD = 3 conditions are presented in Table 17 and the bottom section of Table A5. 

RJMCMC and DP correctly estimated the number of classes. The percentages of 

selecting a 2-class solution by RJMCMC were relatively high (i.e., around 75% to 86%), 

indicating a higher certainty compared lower degrees of class separation. The class 

proportions were estimated well for all estimation methods across all sample sizes. The 

two exceptions were in the n = 200 and n = 400 conditions where DP yielded bias levels 

that were slightly higher than 10%.  

The means of the growth parameters were recovered well for all estimation methods 

for all sample sizes (bias levels were all below 10%). B-Diff and B-Weak yielded low 

bias (below 10%) for the variances of the growth parameters. The estimates from 

RJMCMC and DP were inconsistent across sample sizes for the growth parameter 

variances (bias levels were around 2% to 45%). The covariance was recovered with high 

bias level (above 30%) by all estimation methods when n = 200. The bias decreased to 

below 10% only for B-Diff and DP when the sample sizes increased. The MSE values 

were relatively small for all parameters except for the variance of the intercept in the 

RJMCMC condition when n = 600, which was around 11. 
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Table 17. Parameter Estimates and Percent Bias for 2-Class 80/20 MD=3 
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4.3.2.7 3-Class Prop=33/33/33 MD=1/1 Conditions      

Results for the parameter estimates and percent bias levels in the 3-class prop = 

33/33/33 MD = 1/1 conditions are presented in Tables 18, 19 and A6. RJMCMC and DP 

recovered the number of classes accurately. The percentages of selecting a 3-class 

solution by RJMCMC were below 70%, suggesting a moderate certainty of a 3-class 

solution. The class proportions were estimated well by B-Diff and B-Weak across sample 

sizes; the bias levels were slightly higher than 10% for RJMCMC and DP when n = 200 

and n = 400, and they decreased to below 10% as the sample size reached 600. 

The intercept means were estimated well by all methods for all sample sizes. B-Diff 

and B-Weak consistently overestimated Class 1 (bias levels were above 39%) and 

underestimated Class 3 (bias levels were above 19%) across sample sizes for the slope 

means. RJMCMC and DP yielded estimates of inconsistent bias levels for the slope 

parameter means (below 1% to above 40%). B-Diff and B-Weak produced low bias (all 

below or around 10%) for the growth parameter variances, while RJMCMC and DP 

yielded relatively high bias levels (up to 58%) for the same parameters. The covariance 

had high bias levels (around 30% to over 700%) for all estimation methods across sample 

sizes.  The MSE values were relatively small for most parameters, but the variance of the 

intercept had large MSE values (as high as 54) in some conditions.  
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Table 18. Parameter Estimates for 3-Class 33/33/33 MD=1/1 
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Table 19. Percent Bias for 3-Class 33/33/33 MD=1/1 

 

  



 

 

 

76

4.3.2.8 3-Class Prop=33/33/33 MD=1/3 Conditions    

Results for the parameter estimates and percent bias levels in the 3-class prop = 

33/33/33 MD = 1/3 conditions are presented in Tables 20, 21 and A7. RJMCMC and DP 

correctly estimated the number of classes. The percentages of selecting a 3-class solution 

ranged from 65% to 75%, indicating a moderate certainty of the class solution. The class 

proportions were estimated well by all estimation methods except for RJMCMC in the n 

= 200 condition and for DP in the n = 600 condition, where the bias levels were slightly 

higher than 10%.  

The intercept parameter means were recovered well by all estimation methods across 

sample sizes. The slope mean in Class 1 was estimated with slightly high bias (all above 

18%) by all estimation methods in the n = 200 condition, and it was improved for 

RJMCMC and DP as the sample size increased (bias levels decreased to below or slightly 

higher than 10%). The bias for the slope means in Class 2 and Class 3 was relatively low 

(below 10%) for all estimation methods, although a few conditions in B-Diff had bias 

levels that were slightly higher than 10%. The variances of the growth parameters were 

estimated with low bias level (below 10%) for B-Diff and B-Weak and with high bias (as 

high as 47%) for RJMCMC and DP across sample sizes. The covariance was recovered 

poorly by all estimation methods for all sample sizes (bias levels were all above ±60%). 

The MSE values were small for all parameters except for the intercept variance for DP 

(around 40). 
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Table 20. Parameter Estimates for 3-Class 33/33/33 MD=1/3 
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Table 21. Percent Bias for 3-Class 33/33/33 MD=1/3 
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4.3.2.9 3-Class Prop=33/33/33 MD=3/3 Conditions 

Results for the parameter estimates and percent bias levels in the 3-class prop = 

33/33/33 MD = 3/3 conditions are presented in Tables 22, 23 and A8. RJMCMC and DP 

correctly estimated the number of classes. The percentages (i.e., 82.9% to 97.3%) of 

selecting a 3-class solution show higher confidence than the percentages when the MD 

values were 1/1 and 1/3, which were around 60% to 71%. The class proportions were 

recovered well by all estimation methods for all sample sizes except for RJMCMC, 

which yielded a bias level that was slightly higher than 10% when n = 200.  

The intercept means were estimated well for all estimation methods for all sample 

sizes. The slope means in Class 1 and Class 2 were recovered with moderate-to-high bias 

levels (around -14% to 54%) by B-Diff and were improved as the sample size increased 

(bias levels decreased to below 1%). RJMCMC and DP yielded relatively high bias levels 

(around 26% to 32%) for the slope mean in Class 1, and the bias levels decreased to 

below 10% as the sample size increased. The slope parameter mean in Class 3 was 

estimated well by all estimation methods. The bias for the growth parameter variances 

was relatively high for B-Diff and B-Weak (bias levels were above 14%) and decreased 

to below 10% as the sample size increased. The bias levels for RJMCMC were relatively 

low across sample sizes (all below or slightly higher than 10%). DP yielded the estimates 

with inconsistent bias levels (around 3% to 92%) across sample sizes. The covariance 

parameter had very high bias levels for all estimation methods. The MSE values were 

relatively small for all parameters. 
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Table 22. Parameter Estimates for 3-Class 33/33/33 MD=3/3 
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Table 23. Percent Bias for 3-Class 33/33/33 MD=3/3 
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4.3.2.10 3-Class Prop=45/45/10 MD=1/1 Conditions  

Results for the parameter estimates and percent bias levels in the 3-class prop = 

45/45/10 MD = 1/1 conditions are presented in Tables 24, 25 and A9. RJMCMC and DP 

correctly estimated the number of classes, although the percentage of selecting a 3-class 

solution by RJMCMC was relatively lower (all below 70%). The class proportions were 

recovered poorly by B-Diff and B-Weak across all sample sizes where the class size of 

the minority class was largely overestimated (bias levels were above 224%). RJMCMC 

also tended to overestimate the class size of the minority class when the sample size was 

small but the bias level decreased as the sample size increased; however, bias levels were 

always above 10%. DP yielded slightly high bias levels for the class size of the minority 

class when n = 200 and n = 400 (bias level were around -16% to 28%), but levels 

decreased for n = 600 (bias level decreased to 13%). 

The intercept means were estimated well by all estimation methods for all sample 

sizes, although B-Diff slightly underestimated the intercept mean of the minority class 

(bias levels were all below or slightly higher than 10%). B-Diff and B-Weak consistently 

underestimated the slope mean in the minority class (bias levels were around -32% to -

36%), and it overestimated the slope mean in Class 1 (bias levels were around 30%) 

across sample sizes. RJMCMC yielded inconsistent bias for the slope means (bias levels 

were around 2% to 12%). DP produced slightly high bias levels (above 10%) for the 

slope parameter means, but the bias levels decreased to below 10% when n = 600. The 

growth parameter variances were recovered well by B-Diff and B-Weak (bias levels were 

all below 10%) but were recovered relatively poorly by RJMCMC and DP (bias levels 

were around -9% to 56%). The covariance had very high bias levels (ranging up to 501%) 

for all estimation methods for all sample sizes. The MSE values are small for most 

parameters, although RJMCMC and DP yielded a few high MSE values (around 15 to 54) 

for the intercept variance under some conditions. 
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Table 24. Parameter Estimates for 3-Class 45/45/10 MD=1/1 
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Table 25. Percent Bias for 3-Class 45/45/10 MD=1/1 
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4.3.2.11 3-Class Prop=45/45/10 MD=1/3 Conditions  

Results for the parameter estimates and percent bias levels in the 3-class prop = 

45/45/10 MD = 1/3 conditions are presented in Tables 26, 27 and A10. The number of 

classes estimated by RJMCMC and DP was correct for all sample sizes. The percentage 

of selecting a 3-class solution by RJMCMC ranged around 65% - 75%, which suggests 

moderate certainty about the 3-class solution. The class size in the minority class was 

overestimated by all estimation methods (bias levels were all above 10%) except for 

RJMCMC, which yielded a relatively low bias level (i.e., -5.57%). The bias for the class 

proportions decreased as the sample size increased, especially for B-Diff and B-Weak, 

whose bias levels decrease to below 10%.  

The intercept means were recovered well for all estimation methods across sample 

sizes. B-Diff and B-Weak yielded relatively higher bias levels (above 23%) for the slope 

means in the minority class and Class 1, compared with RJMCMC and DP (bias levels 

were below 18%) for the same parameters. B-Diff and B-Weak recovered the growth 

parameter variances well (bias levels were all below 10%), and RJMCMC and DP 

recovered them relatively poorly (bias levels ranging up to 37%). All estimation methods 

yielded high bias levels (ranging above 400%) for the covariance parameter. The MSE 

values were small for all parameters except for the intercept variance under DP (which 

was around 18).  
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Table 26. Parameter Estimates for 3-Class 45/45/10 MD=1/3 
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Table 27. Percent Bias for 3-Class 45/45/10 MD=1/3 
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4.3.2.12 3-Class Prop=45/45/10 MD=3/1 Conditions  

Results for the parameter estimates and percent bias levels in the 3-class prop = 

45/45/10 MD = 3/1 conditions are presented in Tables 28, 29 and A11. RJMCMC and DP 

correctly estimated the number of classes. The percentages of selecting a 3-class solution 

by RJMCMC were around 74% to 78%. The class size in the minority class was 

consistently overestimated by B-Diff, B-Weak, and DP (bias levels were above 200%) 

and underestimated by RJMCMC (bias levels were -19% to -24%) across sample sizes. 

Both B-Diff and B-Weak yielded high levels of bias (above 200%) for the class 

proportions when n = 200.  

The intercept mean in the minority class were estimated well by all estimation 

methods. B-Diff and B-Weak produced high levels of bias (above 10%) for the slope 

means in the minority class and in Class 1; the bias levels for Class 1 decreased to below 

10% as the sample size increased. The slope means were recovered well by RJMCMC 

and DP. The growth parameter variances were recovered well by B-Diff and were 

recovered with high bias levels (around 33%) by B-Weak when n = 400. Both RJMCMC 

and DP yielded high bias levels (around 10% to 85%) for the growth parameter variances 

when n = 200; the bias levels decreased slightly (around 7% to 34%) when the sample 

size increased. All estimation methods produced very high bias levels (ranging -23% to 

over 1200%) for the covariance parameter. DP yielded a few high MSE values (i.e., 

159.517) for the variance parameters when n = 200, and other parameters all had 

relatively small MSE values.  
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Table 28. Parameter Estimates for 3-Class 45/45/10 MD=3/1 
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Table 29. Percent Bias for 3-Class 45/45/10 MD=3/1 
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4.3.2.13 3-Class Prop=45/45/10 MD=3/3 Conditions  

Results for the parameter estimates and percent bias levels in the 3-class prop = 

45/45/10 MD = 3/3 conditions are presented in Tables 30, 31 and A12. RJMCMC and DP 

correctly estimated the number of classes. The percentages of selecting a 3-class solution 

by RJMCMC were relatively high (i.e., 96.7% to 99.5%) across sample sizes, compared 

with the percentages in other conditions with prop = 45/45/10 (around 64% to 78%). The 

class sizes of the minority class and Class 2 were estimated inaccurately by B-Diff and B-

Weak when n = 200 and n = 400 (bias levels were mostly above 10%) and the bias levels 

decreased to below 10% when n = 600. RJMCMC and DP yielded some levels of bias 

(around 13% to 25%) for the class size of the minority class, but improved as the sample 

size increased (bias levels decreased to below 10% when n = 600). 

The intercept means were estimated well by all estimation methods; the bias levels 

for B-Diff and B-Weak in the n = 200 condition were slightly high (around -11% to -

15%), but they decreased to below 10% as the sample size increased. RJMCMC and DP 

correctly recovered the intercept means. B-Diff and B-Weak yielded high bias levels 

(around -26% to 46%) for the slope means in the minority class and Class 1 when n = 

200; the bias levels decreased to below or slightly higher than 10% as the sample size 

increased. RJMCMC and DP produced relatively low bias levels (all below or slightly 

higher than 10%) for the slope parameter means. B-Diff and B-Weak yielded high bias 

levels (all above 54%) for the growth parameter variances when n = 200 and improved as 

the sample size increased (bias levels decreased to below or slightly higher than 10%). 

RJMCMC estimated the growth parameter variances well (bias levels were all below or 

slightly higher than 10%) and DP had more inaccuracy (bias levels were mostly around 

23% to 184%) across sample sizes. The covariance parameter was recovered with very 

high bias levels (mostly around 34% to over 3100%) by all estimation methods. Most 

parameters had small MSE values except for the growth parameter variances (around 76 

to 261). 
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Table 30. Parameter Estimates for 3-Class 45/45/10 MD=3/3 
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Table 31. Percent Bias for 3-Class 45/45/10 MD=3/3 
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4.3.2.14 3-Class Prop=70/20/10 MD=1/1 Conditions  

Results for the parameter estimates and percent bias levels in the 3-class prop = 

70/20/10 MD = 1/1 conditions are presented in Tables 32, 33 and A13. RJMCMC and DP 

correctly estimated the number of classes. The percentage of selecting a 3-class solution 

by RJMCMC was higher when n = 600 (i.e., 86.7%) than when the sample sizes were 

smaller (i.e., below 65%). The class proportions were estimated poorly by all estimation 

methods across sample sizes (bias levels were mostly above 10%). B-Diff and B-Weak 

tended to overestimate the class size in the minority class (bias levels were around -47% 

to 230%), while underestimating it in the majority class (bias levels were around 47% to 

50%). The bias for the minority class size under DP (bias levels were below or slightly 

higher than 10%) decreased when the sample size increased, but it was consistently high 

for B-Diff and B-Weak across all sample sizes (bias levels were all above -46%). 

RJMCMC tended to underestimate the class size in the minority class (bias levels were 

all above -37%), and it overestimated the majority class slightly (bias levels were slightly 

higher than 10%).  

The intercept means were recovered well by all estimation methods for all sample 

sizes. B-Diff and B-Weak yielded relatively high bias level (around 12% to -36%) for the 

slope means, while RJMCMC and DP estimated these parameters with relatively low bias 

levels (below or slightly higher than 10%). Overall, B-Diff and B-Weak estimated the 

growth parameter variances well except for B-Weak, which produced slightly higher bias 

levels (around 23%) when n = 200. RJMCMC and DP consistently yielded relatively 

high bias levels (around 11% to 44%) for the variance parameters across all sample sizes. 

All estimation methods yielded high bias (around 15% to 425%) for the covariance 

parameter. The MSE values are small for most parameters. The variance of the intercept 

had relatively high MSE values (around 10 to 24) in some conditions. 
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Table 32. Parameter Estimates for 3-Class 70/20/10 MD=1/1 
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Table 33. Percent Bias for 3-Class 70/20/10 MD=1/1 
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4.3.2.15 3-Class Prop=70/20/10 MD=1/3 Conditions  

Results for the parameter estimates and percent bias levels in the 3-class prop = 

70/20/10 MD = 1/3 conditions are presented in Tables 34, 35 and A14. RJMCMC and DP 

correctly estimated the number of classes. The percentage of selecting a 3-class solution 

by RJMCMC (around 63% to 79%) indicates a moderate confidence of the 3-class 

solution. The bias for the class proportions yielded by B-Diff and B-Weak were relatively 

high (mostly above 22%). The recovery of the class size of the minority class by B-Diff 

improved as the sample size increased (bias levels decreased below 10%) while the bias 

for the class sizes in the other two classes were consistently high. B-Weak produced high 

bias levels (all above 11%) for the class proportions for all sample sizes. RJMCMC 

consistently underestimated the class size of the minority class (bias levels were above -

30%), while DP consistently overestimated the same parameter (bias levels were above 

40%).  

The intercept means were estimated accurately by all estimation methods for all 

sample sizes. The slope means in Class 2 were underestimated by B-Diff and B-Weak 

(bias levels were around -28%). RJMCMC also yielded slightly higher bias levels (above 

10%) when n = 400 and n = 600. B-Diff and B-Weak recovered the growth parameter 

variances well (bias levels were below 10%), and RJMCMC and DP yielded some higher 

bias levels (above 10%). The covariance parameter was recovered with high bias (around 

110% to 159%) by all estimation methods. The MSE values were quite small for all of 

the parameters. 
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Table 34. Parameter Estimates for 3-Class 70/20/10 MD=1/3 
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Table 35. Percent Bias for 3-Class 70/20/10 MD=1/3 
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4.3.2.16 3-Class Prop=70/20/10 MD=3/1 Conditions  

Results for the parameter estimates and percent bias levels in the 3-class prop = 

70/20/10 MD = 3/1 conditions are presented in Tables 36, 37 and A15. The number of 

classes was estimated correctly by RJMCMC for all sample sizes. However, DP yielded 

an estimate that was rounded to 2 (i.e., 2.448) for the number of classes in the n = 200 

condition. This indicates that DP selected a 2-class solution when the sample size was 

200, which is not accurate. It appears that DP was unable to find one of the minority 

classes in this condition. The percentages of the selecting a 3-class solution by RJMCMC 

suggest moderate certainty (ranging between 75% and 82.6%). The class proportions 

were recovered inaccurately by B-Diff and B-Weak, which consistently overestimated 

the class size of the smallest minority class (bias levels were around 200%) and 

underestimated the class size of the majority class (bias levels were around -46%). 

RJMCMC tended to underestimate the class size of the minority class (bias level were 

around -20% to -56%) while producing low bias levels for majority class size (bias levels 

were all below 10%). DP was not able to yield accurate estimates for the class 

proportions for n = 200, and it overestimated the class size of the minority class when n = 

400 and n = 600 (bias levels were over 30%). 

The intercept means were estimated well by all estimation methods, although B-Diff, 

B-Weak, and RJMCMC yielded some bias levels that were slightly higher than 10%. DP 

was not able to provide the estimate for the intercept mean in the third class because it 

could not find that small minority class. B-Diff and B-Weak yielded relatively high bias 

levels (around -26% to -40%) for the slope parameter means in Class 2 and the smallest 

minority class (Class 3). RJMCMC produced low bias levels (all below or slightly higher 

than 10%) for all the slope parameter means. DP failed to provide an estimate of the 

slope mean in the third class for the same reasons stated above. The covariance parameter 

was recovered with very high bias levels (around 23% to 159%) by all estimation 

methods. The MSE values were relatively high for some intercept means (around 18 to 

50) and low for other parameters (below 10). 
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Table 36. Parameter Estimates and Percent Bias for 3-Class 70/20/10 MD=3/1 
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Table 37. Percent Bias for 3-Class 70/20/10 MD=3/1 
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4.3.2.17 3-Class Prop=70/20/10 MD=3/3 Conditions  

Results for the parameter estimates and percent bias levels in the 3-class prop = 

70/20/10 MD = 3/3 conditions are presented in Tables 38, 39 and A16. The number of 

the classes estimated by RJMCMC and DP were accurate. The percentages of selecting a 

3-class solution by RJMCMC were relatively high (all above 90%), suggesting a high 

certainty of the 3-class solution. The class proportions were recovered with relatively 

high bias levels (around -25% to 69%) by B-Diff and B-Weak when n = 200, and the bias 

levels decreased (to below 30%) when the sample size increased. RJMCMC and DP 

yielded bias levels for the class proportions that were inconsistent (around -2% to 41%) 

across the sample sizes. In general, the estimates were improved for all estimation 

methods when n = 600 (bias levels were mostly below or slightly higher than 10%).  

The intercept means were estimated well for all estimation methods across sample 

sizes. The bias levels for the slope means in Class 2 were relatively high (slightly higher 

than 10%) for B-Diff and B-Weak in the n = 200 condition; however, they decreased to 

below 10% as the sample size became larger. RJMCMC and DP yielded relatively low 

bias levels (below 10%) for the slope means for almost all sample sizes with the 

exception that DP produced a moderate bias level (around -46%) for the slope mean in 

the majority class when n = 200. The bias levels for the growth parameter variances were 

high (around 20% to 70%) for B-Diff, B-Weak, and DP when n = 200 and decreased to 

below 10% or slightly higher than 10 as the sample size became larger. RJMCMC 

estimated the variances of the growth parameters with relatively low bias levels (below or 

slightly higher than 10%) across sample sizes. The covariance was estimated with very 

high bias levels (mostly around 15% to over 400%) by all estimation methods. The MSE 

values were relatively high (e.g., around 20 to 49 for the intercept means and around 5-8 

for the intercept variances) for some mean and variance parameters and low for other 

parameters (around 10 to 21). 
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Table 38. Parameter Estimates for 3-Class 70/20/10 MD=3/3 
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Table 39. Percent Bias for 3-Class 70/20/10 MD=3/3 
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4.4 Study 2 Discussion 

In Study 2, RJMCMC, DP, and the Bayesian estimation method with diffuse and weakly 

informed priors were examined through various levels of class separation, class proportions and 

sample size. The primary goal was to investigate the performance of RJMCMC, DP, and the two 

Bayesian methods under different class separation conditions, when crossed with other 

influencing factors. The following are some conclusions of Study 2. 

4.4.1 Estimation Methods  

In general, RJMCMC and DP performed comparably well and sometimes better than the 

Bayesian estimators with diffuse and weakly informed priors in recovering the model parameters. 

As detailed in the Study 1 Discussion (Section 3.6.4), RJMCMC and DP were able to provide the 

estimates for the number of classes without comparing across competing models with different 

class structures. This made RJMCMC and DP more efficient than Bayes, although DP failed to 

yield the correct class solution under two conditions (i.e., prop = 80/20, MD = 1 and prop = 

70/20/10, MD = 3/1). The percentage of selecting a class solution by RJMCMC also helped with 

the decision making on the number of classes. Within the Bayesian estimation methods, B-Weak 

performed better than B-Diff under some conditions and both Bayesian estimators yielded close 

outcomes under other conditions.  

4.4.2 Model Parameter Recovery  

Akin to the results of the simulation in Study 1, the accuracy of the recovery of model 

parameters varied under different conditions. The number of classes was extracted correctly by 

RJMCMC under all conditions. However, DP was not able to detect the correct number of 

classes for conditions prop = 80/20, MD = 1 and prop = 70/20/10, MD = 3/1. Specifically, DP 

extracted one class less for each of these two conditions. This could be due to the sensitivity of 

the decision on the number of classes to the decimal values of the estimate, as detailed in Section 

3.6.3. This also suggests that when there was a minority class, and when the class separation 

between this minority class and its adjacent class was relatively small, DP could have difficulty 

correctly extracting the number of classes.  

The percentage of selecting a class solution by RJMCMC became higher as the MD values 

increased under the 2-class model conditions. It was more complicated for 3-class models. In 

general, the percentages were the lowest under the MD = 1/1 conditions and highest under the 

MD = 3/3 conditions for all class proportions and samples sizes. Conditions where MD = 1/3 and 

MD = 3/1 had the moderate magnitude of the percentages. This indicates that class separation, 

and the location of the separation, could affect the percentage of selecting a class solution. The 

percentage did not vary much between evenly split class proportions and unevenly split class 

proportions for 2-class and 3-class models, or across sample size.  

In general, the class proportions were recovered better under RJMCMC and DP than under 

the Bayesian conditions. Within the Bayesian conditions, the performance of B-Weak and B-Diff 

were comparable in estimating the class proportions under most conditions. The class 

proportions were recovered better when the classes were evenly split than when they were 

unevenly split for 2-class and 3-class models. The Bayesian estimators tended to overestimate 

the minority class while underestimating the majority class when classes were unevenly split. 

Within the non/semi-parametric methods conditions, RJMCMC tended to underestimate the 

minority class while DP overestimated the minority class under most conditions where the 
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classes were unevenly split. The recovery of the class proportions was best in conditions where 

the MD values were the highest (e.g., MD = 3 or MD = 3/3) and were the worst when the MD 

values were the lowest (e.g., MD = 1 or MD = 1/1). The class size of the minority class were 

recovered better when the class separation between the minority class and its adjacent class were 

higher (e.g., MD = 1/3) and vice versa. The recovery of the class proportions usually improved 

as the sample size increased in general.  

Overall, the intercept parameter means were recovery better than other growth parameters; 

they were recovered comparably well under all four estimation methods. The slope parameter 

means were recovery better under RJMCMC and DP than the B-Diff and B-Weak under most 

conditions. The recovery of the growth parameter means generally improved when the MD 

values were higher and when the sample size became larger. The location of class separation did 

not affect the recovery of the growth parameter means very much.  

The covariance structure of the growth parameters was estimated worse than other 

parameters. The growth parameter variances were recovered better under B-Diff and B-Weak 

than under RJMCMC and DP. The growth parameter variances were recovered the worst when 

MD = 2 for 2-class models when MD = 3/3 for 3-class models under B-Diff and B-Weak. The 

recovery for the growth parameter variances was not consistent across MD values under 

RJMCMC and DP. Larger sample sizes did not improve the recovery of the growth parameter 

variances under all B-Diff and B-Weak and showed inconsistent effects on RJMCMC and DP. 

The covariance was recovered poorly under all conditions for all estimation methods while the 

residual variances were recovered well under all conditions (with only a few exceptions).  

4.4.3 Implications  

The findings of Study 2 have several implications. First of all, RJMCMC and DP, as 

non/semi-parametric methods, proved to perform comparably to the Bayesian conditions with 

diffuse and weakly informed priors. These approaches can be used as alternatives to the 

traditional Bayesian estimation framework, especially because they eliminate the need for 

estimating multiple competing models and using model fit indices or information criteria to aid 

in model selection.  

Second, between the two Bayesian estimation methods, B-Diff and B-Weak did not show 

much difference in the recovery of model parameters. Considering the prior specifications 

implemented for these two estimators, B-Weak differed from B-Diff only in the growth 

parameter means. Specifically, the priors on the growth parameter means in for B-Weak used the 

population values as the hyperparameter means and 100 as the hyperparameter variances; all 

other prior specifications remained the same for both estimators. The fact that the performance of 

B-Weak and B-Diff were quite comparable under the same conditions suggests that this level of 

informativeness of the growth parameter mean priors might not impact the parameter recovery.  

Third, the covariance structure was recovered poorly under DP, as well as RJMCMC at times. 

For DP and RJMCMC conditions, the prior specifications implemented on the covariance matrix 

were quite diffuse and contained very little information. The inaccurate recovery of the 

covariance structure might be due to the uninformative prior specifications, which is consistent 

with the previous findings in the SEM literature (see e.g., Depaoli, 2013).  
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Chapter 5                                         

Main Discussion 

In this section, I discuss the main conclusions and implications of the two studies in this 

dissertation. I also include the contributions and limitations of the model estimation methods 

introduced in this dissertation and discuss some future directions for methodological research. 

5.1 Contributions 
This dissertation introduced two Bayesian non/semi-parametric methods, RJMMC and DP, 

as alternative estimation techniques for LGMMs in the SEM framework. The two simulation 

studies showed valid and comparable results regarding RJMCMC and DP, and they compared 

these methods with traditional ML and Bayesian estimation approaches. An empirical example 

was also included as an illustration of the application of RJMCMC and DP on a longitudinal 

dataset, and the substantive interpretation of the results was highlighted.  

The major advantage of RJMCMC and DP as detailed in Sections 3.6.1 and 4.4.1, is that they 

provide the number of classes as a parameter estimate, without the presumption and model 

comparison used in the traditional approaches (e.g., ML estimation). This feature can make the 

modeling process more efficient and straightforward since the traditional model comparison 

approaches are dependent on statistical tests and model fit indices (and the indices often 

disagree!). With these non/semi-parametric methods, researchers may use the numeric values 

directly calculated by the algorithms as the final estimate of the number of latent classes. They 

can also use the percentage of selecting a certain number of classes provided by the algorithm as 

a reference or guideline for decision making in the case of using RJMCMC. The percentage of 

iterations aligning with a certain class solution can also be interpreted as the degree of 

(un)certainty in that class solution. The non/semi-parametric approach not only avoids multiple 

model fitting and comparison processes, it also circumvents the potential contradiction in the 

model comparison measures. For example, Tofight and Enders (2008) and Nylund et al. (2010) 

found conflicting evidence in support of model fit indices and information criteria. This 

contradiction makes it difficult for applied researchers to know which measures to trust (and 

which not to). Despite being compared with the traditional model comparison methods in this 

dissertation, the non/semi-parametric methods are not designed to be a replacement of the 

traditional approach. Instead, they provide cross validation that is complementary to the 

traditional methods. Researchers should not be confined with the use of only one approach.  In 

conclusion, RJMCMC and DP can benefit the SEM framework by simplifying the modeling 

process and quantifying the certainty of selecting a particular number of classes for LGMMs. 

They can also be easier to interpret than some of the model comparison measures traditionally 

used. 

Another advantage of RJMCMC and DP is that they performed better than ML or Bayesian 

estimators under certain conditions. For example, according to the findings of Study 1, DP 

performed well in recovering the class proportions when ML and RJMCMC tended to 

overestimate or underestimate the class size of the minority class when classes were unevenly 



 

 109

split. Another example is that RJMCMC and DP performed better than the Bayesian estimation 

methods with diffuse and weakly informed priors in recovering the slope parameter means.  

5.2 Limitations, Suggestions, and Future Directions 

The number of latent classes is on a categorical scale, while the numeric value of the estimate 

calculated by RJMCMC and DP is on a continuous scale. Deciding on the number of classes 

based on the non/semi-parametric methods is essentially turning a continuous scale into a 

categorical scale. Therefore, one of the limitations of RJMCMC and DP is that the numeric value 

can be sensitive to a cutoff threshold. As I have discussed in Section 3.6.3, a value at the middle 

point between two integers can be rounded/truncated to either end, and the consequent model 

and the interpretation of the parameter estimates can be completely different in each scenario. 

Therefore, purely relying on the model estimate to decide on the number of classes can be quite 

dangerous, especially for applied researchers who might have very little knowledge about the 

non/semi-parametric modeling process. 

This limitation of RJMCMC and DP requires researchers to be very careful when interpreting 

the results, especially the estimate for the number of classes when they decide to use the 

non/semi-parametric methods. Therefore, my suggestion for applied researchers is to always 

make a decision in conjunction with statistical evidence and the substantive meaning of the 

dataset. When the number of classes calculated by an algorithm falls within more than one 

category (i.e., between two class solutions), then researchers should use their substantive 

knowledge to help them decide which class solution would better explain the phenomenon being 

studied.  

As discussed in Sections 3.6.4 and 4.4.3, the current model and prior specifications of 

RJMCMC and DP in this dissertation did not solve the estimation issues linked to the covariance 

structure for LGMMs. These issues of poor parameter recovery are prominent in ML and the 

Bayesian framework as well (see e.g., Depaoli, 2013). One important future direction is to 

identify prior specifications that improve the estimation the covariance structure. Sensitivity 

analyses can be done through simulation studies to examine how different priors may affect the 

covariance structure, as well as other parameters. Specifically, different prior implementations 

should be examined for the inverse Wishart prior, which is directly related to the covariance 

matrix parameters for both RJMCMC and DP. Another prior that is specific for DP is the 

dispersion parameter, U, in ZÈ�U, 4(�, Σ)�. Previous studies indicated that this dispersion 

parameter affects the number of mixture components (i.e., latent classes) in DP mixture models 

(e.g., Teh, 2010; Gelman, et al., 2014). However, there is no investigation about the effect of the 

dispersion parameter on the covariance structure in LGMMs. Simulation studies should be done 

to examine the recovery of the covariance matrix with different specifications of U in a DP 

distribution. If this matrix can be recovered more accurately, then many of the problems plaguing 

the estimation of LGMMs will have been solved.  

Overall, RJMCMC and DP appear to be interesting and viable approaches for detecting the 

number of latent classes in an LGMM. More research on the particular settings that should (or 

should not) be used within these approaches will help to further illuminate their utility within the 

field.  
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Appendix A 

A.1 Additional Tables for Study 1 and Study 2 

Appendix A contains the additional tables for Study 1 and Study 2. Tables A1 and A2 

contain MSE values for the parameter estimate for Study 1. Tables A3 – A16 contain MSE 

values for the parameter estimate for Study 2.  
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Table A1. Mean Square Errors of the Parameters for GCM, 2-Class 50/50, and 80/20 

 

 
Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2; Var-

I = the variance of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept 

and the slope; the variances and the covariance were held equal across latent classes; Residual = residual variance. 
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Table A2. Mean Square Errors of the Parameters for GMM, 3-Class 33/33/33, 45/45/10, and 

70/20/10 

 

 
Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and 

C3 = latent Class 3; Var-I = the variance of the intercept, Var-S = the variance of the slope, and Cov = the 

covariance between the intercept and the slope; the variances and the covariance were held equal across latent 

classes; Residual = residual variance. 
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Table A 3. Mean Square Errors of the Parameters for 2-Class 50/50 and 80/20, MD=1 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2; Var-

I = the variance of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept 

and the slope; the variances and the covariance were held equal across latent classes; Residual = residual variance. “-” 

indicates there is no estimate for this parameter. 
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Table A4. Mean Square Errors of the Parameters for 2-Class 50/50 and 80/20, MD=2 

 

 
Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2; Var-

I = the variance of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept 

and the slope; the variances and the covariance were held equal across latent classes; Residual = residual variance.  
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Table A5. Mean Square Errors of the Parameters for 2-Class 50/50 and 80/20, MD=3 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2Var-I 

= the variance of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept 

and the slope; the variances and the covariance were held equal across latent classes; Residual = residual variance. 
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Table A6. Mean Square Errors of the Parameters for 3-Class 33/33/33, MD=1/1 

 

 
 
Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A7. Mean Square Errors of the Parameters for 3-Class 33/33/33, MD=1/3 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A8. Mean Square Errors of the Parameters for 3-Class 33/33/33, MD=3/3 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A9. Mean Square Errors of the Parameters for 3-Class 45/45/10, MD=1/1 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A10. Mean Square Errors of the Parameters for 3-Class 45/45/10, MD=1/3 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A11. Mean Square Errors of the Parameters for 3-Class 45/45/10 MD=3/1 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A12. Mean Square Errors of the Parameters for 3-Class 45/45/10, MD=3/3 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A13. Mean Square Errors of the Parameters for 3-Class 70/20/10, MD=1/1 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A14. Mean Square Errors of the Parameters for 3-Class 70/20/10, MD=1/3 

 

 
 
Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A15. Mean Square Errors of the Parameters for 3-Class 70/20/10, MD=3/1 

 

 
 
Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  
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Table A16. Mean Square Errors of the Parameters for 3-Class 70/20/10, MD=3/3 

 

 
 

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance 

of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held 

equal across latent classes; Residual = residual variance.  

 

 

 

 

 

 

 




