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Abstract of the Dissertation

Bayesian Non/Semi-Parametric Methods for Latent Growth Mixture Models

by

Yuzhu Yang

Doctor of Philosophy in Quantitative Psychology

University of California, Merced, 2018

Professor Sarah Depaoli, Chair

This dissertation consists of two studies that introduce and investigate two Bayesian
non/semi-parametric estimation methods for latent growth mixture modeling (LGMM).
LGMM is a useful statistical tool for modeling latent classes or unobserved subgroups in
longitudinal data analysis. One of the major challenges of fitting an LGMM is deciding
on the number of latent classes that exist in the population from which data were
collected. In this dissertation, I introduce two non/semi-parametric estimation methods,
that is Reversible jump Markov chain Monte Carlo (RIMCMC) and Dirichlet process
modeling (DP) for LGMM. Specifically, I examined the estimation performance of these
two non/semi-parametric methods along with traditional estimation methods, such as
maximum likelihood (ML) and the Bayesian estimation framework. I also investigated
some commonly discussed topics within the LGMM context, such as class enumeration
and the impact of class separation. In particular, Study 1 examines the ability of
RIMCMC, DP, and ML to recover the model parameters, especially the number of
classes and class sizes via a simulation study. Simulation results showed that RIMCMC
and DP performed comparable to ML and even better under some conditions for some
parameters. An empirical example is included in Study 1 as an illustration of how to
apply RIMCMC and DP; the example uses an education-related data set and covers how
to interpret the results. In Study 2, the investigation is focused on the impact of class
separation on class enumeration and model parameter recovery. Specifically, different
degrees of class separation and several separation conditions were investigated. The
performance of RIMCMC, DP and two Bayesian estimation methods with different prior
specifications were examined for the LGMM via a simulation study. Results of Study 2
showed that RIMCMC and DP performed comparable to the Bayesian estimators under
different degrees of class separation. Findings of the two studies suggested that
RIMCMC and DP can be used as alternatives to traditional ML and Bayesian estimation

xiii



methods in accurately recovering the number of latent classes for LGMM under most
conditions. However, there are added benefits to the use of RIMCMC and DP over the
other approaches. Other implications, suggestions for applied researchers, limitations,
and future directions are also discussed.
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Chapter 1

Overview of Dissertation

Latent growth mixture modeling (LGMM) has been a useful tool for identifying
multiple unobserved subgroups and describing longitudinal change within each subgroup
in social and behavior sciences. In this dissertation, I will introduce Bayesian non/semi-
parametric methods into the latent growth mixture modeling framework. Specifically, I
will discuss the reversible jump Markov chain Monte Carlo (RIMCMC) algorithm and
the Dirichlet Process (DP) technique as non/semi-parametric methods on deciding on the
number of classes for latent growth mixture models. I will compare the performance of
these two Bayesian non/semi-parametric methods with the frequentist method, as well as
the Bayesian estimation method. Ultimately, I am interested in the capability of the
Bayesian non/semi-parametric methods to detect the number of latent classes, specifically
in the context of different class separation conditions (i.e., assessing the performance
when classes are more alike versus more disparate).

This dissertation consists of two separate studies. The first study is entitled “Deciding
on the Number of Classes for LGMM using Bayesian Non/Semi-Parametric Methods”.
The primary goal of the first study is to examine the performance of RIMCMC and DP
on extracting the correct number of latent classes for LGMM. Another goal of the first
study is to compare these two methods with a commonly used implementation (i.e., the
frequentist method) of the LGMM. The third goal is to provide an empirical example to
illustrate how to apply RIMCMC and DP through a case study using a real world data set.

The second study is entitled “Class Enumeration under Various Levels of Class
Separation: Bayesian Non/Semi-Parametric Methods vs. a traditional Bayesian
Approach”. In the second study, the main goal is to investigate the performance of the
RIMCMC algorithm and the DP technique under various degrees of class separation
conditions. A full Bayesian estimation method with different prior specifications is also
examined as comparisons to the Bayesian non/semi-parametric methods.

This dissertation is structured as follows. First I will discuss the general formulation
of LGMM that is examined in the two studies. Then I will introduce the RIMCMC
algorithm and the DP technique and their applications on LGMM. Next, two studies will
be presented aiming to: 1) examine the performance of the two methods in the context of
mixture models (Study 1 of the dissertation), and 2) address specific issues linked to class
separation (Study 2 of the dissertation). Finally, I will conclude by discussing the
implications of using the two Bayesian non/semi-parametric methods for mixture
modeling, as well as provide recommendations for use in applied research settings.



Chapter 2
General Introduction

2.1 Basic Formulation of Latent Growth Mixture Modeling

In this section, I will briefly introduce LGMM and its basic formulation that will be
examined using different modeling techniques presented in this dissertation.

LGMM is a statistical tool for capturing multiple latent (unobserved) subpopulations
and examining the change within and between subpopulations over time (Muthén, 2001).
In other words, LGMM identifies the unobserved subpopulations, describes the
longitudinal change within the subpopulations, and tests the difference among the
subpopulations.

LGMM incorporates the features of both latent growth curve models (LGCMs) and
finite mixture models (FMMs) within one modeling technique. LGCM models the change
over time and tests hypotheses about between-individual differences and within-
individual change (Muthén, 2001). FMM, on the contrary, focuses on identifying and
accounting for the unobserved heterogeneity in the data and assigning individuals into
latent groups. I will present a brief introduction to LGCMs and FMMs in the following
subsections.

2.1.1 Latent Growth Curve Models

As a useful tool for the longitudinal data analysis, LGCMs keep track of separate
trajectories of each individual as well as capture the average growth trajectory for the
whole group (Bollen & Curran, 2005). In other words, LGCMs summarize the group
growth intercept and slope using parameters such as mean and variances while allowing
each individual to have a distinct intercept and slope to simultaneously describe the
unique path.

Following Bollen and Curran (2005)’s notation, the basic formulation of a LGCM can
be specified as:

Yie = a; + AP + €t (1)

where y;; is the variable y for the case i at time t, a; and f; are the random intercept and
the random slope for case 7, and €;; represents the random error. The A; parameter is a
constant, which is commonly codedas A, = 0,and A, = 1,and A, =t —1foralltina
linear growth model. The random intercept and the random slope can further be modeled
with the following equations:

a; = Ug + (al-: (2)

Bi = up + g, (3)



where u, and pg are the mean intercept and mean slope across all cases, and {,,, and (g,

are disturbances for a; and f3;, respectively. When we combine the two levels of models
into a single model, we get:

Yit = (Ha + Atﬂﬁ) + ((ai + At(ﬁi + 6it)- 4)

In this single-level model, p, + A:1p 1s referred to as the fixed coefficients, while
{a; + A:{p, + €i¢ is random. It is assumed that the disturbance variables have a mean of
zero and variances of P, and YPgg, and the covariance between the intercept and slope is
denoted as P,p. It is also assumed that the variance of the disturbance for case i at time ¢
is O, -

2.1.2 Finite Mixture Models

FMMs are a data-driven approach (as opposed to a substantive theory-based approach)
to the modeling of random phenomena that consist of mixtures of distributions. This type
of modeling can be very useful in classifying cases into discrete groups in the social and
behavioral sciences.

We can write a basic FMM in the following form using notation partially from
McLanchlan and Peel (2000) and Depaoli (2013). First, we assume that data are
generated from a finite mixture distribution, f (y;; ¥), in this case a normal distribution.
This mixture distribution can be represented by the following mixture density function

for mixture class ¢ such that
c

FOs9) = ) mefelys Ao, 5)

c=1

where y; is a vector of repeated measure outcomes for case i withi = 1,2, ..., n, m,
represents the unknown mixture class proportion for the cth latent class with ¢ =
12,..,C, 2§=1 n, =1,and f, (forc = 1,2,...,C) are the densities of the C latent
classes that are assumed to be multivariate normal (MVN): y;|c ~ MV N (u., 2.), and .
and X are the mean vector and the covariance matrix of the multivariate normal
distribution from which the random samples y; are drawn for the cth class. Further, ¥ =
(m, A) represents a vector of unknown parameters, which includes the mixture class
proportions T = 14, Ty, ..., T and the unknown parameter vectors 4 = 44,4,, ..., 4.. The
parameter 4. for each cth latent class contains a vector of model specific parameters,
such as means and variances of regression coefficients in a regression model. We then
introduce an assignment parameter z;, which is a vector of associated component-labels
for each y; with z = z;, z,, ... z,. The parameter z; is defined to be 1 when y; is in class ¢
or 0 when y; is not in class ¢ for cth class.



2.1.3 Latent Growth Mixture Models

In the social and behavioral sciences, it is common for research questions to involve
classifying cases based on their repeated measures over time when their group
membership is unknown. LGMMs provide a tool that combines the LGCM and FMM
and makes use of the features from both modeling techniques. This type of model
classifies cases into unobserved groups and estimates the latent growth curve of each
group simultaneously (Bollen & Curran, 2005)

I use the formulation in Bollen and Curran (2005) (but with different notation from
their book) to illustrate the specification of the LGMM below. The 2-level model can be
written as

C
Vie = Z TTic [aic + AeeBic + eitc]r (6)
c=1
Qic = g, T (aicl (7)
Bic = Up, + (g, )

where y;; is the measure of variable y for case i at time t, m;.1s the probability that the
ith case belongs to the cth group with all ;. > 0 and Y.¢_, ;. = 1, and the subscript ¢
denotes the latent class each parameter belongs to. A;. represents the coding of time t for
all cases in class ¢ in the two studies of this dissertation, A, = 0,1,2,3.

Therefore in the expression of the LGMM, y;; can be seen as a function of a vector of
unknown parameters, which are the growth trajectories with parameters dictating each
group, 4, and the probability that the case belongs to that group, . In the case of an
unconditional linear growth model, 4 includes the means of the random intercept and the
random slope (Uqc and pg), the variances of ;. and B;c (Ygqand Ypp), the covariance
between a;c and B;c (4p), and variances of disturbance for case i at time t is 6,
Although in many situations, Yuq, Yppg, Wap, and O, can vary across latent classes, they
are constrained to be equal in the studies in this dissertation for the purposes of model
simplification.

This basic LGMM of four time points with an intercept and a linear slope will be
examined with the RIMCMC algorithm and the DP technique, as well as other modeling
methods in this dissertation.

2.2 Reversible Jump Markov Chain Monte Carlo

In this dissertation, two types of Bayesian non/semi-parametric methods are
examined for LGMMs. The first method is the reversible jump Markov chain Monte



Carlo (RIMCMC) process. RIMCMC is a type of random sweep Metropolis-Hastings
(MH) algorithm; it extends the MH algorithm to more general state spaces (Richardson &
Green, 1997). RIMCMC constructs Markov chains using the reversible jumping rules
and enables jumps between the parameter subspaces, whose dimensions can vary across
iterates of the Markov chain. For example, jumps are allowed to take place between two
adjacent iterates or sweeps, in which the dimension of the mixture component parameter
(i.e., latent classes') is different from one iterate to the other in the case of mixture
modeling.

One of the advantages of RIMCMC is that it allows jumps between parameter
subspaces of differing dimensionality. This feature of RIMCMC makes it a very useful
tool for solving statistical problems with inferences that are not fixed, such as the
unknown number of models being selected, of mixture components, or of changing times
and rates.

The Bayesian non/semi-parametric methods discussed in this dissertation are the
modeling techniques that focus on estimating the number of mixture components. This
process is different from other types of non/semi-parametric methods, which examine the
functional form(s) of the relationship between variables; that method is not a topic
addressed in this dissertation.

2.2.1 The Development of RIMCMC

Green (1995) applied RIMCMC as a solution to Bayesian model selection in several
types of modeling contexts. In a Bayesian multiple change-point analysis, RIMCMC was
used to compute the number of points in the step functions, which was allowed to vary
instead of being fixed. In the next example, the researcher extended the usefulness of
RIMCMC to an image segmentation process that was essentially a form of a two-
dimensional step function. An RIMCMC algorithm was modified from the previous one-
dimensional change-point problem and used on the multidimensional step function. In
this same paper, Green then further used RIMCMC in a model partition problem for
binomial data in Bayesian analysis of factorial experiments. Specifically, the number of
the partition of the subgroups was unfixed and estimated based on the “birth and death”
algorithm.

In the context of mixture modeling, RIMCMC treats the mixture representations as an
unknown and hence varying component and models the number of mixture component
and other model parameters in one process. RIMCMC has been intensively applied in
estimating the number of mixture components for different types of mixture models, but
this process has rarely been examined within the social or behavioral sciences.

Richardson and Green (1997) used RIMCMC to estimate the number of mixture
components of a univariate normal mixture model. This mixture model was formulated in
a hierarchical form, where the number of mixture components and other model

! Latent classes are also called “mixture components” in the literature of mixture modeling (e.g.,
McLachlan and Peel, 2000) and these two terms are used interchangeably in this dissertation.



parameters were regarded as unknown and were drawn from the prior distributions,
respectively. The model can be written in the following form?:

c
Vi ~ chf(yilzlc),indepently fori =1,2,..,nandc =12,..,C, (9)

c=1

where f(y;|4) represents a given density function parameterized by a generic vector 4.
Here in the univeriate normal mixture model, the unknown parameters include: 4, which
is a vector of a pair of means and variances, y,. and 6,7, and the mixture component
weight (i.e., latent class proportion), 7., for a specific class c. The class membership

(also regarded as the group label or the latent allocation variable) is denoted as z; for each
¥; . The class membership represents the latent class where the observation is drawn from
and 1s unknown. The z; values are independently drawn from a distribution, where

p(zi =c¢) =mn, forc=1,2,..,C. (10)

The observations y; can then be seen as drawn from their respective individual
subpopulations ¢, given z;:

pil 2) ~f (yildz), (11)

which, in the univariate normal modeling context, can be expanded as

1 ex {_ (yi _.uc)z}
J(@2m)ao, P 20¢ .

In the Bayesian framework, the unknown parameters c, z, r, and 4 are drawn from
appropriate prior distributions. Given the above formulas, the joint distribution of this
model can be expressed as

fOilAd) = filue, a8) = (12)

p(c,z,m,A,y) = p(c)p(@lc)p(zlm, c)p(4lc)p(yl4, 2). (13)
The prior distributions for 4 = p,, 62 are
u.~N(mean, variance) (14)

and

2 The original notations from Richardson and Green (1997) are not used here because some of them are
conflict with the formulation in the current dissertation. Therefore I reconstructed the formulas from
Richardson & Green (1997) in a way such that all the notation follows the formulation in this dissertation.



i ~I'(by, by), (15)

where . is drawn from a normal distribution with a hyperparameter mean, denotaed as
mean, and a hyperparameter variance, denoted as variance; a2 follows a inverse
gamma distribution with shape and scale parameters b; and b,, respectively. The
proportion weight parameter  is drawn from a Dirichlet distribution

n~Dirichlet(84, 85, ..., O¢) (16)

And the prior distribution for the number of latent class C is a uniform distribution
between 1 and an integer, C,,,, denoted the maximum number of latent classes being
specified in the analysis.

Richardson and Green (1997) described the process of RIMCMC for the univariate
normal model as follows. Using x to denote the current state of the vector of the
unknown parameters, including 4, «, and c, with a posterior probability p(dx). When a
type of move m is proposed, it would take the state to x’, with a probability q,,(x, dx"),
which is called the Markov transition kernel (Green, 1995). The move m from state
x to x’ is accepted with probability

(17)

@ Gox') = min{l p(dx") gy (x', dx)}’

" p(dx)qm(x, dx")

where p(dx") is the posterior probability of x’, g,, (x’, dx) is the probability of moving
from state x' to state x. Based on this generic formula, an acceptance probability for
dimension-changing moves in the mixture modeling context can be written as

}, (18)

where p(x'|y) = p(dx") and p(x|y) represent the posterior probabilities of state x and
state x'; 13, is a probability of choosing move type m when in state x, and q(u) is the
density function of an auxiliary variable, u, included to ensure the dimension-matching

(i.e., to match the degrees of freedom of joint variation of the state and proposal as the
ax

ax
d(x,u)

p(x'1y)rn (x)
"pxIY)1 (g (w)

Ay, (x,x") = min {1

dimension changes with ¢) in the dimension-changing moves; | )| is the determinant

a(x,u
of the Jacobian matrix (i.e., regarded as “the Jacobian” in the literature) for the change of
variable from (x, u) to x" (Richardson & Green,1997).

Richardson and Green (1997) illustrated the performance of RIMCMC for the
univariate normal mixture model with several real data sets. They presented the
predictive densities both conditional and unconditional on the number of the mixture
components ¢ and chose the proper number of components based on the results. This



study also discussed the sensitivity of the posterior distribution for c to the prior
distributions for the means and the variances. They found that the posterior distribution of
¢ was insensitive to the hyperparameters of the fixed effects used to specify the prior
distribution of the variance.

Ho and Hu (2008) extended the application of RIMCMC from the univariate normal
model to the random effects normal mixture model. In this study, they provided an
RIMCMC algorithm for a linear random effects model with a random intercept and a
random slope. This Gaussian (normal) mixture random-effects model was specified in the
form of a Bayesian hierarchical model. Equations 6-8 in the univariate normal mixture
model became, fori = 1,...,nandj =1, ...,/,

Yij = Q1j + QUi + Brvigy + Bavaiy + o+ Bgvgis + €, (19)
€ij~N(0,0?), (20)
ai~Y=1 Nz (e, Z)- 21)

In the above formulas, N, represents a bivariate (multivariate) normal distribution;
(uc, 2y) are the hyperparameters for the mean and the covariance matrix, respectively;
and ¢ is the variance of the error term in the level 1 model. The {u; 2 Viijs - Vqij)
parameters are known covariates associated with observed data {y;;}. a; =
(aq;, ay;)T represents a matrix of random effects. For each random-effects vector a;, a
latent group label variable z; is provided, which takes values {1, ..., C}. This group label
variable (or allocation variable) is drawn from a distribution that is specified in Equation
11.

Similar to the univariate normal mixture models, the estimation of this Gaussian
mixture random effects model can be considered as a general semi-parametric density
analysis using «;|z; as a Gaussian random vector to construct efficient Gibbs samplers
(Ho & Hu, 2008). The joint distribution of all parameters in Equation 13, now become

p(y,a,B,0%mc @, z2) =
(22)

p(a?, Bp()p(@|c)p(rlm)p(z|r, m)p(a|®, z) X p(yla, B, 0?),
where,
y={yj}a={ay, ..an},B={B .. Be} 7w ={my, ..ec}, 2

={z1,...zp},and @ = {(uy, %), ..., (e, 2c)}-

(23)

Ho and Hu (2008) adopted the methods from Richardson and Green (1997) for
calculating the acceptance probability for the moves, which is specified in Equations 17



and 18. However, the dimension of the model parameters now has increased as the model
changed from univariate to multivariate. Therefore, the “combine” and “split” moves in
the RIMCMC process also need to be adjusted for the computation of the moment
conditions. Specifically, Ho and Ho (2008) calculated the moment conditions in a
“combined” move for the Gaussian random effect mixture model in the following way:

Ty = Ty + Tj2, (24)
Tl = T i1 + iz, (25)
(2 + wiwg) = min (2 + ) + mia (2 + jaia). (26)

The above expressions are the RIMCMC transformation for generating the zeroth,
first, and second moments for the density of a “combined” component based on its
previous state. Specifically, Equation 24 creates the class proportions of the new
component, Equation 25 creates the expectation of the density of the new component (i.e.,
mean), and Equation 26 creates the covariance matrix of the density.

The “split” move takes a more complex form, where an auxiliary variable u is
introduced in order to assist with the dimension matching as the dimensions of the model
parameters increased in a split move. In Ho and Hu (2008), u was set to be drawn from a
beta distribution such that u~beta(2,2). Then two proportion components parameters for
the new component can be created by:

Tj1 = 'U,T[j,T[jz = (1 - U.)Tl.'] (27)

Then the expectations of the new component are created by Cholesky decomposition

z = L,L]T, (28)
where
U, o
b= <lf U > %)
21 22

A random 2 X 1 vector v = (v4,v,)T is created for splitting the mean vector for the
new component. The v; parameter in Ho and Hu (2008) was set in a way such that v; =

"L and that the Euclidean norm ||v|| < 1. Therefore, the means are
(1+n3+n3)2



L;v, (30)

’1 —u

The covariance matrix for the new component then can be computed with assistance
from some extra auxiliary variables as follows:

T
T[jZ Tl.'jz
Ly (EJ + “Jr“]) = mjy (2j1 +| 1y ﬂ__LJV Hj n_,LJV
i1 i1
T
/T[jl ’ i1
+ 77.']2 212 + ﬂ] - T[—L]V ,Ll] - _L] ) (32)
j2 j2
Tl.'j [Z] - LjVVTL}‘] = ﬂlejl + 77.']'22]'2. (33)

LetQ; =2; — Lj.vaL]T and by Cholesky decomposition, Q@; = C; CJT, where C; is the

lower triangular matrix with positive diagonal entries. A positive definite matrix H is

drawn from a multivariate § distribution such that H~MVB (%, %) withn; >
d and n, > d, where d is the dimension of the parameter. Then the covariance matrices
of the density for the new component are

5. =9 cHCT
n=—GHC, (34)
Jj1
Wi T
5o = 2601~ ). o)
T[jZ

Ho and Hu (2008) evaluated the performance of the RIMCMC algorithm for the
Gaussian mixture random effects model on simulated data sets. In the simulation study,
they examined the effect of the hyperparameter values of two parameters: 1) the precision
of the normal prior distribution for the fixed effect coefficient u;, and 2) the positive



definite matrix of the inverse Wishart prior distribution for the covariance matrix. Their
findings were consistent with previous studies (e.g., Richardson and Green, 1997 and Ho,
1995) in that the posterior number of components of the random effects distribution
would be moderately affected by the hyperparameter values, while the fixed effects
estimation results were almost unchanged.

The specification of the prior distributions for the Bayesian inferences was based on
Richardson and Green (1997) and Lee and Song (2003). The Dirichlet prior distribution
was assigned on the mixture component parameter, and both informative and
uninformative priors were assigned for other model parameters. In the RIMCMC
implementation process, they followed the steps and moves in the previous studies (e.g.,
Richardson & Green, 1997; Boys & Henderson, 2001; Papastamoulis & Iliopoulos, 2009;
and Roberts et al,2000.) and proposed the combined and split moves for the dimension-
changing in the mixture structure equation modeling (SEM).

Unlike the treatments of the steps in the implementation in some of the previous
studies, Liu and Song (2017) discussed the unnecessary use of the birth-and-death step
that was originally proposed in Green (1995) and was commonly used in the RIMCMC
literature. They hence excluded the birth-and-death steps from their implementation.

In their simulation studies, Liu and Song (2017) examined recovery of the number of
mixture components (e.g., comparing a one, two, and four class solution) using different
prior specifications on model parameters. They also calculated the deviance information
criterion for the models with different numbers of mixture components, and they
compared the DIC approach with the RIMCMC methods. They found that the RIMCMC
algorithm was highly computationally efficiency and that it yielded relatively small bias
levels and root mean square values. Their simulation results concluded that the model
selection and estimation results were not very sensitive to the prior specifications under
consideration.

RIMCMC has also been widely used in Bayesian model averaging (e.g., Green, 1995;
Hastie & Green, 2012; Huelsenbeck, Larget, & Alfaro, 2004; etc.), neural networks
(Andrieu, de Freitas, & Doucet, 2001; Holmes & Mallick, 1998) and signal processing
(Andrieu & Doucet, 1999; Larocque & Reilly, 2002). The advantages of using RIMCMC
for Bayesian mixture modeling were discussed in several studies (e.g., Richardson and
Green, 1997; Ho and Hu, 2008, Liu and Song, 2017, etc.). First, RIMCMC yields
convenient, accurate and flexible outcomes compared with other analytic approximations
or MCMC techniques. Second, mixture modeling is conventionally considered as the
estimation of separate models. Model comparison criteria or other non/semi-Bayesian
tests are used to infer the number of mixture components. On the contrary, RIMCMC
provides full Bayesian treatments of mixture estimation. It models not only the model
parameters but also the number of mixture components by treating the number of mixture
components as random variables that are drawn from a distribution. Third, RIMCMC
solves the technical issues that are associated with the sampling methods for the posterior
distribution. RIMCMC enables the jumps between states that are of different
dimensionalities. It provides the means of computing moments for the density functions
when a new component is created.

Despite its popularity in the literature of statistics and computer sciences, RIMCMC
has seldom been applied in social and behavioral sciences. Therefore, in this dissertation,



I will introduce this Bayesian non/semi-parametric method to LGMMs, which are
commonly implemented within the social and behavioral sciences. My main focus will be
on using this approach to aid in the estimation of the number of latent classes. A specific
emphasis will be placed on how this approach can benefit substantive research being
conducted within Psychology and related fields.

In the next few subsections, I will present and discuss the procedure of the RIMCMC
method for the LGMM in the two studies in this dissertation.

2.2.2 RIMCMC for LGMM
2.2.2.1 Prior Specifications

The formulation of the LGMM is presented in Equations 6-8, which can be written in
the Bayesian hierarchical model format:

yl't = AtBF + IDBR + Eitl (36)
eit~N(Or 0-2); (37)
C
BR~Z T MVN (1o, 5) fori = 1, .., m;t = 0,...,3, (38)
c=1

where on the level-1 model, A; is a vector of time that is coded as A; = 0,1,2,3, and ID is
a vector of the identification number of the observation coded as ID = 1, ...,n. Br is a
vector of fixed effects coefficients, and By = (@, f;c) represents a matrix of random
coefficients that can be modeled with a level-2 model, where B follows a multivariate
normal distribution with the mean of . and covariance matrix of X for each latent class c.
On the level-2 model, y, = (uac, U ﬁc) represents the mean vector for the multivariate

0
normal distribution in class ¢, whereas £ = (ll)aa ) represents the covariance
Yap Ypp

matrix, which is invariant across the latent classes.
The prior distributions assigned on the model parameters in the LGMM are specified
as follows.
- U.~MVN(E, D). The mean vector follows a multivariate normal distribution, with
¢ as the hyperparameter mean and D as the hyperparameter covariance matrix.
- X~IW (p, ). The covariance matrix follows the inverse Wishart distribution, with
the degrees of freedom p and a positive definite matrix 7.
- 0%~IG(by, b,). The residual variance follows an inverse gamma prior with the
shape and scale hyperparameters (by, b,).
- (mq...,mc)~Dirichlet(dy, ... 6¢). The mixture class proportions are drawn from
the Dirichlet distribution with the hyperparameter §, which is linked to the class size.
- Bp~N(ug, Dr). The fixed effect coefficients follow a normal distribution with
mean hyperparameter yyr and hyperparameter covariance matrix Dg.



2.2.2.2 Steps in the RIMCMC algorithm

Similar to the standard MCMC algorithm, the transitions of RIMCMC follow the
detailed balance condition, which ensures that moves from State 1 to State 2 are made as
often as moves from State 2 to State 1 (Gelman et al, 2014). Let x denote the state
variable, and p(dx) denote the target distribution, which represents the posterior
distribution of the model parameters given the observed data. When the current state is x,
with a move type m being made and the destination state x’ being proposed, the joint
distribution probability is p(x, dx"). We can construct the Markov transition kernel with

p(x, dx"), which should satisfy the detailed balance condition: [ A [ 5 p(dx)p(x,dx") =

Jo [, p(dx")p(x’, dx), for all appropriate subspaces A and B (Green 1995).

Based on the Gibbs sampler and the Metropolis-Hastings method, the probability that
the move (from state x to state x") is accepted can be calculated by Equation 17. With the
measure a,,(x, x"), the move is accepted; otherwise, no move is attempted and the
current values are retained.

The steps of an RIMCMC sweep can be constructed as follows:

- Initialize latent class ¢ and corresponding model parameters, including

¢, Uer 3, 02and the allocation z; at iteration = 1.

- When iteration > 1, for the within-model move, within a fixed model ¢, update
parameters (7., U, T, 02).

- Still when iteration > 1, for the between-model move, conduct a “combine” or a
“split” move that either combines two mixture components into one or splits one
into two according to the acceptance mechanism described above. Simultaneously
update other model parameters (7, fi¢, 2, 02) and z;.

- While the number of iterations < total number of iteration, increment iteration =
iteration + 1 and repeat steps 2-4.

We adopted the approach from Ho and Hu (2008) for moments matching for the
density in the new mixture component in the “combine” and “split” moves. Specifically,
the zeroth moment (proportion weight), the first moment (mean), and the second moment
(covariance matrix) become

T = M, + T, (39)
e = Mo, Hey, + e, e, (40)
(2. + .ucﬂg) =T, (Ecl + .uclﬂgl) + 7, (zcz + HCZMZZ); (41)

in the “combine” move, where components ¢; and ¢, are combined into a new
component c. In the “split” move,

TTe, = umg, me, = (1 —uwm, (42)



where component cis split into two new components c; and c,. For the details of the
transformation and the auxiliary variables, see Equations 29-35 and Ho & Hu (2008).

€1

2
C2

T
y. =—C,HCT,

T
I, = ﬂ—CCC(I — )T,

(43)

(44)

(45)

(46)

The acceptance probability specified in Equation 17 then can be computed as follows.
Let A denote the acceptance probability, prdenotes the prior ratio, mp denotes the move

probability, pp denotes the proposal distribution probability, and |/|denotes the

determinant of the /acobian matrix:
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A = (lieklihood ratio) X pr X mp X pp X |J|. (51)

Then the acceptance probability for the “split” move is min(1, A), and the acceptance
probability of the “combine” move is min(1,471).

2.2.2.3 Label Switching Issues

Label switching issues occur when the posterior distribution is invariant under
permutations in the labeling of the parameter (Chung & Schafer, 2004). This results in
the parameters having identical marginal posterior distributions. Label switching causes
problems in the interpretation of the MCMC output since parameter estimates do not
necessarily represent those from a single latent class.

One conceptually simple solution to the label switching problem is to impose
artificial identifiability constraints on the parameters. For example, putting a constraint
on the mean parameters, K., of a normal mixture model such as y; < ... < u.. Another
approach is to handle the non-identifiability in the post-processing of MCMC output.
Some studies proposed inferential methods based on the relabeling of components or
adopted fully decision-theoretic methods in order to minimize the posterior expected loss
or construct an appropriate loss function (e.g., Stephens, 2000; Celeux et al, 2000; Hurn
et al, 2003; Sisson and Hurn, 2004, Sisson and Fan, 2010, etc.). Each of these methods
can be computationally expensive. In this dissertation, I have used the former approach
where the constraint is put on the parameters to handle label switching.

2.3 Dirichlet Process Mixture Modeling for LGMM

The Dirichlet process models are a family of non/semi-parametric Bayesian models,
which are commonly used for density estimation, non—parametric and semi-parametric
modeling, and model selection or averaging. DP is non-parametric in the sense that it
allows the model to contain an infinite number of parameters and “let the data speak for
themselves.” In other words, DP does not require the specification of the number of latent
classes a priori because it assumes that the number is infinite. It also allows the mixture
model to adapt (i.e., increase or decrease) the number of “active” (i.e., non-empty)
classes as more data are fed in the model over time (Teh, Dirichlet Process, 2011). The
non-parametric feature of DP can also be used in finite mixture models and I elaborate on
this point in the following subsections.

2.3.1 Dirichlet Distribution

The Dirichlet distribution can be seen as a distribution over multinomial distributions.
Specifically, it is a distribution over the C-dimensional simplex, (7, ... T¢),
where Y., = 1 and r, > 0. (74, ... ) follows a Dirichlet distribution:

(mq, ...mc)~Dirichlet(ay, ...ac), (52)



with parameters (a4, ... ac). The likelihood function of the Dirichlet distribution can be
specified as:

C
F(anc) a-—1
) = s 53
p(nli T[C) Hcr(a(;) T[c ( )

c=1

2.3.2 Dirichlet Process

The Dirichlet process is defined as a distribution over distributions, or a measure on
measures. Let G be a function that is assumed to have infinite dimensions, and
G~DP(.|a, Gy). G, represents a base distribution. Based on the properties of the Dirichlet
distribution discussed earlier, we can derive, for all (4, ... ),

G(my), ..., G(me)~Dirichlet(a(Gy(my), ..., a(Gy(1()). (54)

Samples from a Dirichlet process are discrete with probability one:

(o]

6(6) = ) micf (60), 3)

c=1

where f(6,) represents a generic mixture model that is assumed with to have infinite
number of classes, and 6 is the parameter vector of the model. One advantage of using
DP as a prior distribution is that DPs are conjugate to themselves. That is, the posterior of
a DP is also a DP:

P(G|6) = DP( Go + ——f(6),a + 1). (56)

a+1 a+1

DP has been widely used in statistics and machine learning. Teh (2010) summarized
some simple and prevalent applications of DPs, including Bayesian model validation,
density estimation and clustering via mixture models. In the validation of model fit
process, a base model that is assumed to generate the observed data is compared with
other possible models. The Bayesian non-parametric approach uses the space of all
possible distributions in comparison with a prior over these distributions. DP is a popular
prior distribution in this case. In the comparison process, a given parametric model is
chosen as the base model, while DP serves as a non-parametric relaxation around this
parametric model. If the parametric model performs as well as or better than DP relaxed
model, then the validity of the model is convinced (Teh, 2010; also see e.g., Carota,
Filippone, & Polettini, 2018). Another application of DP is in density estimation, where
the interest lies in modeling the density from which a given set of observations is drawn.
DP as a Bayesian nonparametric method is often chosen as a prior over all densities.
When using DP for density estimation, the draws from the Dirichlet distribution are
usually smoothed out with a kernel. (see e.g., Escobar & West, 1995; Lo, 1984) Let
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G~DP(.|a, Gy), and let f(y|0) be a family of densities (kernels) indexed by 6. Then the
nonparametric density of the observed data y can be presented as:

r(y) = [ f(¥16)G(6)d(6). (57)

This smoothing function is also equivalent to the DP mixture models, which I will
discuss in the following few sections.

2.3.3 DP Mixture Models

DP mixture models are commonly used in the context of infinite mixture models,
where the mixture has an infinite but countable number of clusters or classes. The
advantage of DP mixture models is that the number of classes is not fixed and can be
automatically inferred from data using the Bayesian posterior inference framework
(Neal,2000). For finite mixture models, where the number of classes is fixed, there can be
different approaches to the inference of clustering. One approach is equivalent to model
selection or model averaging for appropriate number of clusters (see e.g., Gershman and
Blaei, 2011; Kim, Tadesse, and Vannucci, 2006; Wang and Dunson, 2011).

Another approach for the finite mixture models using DP is to treat the number of
clusters as a very large value, which nearly approaches infinity. But note that even under
the assumption that the number of clusters in a finite mixture model is nearly infinite, the
actual number of active clusters (the clusters with at least one observation) cannot be
greater than the number of observations. This treatment of the number of clusters allows
us to apply DP on the finite mixture models and to avoid the complicated operation of the
model selection and averaging approach.

Various computation solutions for implementing DP mixture models have been
proposed in the fields of statistics and computer sciences. Blei and Jordan (2006)
compared a mean-field inference algorithm to the Gibbs sampling methods for DP
mixtures of Gaussians and presented an application to a large-scale image analysis
problem. The authors used the variational inference method to compute the posterior
distribution under a DP mixture prior. With a simulation study and an image data
example, the authors concluded that the variational inference methods ran faster than the
two Gibbs samplers (i.e., collapsed Gibbs and blocked Gibbs sampler). Gelfand and
Kottas (2012) proposed a computational approach to obtain the posterior distribution for
more general functions for the underlying distributions for mixture models using DP as a
Bayesian nonparametric method. The authors investigated the extreme value distributions
associated with a single population, compared the medians in a k-sample problem, and
applied their methods in a survival data analysis example.

Teh et al (2012) applied DP on a hierarchical model (i.e., multilevel model) with
groups of data where observations within each group were drawn from a mixture model.
They assumed that the number of mixture components was unknown a priori and was to
be inferred from the data. DP was used as a non-parametric prior on the parameters of the
hierarchical mixture model. This paper presented three schemes of the construction of the
hierarchical DP, including the stick-breaking representation, the “Chinese restaurant
franchise” representation, and a presentation of the process in terms of an infinite limit of
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finite mixture models. The authors demonstrated the application of the hierarchical DP
mixture model on document modeling. They also compared the performance of the
hierarchical DP combined with hidden Markov models (HMM) with other non-DP HMM
approaches. Based on the results of their experiments, this paper concluded that this
hierarchical nonparametric Bayesian approach to clustering provided a generally useful
extension of model-based clustering.

Miller and Harrison (2016) used the analogues of the mixture of finite mixtures
(MFM) to estimate the unknown number of mixture components for DP mixture models.
The paper reviewed some essential properties of MFM, including the clustering
algorithms that were also exhibited in DP mixture models. The authors compared the
MFMs and the DP mixture methods through a simulation study and the discriminate
cancer subtypes data. They concluded that the methods for inference in DP mixtures
(such as the exchangeable partition distribution, the Chinese restaurant process, the
random discrete measure formulation, etc.) could be implemented on MFM in a simpler
manner.

Despite the application of DP mixture models in statistics and machine learning (see
Maceachern & Muller, 1998, Gelfand, Kottas, & MacEachern, 2005, Jiang, Kulis, &
Jordan, 2012, etc. for more examples), it has not been introduced into the structural
equation modeling framework. Therefore, I am proposing to adopt this Bayesian non-
parametric method and apply it to the LGMM.

2.3.4 Model Specification for a DP Mixture Model

We assume a generic mixture model with a density that can be specified as:

Cm ax

FO)= ) mef Ol (59)

c=1

where f(y|4,.) is a generic function of the model with the parameter vector, 4., and 7,
denotes the mixture weights. A mixed-effects normal (or Gaussian) mixture model can be
parameterized in the form of the DP mixture modeling in the following way:

yi~F, (59)
F~G, (60)
G ~ DP(aG,), (61)
Go~N(uc, 2, (62)

where F is a density function, in this dissertation, a mixed-effects normal function with
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F=a.+ Atcﬁic + €ites (63)

Qic = Ugc T (aicl (64)

Bic = tge + {p, - (65)

This model formulation can be illustrated with a diagram in Figure 1.

a (g
N\

Figure 1. Diagram of a Generic DP Mixture Model

In this diagram, the observation data y; given the parameter vector 8.follows the
mixed-effects normal function F, that is, y;|8.~F (8,). G is a distribution of 6, and
G~Dirichlet(a, G,). In other words, the mixture models are sampled from DP with
parameter a and G, with 8.~G independently for ¢ = [,..., o, and G, denotes the base
distribution that 0. is drawn from. a is the dispersion parameter, or precision parameter
that determines the number of clusters or classes we are going to obtain. Larger values for
a tend to lead to a greater number of clusters. G, can be further modeled as G, =

Z .0, - 6 specifies that when § = &7, this term will take the value 1, otherwise it
c=1

will take zero. §*is the parameter estimate for the class membership of a specific class. In
an infinite mixture model, G, is the unknown mixing measure. The finite mixture models
can be considered as a special case of infinite mixture models. In this case, G, can be
treated as discrete with masses at a finite number of ¢ components, C, and then we can
obtain a finite mixture model as was discussed in the previous section (Gelman, et al.,
2014).
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2.3.5 Algorithms of DP Mixture Models
2.3.5.1 Blackwell-MacQueen Urn Scheme

The Blackwell-MacQueen urn scheme is commonly used to represent a Dirichlet
process. It is based on the Polya urn model that can be considered as the opposite of
sampling with replacement. In the Polya um model, we assume that we have an urn with
colored marbles and we draw the marbles randomly from the urn. Each time we draw a
marble, we observe the color. We put it back in the urn and add an additional marble of
the same color. We use the similar scheme proposed by Blackwell-MacQueen (Blackwell
& MacQueen, 1973) to construct the Dirichlet process.

Consider drawing an i.i.d. sequence of 0y, ..., 8,, from G, where G~DP(a, G,). The
aG0+269i

conditional probabilities of drawing a 8,, given its previous draws is 0, 41]01.,~ p

In this scheme, we assume Gis a distribution over colors and each 8, represents the
marble that is added in the urn. The posterior base distribution given 6y, ..., 8,, is also the
predictive distribution of 8,,, ;. This sequence of predictive distributions for

0., ..., B, forms the MacQueen urn scheme.

Given the conditional probabilities of 84, ..., 8,,, we may construct a distribution over
sequences 04, ..., 0, by iteratively drawing each 6; given 04, ..., 8,,. The joint distribution
of 84, ..., 6,, is invariant to any finite permutations, and thus it is exchangeable (see Teh,
2010 for the details of the proof). Then according to Finetti’s theorem, for any infinitely
exchangeable sequence 64, ..., 8,,, there is a random distribution G such that the sequence
is composed of i.i.d. draws from it:

P(0,,..,6,) = [ nc(ei)dp(c). (66)

In this specification, the prior over the random distribution P(G) is the Dirichlet
Process DP(a, Gy).

2.3.5.2 Chinese Restaurant Process

The Blackwell-MacQueen scheme can be proved mathematically equivalent to the
Chinese restaurant process (CRP). CRP describes the distribution over partitions. Imagine
we have an empty restaurant with an infinite numbers of tables. Then here comes the first
costumer. The probability that this costumer will go to the first table is 1 and to other
tables is 0. Then comes the 2™ costumer, with the probability she will go to the first table

and share with the 1 customer begin set at ﬁ The probability she will take a new table
is ﬁ . Then the (n + 1)th customer always has 2 choices: she can either share an
occupied table or take a new table. The probability of taking a new table is ﬁ, and the

probability of sharing an occupied table is ﬁ; n is the number of customers before her,

and c is the number of customers already sitting at the table. Essentially, the Chinese
restaurant process is the distribution over the partition.
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When we use DP on a mixture model, we assume that P, in this case the number of
mixture components, is infinite. Then we no longer have joint conjugacy in which the
posterior of P since y™ = y;, ... . A solution to this problem is to marginalize out P to
obtain an induced prior distribution on the model parameter 6. By doing this, we obtain
the Polya urn predictive rule (Gelman, et al., 2014),

n

a 1
p(0;164, ... 6;_1)~ (m) Py(6;) + E(W) 8g;- (67)

i=1

This conditional prior distribution consists of a mixture of the base measure P, and
probability at the previous subject’s parameter values. The Chinese restaurant process
describes this scheme. Consider a restaurant with an infinite number of tables. The first
customer sits at a table with dish 8;. The second customer sits at the first table with

probability ﬁ or a new table with probability ﬁ This process continues with the ith

customer sitting at an occupied table with the probability proportional to the number of
previous customers at that table and sitting at a new table with probability proportional to
a. In this process, each occupied table in the restaurant represents a different cluster of
subjects, with new clusters added at a rate proportional to alog(n) in the asymptotic limit.
Therefore, the number of clusters depends on the number of subjects #» with new clusters
introduced as needed and as additional subjects are added to the sample (Miller &
Harrison, 2016).

2.3.5.3 Gibbs Sampler

The Chinese restaurant process can be implemented using Gibbs sampler:

1) First randomly assign the cluster ID z; to a &, while keep other cluster IDs fixed.
2) Calculate the probability using the CRP algorithm to determine which cluster
should this observation ¢ should be associated with, and then assign a new cluster ID
z;j to &, where j # i.

3) Update the parameters.

4) Repeat this process until it converges.

2.3.5.4 Prior Specification for DP

The formulation of the LGMM, which is presented in Equations 6-8, can be written in
the Bayesian hierarchical model format:

Yie~N(A¢Br + IDBg, €;1), (68)

€i~N(0,0?%), (69)
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where

and

Br~G, (70)
G~DP(a,Gy), (71)
Go~XC_m;:MVN(u,,2),fori =1,..,n;t=0,..,3. (72)

The prior distributions assigned to the model parameters in the LGMM can be

specified as follows:

- U.~MVN(E, D). The mean vector follows a multivariate normal distribution, with
¢ as the hyperparameter mean and D as the hyperparameter covariance matrix.

- IX~IW(p, 7). The covariance matrix follows the inverse Wishart distribution, with
the degrees of freedom p and a positive definite matrix 7.

- 0%~IG(by, b,). The residual variance follows an inverse gamma prior with the
shape and position hyperparameters (bq, b,).

- Bp~N(ug, Dr). The fixed effect coefficients follow a normal distribution with
mean hyperparameter yy and hyperparameter covariance matrix Dg.

- Bgr~G and G~DP(a, G,). G represents a probability function, specifically a
normal distribution, over a parameter space and can be written as G ~DP(a, N(u, 2)),
where a is the dispersion parameter of the DP mixture, which can take on a single
value, such as 1, or follow a gamma distribution such that a~Gamma(a,, a,). In the
probability density function of normal mixture models (i.e., Gaussian mixture models)
G can be marginalized out. Taking the integral of function G with respect to u, the
random effects coefficient By then follows an integrated function such that

Br~J N(u, Zp)(du). In this distribution, , ~IW (v, T},).
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Chapter 3

Study 1: Deciding on the Number of
Classes for LGMM using Bayesian

Non/Semi -Parametric Methods

3.1 Introduction

LGMM is a useful method in the structure equation modeling (SEM) framework for
modeling latent classes in longitudinal data. Despite its usefulness in the social and
behavioral sciences, one major challenge is deciding on the number of latent classes that
exist; there are several techniques used to help drive this decision (e.g., comparative
indices such as information criteria). Parallel to the existing methods used to decide on
the number of classes, Bayesian non/semi-parametric methods, such as RIMCMC and
DP, have been developed and popularized in statistics and computer science. These two
modeling techniques may prove useful within the LGMM framework by contributing to
the practice of “testing” the number of latent classes.

The primary goal of Study 1 is to examine the performance of RIMCMC and the DP
on extracting the number of latent classes for LGMM. Another goal is to compare these
two Bayesian non-parametric methods with the traditional (i.e., frequentist)
implementation of the LGMM. Study 1 is structured as follows. First I will briefly
discuss the traditional approaches to assessing the number of latent classes for mixture
models and the issues (i.e., problems) linked to them. Then I will present a simulation
study that examines the performance of RIMCMC and the DP and compare these
approaches with the frequentist estimation framework. The simulation study is followed
by an empirical example in which RIMCMC and the DP are applied to an LGMM using
a real life data set. Study 1 will conclude with a discussion of the performance of the
Bayesian non-parametric methods for LGMMs, as well as a discussion of the
implications for applied researchers implementing these methods.

3.1.1 Assessing the Number of Classes for Finite Mixture Models

When researchers have no a priori information about the classes (e.g., the substantive
differences between the classes, the number of classes, or the substantive interpretation of
classes), then the number of classes has to be inferred from the data; the parameters in the
component (i.e., class) densities are estimated from the data. In this case, the selection of
the number of classes is akin to cluster analysis (Roeder & Wasserman, 1997). Several
problems may arise from this cluster analysis approach. First, the separation (or
distinction) between classes must be large enough in order to detect that they are indeed
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distinct classes. This large degree of separation is not always the case in applied settings,
and classes can be difficult to identify when the sample size is relatively small
(McLachlan & Peel, 2000). Second, the distribution of the data may influence class
separation. For example, non-normally distributed repeated measures may lead to the
extraction of multiple classes when only a single class exists in the population (Bauer &
Curran, 2003).

Another approach to selecting the number of classes is to use a number of statistical
tests and model fit measures. Some popular information-based fit indices are the
Bayesian information criterion (BIC), the sample size adjusted BIC (SBIC; Sclove,
1987), Akaike’s information criterion (AIC; Akaike, 1987), and the consistent AIC
(CAIC; Bozdogan, 1987). In addition to the information-based indices, the mixture
models can also be examined and compared using the nested model tests, such as the
likelihood-ratio (LR) test and the Lo-Mendell-Rubin test (LMR; Lo, Mendell, & Rubin,
2001), as well as some goodness of fit tests (e.g., the multivariate skewness test (MST)
and the multivariate kurtosis test (MKT) proposed by Muthén, 2003).

Simulation studies that examined some of these fit indices within the LGMM context
arrived at conflicting conclusions. For example, Tofighi and Enders (2008) suggested that
SBIC and LMR consistently performed well, whereas other tests and measures (e.g., BIC
and CAIC) tended to provide inconsistent information on the number of extracted latent
classes. Tofighi and Enders (2008) also examined the bootstrap likelihood ratio test
(BLRT; McLachlan & Peel, 2000) and found that it outperformed the other indices in
detecting the correct number of latent classes. Nylund et al. (2007) obtained some
contrasting results regarding LGMM class enumeration. For instance, the BIC was found
to be superior to all other information criteria for LGMMs for correctly identifying the
true number of classes. They also found that the BLRT performed as well as BIC, and
both of these indices performed better than the others in the mixture model context.

Despite their popularity, the statistical tests and model fit measures also have several
challenges when being used for class enumeration purposes. The major issue is the
disagreement among the statistical tests and the fit measures, which can make the
determination of the number of classes highly subjective and sometimes difficult (or even
impossible). The simulation studies by Tofighi and Enders (2008) and Nylund et al.
(2007) can be considered as the two primary investigations on model comparison
measures. The model fit indices and statistical tests examined in these two studies are
regularly used for deciding on the number of latent classes in the SEM literature.
However, as detailed earlier, Tofighi and Enders (2008) and Nylund et al. (2007)
concluded with contradicting findings on which comparison measure(s) performed the
best for class enumeration for LGMMs. The contradictions in simulation findings may
cause confusion and difficulties for substantive researchers trying to decide on the
number of latent classes when implementing the LGMM.

Another issue with the model comparison measures is that the result of the class
solution can be sensitive to the model estimation method being implemented. For
instance, the starting values for maximum likelihood estimation and the informativeness
of the prior specification for Bayesian estimation can each impact the final model results
and class structure obtained. Moreover, the performance of statistical tests and fit
measures can depend on factors such as class separation, sample size, and class
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proportions (Nylund, et al, 2007). This artifact makes the implementation of these
measures highly dependent on the specific settings or features of a particular application.
Thus, generalizability of the performance of these indices may not be appropriate.

As I have discussed, the traditional clustering methods and the model selection
approach, which are dependent on the statistical tests and fit measures, have their
disadvantages and challenges. Therefore, in this study, I propose the alternative
approaches to selecting the number of latent classes via Bayesian non/semi-parametric
methods. RIMCMC and DP, as non/semi-parametric methods, are able to circumvent the
issues rooted in the traditional clustering and model selection approaches when
determining the number of classes. Most importantly, RIMCMC and DP do not require a
presumption of the number of classes; instead, this is estimated. Therefore RIMCMC and
DP may effectively avoid the potential contradicting conclusions that are derived from
the comparisons of different models based on some statistical tests or fit measures. This
feature of RIMCMC and DP can make them more efficient and straightforward compared
with the traditional approaches. In the next section, I detail the simulation design used to
examine these claims more thoroughly.

3.2 Design of Study 1

In Study 1, I evaluated the ability of RIMCMC and DP to accurately detect the
number of latent classes for LGMM via a simulation study. I also compared these two
Bayesian non-parametric methods with the traditional model estimation approach, which
is the maximum-likelihood estimation through the expectation maximization algorithm
(ML/EM) with regards to the accuracy of parameter recovery.

3.2.1 Population Values

In this simulation study, data were generated and analyzed using an LGMM with four
time points, with one latent intercept and one latent linear slope. To minimize model
complexity, the covariance structure was held equal across latent classes.® The generative
model was constructed based on Equations 6-8. In total, 2000 replications of datasets
were generated based on this model; a small sensitivity analysis was conducted to ensure
the Monte Carlo study converged with 2000 replications.

I empirically derived the parameter population values for the data generation model
from Kaplan (2002). Kaplan (2002) examined data from the Early Childhood
Longitudinal Study-Kindergarten (ECLS-K) ([NCES], 2001) using a growth curve model
with multiple time points. [ used estimates for the latent factor means and covariance
matrix from Kaplan (2002) as the population values for the intercept and the slope terms
for the first latent class in this study. Population values for the remaining latent classes
were determined statistically in order to create certain levels of class separation.
Specifically, the multivariate Mahalanobis distance (MD) was used to measure the class
separation between two adjacent latent classes.* The MD value was set to MD =1.5 for

* Note that this structure can also be allowed to vary across classes if desired.

4 The multivariate MD is calculated by: MD = / (; — u)7S~2(1; — ), where p; and
U, are two vectors that represent the means of the latent growth factors (i.e., the intercept
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all simulation conditions in Study 1 to mimic a situation with a moderate level of class
separation. All of the population values that were used to generate the data are listed in
Table 1, and data were generated using Mplus 8 (Muthén & Muthén, 1998-2017).

Table 1. Population Values of Growth Parameters in Study 1 and Study 2.

B i GO GAM-2Class GMM-3Class

MD=15 MD=1 MD=2 MD=1 MD=1515 MD=1/1 MD=1/3 MD=3/1 MD=3/3
Mean-1
Cl 31370 31.370 31370 31.370 31.370 31370 31370 31370 31370 31370
C2 - 35.730 34290 37182 40.090 35730 342390 34290 4009 40090
C3 < - - - - 40090 37210 43010 43010 48810
Mean-5
Cl 1.802 1302 1802 13502 1.802 1.802 1.802 1.802 1.802 1.802
C2 - 3350 2834 3857 4885 3350 2834 2834 4835 4885
C3 - - 3 = - 4880 3867 5917 5917 7968
Vanance
I 16000 16.000 16.000 16000 16.000 16.000 16000 16000 16000 16,000
5 2.000 2000 2000 2000 2.000 2000 2000 2000 2000 2000
Covaniance 0,300 0300 0300 0300 0300 0300 0300 0300 0300 0300
Eesidual 0500 0.500 0500 0500 0500 0500 0500 0500 0500 0500

3.2.2 Simulation Conditions

Factors that were varied in this simulation study included: the sample size (3 levels),
the number of latent classes (3 levels), and the class proportions (2 levels for 2-class
conditions and 3 levels for 3-class conditions).

There were three levels of sample size included here as to mimic small, medium, and
large data sets that are commonly found in the social and behavioral sciences literature,
as well as the LGMM simulation literature (see e.g., Depaoli, Yang, & Felt, 2017;
Depaoli & Boyajian, 2014). I selected the following sample size conditions to reflect the
following levels: n = 200, n = 400, and n = 600. The three levels of the number of
classes include: =1, €= 2, and C'= 3. Condition €= 1 represents a latent growth
curve model (i.e., without a mixture structure). Conditions €= 2 and C'= 3 represent
LGMMs with 2 latent classes and 3 latent classes, respectively. This factor allowed me to
assess the performance of these estimation approaches with and without the presence of a
mixture structure.

For the conditions implementing €= 2, I specified two levels of class proportions.
The first level held classes at equal sizes in the population (Proportions = 50%/50%),
and the second assessed the impact of a minority class containing only 20% of the
cases (Proportions = 80%/20%). For the conditions implementing C'= 3, I specified
three levels of class proportions: Proportions = 33%/33%/33%, Proportions =

and the slope) in two adjacent latent classes, and S represents the covariance matrix of the
latent factors.

20



45%/45%/10% (testing the impact of a true minority class), and Proportions =
70%/20%/10% (testing the impact of a true majority class).

3.2.3 Model Estimation Techniques
3.23.1 RJMCMC

Three different model estimation techniques were examined in Study 1, which were:
RIMCMC, DP, and ML/EM. In the RIMCMC conditions, generated data were analyzed
using the RIMCMC technique. The RIMCMC algorithm for analyzing the LGMM was
developed based on the RIMCMC technique described in Ho and Hu (2008) that is
detailed in the Introduction. This algorithm was created with R code and the functions for
the analysis were modified based on the R package “miscF” (Feng, 2016).° The
maximum number of models in the analysis process was set to 30. The program
performed 5000 iterations for each MCMC run, with the first 2500 iterations designated
as the burn-in phase; issues related to convergence are discussed in the Results section.
The RIMCMC analysis model can be written in the Bayesian hierarchical model format
(i.e., Equations 36-38). The prior specifications of the model parameters represent weakly
informed prior distributions, which indicate some degree of uncertainty or not having
“sufficient” information in the nature of an exploratory study (Gelman, et al, 2008). The
prior distributions can be specified as follows:

- u. represents the vector of the means of the growth parameters (i.e., the latent
intercept and slope terms). This vector follows a multivariate normal distribution,
Uc.~MVN (&, D), where & represents the mean hyperparameter vector of the MV N
prior distribution and D represents the covariance matrix hyperparameter of the
MVN prior distribution.

0 For all the two-class model conditions, ¢ = (33,2). The first element of the
vector ¢ represents the mean hyperparemeter of the intercept; it is calculated
by averaging the population values of the growth parameters across two latent
classes. For example, the population values for the means of the intercept in a
two-class model were 31.75 and 35.73 for C1 and C2, respectively (all
population values are listed in Table 1). The mean hyperparameter of the

(3L75+3573) — 33.74. Then the result,

33.74, was truncated to an integer, 33, and used as the hyperparameter of the
intercept in the & vector. The second element of the & vector represents the
mean hyparameter of the slope; it is calculated in the similar way as for the
mean hyparameter of the intercept. That is, averaging the population values of

the latent classes. In two-class conditions, the mean hyperaparameter of the
(1.802+3.35)

intercept was therefore calculated by

slope was = 2.58, then truncated to 2 and used as the second

element of the ¢ vector. In 3-class conditions, £ = (35,3), where 35 is the
mean hyperparameter of the intercept and 3 is the mean hyperparameter of the
slope. They were calculated in the similar way as in the two-class conditions,

5 A proof of concept simulation was conducted to ensure that all code was working
correctly. More information about this proof of concept can be found in the next section.
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Specifically, the mean hyperparameter of the intercept was
(31.75+35.73+40.09)
3
hyperparameter of the intercept in the ¢ vector. The mean hyperparameter of
(1.802+3.35+4.88)

= 35.86, then was truncated to 35 as the mean

the slope was = 3.34, then was truncated to 3. These two

mean hyperparameters formed the ¢ vector (35, 3) for the mean
hyperparameters for the growth factors in the 3-class model conditions. The
hyperparameters of the growth factors (i.e., intercept and slope) were created
in this way because RIMCMC did not assume and specify the number of
latent classes a priori. Therefore, the hyperparameters were not implemented
on the specific growth parameters in each latent class. In other words, there
was only one set of mean hyperparameters for the growth parameters
specified in the prior implementation (i.e., one for the intercept and one for the
slope), regardless of the number of latent classes. To average the population
values across all latent classes was a simple and reasonable way to derive the
hyperparameters.

o D= [100 100] were implemented on the covariance matrix, where the

variances were fixed at 10 and the covariance at 0 as to provide some degrees
of infomrativeness.

2 is the covariance structure of the growth parameters and X ~IW (p, t), where
p = 2, representing the number of parameters in the covariance matrix, and 7 =
[10 0 ]

0 10
information.
o2 is the residual variance on level-1 model and 62~IG (by, b,), where b; = .01
and b, = .01, which represents an uninformative prior distribution.
Br is a fixed effect coefficient and Bx~N (ug, S¢), where g = 0, and Sp = 10.
This specification of hyperparameters provides a normal distribution with very
little information.
The mixture class proportions T were drawn from a Dirichlet distribution where
(mq...,mtc)~Dirichlet(10, ... 10), where the values of  represent the number of
cases in each latent class, and this particular specification of the prior distribution
can be considered uninformative since very few cases are assigned to a given
class under this specification; note that m = 10 was the default Dirichlet prior
implemented in Mplus as to avoid the situations (such as when
n.~Dirichlet(1,1)) in which the formation of small or inadmissible class
solutions might occur. (Muthén & Muthén, 1998-2017).

; this specification represents an IW prior distribution with little

3.23.2 DP

The second Bayesian non-parametric model estimation technique being examined is
DP. In the DP conditions, I implemented the DP process mixture modeling technique for
the LGMM, and I used the R package “DPpackage” (Jara, Hanson, Quintana, Mueller, &
Rosner, 2017) for data analysis. In each MCMC run, I requested 5000 total iterations in
the chain, with the first 2500 iterations discarded as the burn-in phase. In the DP
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conditions, I also implemented the weakly informed prior distributions on the model
parameters, which are described as follows:

u represents the vector of means for the latent growth parameters (i.e., the
intercept and the slope). It follows a multivariate normal distribution
Uc~MVN (&, D), where & = (33,2) for 2-class conditions and ¢ = (35,3) for the

3-class conditions, and D = | . The hyperparameters in the DP conditions

|
0 10
were specified and calculated in the same manner as in the RIMCMC conditions.

Specifically, the mean hyperparameters of the intercept and the slope were
calculated by averaging the population values of the means of the intercept and
the slope across latent classes, respectively. The hyperparameter of the covariance
matrix represents an informative prior specification.

2 is the covariance structure of the growth parameters and X ~IW (p, t), where

p=2andt= [100 100]. The degrees of freedom p and the T parameter of the

IW prior represent an uninformative prior specification.

o2 is the residual variance on level-1 model and 62~IG (by, b,), where b; = .01
and b, = .01, which represents an uninformative prior specification.

Br is a fixed effect coefficient and Bp~N (ug, Sg), where up = 0, and Sy = 10,
which represents an uninformative prior specification.

Br~G and G~DP(a, G,). G represents the linear normal mixture where the
parameters were drawn from, and G, represents a base distribution of the DP
mixture, which is a normal distribution in this study. G therefore follows a DP
distribution written as G~DP (a, N(u 2 )), where a is the dispersion parameter of
the DP mixture, which takes on a value of 1 in this study. In the probability
density function of normal mixture models (i.e., Gaussian mixture models), after
G has been integrated out (with respect to i), the random effects coefficient By
then follows an integrated function such that By~ [ N (u, Z,)(dp). In this

distribution, X, ~IW (v}, Tp,), where vy, = 2 and T}, = [100 100]. In this IW prior

specification, v;, represents the degrees of freedom, which is equal to the number
of parameters, 2, and T}, represents an uninformative prior specification.

3.23.3 ML/EM

The third model estimation technique I evaluated in this study is the conventional
frequentist approach, ML/EM, which was used to compare to the Bayesian non-
parametric methods. In the ML/EM conditions, data analysis was implemented using
Mplus 8. The number of perturbations of user-specified starting values was set at 100,
and the number of final stage optimizations was set at 25. This ratio was used in order to
achieve proper convergence for LGMMs (see e.g, Hipp and Bauer, 2006).

All of the manipulated factors in the simulation were fully crossed with these three
model estimation techniques, which resulted in 18 cells for each estimation technique.
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3.3 Proof of Concept Simulation Study for RIMCMC and DP

In order to illustrate the performance of the software programs that were used to
conduct the analysis for RIMCMC and DP, I included a proof of concept simulation
study in this section. The goal of this proof of concept study was to ensure that the two
programs, including the R code that was adopted from the R package “miscF” (Feng,
2016) for RIMCMC and the functions from R package “DPpackage” (Jara et al, 2017)
for DP produce valid and reasonable results for the simulation studies in this dissertation.
So far, there is no existing R packages or functions for applying RIMCMC on LGMMs
so the code that was developed and used in this dissertation was a novel approach. The R
script for conducting RIMCMC and DP for LGMM is available upon request from the
author.

The proof of concept study was conducted through a brief simulation, where the same
models that were examined in the dissertation were used to generate and analyze the data.
In this brief simulation study, I generated one data set of 7= 10000 cases (i.e., mimicking
a population study) using a two-class growth mixture model with 50/50% class
proportion and MD = 1.5 class separation. Data were generated using Mplus version 8.
The population values of the generative model were specified as follows. The means of
the intercept and the slope were 31.37 and 1.802 in Class 1 and 35.73 and 3.35 for Class
2. The variances for the growth parameters were 16 and 2 and the covariance between the
intercept and the slope was 0.3. The residual variance was 0.5. All the population values
are listed in Table 1.

Then I tested the programs for RIMCMC and DP on the generated data using the
two-class growth mixture model. For the RIMCMC condition, the analytic model is
specified in Equations 36-38. The prior specifications are as follows. £ = (33,2) and D =

10 07, _ 10 0, o n .
[0 10],2 W@andt=[, [ ];0*~16(0.01,0.01); By~N(0,10); and

(mq...,mc)~Dirichlet(10, ...10). A detailed description and explanation of the prior
specifications are included in the Methods section in Study 1 (Section 3.2.3). In the
RIMCMC model, one Markov chain with 5000 iterations was requested, of which the
first 2500 iterations were discarded as burn-in. In the DP condition, the generated data
were analyzed on the model specified in Equations 58-65. The priors of the DP model are

specified as follows. ¢ = (33,2) and D = [100 100]; X~IW(2,7)and T = [100 100];
02~1G(0.01,0.01); Br~N(0,10); Bg~G and G~DP(a, N(1, %)) where a = 1,

10
Br~J N(u, Zp)(dp), and 2, ~IW (2, T,) where T) = [ 0 1 o]

for the detailed description and explanation of the prior specifications of the DP condition.
The results with respect to the parameter estimate and the percent bias of the

parameter estimate for each model parameter are listed and compared with the population

values in Table. In the DP conditions, the estimate of the parameter of the number of the

latent classes is 1.84, which can be rounded to the integer 2. The class proportions are 51%

in Class 1 and 49% in Class 2. Simply looking at the parameter estimates for the number

of latent classes and the class proportions, we can see that the DP technique produced an

estimate of the number of the classes that was approximately accurate. Although the

. Please see Section 3.2.3
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parameter estimate was a decimal number, it was very close to the population value after
being rounded to an integer. The class proportions (prop = 51%/49% for a 50%/50%
condition) were also estimated accurately by DP. Based on the percent bias levels of the
estimates, the means of the growth parameters in the DP condition were recovered well.
Only the bias level of the mean in Class 2 exceeded 10%, which can be considered as
“relatively high.” However, the percent bias levels of the covariance matrix indicated that
the variances and the covariance of the growth parameters were recovered poorly; they
were all greater than 20%. The residual variance was recovered well.

Table 2. Parameter Estimates and Percent Bias for Proof of Concept Study

% Bizs of % Bias of
Pop DF  RIMCMC —np  grvcMc

#clagses 2 1.840 2 -8% 0000
Prop 0305 051051 051051 0022002 002002
Mean-1

Cl 31370 31.430 31.410 0.191 0128
c2 35730 35170 35280 -1.567 -1.259
Mean-5

Cl 1.802 1. 790 1.804) -.666 4111
C2 3.350 3.010 3110 -10.149 -T.184

Vard 16.000 19940 16470 24625 2037
Var-5 2.000 2440 2180 22.000 9.500
Cov 0300 1380 0270 353333 -10.000
Residaal  0.500 0.450 0500 -2.000 0.000

In the RIMCMC condition, the number of latent classes and the class proportions
were estimated very accurately. The percent bias levels of the parameter estimates
indicated that all the parameters were recovered well, except the covariance with a bias
level of 10%.

The results of the proof of concept simulation study suggested that the programs used
to conduct the analysis for the DP and RIMCMC performed in an approximately accurate
way. Although the covariance matrix was recovered poorly in the DP condition, this
technique was still able to accurately estimate the number of latent classes, class
proportions, mean parameters of the growth factors and the residual variance. The
estimation issues for the covariance matrix did not only occur in the DP condition, they
also appeared in other model estimation conditions. I will elaborate on these issues in the
Results sections presented below.

When the DP and RIMCMC techniques were implemented in the main simulation
studies via the R code, one issue needs to be noted. This proof of concept simulation
study was conducted on a data set that contains a sample size of » = 10000, which is far
greater than the actual sample size in each condition. Therefore, the accuracy of
estimation might decrease to some extent as the sample size decreases. But the goal of
this brief simulation study was to prove that these two techniques were feasible to
implement with the currently developed programs using a large sample size; the results
showed that the goal was achieved.
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3.4 Results of Study 1

In Study 1, I examined the performance of ML, RIMCMC, and DP on recovering the
number of latent classes, class proportions, and the means and covariance structure of the
growth parameters. The final estimate of each parameter was calculated by averaging the
estimates across all iterations. Specifically, the estimate for the number of classes was the
average of all estimates from total number of post burn-in iterations; the estimates for the
growth parameter means and variances were averaged across all iterations where the
certain class solution was extracted. For example, the intercept means of a 2-class model
were calculated by averaging the estimates of the intercept means in iterations that
extracted 2 classes. The estimate of the number of classes was an integer within each
iteration.

I evaluated the accuracy of the recovery of the parameter estimates by computing the
relative percentage bias, where values greater than 10% were deemed problematic and
are represented with bold values in the tables.® In addition to the parameter estimates and
the percent bias levels, I also present the mean square error (MSE) for the means and
covariance structure of the growth parameters as a composite measure of accuracy and
efficiency. All of the simulation results in Study 1 are listed in Tables 3-8. Tables for
MSE values (Tables A1 and A2) are presented in Appendix A.

3.4.1 Convergence

In Study 1, I used the Geweke (1992) statistic to assess whether the sampling
procedure had converged to the target distribution within a Markov chain for the
RIJMCMC and DP conditions. The Geweke diagnostic evaluates the convergence for the
Markov chains based on a test for equality of the means of the first 10% and the last 50%
of a Markov chain (as to ensure that the two sections of the chain being compared are
well separated, and presumably independent from one another). The test statistic of a
Geweke diagnostic is a standard z-score, which is calculated by taking the difference
between the two sample means and then dividing by its estimated standard error. If the
samples are drawn from the stationary distribution of the chain, then the two means are
equal and Geweke’s statistic (i.e., the z-score) is asymptotically normally distributed. If
the chain reaches convergence, then the z-score should have a relatively small value, for
instance less than 2. The Geweke statistic for the means and covariance structure of the
growth parameters was calculated using the “coda” package in R (Plummer, Best, Cowles,
& Vines, 2006). The z-scores were all less 2.000 for all parameters in the RIMCMC and
DP conditions in Study 1. I also included the trace plots for the estimates of the intercept
and the slope parameter in the 2-class 80/20 condition as a proof of Markov chain
convergence. Trace plots are presented in Figures 2 and 3.

Estimate—Population value

X 100%

6 . o . . .
Relative percentage bias is computed using the following equation: Population value
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Figure 2. Trace Plots for the Growth Parameters in 2-Class 80/20 Condition for
RIMCMC in Study 1. Top row: intercepts of Class 1 and Class 2 under RIMCMC;
bottom row: slopes of Class 1 and Class 2 under RIMCMC.
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Figure 3. Trace Plots for the Growth Parameters in 2-Class 80/20 Condition for DP in
Study 1. Top row: intercepts of Class 1 and Class 2 under DP; bottom row: slopes of
Class 1 and Class 2 under DP.
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In addition to the chain convergence for all of the parameters in RIMCMC and DP,
model convergence was also obtained for 2000 out of 2000 replications being requested
in each simulation cell. All conditions for the three model estimation techniques had a
100% model convergence rate. All results that are presented here were calculated using
the parameter estimates from the 2000 converged replications.

3.4.2 Class Enumeration and Parameter Estimate
3.4.2.1 GCM

Results of the parameter estimates and the percent bias values for the GCM with ML,
RIMCMC, and DP in Study 1 are presented in Tables 3 and the top section of Table Al.
Since the number of latent classes was predetermined by the ML estimation method, the
latent class parameter was only estimated by RIMCMC and DP. In the DP conditions, the
number of latent classes was estimated accurately with decimal numbers that are very
close to 1 (i.e., indicating only one class emerged). DP yielded quit low bias levels for
this parameter. In addition to the number of classes, RIMCMC also provided the
percentage of the number of iterations that picked this specific number of class in each
replication,’ presented in the parentheses in Tables 3-38 of the parameter estimates. This
feature of RIMCMC can be greatly useful as it provides us with the certainty of the final
class solution, as well as the number of classes extracted. For instance, in the RIMCMC #n
= 200 condition, the estimate for the number of classes was 1.002, indicating that the
percentage of iterations within the RIMCMC algorithm selecting a 1-class solution was
99.8%. The high percent of picking a specific number of class solutions could represent a
high confidence of our determination of the final class enumeration. Another way of
phrasing this could be that if this percentage of selecting a particular class solution was
markedly lower, then our confidence in the final class solution would also be diminished.

The growth parameter means were well recovered by ML, RIMCMC, and DP. The
percent bias levels were all below 10% for all three sample sizes. The covariance
structure was recovered very well in the ML conditions with low bias levels. However,
both RIMCMC and DP produced moderate-to-high bias levels for the covariance
structure. The MSE values are quite small, some close to 0, for the means and the
covariance structure parameters in GCM with ML, RIMCMC, and DP.

" This percentage is calculated in 3 steps: 1) counting the number of iterations that selected a certain of
number of class, 2) dividing the number by the total number of iterations in each replicate, and 3) averaging
the percentages across all 2000 replications.
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Table 3. Parameter Estimates and Percent Bias for GCM

n=2{ n=40{ o=500
ML RIMCMC op ML RIMCMC DP ML EIMCMC DP
Pop Parameter Estimates
#classes 100D 1.000 1.002(0.998) 1.029 1.000  1.002{0.998) 1.005 1.000 1.002(0.998) 1.0:04
Maan-I 31370 31.373 31929 31473 31364 31.527 31.112 31.369 31559 31339
Mean-5 1.502 1.801 1964 1741 1.B01 1.789 1.744 1.301 1799 1920
Var-I 16000 15910 15603 14.206 15.936 15874 14448 15933 16248 17.249
Var-5 2000 1.991 2654 L1730 2.000 2363 1964 1.999 2187 1.990
Cov 0300 0305 0128 0082 0.302 0375 0804 0306 0340 0146
Resigual  0.500 0.504 0316 0755 0.502 0.456 0.686 0.502 0499  0.897
Parcent Bias
Mezan-1 31.370 0.00% 1783 03329 0019 0300 0821 0004 0604 0100
Maan-5 1.802 -0.083 8977 3412 0044 0684 3182 0067 0153 6550
Var-I 16.000 -0.564 -2.482 -11.215 -390 0789 9700 041 1548 7.3808
Var-5 2000 0475 JLTH -13.480 0.020 18135 -1.797 0045 9360 0501
Cov 0300 1.667 57369 -TLTT1 0.733 24922 168.007 2133 13.274 51482
Eemidual  0.500 0.740 3.165 51085 0.420 080 37.201 0360 0275 39316
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3.4.2.2 2-Class Prop=50/50 Conditions

Results for the parameter estimates and percent bias levels in the 2-class prop = 50/50
conditions are presented in Table 4 and the middle section of Table A1. RIMCMC and
DP yielded accurate estimates of the number of classes. In the RIMCMC conditions, the
percent of picking a 2-class solution out of all 2000 iterations improved as the sample
size increased (e.g., from 65.1% for n =200 to 94.2% for n = 600). This trend indicates
that we can be more certain that the final class solution estimated by RIMCMC is 2 when
the sample size is larger compared to when it is relatively smaller. In other words, we
would expect proper class enumeration to be more difficult under smaller sample sizes,
and the RIMCMC algorithm provides an indication that this is indeed true. The class
proportions parameter was recovered well for all three estimation methods across
different sample sizes. Only the RIMCMC n = 200 condition produced bias levels that
were slightly higher than 10% for the 2-class proportion parameters.

The means of the intercept parameters were estimated with low bias levels for ML,
RIMCMC, and DP, while the means of the slopes had relatively high bias levels for ML
and DP in some conditions. All three estimation methods yielded moderate-to-high bias
levels for the covariance structure. The MSE values for all the parameters were relatively
low (below 2) across estimation methods and sample sizes. The few exceptions were the
variance of the intercept parameter for DP, which had relatively larger MSE values (i.e.,
above 5).

38



Table 4. Parameter Estimates and Percent Bias for 2-Class 50/50

n=200 =400 n=50{
ML EIMCMC DP M. RTMCMC DFP ML FEIMCMC DP

Pop Parameter Fstimates
#elasses 2.000 2000 2.331(0.651) 1.938 2.000 2.13X0.85) 1975 2.000 2.218(0.942) 1.880

Cl 0.497 0.448 0.527 0.510 0.514 0512 0.507 0.503 0.512
Faop C2 0.503 0.552 0474 0.490 0.486 0488 0.493 0.497 0488
Mean-I
C1 31370 31.103 32113 31.953 31252 31008 31.018 31313 31.747 31.140
c2 35.730 36.033 35804 34486 35979 35596 35581 35893 34493 36.767
Mean-5
Cl 1.802 2272 1.705 1.994 2235 1.562 1.642 2104 2293 1.689
C2 3.5350 2 848 3.050 3.396 2910 3.060 3.087 3010 3457 3277
Varl 16.000 15.946 14.821 18.276 16.329 16780 20721 16299 16.160 20249
Var-5 2000 1.968 2 05l 2918 2033 1.B65 2789 2.030 2118 2613
Cov 0.300 1.182 0.829 1.510 1.073 0.137 1.459 0917 0.644 1.240
Readual 0500 0.503 0712 0519 0.502 0.706 0506 0502 0.700 0513

Percent Bias

C1 0616 -10,333 5.300 1.944 2833 2450 1.454 0.556 2433
Prop C2 0.616 10.333 -5.300 -1.044 -2833 2450 -1.454 0556 -2.433
Meam-I
Cl 31370 -0LEB50 2370 1.860 -0.376 8 7 T B 0180 1.200 0733
C2 35.730 0848 3.257 -3.482 0.697 0376 D416 0.457 -3.461 20801
Mean-5
Cl 1.802 26.099 -5.397 10.670 24.007 13315 -B90D 16.781 27.242 5248
C2 3.350 -14.982 -8.960 1.365 -13.137 8636 -TB53 -10.152 3197 2174
Var-I 16.000 -n.338 -T368 10475 2054 4876 19505 1860 1.001 16,558
Var-5 2000 -1.625 3.053 45590 1.660 -6.730 39450 1.475 5907  30.669
Cov 0.300 103,957 176312 403392 157500 54,208 386115 205533 114.581 313.405
Residual 0.500 0.560 42.403 3.797 0320 41.266 1264 0320 39,946 2.637
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3.4.2.3 2-Class Prop=80/20 Conditions

Results for the parameter estimates and percent bias levels in the 2-class prop = 80/20
conditions are presented in Table 5 and the bottom section of Table A1. The estimate of
the number of classes in the RIMCMC and DP conditions was 2, which was accurately
recovered. In the RIMCMC conditions, the percentage of a 2-class solution was higher
when the sample size was 600 compared to n = 200 or 400. ML, RIMCMC, and DP
recovered the class proportions poorly when n = 200, especially for the minority class
(i.e., prop = 20%). While ML and DP tended to overestimate the minority class,
RIJMCMC tended to underestimate it. The recovery of the class proportions improved as
the sample increased; overall, RIMCMC and DP were slightly better than ML.

The means of the intercepts were recovered well for all three estimation methods. ML
yielded slightly higher bias (higher than 10%) for the slope parameter means when n =
200 and n =400. RIMCMC and DP yielded lower bias levels (lower than 10%), except
for RIMCMC when n = 600, where the bias level was around 35%. The covariance
structure parameters were estimated poorly, with high bias levels (all above 90%) for all
three estimation methods across all simple sizes. Only ML yielded lower bias levels for
the covariance structure as the sample size became larger. All three estimation methods
produced low MSE values (below 2) for all parameters, while DP still had higher MSE
values for the variance of the intercept parameter (around 5-23).
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Table 5. Parameter Estimates and Percent Bias for 2-Class 80/20

n=20{ =400 n=0600
ML FIMCMC DP ML FIMCMC DP ML EIMCMC Dp

Pop Parameter Estimates
# clazses 2.000 2.000 2.335(0.766) 1.720 2000 2.125(0.742) 1819 2.000 2.126(0.863) 2186

Cl 0.644 0.838 0.702 0.732 0817 0.T85 0.771 0813 0.825
Frop C2 0356 0.162 0.299 0268 0.183 0216 0229 0187 0175
Mean-I
Cl 31370 30.587 30.832 31.653 ID.ETE 31141 31.147 31.063 L7800 32489
Cc2 35.730 35646 35080 36012 35836 35352 35335 35.853 35815 35084
Mean-5
Cl 1.802 2083 1.702 2145 1995 1.610 1.651 1.930 2434 1963
c2 3.350 2778 3.287 3.336 3.007 3044 322 3092 3425 3.652
Var-1 16.000 15.124 13751 20.B05 15618 16798 1E.546 15.702 16252 19561
VarsS 2000 1870 211 2990 1943 1915 2715 1.959 2157 2495
Cov 0.300 0.818 0.011 1.405 0.676 0.025 1.800 0.593 0.e27 L5237
Eesidnal 0.500 0.503 0.737 0.513 0.502 0.730 0491 0.502 0718 0.503

Percent Bias

Ci -19.500 4792 11313 -B.555 2083 -1938 -3.673 1.583 3.125
Prop c2 T8.000 -19.167  49.250 323 -B.333 1.750 14.690 -6.333 -12.500
Mean-I
Cl1 31370 -2.408 -1.715 0.902 -1574 0729 0710 -0.980 1.307 3504
C2 35.730 -0.236 -1.E75 0.789 0298 -1.059  -1.105 0344 D25 18683
Mean-5
Cl 1802 15,5871 -5.549  19.018 10.699 10,631 -B.405 7.120 35053 8953
C2 3.350 -17.063 -1.881 -0.407 -10.242 9146 -3303 -7.690 232 9.022
Varl 16.000 5474 -14.058  30.028 -2391 4983 15910 -1.865 1.576 2112156
Var-5 2000 -6.505 5527 49.504 -2 B40 4256 38.72T7 -2.060 7859 24.762
Cov 0.300 172.767 -96.380 3638.208 125300 -91.746 S00.087 97.500 108.984 408916
Residual 0500 0.680 47.316 2 646 0380 45970 -1812 0360 43.622 0.693
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3.4.2.4 3-Class Prop=33/33/33 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
33/33/33 conditions are presented in Table 6 and the top section of Table A2. RIMCMC
and DP estimated the number of classes accurately. RIMCMC yielded a higher
percentage (above 16%) of a 3-class solution as the sample size increased from n = 200 to
n =400. ML poorly recovered the class proportions across sample sizes, bias levels all
above 17%. The class proportion estimates improved for RIMCMC as sample sizes
increased from n = 400 to n = 600. DP performed comparatively better, with lower bias
levels than ML and RIMCMC, in recovering the class proportions; this was especially the
case when sample sizes were larger.

The estimates for the growth parameter means had low bias levels in all three
estimation methods. The growth parameter variances were recovered well by ML but had
relatively higher bias levels (about 43%) for RIMCMC and DP when the sample sizes
were n = 200 and n = 400. The covariance structure was estimated poorly in all
estimation methods (i.e., bias levels were extremely high, all were above -34%). The
MSE values for all parameters were relatively low (all below 3) except for the variance of
the intercept in the DP conditions (which were around 7 to 67).
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Table 6. Parameter Estimates and Percent Bias for 3-Class 33/33/33

=200 =400 n=600
ML RIMCMWC DP ML ETMCMIC DE ML EIMICMC Dp

FPop Parameter Estimates
# classes 3.000 3.000 2.626(0.652) 2607 3.000 2.65X0.671) 2834 3.000 2.882(0.753) 2847

Cl 0.300 0278 0323 0.307 0215 0317 0.305 0304 0332
Prop c2 0.428 0309 0374 0425 0400 0329 0422 0371 0342

C3 0.371 0413 0304 0.269 0385 0354 0.273 0325 0326
MeanIC1 31370 31.018 31010 30624 30,977 30557 31.063 30979 31.781 30.747
Mean-IC2 35730 35.860 MO072 34397 35893 4669 34974 35.861 36.833 34859
Mean-IC3  40.090 40.909 41998 415844 40.961 38199 38190 40947 38513 380991
Mean-5C1 1802 2.006 L74 1719 1871 1671 1674 1.802 1951 1958
Mean- 5C2 3330 3484 3311 3.132 3511 3395 3393 3.510 3577 3568
Mean-SC3 488D 4 635 4232 4347 4.730 4815 4813 4772 45391 47M4
Varl 16.000 15.587 14768 24203 15.688 18764 23.031 15.738 14937 16987
Var-5 2.000 1.837 2.059 3.390 1.201 1.867 3128 1.931 2234 2333
Cow 0300 1.055 0.953 3.327 0.694 0198 271 0.567 0514 1159
Eesidual 0.500 0.503 0.739 0513 0.502 0.705 0502 0.502 0.696 0490

Percent Bias

Cl -9.024 156587 2273 -7.048 -MBE 3811 -7430 7912 0356
Prop C2 19,785 6313 13182 38642 .21 0432 17.824 12458 3586

C3 -17.730 5000 -TET9 -18.564 16.667 7273 -17.364 -1.515 -1111
Mean IC1 31370 -L121 -1.149 2377 -1.253 -2.592 0979 -1.247 1311 -1985
Mean-IC2 35730 0.365 4640 3730 0.455 2968 2115 0.365 3086 -2438
Mean-I1C3 40090 2043 4759 4375 2172 2231 2245 2.138 1440 -2.740
Mean-5C1 1802 11.293 4333 4610 3812 7282 71N 0.011 BE283 5658
Mean-5C2 3330 3085 -1.168  -6.505 4791 1343 1274 4773 6782 6508
Mean-5C3 488D -5.029 -13.270  -10.918 -3.076 -1.339  -1379 2219 1053 -2170
Varl 16.000 -2.581 -7.692  SLXTR -1.251 17.275 43943 -1.639 £645 6170
Var-5 2000 -8.135 2932 g9.482 -4.940 6663 56377 -3.440 11.699 16.671
Cov 0300 151600 I17.611 1009021 131200 -M.109 509.720 B3.933 71444 286.481
Eesidual 0.500 0.500 47.713 2517 0.420 40999 0.348 0.320 39114 -2.001
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3.4.2.5 3-Class Prop=45/45/10 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
45/45/10 conditions are presented in Table 7 and the middle section of Table A2. The
number of classes was estimated accurately in RIMCMC and DP. ML consistently
overestimated the minority class for the class proportion parameters with moderate-to-
high bias levels (around 16%-80%) across sample sizes. While RIMCMC also slightly
overestimated the minority class for n = 200 and n = 400 conditions (e.g., bias levels
were around 11% to 17%), it estimated the class proportions accurately when the sample
size was 600 (bias levels decreased to below 10%). DP consistently performed the best
among all three estimation methods, with low bias levels (all levels were under 10% bias)
for the class proportions.

The intercept growth parameter means were estimated well in all three estimation
methods across sample sizes (bias levels all under 10%). The slopes growth parameter
means had slightly higher bias levels (e.g., slightly higher than 10%) when n = 200, but
parameter recovery was improved as the sample size increased. The growth parameter
variances was estimated with relatively high bias levels for all estimation methods when
n =200 (e.g., bias levels were slightly higher than 10% under ML and RIMCMC and
were over 66% under DP); the bias of the variances decreased under ML and RIMCMC
but maintained relatively high levels under DP (e.g., above 20%), even as the sample size
increased to n = 200. The covariance parameter bias levels were consistently high (all
levels were above -72%) for all estimation methods across sample sizes. The MSE values
were relatively smaller for most parameters (e.g., MSE < 3.2) except for the intercept
variance, which had relatively high MSE values (higher than 10) in the DP condition.
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Table 7. Parameter Estimates and Percent Bias for 3-Class 45/45/10

=200 =404 =600
ML EIMCMC DP ML RIMCMC DP ML REIMCMC DF

Pop Parameter Estimates
# classes 3.000 3.000 3 2(0.633) 3.229 3.000 3.25(0.76T) 3.127 3.000 3.047(0.949) 3l

Cl 0.343 406 0.464 0370 0.438 0.455 03r 0430 0.425
Frop c2 0477 0ATT 0.445 0475 0.451 0.437 0479 0422 0469

C3 0.180 0117 0.091 0.155 0.111 0.105 0.143 0098 0.106
MeanICl 31.370 30.779 30245 29484 30,945 30.208 30:227 31.044 31869 32068
MeanIC2 35730 34.816 36890 38778 35.026 36.541 36.615 35.126 488 36340
MeanIC3 40,090 39.747 38337 39937 39971 38.880 38301 40043 40422 40290
Mean-SC1 1802 2033 1.666 1756 1.983 1.585 1.622 1.955 1973 1978
Mean-SC2 3350 2,990 3.081 3.772 3.082 3024 3.090 3123 3445 3439
Mean-SC3 4880 47330 4321 4324 4373 4,605 4 464 4 459 4 836 4594
VarI 16.000 15203 14235 26612 15.841 17.170 26844 15918 16.160 19229
Var-5 2.000 1.726 2048 3610 1.850 1.943 3710 1.899 2164 2.740
Cov 0.300 1.160 843 4139 1.026 D081 3.789 0.905 D691 1.451
Residual 0.500 0.504 0.739 0.500 0.503 0.721 0.515 0.503 0.698 0.504

Percent Bias

Cl 11844 5778 3.133 -17.724 -2.593 1.889 -16.120 6667 -5481
Prop Cl 5.002 5925 -1.222 5593 0.122 -2922 6542 6296 4.200

C3 50.200 17.333 -3.600 54.590 11.119 4,650 43.100 -1&67 5.767
MeanICl 31.370 -1.885 -3.588 -6.013 -1.351 -3.705 -3.642 -1.03% 1.58% 2225
MeanIC2 35.730 -2.557 3245 8.531 -1.968 2371 2478 -1.650 -2.524 1.706
MeanIC3  40.090 -0.855 437M -0.381 0297 -3.017 -4 453 116 0820 0.499
Mean-SC1 1802 12.819 -1.549 -2.559 10.044 -12.017 -9.963 §474 9503 2.741
Mean-SC2 3350 -10.740 -5.043 1i.601 -£.006 9738 -7.756 -6.767 2837 2.657
Mean-5C3 4880 -13.316 11458 -11.391 -10.391 -5.627 -£.528 -8.627 {893 5865
Var-1 16.000 -4.421 11034 66325 -0.993 7.314 6T.775 0513 1002 20,183
Var-5 2.000 -13.6%90 2405 80512 -7.500 -2.851 B5.481 -3.075 8183 37400
Cov 0.300 186,500 151.135 1179.761 141,133 -73.961 1163.161 102967 130.226 386.905
Readual 0500 0. 760 47.861 0.061 0.500 44.170 3.083 0520 39.699 0.890
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3.4.2.6 3-Class Prop=70/20/10 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
70/20/10 conditions are presented in Table 8 and the bottom section of Table A2. The
number of classes was estimated accurately by RIMCMC and DP. The percentage of
selecting a 3-class solution yielded by RIMCMC was relatively low in the n = 200
condition (i.e., 55.4%) and the n = 400 condition (i.e., 58%), compared to the percentage
in the n = 600 condition (i.e., 84.4%). This pattern suggests that we have greater certainty
in the number of classes as sample sizes are increased. The class proportions were
recovered with relatively high bias levels by ML and RIMCMC when n = 200 (bias
levels were around 15% to 103% under ML and around 11% to -32% under RIMCMC).
Class proportion recovery under ML and RIMCMC was improved slightly as the sample
size increased to n = 200 (e.g., bias levels decreased to as low as -23% under ML and to
slightly higher than 10% under RIMCMC). DP performed well across sample sizes in
estimating the class proportions with relatively low bias levels (bias levels never
exceeded 19%). The class size in the majority class was consistently underestimated by
ML (e.g., it was -31.763% for the n = 200 condition) and was slightly over estimated by
RIMCMC (e.g., it was 11.143% for the n = 200 condition).

The growth parameter means were estimated with relatively low bias levels (most did
not exceed 13.5% bias) except for a few slope mean parameters in ML and RIMCMC
under n = 200 (these bias levels were all over -16%). ML recovered the covariance
structure poorly, but bias levels decreased as the sample size increased. The performance
of RIMCMC and DP was inconsistent across sample sizes in estimating the covariance
structure. The MSE values are small (e.g., below 2) for most parameters in all three
estimation methods conditions, but they were relatively high (e.g., some of the MSE
values were higher than 64) for the intercept variance under RIMCMC and DP.
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Table 8. Parameter Estimates and Percent Bias for 3-Class70/20/10

n=200 n=4{] n=H{{
MI. EREIMCMC DF ML  EIMCMC DF ML EIMCMC DF

Pop Parameter Estimates
# classes 3.000 3.000 325W0.55H 3489 3.000 3268(0.58) 3372 3000 2845084 3199

Cl 0478 0.778 0.653 0519 0.757 0678 0.537 0746 D662
Prop C2 0406 0.136 0.237 0379 0.162 0.233 0.366 0172 0233

C3 0.116 0.086 0.110 0.102 0.081 0082 0.097 0082 0106
Maan-IC1 31370 30386 20909 30140 30584 30757 30761 30.660 31726 29348
Mean-I1C2 35730 34545 36660 38471 34.798 35983 36763 34913 351 33.7M
Mean-1C3 40,090 40.554 38748 38923 40,690 38980 38382 40.756 38650 33.667
Mean-5CI 1.802 1.706 1.629 1.760 1.693 1.733 1.733 1.760 1.860 1.8s6l1
Mean-5C2 3330 2.808 1664 3.535 2984 3.049 3.121 3.079 3386 3387
Mean-5C3 4880 4.743 4241 4517 4775 4590 4.656 4769 5450 4463
Varl 16000 14236 14246 27144 14837 1698 25101 15.202 24003 15447
Var-5 2.000 1661 2085 3684 L775 1971 3298 1.832 2015 3250
Covw 0300 0375 0.065 4.046 0309 0.034 2848 0.303 0405 22903
Residual 0500 0503 0715 0.493 0.502 0.727 0.508 0.50:0 0710 0486

Percent Bias

Cl -31.763 11.143  -H6.667 -25.820 8.086 -3.186 -23.274 6571 -5500
Prop C2 103,180 33000 18500 89335 159060 16.650 BL13D 13778 16333

3 15980 -14.000 9670 2070 -15.800 -11.000 -3.340 18444 5833
Mean-IC1 31.370 -3.137 4658 3922 2570 -1.955 -1.540 -2.2684 1133 6444
MeanI1C2 35.730 3316 2604 1671 -2.608 0.708 2,890 -2.287 -1.370 5616
Mean I C3 40090 1.158 3348 2912 1497 -2.768 -4 261 1.662 -3.582 3549
Mean-5C1  1.802 -3311 G618 2341 -6.060 -3.B48 -3.812 -2.331 330 3299
Mean-5C2 33350 -16.17% -20.450 5.534 -10.914 4580 -£.822 -2.078 1062 1117
Mean-5C3 4380 -2816 13097 -7.430 -2.156 5045 4593 -2.285 11680 -B535
Varl 16.000 -11.024 -10.963  69.653 -71269 6.160 56851 -4 038 S0L020 3457
Var-5 2.000 -16.935 4300 B4.221 -11.245 1472 64901 -2.400 0744 624%
Cov 0300 14067 -78.337 1148.517 3.100 -35.748  849.360 1.067 34891 B67.792
Fesidual 0500 0.640 42998 -138D 0480 45.433 1.555 -0.020 41958 -2774
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3.5 An Empirical Example

This section provides a simple example as a tutorial to illustrate the application of the
Bayesian non/semi-parametric methods in a substantive research area. I applied
RIJMCMC and DP on an LGMM using a dataset from the Early Childhood Longitudinal
Study, Kindergarten Class program (ECLS-K; [NCES], 2001). This dataset includes a
sample from the ECLS-K program that focuses on children’s early school experiences
beginning with kindergarten and following children through middle school. It consisted
of approximately 1000 schools in the U.S., with a series of longitudinal measurements of
students, teachers, and schools.

The subset of the ECLS-K data I used in this example included n = 400 cases that
were randomly drawn from the original dataset. This subset consisted of four waves (i.e.,
time points) of measures: fall-kindergarten, spring-kindergarten, fall-first grade, and
spring-third grade. The base year was Fall, 1998 and the spacing of the four waves was
handled in the code to represent the unequal time spacing when data were collected (see
for more details on time spacing: Kaplan, 2002). The outcome measure of this study was
reading assessment (i.e., children’s item response theory (IRT) scores on reading). The
reading IRT scores in the ECLS-K data set were assumed normally distributed with
means (and standard deviations in the parentheses) for the four waves: 22.67 (8.58),
32.47 (10.85), 37.97 (12.67), and 54.77 (14.17) (ECLS-K; [NCES], 2001).

The model used to analyze the data was an LGMM of 4 time points with an unknown
number of latent classes to be tested. The estimation methods for data analysis were
RIJMCMC and DP. In the RIMCMC condition, the analytic model is specified in
Equations 36-38. The priors in the RIMCMC condition were specified in a way such that
very little information was incorporated so as to reflect a scenario where the researcher
knows very little about the population. The prior specifications are as follows: & = (0,0)

and D = [100 100]; I~IW(2,7) and T = [10O 100]; 02~1G(0.01,0.01); Bg~N(0,10);

and (m...,m¢)~Dirichlet(10, ...,10). A detailed description and explanation of the prior
specification of RIMCMC are included in the Methods section in Study 1 (Section 3.2.3).
One Markov chain with 5000 iterations was requested, of which the first 2500 iterations
were discarded as burn-in. In the DP condition, the data were analyzed with the model
specified in Equations 59-65. Akin to the RIMCMC condition, the non-informative priors

were also implemented in the DP condition: £ = (0,0) and D = [100 100]; I~IW(2,1)
and 7 = [100 1(’0]; 2~1G(0.01,0.01); By~N(0,10); Bx~G and G~DP(a, N(, %))

where a = 1, Bg~[ N(i, £)(dp), and E,~IW (2, T,) where T, = [100 100]. A detailed

description and explanation of the prior specifications of DP can be found in the Methods
section in Study 1 (Section 3.2.3).

Results of the parameters estimates (mean and standard deviation) of the LGMM for
RIMCMC and DP are presented in Table 9. RIMCMC and DP yielded conflicting
outcomes. In the RIMCMC condition, the estimate of the number of latent classes was
1.991 according to the algorithm and around 89.1% out of all the iterations selected the 2
class solution. This indicates that there was strong support, according to RIMCMC, that
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the number of classes was 2. The class proportions estimated by RIMCMC were 13.7%
in Class 1 and 86.3% in Class2. This suggests that majority of the children fell within one
group in terms of the growth of the reading ability, while a few children were in another
group. The intercept mean was 23.750 for Class 1 and 37.199 for Class 2, indicating the
reading ability started at different points for the two latent classes. The slope mean for
Class 1 was 4.308 and the slope for Class 2 was 4.753, which suggests that the growth
rates of the reading ability for the two latent classes were close. The covariance structure
was constrained equal across the two classes for ease of estimation for this example. The
intercept parameter variance was 18.289, indicating a relatively large variation around the
starting point. The slope parameter variance was 0.612 which suggests a relatively small
variation of the growth rate. Overall, the separation between the classes appeared to be
mostly at the fall-kindergarten reading level (i.e., through the intercept).

In the DP condition, the estimate of the number of classes was 1.443, which can be
rounded to an integer of 1. This indicates that only 1 class was selected by DP estimation
algorithm. Within this one class, the mean of the intercept was 29.961 and the mean of
the slope was 3.940. The intercept parameter variance was close to the estimate in the
RIMCMC condition, suggesting a large variation around the starting point. The estimate
of the slope parameter variance, 13.832, indicates a relatively large variation in the
growth rate among the individuals.

Overall, this example highlights how the results from RIMCMC and DP can be
interpreted. It may be, as was the case here, that results do not align across estimation
methods. This finding is perfectly fine, and the researcher would need to use substantive
context to aid in selecting the final model solution to interpret. The element that
RIJMCMC and DP have that is lacking in the traditional approach to model testing (i.e.,
comparing competing class solutions via information criteria and other fit measures) is
that these approaches actually estimate the number of latent classes. Then the approaches
provide an index that allows the research to establish a level of (un)certainty in the final
model. This level of (un)certainty can be defined through the raw estimate of the number
of classes (i.e., RIMCMC = 1.991, DP = 1.443), as well as the number of iterations that
favored a particular class solution. These features are potentially more informative and
interpretable compared to the traditional approach to model selection.

Table 9. Parameter Estimates of the LGMM on the Reading IRT Scores
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FIRICMC oe

Pimoler i sD Mean SD
#classes 1991(39.100) - 1483 -
0137 - : .
P 0863 - ; -
Mean-I
c1 23750 5538 20961 1072
2 37199 10753 = =
Mean-5
c1 4308 0683 3940 1497
2 4753 0.606 . -
Varl 18289 6441 16589 22170
VS 0612 0306 13832  3.489
Cow 6446 1828 0915 0467
Besidual 59596 14772 43923  8.889

3.6 Study 1 Discussion

In Study 1, the performance of ML, RIMCMC, and DP was examined in terms of the
recovery of number of latent classes, class proportions, and the growth parameter means
and the covariance structure. Then an empirical example was presented to illustrate the
application of RIMCMC and DP using a substantive dataset. The findings of Study 1 are
discussed as follows.

3.6.1 Estimation Methods

Overall, RIMCMC and DP performed as well as, or better than, compared to ML for
the recovery of some model parameters. First, RIMCMC and DP were able to provide the
correct estimates of the number of latent classes. RIMCMC and DP extracted the number
of classes through their internal algorithm instead of comparing multiple models based on
statistical and fit measures that are usually employed by ML. Therefore, RIMCMC and
DP are more efficient than ML.

Second, the useful feature that is specifically linked to RIMCMC is able to provide
the percentage of selecting a particular class solution through the algorithm. This
percentage may be used as the likelihood or degree of (un)certainty about this particular
class solution. It can provide the researcher with some form of guideline when making
the decision of the number of classes. For instance, the researcher would be more certain
or confident about her decision for a 2-class solution if 95% of the RIMCMC iterations
selected the 2-class solution compared to if only 75% selected the 2-class solution.

Third, when estimating the class proportions, RIMCMC and DP outperformed ML,
which tended to underestimate the class size of the minority class. DP performed
particularly better than ML and RIMCMC on recovering class proportions, regardless of
whether a majority or a minority class existed.

Fourth, RIMCMC and DP outperformed ML in recovering the growth parameter
means, especially for the 2-class models. However, RIMCMC and DP performed worse
than ML in recovering the covariance structure of the growth parameters in most
conditions.
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3.6.2 Model Parameter Recovery

Model parameters were recovered with varied degrees of accuracy under different
conditions. RIMCMC and DP correctly detected the number of classes under all
conditions. The percentage of selecting a certain class solution by RIMCMC was higher
in GCMs than in the 2-class and 3-class LGMMs. Within the LGMMs, the percentage
tended to increase as the sample size increased under the same conditions. The split of the
class proportions did not affect the percentage of selecting a class solution.

The class proportions were recovered better under RIMCMC and DP than under ML,
as I discussed earlier. While ML tended to underestimate the minority class size,
RIMCMC tended to overestimate the minority class size and underestimate the majority
class size under some conditions (e.g., in the 33%/33%/33% condition when n = 200).
DP performed well in recovering the class proportions under almost all conditions. The
recovery of the class proportions usually improved as the sample size increased. The
class proportions were recovered better under the evenly split class proportions (i.e.,
50%/50%) than under the unevenly split class proportions (i.e., 80%/20%) in 2-class
models. In 3-class models, the split of the class proportions was not a factor that clearly
affected the recovery of class proportions.

Among all of the model parameters, the intercept means were recovered the best
under all estimation methods across all sample sizes. DP outperformed ML and
RIMCMC in recovering the growth parameter means under almost all conditions. The
slope means were recovered best in the GCMs and better in the 3-class models compared
to the 2-class models. Within the 2-class models, the unevenly split class proportions (i.e.,
80%7/20%) had better recovered slope means compared to the evenly split class
proportions (i.e., 50%/50%). Within the 3-class models, the recovery of the slope means
under the 70%/20%/10% conditions were slightly worse than the other two class
proportion conditions. The estimation of the slope means usually improved as the sample
size increased.

The growth parameter covariance structure was recovered worse than other
parameters. In general, ML performed better than RIMCMC and DP, while DP
performed the worst out of the three estimation methods in recovering the covariance
structure and the residual variances. The growth parameter variances were recovered
better under ML and RIMCMC compared to DP in most conditions. The recovery of the
growth parameter variances tended to slightly improve as the sample size increased in the
3-class models, while they were not affected by the sample size in the 2-class models.
The covariance was recovered poorly under all three estimation methods in almost all
conditions; it was recovered well only under ML in the GCMs. The residual variances
were recovered well under ML and DP and poorly recovered under RIMCMC in most
conditions. The exception was in the GCMs, where the residual variances were recovered
better under RIMCMC than under DP. The sample size did not affect the recovery of the
covariance structure or the residual variances. The split of the class proportions did not
seem to be a factor affecting the recovery of covariance structure or the residual variances.

3.6.3 Empirical Example

In the example, DP and RIMCMC were implemented through an LGMM on the 4-
wave reading IRT scores from the ECLS-K dataset. The results of the data analysis
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showed contradicting findings. Specifically, RIMCMC extracted 2 latent classes, while
DP extracted only 1 class.

When the estimates of RIMCMC are different from those of DP in terms of the
number of latent classes, the percentage of selecting a certain class solution can be quite
informative and useful. In this case, 89.1% of the iterations selected the 2-class solution,
which suggests a relatively high proportion of a 2-class model versus other class
solutions. This information provides us not only the possible number of classes being
extracted but also the likelihood of this class solution appearing in all of the iterations.
Therefore, the researcher can conclude that, since a relatively high majority (i.e., 89.1%)
of the RIMCMC iterations selected the 2-class solution, she can be quite certain to make
a decision on the 2-class solution as opposed to other numbers of classes.

The number of latent classes extracted by DP in this example can be tricky to
interpret. The estimate for the class solution parameter is 1.443, which can
conventionally be rounded to an integer 1. However, this value (1.443) is also very close
to 1.5 and is therefore close to being rounded to 2, which will result in a completely
different model and parameter estimates (not to mention a different substantive
interpretation of the findings). It is common for non-parametric methods, such as DP and
RIMCMC, to provide the estimate for the number of classes as a decimal value. This fact
can make the decision making on the class solution quite arbitrary. An estimate such as
1.443 is normally decided as a 1-class solution and meanwhile it can also be considered
as (or at least very close to) a 2-class solution considering some rounding errors during
the data analysis process. These two different decisions will result in two different
models, and the interpretations and substantive implications derived from the two models
can be quite different and even contradictory. Therefore, applied researchers need to be
very careful when making the decision on the final number of classes when they
implement DP and get a more ambiguous estimate. In any case, substantive knowledge
about the dataset should always be taken into account, along with the statistical outcomes.

3.6.4 Implications

There are a few implications of the findings of Study 1. First, the performance of
RIMCMC and DP indicated they are reliable and efficient alternatives for the traditional
ML estimation method that relies on model selection approaches. In the simulation study,
I did not test multiple class solutions for ML. Instead I used ML with true models (i.e.,
models with the true number of classes as in the population) and compared them with
RIMCMC and DP. The simulation study suggested that RIMCMC and DP yielded results
that were comparably valid as the model selection approach could have done. Yet,
RIMCMC and DP did not require running extra models with more competing class
solutions.

Second, RIMCMC provided information about the number of classes that is not
available from ML. Specifically, the percentage of selecting a certain number of classes
quantifies the degree of certainty in a class solution. This information can provide us with
some form of “guideline” in class enumeration for LGMMs.

Third, RIMCMC and DP provided an estimate for the class solution parameter as a
decimal value, which should be interpreted with caution. As I previously discussed,
decimal values can be interpreted arbitrarily. Applied researchers should always base
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their decision of the final class solution in part on the substantive information of their
study, instead of being dictated solely by the statistical models.

Fourth, simulation results suggested that the covariance structure, especially the
covariance parameter linked to the growth parameter means, was not recovered very well
by RIMCMC and DP. One of the reasons that the covariance parameter had relatively
high bias levels (i.e., almost always greater than 10%) could be that the bias was inflated
by the population value of the covariance, which is relatively small (i.e., 0.3). In addition,
the difficulties in estimating the covariance structure have been an issue in the mixture
modeling context (see e.g., Depaoli, 2013). Unfortunately, RIMCMC and DP, with the
current model and prior specifications in Study 1, are not likely to be a solution to this
problem.

53



Chapter 4

Class Enumeration under Various Levels
of Class Separation: Bayesian Non/Semi-
Parametric Methods versus a Traditional

Bayesian Approach

4.1 Introduction

In Study 2, I will focus on one of the most important issues that is linked to mixture
modeling: namely, the influence of class separation. I am specifically interested in how
class separation impacts the proper recovery of the mixture component parameter and the
class-specific model parameters.

Class separation is usually characterized as degree of similarity (or difference) in the
growth trajectories for multiple latent classes. Poor class separation may cause estimation
issues in mixture modeling. For example, cases (or people) may be inaccurately assigned
to the latent classes, causing the class size and growth parameters to be inaccurately
estimated (see e.g., Tofighi & Enders, 2008; Nylund et al, 2007; Depaoli, 2013). In this
dissertation, I will detail how class separation is an issue that is tied directly to class
enumeration. Previous work has indicated that poor separation may produce a collapsed
class structure (i.e., improper class enumeration) that may be substantively problematic
(see e.g., van de Schoot et al, 2018).

Class separation has been studied via frequentist methods, as well as the Bayesian
framework for various types of mixture models (e.g., Depaoli, 2013; Nylund et al, 2007;
Tofighi & Enders, 2008; Tueller & Lubke, 2010, etc). In this study, I would like to
extend the examination to the Bayesian non/semi-parametric methods (i.e., RI MCMC
and DP) and to compare their performance with the traditional Bayesian estimation
methods.

The purpose of this study is to investigate the performance of the Bayesian non/semi-
parametric methods under various degrees of class separation conditions. Specifically, I
will examine how RJ MCMC and DP recover the number of latent classes and
corresponding growth parameters under different levels of class separation and sample
sizes. In addition, I will also include several Bayesian estimation methods as a
comparison.

Study 2 is structured as follows. First, I will discuss the issues of class separation and
its connection with class enumeration in mixture models. Second, I will conduct a
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simulation study on the performance of the Bayesian non/semi-parametric and the
traditional Bayesian estimation methods for LGMMs. Third, I will present the results of
the simulation in terms of the recovery of the number of latent classes and parameter
estimates, percentage bias, and MSE of the model parameters.

4.1.1 Class Separation for Mixture Models

In LGMM, class separation may refer to the amount of overlap of the growth
trajectories in each of the latent classes. Depending on the degree of overlap in the
trajectories, the class separation can vary from poor to high. For example, when the
classes are separated well in an LGMM, the growth trajectories between two classes will
be clearly apart from each other in the intercept, growth trend, or both of these factors. In
contrast, when class separation is poor, the trajectories from different latent classes may
largely overlap, making them harder to distinguish statistically and substantively from
one another. There are often other scenarios in between these two extreme conditions,
where the growth trajectories do not have clear boundaries nor do they completely
overlap; these middle-ground situations are likely more representative of the applied
literature.

One of the measures that can be used to capture class separation is the (multivariate)
Mabhalanobis distance (MD). We can assume a two-component latent growth model with
univariate normal mixtures. The MD value for the latent classes can be calculated with
the following formula:

MD = /(41 — p2)"S ™1y — ), (73)

where p; and u, are two vectors that represent the means of the latent growth factors (i.e.,
the intercept and the slope) in two adjacent latent classes, and Srepresents the covariance
matrix of the latent factors.

Previous studies have investigated the influence of different MD levels on the model
parameter recovery for several types of mixture models. For example, findings for
structural equation mixture models suggested that a smaller MD (i.e., poorer class
separation) could produce a larger estimate bias when the sample size was also small
(Tueller & Lubke, 2010). Depaoli (2013) assessed the recovery of the mixture
components and other parameters using frequentist and Bayesian estimation methods.
Her findings suggested that, although separation was important, class separation did not
affect the parameter estimates as much as the estimation methods (e.g., ML or Bayes) or
other factors (e.g., sample size and class proportions) did.

Class separation is an important issue that is tied to the enumeration of latent classes
in mixture models. For example, a simulation study by Tofighi and Enders (2008)
indicated that class separation had a dramatic impact on the enumeration of growth
mixture models. Specifically, well-separated trajectories of latent classes made it easier to
correctly identify the number of classes.

Previous studies, whether employing frequentist estimation methods or the Bayesian
framework, presume the number of latent classes before the analysis. Thus, the
determination of the number of classes can be crucial. In substantive areas, the
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enumeration of classes can be accomplished by taking into account the substantive
theories or findings from previous studies. In Study 1, I have introduced the Bayesian
non/semi-parametric methods, which do not require knowledge of the number of classes
a priori. I therefore would like to examine how class separation may affect these
Bayesian non-parametric methods. Within this investigation, I will compare these
methods to the traditional Bayesian approach under different prior settings representing
different levels of (un)certainty about the class structure.

4.2 Design of Study 2

In Study 2, I investigated how class separation might affect the accuracy of class
enumeration when implementing the RIMCMC and DP estimation methods. I also
compared these Bayesian non-parametric methods to a traditional Bayesian approach
under different prior settings, representing different levels of informativeness about the
latent class structure.

4.2.1 Population Values and Simulation Conditions

In this simulation study, I used the same model specified in Study 1 (based on
Equations 6-8) as the population model and the analysis models. In total, 2000
replications of datasets were generated using Mplus 8 (Muthén & Muthén, 1998-2017).
The population values used to generate the data were the same as in Study 1 except for
values tied to the mechanism controlling class separation. Different from Study 1, the
MD values became one of the factors being examined in this simulation study, which will
be elaborated in detail. All population values of Study 2 are listed in Table 1.

Factors being investigated in this study include: the number of latent classes (2 levels),
sample size (3 levels), class proportions (2 levels for 2-class conditions and 3 levels for 3-
class conditions), and class separation (3 levels for 2-class conditions and 4 levels for 3-
class conditions). The three levels of sample size examined were n= 200, n= 400, and n
= 600. The number of latent classes (C =2 and € = 3) was crossed with class proportions,
resulting in five levels of class proportions (prop = 50%/50%, prop = 80%/20%, prop =
30%/33%/33%, prop = 45%/45%/45%, and prop = 70%/20%/10%).

Finally, as in Study 1, I was interested in the impact of class separation on the
accuracy of results obtained through these approaches. Class separation was measured
using the multivariate MD with seven different levels of separation specified. Specifically,
I altered the degree of separation (through varying MD values), as well as the /location of
higher versus lower separation. In the 2-class conditions, I examined three levels of
separation. That is, MD values that were specified between two latent classes were MD =
1, MD = 2, and MD = 3. The levels of separation were crossed with the class proportions.
See Columns 2 and 3 in Table 10 for detailed specification.
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Table 10. Simulation Conditions for the Number of Class, Class Proportions, and Class
Separation Levels

#of classes  2-Llass 3Class
Prop 50/50 BO20  33/3343 454510 TO200L0
1 1 11 11 I/l
2 2 i3 33 33
MB 3 3 13 L3 L3
- - - 31 31

In the 3-class conditions, I assessed separation level, as well as the location of
separation. According to the MD values specified between Class 1 and Class 2 and
between Class 2 and Class 3, there could be different types of separation location. The
degree of separation could be “high” and “high” between classes (i.e., MD = 3 between
Class 1 and Class 2, and MD = 3 between Class 2 and Class 3). The degree of separation
could also be “low” and “low” (i.e., MD = 1 between Class 1 and Class 2, and MD = 1
between Class 2 and Class 3). There could also be “low” separation between two adjacent
classes and “high” separation between the other two adjacent classes (i.e., MD =1
between Class 1 and Class 2, and MD = 3 between Class 2 and Class 3, vice versa.)

For the 3-class conditions with equal class sizes (33%/33%/33%), I examined two
levels of separation (“high” and “low”) and three separation locations. Take the
33%/33%/33% condition for example. First, two “low” separation levels were
specified between latent classes, that is, MD = 1 between Class 1 and Class 2 and MD =
1 between Class 2 and Class 3. Second, two “high” separation levels (MD=3) were
specified between Class 1 and Class 2 and between Class 2 and Class 3, respectively.
Last, one “low” separation (MD = 1) was specified between Class 1 and Class 2 and one
“high” separation (MD = 3) was specified between Class 2 and Class 3. Details of
specification are listed in Column 4 in Table 10.

For other 3-class conditions with unequal class sizes, two levels of class separation
and four separation locations were assessed. For example, the first three types of
separation location in the 45%/45%/10% condition were akin to the 33%/33%/33%
condition. Then the fourth type of separation location for the 45%/45%/10% condition
switched the two MD values between Class 1 and Class 2 and between Class 2 and Class
3 as to manipulate the location of the low versus high separation. Details of
45%/45%/10% condition and other conditions are listed in Table 10. The MD values
between latent classes were varied and arranged in such way that I could assess the
location of class separation as it was linked to different class sizes.
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4.2.2 Model Estimation Techniques

In this study, I also examined the performance of four types of model estimation
techniques, including RIMCMC, DP, ML, and Bayesian estimation with two levels of
prior specification. Simulation conditions were fully crossed with these model estimation
techniques, which resulted in 204 simulation cells in total.

4.2.2.1 Prior Specifications for RIMCMC and DP

The analysis models for the RIMCMC and DP techniques used in this study were the
same as in Study 1. The model for the RIMCMC algorithm was specified in Equations
36-38. The prior distributions are the same as described in Study 1. Specifically,

yC~MVN((322), [100 100]), I~IW(2, [100 100]), 02~16(0.01,0.01), Bs~N(0,10), and

(mq...,m¢)~Dirichlet(1,...1). The model for the DP conditions was specified in
Equations 58-65. Prior specifications implemented in Study 1 were also used in this study:

32, /10 O 10 O 2

1 0]) (See the Methods section in Study 1 for

G~DP(1,N(u,5)). and Sp~IW (2, [100

notation and interpretation details).

The R package “miscF” (Feng, 2016) was used for conducting data analysis with
RIMCMC, and the package “DPpackage” (Jara, Hanson, Quintana, Mueller, & Rosner,
2017) was used in the DP conditions. In total, I requested 5000 samples for each chain,
with the first 2500 iterations discarded as the burn-in phase for the RIMCMC and DP
conditions. ML conditions were conducted using Mplus 8, with 100 perturbations of user-
specified staring values and 25 final stage optimizations. Likewise, the traditional
Bayesian methods (with two sets of prior specifications) were also conducted using
Mplus 8, and I describe these details next.

4.2.2.2 Prior Specifications for Bayesian Estimation Methods

4.2.2.2.1 Diffuse Priors

I implemented the Bayesian estimation framework using two different sets of priors:
diffuse priors and weakly informed priors. Conditions with both prior specifications were
conducted in Mplus. In the conditions implementing diffuse priors (B-DifY), prior
distributions with less information were implemented in order to reflect uncertainty
regarding the model and the population(s) in an exploratory study. The default diffuse
prior specifications in Mplus were implemented on model parameters in the conditions
with diffuse priors (Muthén & Muthén, 1998-2017). Specifically, the prior distributions
for the growth parameters and the latent class proportions were specified as follows.

- u.~N(0,101%), which was implemented for the intercept and slope means for
each latent class under the B-Diff condition. This prior specification provided
very little information about the parameter.

- X~IW(0,—4), which was implemented on the covariance matrix in the B-Diff
condition.

- m.~Dirichlet(10,10), which was implemented for the class proportions in the B-
Diff condition, indicating at minimum 10 cases in each class. This prior
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specification was the default Dirichlet prior implemented in Mplus so as to avoid
the situations (such as when m.~Dirichlet(1,1)) in which the formation of small
or inadmissible class solutions might occur.

- 0%~IG(—1,0), which was implemented on the residual variance with little

information.
4.2.2.2.2 Weakly informed priors

In the Bayesian estimation conditions implementing weakly informed priors (B-
Weak), prior distributions with a “moderate” amount (or weak amount) of information
were implemented as to reflect some degree of certainty with regards to the model and
the population(s).® The weakly informed priors were derived by combining the values of
diffuse priors in B-Diff conditions and population values in the generative model.
Specifically, the hyperparameters of means of the growth factors were derived from the
population mean, while the other parameters, such as the Dirichlet priors, the covariance
matrix and the residual variance were implemented using the prior specifications from B-
Diff condition. The weakly informed priors were specified in such way that it allowed me
to mimic the situation where the researcher is likely to take a “best guess” on some model
parameters and use the “default” settings for others.

As mentioned earlier, the class proportions followed a Dirichlet distribution that was
specified as a default diffuse prior in Mplus with m.~D(10,10) for all simulation cells.
With the same reason stated in the previous subsection, hyperparameters 10 and 10 were
specified here as to prevent formations of small or inadmissible class solutions. The
covariance matrix was also implemented with the default diffuse priors in Mplus. It
followed an inverse Wishart distribution with X ~IW (0, —4). Priors for the growth
parameter means varied across simulation cells according to the different conditions. The
mean hyperparameter in the normal prior distributions for the means of the growth
factors was set at each parameter’s population value as to center the prior distribution on
the population value. The variance hyperparameter for the same parameters were fixed at
100, which suggests some variation around the center of the distribution but not
completely diffuse, compared with the default diffuse specification in Mplus, 101°. This
combination of mean and variance hyperparaemters for the mean of the growth factors
suggested a normal prior distribution with some information about the center of the true
value while still incorporated with some degree of uncertainty with its variation around
the center.

For example, in the conditions of 2-class and MD = 1, the mean of the intercept in
Class 1 followed a normal distribution with hyperparameters of 31.37 and 100 (see Row
3, Column 3 in Table 11). The mean of the slope in Class 1 in the same condition
followed a normal distribution with hyperparameters of 1.802 and 100 (see Row 3,
Column 6 in Table 11). Similarly, in the 3-class conditions where MD = 1 between Class
1 and Class 2 and MD = 3 between Class 2 and Class 3, the prior of the mean of the
intercept was N(31.37,100) in Class 1, N(34.29,100) in Class 2 and N(43.01,100) in
Class 3 (see Row 7, Columns 3-5 in Table 11). The details of the prior specification for
the growth parameters in B-Weak conditions can be found in Table 11.

¢ Weakly informed priors are defined as priors that reflect less information than the
researcher “actually has”. (Gelman, Jakulin, Pittau, Pittau, & Su, 2008).
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Table 11. Hyperparameter Values for Growth Parameters in Study 2

#of hipam-T bleam-5
MD
classes Clasz 1 Class 2 Class 3 Class 1 Class 2 Clazs 3
1 HNE137.1000 HN(34.29 100) MN(1.802 1000 N(2.834.10d)
2-{lass 2 MNE137.1000 MWE7.182100) M{1 8021007 MW(3.E56104d)
3 M{3137.1000  H{0.09 100) M(1.802.100) N(4-824.10d)

IVl NEL3TI00 NE4291000 NE72L1000  N(LS02,100) N(EMI00)  N(3.566,100)

3-Class 13 NEI37,100) N(3E420100) N(E#3.01,100) N(1S02100) N(2EI4100) N(5917,100)

3 N@E13ITI00) N40.09100) N@H3.0L100)  N({1.802,100) N(4EE4100) MN(5.517.100)
33 N3137.100) N{40.09100) N@ES8BL100)  N(1.B02,100) N(4BE4100) MN(7.967.100)

4.3 Results of Study 2

In Study 2, I investigated the effect of class separation on the accuracy of class
enumeration and model parameter estimation when implementing RIMCMC, DP, and
two Bayesian estimation methods including diffuse priors (B-Diff) and weakly informed
priors (B-Weak). I assessed how well the number of classes, the class proportions, and
the growth parameters were recovered under various levels of class separation. Akin to
Results from Study 1, I present the accuracy of the estimation in terms of percent bias
and the MSE values for the growth parameters. All of the simulation results in Study 2
are listed in Tables 12-39. Tables for MSE values (Tables A3-A16) are presented in
Appendix A.

4.3.1 Convergence

In Study 2, I used two forms of convergence diagnostics to assess the convergence of
the sampling procedure within and between the Markov chains. The first form of
diagnostic is the Geweke (1992) statistic, which was computed in R and used for
RIJMCMC and DP. The second form is the Potential Scale Reduction (PSR) factor
provided in Mplus for the B-diff and B-weak conditions (Muthén, 2010).

As described in Section 3.4.1, the Geweke diagnostic evaluates the convergence for a
single Markov chain using a standard z-score. If the z-score is a small value (e.g., less
than 2), then the chain can be considered reaching the convergence. The z-scores were
less than 2.000 for all parameters in all simulation conditions in Study 2.

The PSR diagnostic is used when there is more than one Markov chain requested. It
compares the parameter variation within each chain to that between chains, which is
similar to a classical analysis of variance approach (Muthén, 2010). The PSR criterion
requires the between-chain variation to be small relative to the total of between- and
within-chain variation (Gelman & Rubin, 1992). In Mplus, the default convergence
criterion is that a PSR factor is 1.05 for each replication, which was used for the
convergence diagnostic in this study. Any replication with a PSR value higher than 1.05
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was marked as un-converged and was removed from the final estimation process.
Therefore, The PSR values in the B-Diff and B-Weak conditions were all below 1.05 for
all of the converged replications.

In addition to the Markov chain convergence being assessed for each parameter, |
also monitored the model convergence of the total 2000 replications. All RIMCMC and
DP conditions reached 100% model convergence, while the Bayesian estimation
conditions achieved at least 85% convergence out of 2000 replications. All results that
are presented here were calculated with the parameter estimates from the converged
replications.

4.3.2 Class Enumeration and Parameter Estimates
4.3.2.1 2-Class Prop=50/50 MD=1 Conditions

Results for the parameter estimates and percent bias levels in the 2-class prop = 50/50
MD =1 conditions are presented in Table 12 and the top section of Table A3. The
number of classes was estimated accurately for RIMCMC and DP across sample sizes.
The percentages of selecting a 2-class solution by RIMCMC were below 70%, which
indicates that the confidence of a 2-class solution when MD is 1 was moderate based on
the estimation of RIMCMC. The class proportions were recovered well for all estimation
methods.

The intercept parameter means were recovered well for all estimation methods.
However, the slope parameter means had relatively higher bias for B-Diff (around -15%
to 23%) and B-Weak (around -14% to 23%), compared with those for DP (around 4% to
23%). RIMCMC yielded slightly high bias (around 13% to 26%) for the slope parameter
means for the » = 200 condition and improve as the sample size increased (bias levels
were around -5% to -8% when n = 600). The intercept parameter variance was estimated
well, except for DP when n = 600 with a bias level around 23%. The slope variance was
recovered well in B-Diff and B-Weak but was overestimated by RIMCMC and DP in the
n =200 condition and by DP in the n = 400 condition (bias levels were around 12% to
39%). The covariance parameter was consistently poorly recovered by all estimation
methods across sample sizes (bias levels were around -54% to 280%). The MSE values
are small for all parameters, except for the intercept variance in the DP condition for n =
600 (bias was around -14%).
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Table 12. Parameter Estimates and Percent Bias for 2-Class 50/50 MD=1

=200 =30 =50
B-Dnff B-Weak RIMCMC DP B-Dnff B-Weak RIMCMC DP B-Ihff B-Weak BRITMCMC DP

Pop Parameter Estimates
# classes 2,000 2000 2.000 {0261233 1.721 2000 2000 {Djﬁz?g L7775 2000 2000 mﬁ;}g 1.866

C1 0.503 0499 0342 03548 0492 0501 0476 0476 0500 D498 0478 0354
Faoop c2 0497 0501 0458 0452 0.501 0499 0524 0524 0500 0502 0522 0477
Mean ICL 31370 31488 31492 29266 30264 31.569 31.550 32612 32010 31598 31.591 716 32408
Mean IC2 34290 34188 34164 32886 32889 34.087 34103 35205 33.705 34059 34080 32595 34.199
Mean SC1 1802 22728 2217 2277 1890 2216 2219 1992 18955 2206 2215 1710 1914
Mean S C2 23834 1404 2419 32 3317 2412 2414 3047 2702 2437 2415 2608 2603
Var-1 16000 16233 16283 1508% 17520 16304 16258 14972 17534 16364 16366 17367 19737
Var-5 2.000 2056 2051 2238 2774 2057 2059 1951 2653 2,058 2057 1.893 2245
Cov 0.300 0918 0906 0.13% 0616 0914 0507 1018 1139 05900 0507 0.672 0500
Residual 0.500 0520 0520 0700 0513 0507 0507 0687 0472 0507 0505 0716 0515

Percent Bias

C1 0640 0244 8333 9666 0150 0144 4833 4820 0.038 -0410 <4356  4.700
Frop c2 0640 0244 -8333 0666 0.150 -0144 4835 4830 0038 0410 4356 4700
Mean ICl 31370 0376 0389 6708 -3524 0636 0575 3958 2039 0.727 0.704 3291 3309
Mean IC2 34290 0298 0369 4095 4087 0591 0546 2687 -L705 0674 0670 40944 0266
Mean S C1  1.8302 11629 13013 16355  4.894 12986 23141 10521 EB474 11420 212897 S121 6227
Mean S C2 23834 -15.187 -14.661 13659 17.033 -14.905 -14.8334 7514 4671 14524 -14.795 -7981 -B145
Var-1 16,000 1454 1766 -5693 9459 1899 1614 6425 9585 2275 2288 8.542 233359
Var-5 2.000 2780 2525 11.94% 3B8.678 2830 2970 2467 32658 2875 2870 -5373 12255
Cov 0300 205867 201800 53656 105210  204.667 202300 239343 279747 200.000 102267 114114 200.146
Residual 0.500 3920 4080 39952 2606 1.380 1.400 37410 -5674 1340  1.020 43218 2990
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4.3.2.2 2-Class Prop=50/50 MD=2 Conditions

Results for the parameter estimates and percent bias levels in the 2-class prop = 50/50
MD = 2 conditions are presented in Table 13 and the top section of Table A4. The
number of classes was estimated accurately by RIMCMC and DP. The percentages of
selecting a 2-class solution by RIMCMC were all above 80%, which suggested a higher
certainty about the 2-class solution compared to the conditions when MD = 1 (where the
percentages were only around 64% to 67%). The class proportions were recovered well
by all estimation methods across sample sizes.

The intercept parameter means were recovered with low bias levels (all below 10%)
by all estimation methods for all sample sizes. The slope parameter means were estimated
with slightly higher bias (around 12% to 22%) when the sample size was relatively small,
but it was improved when n = 600 (bias was below 10%). The growth parameter
variances were poorly recovered by B-Diff and B-Weak in the n = 200 and n = 400
conditions (bias levels were around 12% to 82%) and the bias levels decreased when n =
600 for both Bayesian estimation methods (bias was below 10%). The bias levels (around
52% to 82%) for the variance parameters were high for DP across sample sizes and held
an inconsistent pattern for RIMCMC. The covariance was consistently poorly recovered
by all estimation methods across sample sizes (bias levels were all above 80%). The MSE
values were small for most parameters, although some intercept variances had relatively
large MSE values (around 76).
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Table 13. Parameter Estimates and Percent Bias for 2-Class 50/50 MD=2

p=2{0 =400 n=500
B-Dhff B-Weak EIMCMC DP B-Diff B-Weak RIMCMC DP B-Inff B-Weak EIMCMC DP
Fop Parameter Estimates
2249 2158 1.903

# classes 2.000 2000 2000 (0.811) 1834 2000 2000 (0.863) 1.826 2000 2000 (0.851) 1.935

C1 0502 0501 0452 0520 0502 03503 0506 0526 0500 0499 0467 0513
Pang c2 0498 0499 0548 0480 0498 0497 D494 0474 0500 0501 0.533 0487
Mean IC1 31370 32091 32070 20601 30613 31824 31814 33.012 33.017 31628 31.628 19455 31806
Mean IC2 37182 36480 36497 30.187 35173 36.742 36752 39.097 38.090 36917 36915 39.087 35.082
Mean 5 C1  1.802 2199 2197 2020 1938 202 2029 2012 1973 1928 1927 1.735 1.848
Mean 5 C2 3857 3459 3463 4200 4100 3631 381 4127 3626 3Ty 31723 3557 1TM
Var-I 16.000 19436 19371 13867 24592 18063 18.054 14972 22453 17238 17256 18660 24751
Var-5 2.000 2440 2438 1.600 3.633 2378 2276 1951 318 2175 2170 1995 31044
Con 0300 1ED3 1.793 0835 2027 1218 1212 1018 2737 0861 0854 0.057 3.075
Residual 0.500 0521 0520 0692 0509 0508 0506 0.687 0482 0507 0506 0.716 0.535

Parcent Bias

C1 0480 0264 -B667 4033 0312 0562 1167 5126 0032 -0.150 6556 255
P c2 0480 D264 9667 4033 0312 03562 -1.167  -5.126 0052 0150 6556 -2.554
Mean IC1 31370 2297 23232 5640 2412 1446 1416 5233 5250 0822 0823 -6.103  1.3%0
Mean IC2 37182 -1.BEY -1B43 5394 5403 -1LIg4  -1.158 5149 2442 4714 0719 5122 -54621
Mean 5C1 1.802 11031 21898 12,585 46.986 12442 11614 11631 53503 6992 6915 -3.707 2543
Mean 5 C2 3857  -10.309 -10.207 8882 6309 -5B62  -5811 TO05 5992 -34%5 3477 S1LTT0 -3.442
VarI 16.000 21477 2LD6% 13333 53702 12.6%6 11.333 6435 40330 7736 7849 16,625 54.694
Var-5 2.000 21995 21910 -20.005 81.643 13885 13.310 2467 59152 740 8520 A0.346 51180
Cow 0300 Z00967 497.700 178.389 575538 J0SE6T 303867 139343 B12.275 18T.AMM 184.800  -BL.020 925094
Besidual 0.500 4320 3980 18360 1712 1500 1240 37410 3589 1.320  1.100 43.218 6063
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4.3.2.3 2-Class Prop=50/50 MD=3 Conditions

Results for the parameter estimates and percent bias levels in the 2-class prop = 50/50
MD = 3 conditions are presented in Table 14 and the top section of Table AS. The
number of classes was recovered accurately by RIMCMC and DP for all sample sizes.
The percentages of selecting a 2-class solution by RIMCMC were relatively high,
especially for larger sample sizes (around 85% to 93%). The class proportions were
recovered well by all estimation methods for all sample sizes.

The growth parameter means were estimated very well with one exception for
RIMCMC when n = 200, which had slightly higher bias (around -16%) for the slope in
Class 2. The growth parameter variances were recovered well for B-Diff and B-Weak
across sample sizes (bias levels were all below 10%). However, RIMCMC and DP
produced higher bias levels (around -12% to 70%) for the variance parameters when n =
200. The bias decreased as the sample size increased (e.g., decreased to as low as 1.024%
when n = 600). The covariance was consistently poorly estimated for all estimation
methods for all sample sizes (around 15% to over 900%). The MSE values were small
except for the variance of the intercept in the DP condition when » = 200 (MSE value
was around 56).
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Table 14. Parameter Estimates and Percent Bias for 2-Class 50/50 MD=3

n=200 =40 n=600
B-Diff B Weak RIMCMC DP B-Diff B Weak EIMCMC DP BDiff B Weak REIMCMC DP
Fop Parsmeter Extimates _
#classes 2000 2000 2000 {01#3;1131] 2297 2000 2.000 {aiiua?; 2357 2000 2000 mﬁ; 2108
1 0500 0500 D482 0484 0501 0501 D486 0507 0501 0501 0497 D434
Frmp c2 0500 0500 D518 0516 0499 0499 0514 0493 0499 D499 0503 0506
MeanIC1 31370 31438 31430 30766 30269 31401 31400 32512 32020 31387 31387 30204 32411
MeanIC2 40090 40020 40019 38686 38682 40071 40071 40055 41996 40076 40076 39995 i99M
MeanSC1 1802 1824 1825 1874 1E78 1809 1809 1712 1911 1806 1806 1811 1813
Mean 5C2 4885 4850 48357 4098 5170 4876 4876 5255 35256 4878 4877 4870 4976
Varl 16000 16958 16066 18381 23534 16373 16376 14983 16689 16230 16234 17436 16164
Vars 2000 2132 213 1748 3394 2059 2060 1066 2156 2037 2037 1732 23M
Cov 0300 0518 0523 D491 3194 0376 03TT 0564 D354 0346 0346 0357 039
Besidual 0500 0518 052 0637 0505 0506 0507 0665 0477 0506 0506 0.626 0520
Percent Bias
1 0072 0066 3667 3171 0186 0176 2835 1400 0134 0132 D556 -1168
Frp c2 D072 0066 3667 3171 -0186 D176 2835 1400 0134 0132 0556 1168
MeanIC1 31370 0216 02139  -19% <3510 0099 009 3639 2071 0055 0055 3718 3319
MeanIC? 40090 0174 0177 3503 3517 -0.047 0048  DOB8 4754 0035 0035 0238 0239
Meax5C1 1802 1221 1299 3972 427 0388 0366 5017 6045 0228 0222 0519 D587
Mean5C2 4885 0540 0565 -16101 5842 0180 D184 7580 7596 0154 D156 0300 1855
Varl 16000 5989 6039 14881 47089 2329 2349 65356 4305 14338 1461 BO7T 10M
Vars 2000 6575 6620 12591 69.687 2970 3000 3307 780 1870 1860 -13.394 18712
Cov 0300 72667 T4967  63.7M 964775 15433 25600 85166 84755 15267 15433 19.100 32.014
Residual 0500 3880 4320 39393 1015 1260 1320 32980 4532 1120 1240 25187 39m
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4.3.2.4 2-Class Prop=80/20 MD=1 Conditions

Results for the parameter estimates and percent bias levels in the 2-class prop = 80/20
MD = 1 conditions are presented in Table 15 and the bottom section of Table A3. The
number of classes was estimated accurately by RIMCMC. However, when n = 200, DP
was not able to correctly detect the number of classes and yielded a decimal number that
was rounded to 1 (i.e., 1.376). The percentage of selecting a 2-class solution by
RIMCMC was relatively low when the sample sizes were smaller (i.e., around 56% for n
=200 and 67% for n = 400). Combining the performance of DP and RIMCMC in
estimating the number of classes when n = 200, it appeared that a 2-class solution might
not be the optimal option based on the estimation of the two Bayesian non-parametric
methods. It might indicate that the Bayesian non-parametric methods, especially DP, had
difficulty in accurately enumerating the latent classes when there was a majority class
and when the sample size was relatively small (and separation was poor with MD = 1).
The class proportions were recovered with high bias levels (all above -34%) by B-Diff
and B-Weak across sample sizes. RIMCMC yielded slight high bias for the minority
class when the sample size was relatively small (bias the level was around -18%) but
improved when the sample size reached 600 (bias level was below 10%). Overall, DP
underestimated the size of the minority class; it was not able to produce the estimates for
the class proportions for the n = 200 condition.

The intercept parameter means were estimated well for B-Diff, B-Weak, and
RIJMCMC. DP did not provide an estimate of the mean of a second class in the n =200
condition. B-Diff and B-Weak yielded low bias for the slope parameter means in the
majority class but underestimated the minority class for all sample sizes (bias levels were
around -27%). RIMCMC produced slightly high bias levels (around 10% to 21%) for the
slope parameter means in the minority class, and low bias (below 10%) for those in the
majority class. DP did not provide an estimate for the slope parameter mean in the
(minority) second class. The growth parameter variances were estimated well by B-Diff
and B-Weak and had high bias levels (around 7% to -29%) in the RIMCMC and DP
conditions for all sample sizes. The covariance parameter was poorly recovered by all
estimation methods across sample sizes (bias levels were around 24% to over 500%). The
MSE values were small for most mean and variance parameters, but they were higher for
some of the intercept variances (e.g., MSE around 22).
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Table 15. Parameter Estimates and Percent Bias for 2-Class 80/20 MD=1

=200 =400 =60
B-Dhif B-Weak RIMCMC DP B-Dnff B-Weak RIMCMC DP B-Dhff B-Weak EITMCMC DP

Paop Parameter Estimates
# classes 2000 2000 2000 {025?:; 1376 2000 20400 {0253;],}3} 1652 2000 2000 (ﬂj?l;g 2247

Cl 0513 0514 0837 - 0512 03521 0824 0B4H4 0525 03525 0788 03534
Foog €2 0487 0488 0.183 - 0488 0479 0176 0156 0475 0475 0212 0166
MeanICl 31.370 30.683 30689 33244 33028 30.T84 30791 33827 31821 30837 30831 1257 30262
MeanIC2 34290 33282 33392 36.570 - 33210 33213 34654 32844 33189 33191 32662 33644
Mean 5C1 1302 1980 1960 2076 1275 1968 1966 2172 L1751 1966 1939 1620 1.8%0
Mean 5C2 23834 2065 2065 3.103 - 2064 2068 3104 3193 2076 2079 26504 2503
Var-I 16.000 15596 15607 11331 18.795 15.670 15.668 18555 17.126 15733 15751 18444 18987
Var-5 2000 187 1984 1483 2438 1877 1984 2299 2437 1988  1.98% 223 2328
Cov 0300 0697 0693 0228 0782 0704 0706 1886 1012 0699 0698 0603 0816
Residual 0500 03521 0523 0733 0520 0.50% 0508 0737 0473 0507 0507 0512 0516

Percent Bias

C1 -35.87T1 -35.766 4.582 -36.006 -34.395 20962 5478 _M409 34423 -1458 4305
Fron c2 143485 143065  -18.230 - 144.025 139580  -11.B50 -21.010 137.635 137.690 5833 -17.220
MeanICl 31.370 -218% 2172 5973 5286 -1.370  -1.845 7831 1438 -1.698  -1.719 6735 353
MeanIC2 34.290 -2840  -2911 6.650 -3.149 3141 1062 4318 -3211 3208 4747 -1.885
Mean 5C1 1302 BT62 8746 15.221 -29.224 9206 2123 20536 -2B48 8079 BT2% 10123 488D
Mean 5C2 2834 -17.131 -I7.131 9504 - -I7.167 -27.018 9533 11657 -16.764 -26.630 B.110 -11.664
Var-1 16.000 -252T 2459 29081 17467 2063 2077 15969 7035 1542 -1.556 15,273 1B.667
Var-5 2.000 -1.035 0805  -25.B41 11899 -1.130  -0.825 14931 21.8=8 4620 0570 11.208 16.421
Cov 0300 131467 130933  -I4.104 153901 134300 135267 518.765 137216 131.867 131767  101.162 171.060
Residual 0500 4100 4640 46.503 4021 1.760  La6l 47463 -5454 1480 1440 377 3182
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4.3.2.5 2-Class Prop=80/20 MD=2 Conditions

Results for the parameter estimates and percent bias levels in the 2-class prop = 80/20
MD = 2 conditions are presented in Table 16 and the bottom section of Table A4. Both
RIMCMC and DP were able to accurately estimate the number of classes. The percentage
of selecting a 2-class solution by RIMCMC was slightly higher when n = 600 (i.e.,
81.6%) than when the sample sizes were 200 and 400 (i.e., 71.3% and 75%, respectively).
The class proportions were recovered poorly by B-Diff and B-Weak when n = 200 (bias
levels were around -25% to 101%), but the bias levels decreased as the sample size
increased (around -8% to 31% when n = 600). RIMCMC tended to overestimate the
minority class in the n =200 and » = 400 conditions (bias levels were around 15% to
19%) but underestimated in the » = 600 condition (bias levels were around -27%). DP
recovered the class proportions with relatively high bias when n = 200 (bias levels were
around -14% to 60%) and improved as the sample size increased (bias levels were around
3% to -13% when n = 600).

The intercept parameter means were estimated with low bias by all estimation
methods for all sample sizes. B-Diff, B-Weak, and RIMCMC yielded high bias levels (as
high as -28%) for the slope parameter means when n = 200 and n = 400; estimation
accuracy improve when the sample size reached 600 (bias levels were below 10%). DP
produced slightly higher bias levels (around -17%) for the slope parameter means when
the sample size was 400 and lower bias levels (below 10%) for other sample sizes.
Variances were recovered with slightly higher bias levels (around 13% to 15%) by B-Diff
and B-Weak when the sample size was 200 and was improved (bias levels decreased to
below 10%) when the sample size increased to 400 and 600. DP consistently estimated
the variances with high bias levels (around 12% to 58%) All estimation methods yielded
high bias levels (around 15% to 590%) for the covariance parameter. The MSE values
were small for most parameters, except for a few large values (around 16 to 34) for the
variances of the intercept.
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Table 16. Parameter Estimates and Percent Bias for 2-Class 80/20 MD=2

n=20{ n=400 n=600
B-Chif B-Weak RIMCMC DP B-Dhff B-Weak RIMCMC DP B-Diff B-Weak EIMCMC DP

Pop Parameter Estimnates
# classes 2000 2000 2000 mz?ﬁi 1.674 2000 2000 (Eﬂz_lr}% 1.772 2. 000 2.000 {O.Eig 2334

C1 0.598 0.600 0781 0688 0GB 0582 070 0789 0738 0.742 0853 0827
ot c2 0402 0400 0233 0312 0320 0318 0230 D211 0262 0.258 0147 0173
MeanICl 31370 31120 31.102 20023 31.030 31.155 31.151 33.672 32826 31175 31.176 28344 31.260
MeanIC2 37182 34770 34828 39462 36422 35.553 35599 35716 34718 36.131 36163 39.554 3845
Mean SCL 18302 1934 1.940 1.736 1975 1.838 1.835 1.884 1.774 1.783 1.780 1.882 1.720
Mean S C2 3837 2753 2.759 4126 4032 3146 3.163 4027 3219 3.423 3.433 3627 3.522
WVar-I 16000 18132 185047 13258 21.845 17.04% 17.003 17638 19942 16464 16.430 16434 19280
Var-S 2 000 27293 2.796 1633 3111 2157 2151 2285 3144 2.070 2 068 2137 2254
Cow 0300 1 444 1.441 0347 2.680 0912 0891 1253 2.069 0581 0569 0382 0.8BO
Fesidual 0500 0.521 0.519 0624 0525 0508 0.507 0.541 0480 0.506 0.507 0542 0519

Percent Bias

C1 -15.199 -14.969 -4 B83 -13.963 -14.988 -14.701 -3.780 -1321 -T.704 -7.274 6675 3354
ot cC2 100.795 99875 19.450 55.850 50950 S58.805 15120 5285 A0.B15 19,095 -26.T00 -13.415
MeanICl 31370 £.797 -D.855 7483 -1.085 0.686 -0.698 7338 4610 0622 -0.617 -Bsd7 0349
MeanIC2 37182 5488 5332 6133 -2.043 <4381 42359 -3.042 5627 2826 -2.742 6381 36668
Mean 5§ C1 1.802 7336 T.664 -3.650 9.625 1.970 1.831 4523 -1.549 -1.065 -1.210 6640 4536
Mean SC2 3857 -15.618 -28.473 6970 4537 -18.424 -17.988 4398 -16.535 -11.263 -10.99%0 -5972 _BaB5
Var-1 16.000 13,323 12796 -17.137 36519 6555 6270 10,238 214.636 2899 2 689 2711 20502
Var-S 2 000 14.650 14.820 -1B.328 55.519 7.835 T545 14.273 5§7.213 3.520 3375 6857 12.703
Cowr 0300 381.167 380.467 15.578 793.345 203.933 196867 317.511 589.591 93.633 89.500 27437 193.244
Fesidual 0500 4 280 3700 24708 5051 1660 1.360 B.268 4079 1.240 1.480 B.454 3870
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4.3.2.6 2-Class Prop=80/20 MD=3 Conditions

Results for the parameter estimates and percent bias levels in the 2-class prop = 80/20
MD = 3 conditions are presented in Table 17 and the bottom section of Table AS.
RIMCMC and DP correctly estimated the number of classes. The percentages of
selecting a 2-class solution by RIMCMC were relatively high (i.e., around 75% to 86%),
indicating a higher certainty compared lower degrees of class separation. The class
proportions were estimated well for all estimation methods across all sample sizes. The
two exceptions were in the n =200 and n = 400 conditions where DP yielded bias levels
that were slightly higher than 10%.

The means of the growth parameters were recovered well for all estimation methods
for all sample sizes (bias levels were all below 10%). B-Diff and B-Weak yielded low
bias (below 10%) for the variances of the growth parameters. The estimates from
RIJMCMC and DP were inconsistent across sample sizes for the growth parameter
variances (bias levels were around 2% to 45%). The covariance was recovered with high
bias level (above 30%) by all estimation methods when n = 200. The bias decreased to
below 10% only for B-Diff and DP when the sample sizes increased. The MSE values
were relatively small for all parameters except for the variance of the intercept in the
RIMCMC condition when n = 600, which was around 11.
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Table 17. Parameter Estimates and Percent Bias for 2-Class 80/20 MD=3

=20 =400 o=60{
B-Dnff B-Weak ETMCMC DP B-Daff B-Wezk ETMCMC DP B-Dhff B-Weak EIMCMC DP

Pop Parameter Estimates
# elasses 2.000 2000 2000 {ﬂl??i; 2353 2000  2.000 nglsii 17234 2000 2000 {ul_g?jjj 2301

C1 0784 0785 0817 0.779 0802 0802 0E11 0824 0805 0811 0789 0814
i c2 0316 0215 0183 0221 0198 0198 0.18%  0.177 0.195 0.189 0211 0185
MeanIC1 31370 31264 31264 30043 30023 31320 31391 32584 32827 31336 31383 30486 30.257
Mean IC2? 40090 38536 39554 40730 39366 39882 40083 37624 39618 39955 40087 38762 37945
Mean SC1  1.802 L7760 1.769 1.704 1977 1.781 1.806 1947 1.773 1788 1805 1639 1.721
Mean 5C2 4885 4684 4691 5.054 5350 4808 A4ERD 5058 5052 4833 4870 4955 4750
Var-L 16.000 16661 16633 17877 13816 16189 16342 14.102 16669 16135 16234 18372 16.669
Var-5 2.000 2096 2094 2085 2904 2037 2056 1935 2205 2022 2055 1855 2295
Cov 0300 0427 0416 0.39¢ 0511 0306 0358 0.554 0272 0304 0339 0173 0272
FResidual 0500 0521 0521 0671 0473 0506 0507 0560 0528 0506 0507 0516 0528

Pop Percent Bias

C1 2051 194 2069 2668 0266 0267 1.375 2938 0e26 1420 -1419 1.705
Ty C2 8205 7615 £.278 10670  -1065 -1.070 -3.500 -11L.750 -2.505  -5.880 5675 -840
MeanICI 31370 -0.339 0337 422 4205 0181 0068 3ET0D 4646 0109  0.040 -2B17 3547
MeanIC2 40020  -1.382 -1.336 1.597 -1.806 D520 0017 -6.150 -L177 0337 -0.007 -0.817 -5351
Mean 5C1 1802 -1804 -13842 S444 9725 1165 0239 8038 -1616 O7I7T 0150 8073 4512
Mean 5C2 4385 4123 398D 3459 93510 -1.568 0098 3569 3421 -1067 0123 1429 2768
Varl 16000 4131 3957 11.734 -13.648 1.181 2138 _11L861 4181 0.843 1464 21076 4181
Var-3 2.000 4820 4675 4239 45200 1855 2785 -3.226 14731 1095 1.745 -7.249 14.731
Cov 0300 43167 38633 33038 T0.3X3 2133 19167 B4741 5226 1467 11867 41365 -9.226
Residual 0500 4260 4240 M.I41 5375 1260  1.400 12.053 5605 1.240 1360 3225 5.605
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4.3.2.7 3-Class Prop=33/33/33 MD=1/1 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
33/33/33 MD = 1/1 conditions are presented in Tables 18, 19 and A6. RIMCMC and DP
recovered the number of classes accurately. The percentages of selecting a 3-class
solution by RIMCMC were below 70%, suggesting a moderate certainty of a 3-class
solution. The class proportions were estimated well by B-Diff and B-Weak across sample
sizes; the bias levels were slightly higher than 10% for RIMCMC and DP when n = 200
and n = 400, and they decreased to below 10% as the sample size reached 600.

The intercept means were estimated well by all methods for all sample sizes. B-Diff
and B-Weak consistently overestimated Class 1 (bias levels were above 39%) and
underestimated Class 3 (bias levels were above 19%) across sample sizes for the slope
means. RIMCMC and DP yielded estimates of inconsistent bias levels for the slope
parameter means (below 1% to above 40%). B-Diff and B-Weak produced low bias (all
below or around 10%) for the growth parameter variances, while RIMCMC and DP
yielded relatively high bias levels (up to 58%) for the same parameters. The covariance
had high bias levels (around 30% to over 700%) for all estimation methods across sample
sizes. The MSE values were relatively small for most parameters, but the variance of the
intercept had large MSE values (as high as 54) in some conditions.
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Table 18. Parameter Estimates for 3-Class 33/33/33 MD=1/1

=200 o=400 n=5600

Pop B-Inff B-Wezk RIMCMC DPF B-Ihff B-Wezk EIMCMC DP B-Inff B-Weak RTMCMC DPF
#classes 3.000 3000 3000 (ﬂ.ﬁi’; 2834 3.000 3.000 {0;2;; 2760 3000 3.000 {u_::ﬁ; 2792

Cl 0333 0333 0372 0335 0333 0335 0331 0318 0334 0333 0308 0334
Prop c2 03134 0334 0355 0301 0334 0332 0.280 0329 0333 0332 0353 0331

C3 0334 0333 0273 0364 0333 0333 0389 0353 0334 0335 0338 0335
Iean |
Cl 31370 32530 32372 32831 32853 32670 32472 32943 30952 32637 32513 324468 32274
C2 34290 34306 34580 36924 35420 34227 34561 16085 33.758 34221 34590 35447 34447
C3 37210 36.032 35886 37913 36196 36000 35845 39.729 35985 33952 35758 39292 36299
Mean 5
Cl 1.802 2585 2551 1672 1996 2793 23523 2047 1784 2558 2500 1.736  1.957
c2 2834 2821 2880 3983 2078 2586 2882 2463 2930 2810 2899 2712 2878
C3 38867 3086 3058 3900 3570 3.115 3.080 4127 3549 3120 3.091 4645 3972

Var-1 16.000 17238 17341 18462 23370 17403 17421 15782 21.147 17480 17.569 20163 21.655
Var-5 2.000 2179 2175 1685 3173 2202 2197 1909 2928 2201 2305 1703 2919
Cov 0300 1663  1.670 0701 2663 1600  1.585 1.235 2401 1551 15% 0391 259
Residual 0.500 0.522 03521 0.715 0480 0509 0510 0.653 0475 0510 0509 0717 0517
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Table 19. Percent Bias for 3-Class 33/33/33 MD=1/1

=200 =400 =500

Pop BIhff B-Weak RIMCMC DP BInff BWeak RIMCMC DP B-Ihff B-Weak RIMCMC DP

Cl 0.787 0985 12.7TXT 1515 0897 1.382 0337 -3.535 1.106 08597 6313 1178
Prop C2 1106  1.087 7576 8758 1288 0721 -15152 0253 0827  0.636 6818 0337

C3 1.158 0579 17273 10273 0845 0927 17.845 6818 1097 1497 2535 1515
Mean 1
C1 31370 3698 3154 4657 47327 4143 3512 5015 -1.332 4198 3676 3501 2882
C2 34290 0056 03872 T6E1 32 0183 0.790 7.881 -1.550 0201 0876 3373 D458
C3 37210 23165 3558 1BEE 2726 -3253 3669 6771 3293 -3380 3003 5504 2448
Mean 5
Cl 1.8402 43441 41543 -7.194 10.788 54.967  40.028 13.573 0599 41941 3B.7T13 367 E615
C2 2834 0455 1.606 40.53% _16.670 S.761 1690 13106 5161 0840 2279 2171 1581
C3 3867  -20.102 -20.926 0856 -74533 -19.460 -10.354 6734 -B8232 19310 -l0.059 119 2710

Vard 16.000 7743 B39 15336 46.061 B766 8882 -1.365 32294 9247 9807 16.010 35345
Var-5 2.000 8965  BTe0 15771 58431 lo.080 9835 4.537 46.381 10.050 10245 -14.858 45943
Cov 0300 454233 456800 133674 787.633 433167 431767 31L.799 TOO.413  417.000 418.133 30471 TeEA421
Residual 0.500 4.340 4180 42941 4071 1.860  1.900 30.533 4926 2000  1.820 43335 3496
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4.3.2.8 3-Class Prop=33/33/33 MD=1/3 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
33/33/33 MD = 1/3 conditions are presented in Tables 20, 21 and A7. RIMCMC and DP
correctly estimated the number of classes. The percentages of selecting a 3-class solution
ranged from 65% to 75%, indicating a moderate certainty of the class solution. The class
proportions were estimated well by all estimation methods except for RIMCMC in the n
= 200 condition and for DP in the n = 600 condition, where the bias levels were slightly
higher than 10%.

The intercept parameter means were recovered well by all estimation methods across
sample sizes. The slope mean in Class 1 was estimated with slightly high bias (all above
18%) by all estimation methods in the » = 200 condition, and it was improved for
RIMCMC and DP as the sample size increased (bias levels decreased to below or slightly
higher than 10%). The bias for the slope means in Class 2 and Class 3 was relatively low
(below 10%) for all estimation methods, although a few conditions in B-Diff had bias
levels that were slightly higher than 10%. The variances of the growth parameters were
estimated with low bias level (below 10%) for B-Diff and B-Weak and with high bias (as
high as 47%) for RIMCMC and DP across sample sizes. The covariance was recovered
poorly by all estimation methods for all sample sizes (bias levels were all above £60%).
The MSE values were small for all parameters except for the intercept variance for DP
(around 40).
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Table 20. Parameter Estimates for 3-Class 33/33/33 MD=1/3

=200 =400 =600

Pop B-Thff B-Weak EIMCMC DP B-Inff B-Weak RIMCMC DLP B-Tnff B-Weak RIMCMC DP
#elasses  3.000 3.000 3.000 {02?9;;; 3061 3.000  3.000 {Ds.sdlﬂi 3165 3000  3.000 mgﬁéﬁ 3350

Cl 0335 0342 0298 0335 0.330 0338 0324 0318 0329 0334 035 0304
Prop c2 0334 0327 0364 0320 0331 0323 0339 0329 0330 0326 0320 0303

C3 0331 0331 0338 0345 0.33% 0339 0337 0353 0341 0340 0315 0393
Mean I
C1 31370 32766 31.607 20386 30854 32765 31572 31943 32951 327952 31.569 33069 32075
c2 34.290 33559 35234 32955 32416 32958 34328 35205 34969 J2EB85 34164 32356 32451
C3 43010 42410 41986 42 8% 41697 42833 42748 44573 424072 42896 42851 41579 41.0904
Mean 5
Cl 1.802 2311 213 2172 2268 2206 2060 1927 1783 2304 2035 1646 2005
c2 2834 21580 2931 3027 2679 2359 2653 2871 2536 2327 2626 2575 2476
C3 5017 5684 5530 6131 6330 5840 581 6285 6.105 5872 5856 60468 6047

Var-1 16.000 16624 16.627 14363 17847 16.3%2 16362 16456 17484 16344 16300 15880 22369
Var-3 2.000 2095 2093 2211 2932 2065 2064 2010 2376 2056 2055 2358 31275
Cov 0.300 0732 0.TM 0097 1330 0608 0605 1031 0994 0576 0566 0118 1046
Fesidual 0.500 0520 0520 03513 0510 0307 0.505 0468 04534 0507 0506 0713 0519
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Table 21. Percent Bias for 3-Class 33/33/33 MD=1/3

=200 =400 =600

Pop B-Thff B-Weak EIMCMC DP B-Inff B-Weak RTMCMC DLP B-Tnff B-Weak RIMCMC DP

Cl 1445 3694 H697 1515 0073 2406 -1818 3535 0200 1.070 T8 7912
Prop c2 1197 0900 10303 -3.030 0170  -2.055 29X7 0253 0033 -1.185 0303 -BI48

C3 0388 0236 2424 4545 2788 2679 2121 6818 324 3145 4545 19.091
Mean T
Cl 31370 4451 0.755 63123 1644 4448 0643 1827 5040 4406 0635 5417 2248
c2 34290 2133 2713 3894 5466 3885 0112 2668 1980 4087 0367 Sed41 5384
C3 43.010 -13%6  -2.380 D271 3053 0411 D609 3635 -2130 0266 0370 -3327 4456
Mean 5
Cl 1.802 28219 1B.241 10559 15836 27397 14.295 6913 -1.035 17869 11925 4675 11.131
c2 2334 S0548 3423 6.806 -5465 -16.775 63590 1291 3599 17904 -7332 5154 -12.640
C3 5817 3036 6393 3618 60983 -1.15%  -1.620 6212 31176 0767 -1.033 2172 2197
Var-1 16.000 3898 3919 10230 11544 2452 2265 2851 9274 2147 1877 15.002 39808
Var-5 2.000 4770 4670 10.540 46,590 3235 320 0420 13811 2790 2755 17592 13.762
Cov 0300 144133 141367 67628 343473 102.933 101.700 243789 I3L176 21967 FB.600  -60.750 248537
Residual 0500 3920 4060 23500 1980 1.320 1080 6134 9147 1.300 1.120 42522 38215
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4.3.2.9 3-Class Prop=33/33/33 MD=3/3 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
33/33/33 MD = 3/3 conditions are presented in Tables 22, 23 and A8. RIMCMC and DP
correctly estimated the number of classes. The percentages (i.e., 82.9% to 97.3%) of
selecting a 3-class solution show higher confidence than the percentages when the MD
values were 1/1 and 1/3, which were around 60% to 71%. The class proportions were
recovered well by all estimation methods for all sample sizes except for RIMCMC,
which yielded a bias level that was slightly higher than 10% when n = 200.

The intercept means were estimated well for all estimation methods for all sample
sizes. The slope means in Class 1 and Class 2 were recovered with moderate-to-high bias
levels (around -14% to 54%) by B-Diff and were improved as the sample size increased
(bias levels decreased to below 1%). RIMCMC and DP yielded relatively high bias levels
(around 26% to 32%) for the slope mean in Class 1, and the bias levels decreased to
below 10% as the sample size increased. The slope parameter mean in Class 3 was
estimated well by all estimation methods. The bias for the growth parameter variances
was relatively high for B-Diff and B-Weak (bias levels were above 14%) and decreased
to below 10% as the sample size increased. The bias levels for RIMCMC were relatively
low across sample sizes (all below or slightly higher than 10%). DP yielded the estimates
with inconsistent bias levels (around 3% to 92%) across sample sizes. The covariance
parameter had very high bias levels for all estimation methods. The MSE values were
relatively small for all parameters.

79



Table 22. Parameter Estimates for 3-Class 33/33/33 MD=3/3

n=200 =100 n=60{

Pop B-Inff B-Weak RIMCMC DP B-Thif B-Weak RIMCMC DP B-Ihff B-Weak RIMCMC DP
#classes  3.000 3000 3000 (ﬂz_é‘g;: 3 3.000  3.000 {ﬂzﬁﬂg 313 5.000  3.000 ngggj 3270

Cl 0333 0341 0.298 0.335 0336 0313 0.356 0308 0.335 0331 0311 0314
Prop C2 0329 034 0312 0322 0330 0360 0308 0349 0.331 0.340 0360 03351

C3 0338 D335 0390 0.343 0335 0325 0.336 0343 0334 0330 0329 0355
Maan I
Cl 31370 34080 31735 33706 32844 31616 30355 32466 32954 31418 312387 33675 31.070
c2 40090 38179 41285 41243 35228 390949 40118 41.055 42565 40101 40115 41.680 38257
C3 48 810 47988 47334 47525 46499 48728 48002 492315 50576 48773 48758 48781 48643
Mean 5
Cl 1.802 2767 1942 2276 2371 1.885 1.802 2147 1981 1820 1.801 1646 1836
Cc2 4 B85 4.201 5300 5.062 5227 4832 4890 4957 4088 4836 4890 4824 4825
C3 7968 7670 7440 £8.054 8.380 TO3E 1.729 §236 B.155 T.951 7948 EDDd T.60E
Var-I 16.000 18360 1B445 17497 23072 16718 17406 16096 16536 16398 16396 17961 17.692
Var-5 2.000 2204 2305 2142 3.835 2090 2184 2105 2162 2060 2061 2095 2381
Cov 0300 1032 1085 0.132 3.368 0497 0751 0856 03523 0411 0414 0212 0558
Besidual 0500 0521 0520 0544 D472 D508 0505 0.454 0470 0306 0507 0521 0509
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Table 23. Percent Bias for 3-Class 33/33/33 MD=3/3

n=200 o=100 n=50

Pop B-Dnff B-Weak RIMCMC DP B-Diff B-Weak RIMCMC DP B-Diff B-Weak BEIMCMC DP

Cl 0,942 3338 -9.7588 1515 167 4488 T.E35 -6.566 1.633 0.182 -5.758 4882
Prop c2 0297 1764 -5455 24 D058 Bosd -6 748 5808 0309 2952 0001 0337

C3 2385 1.453 18.273 3019 1409 -1.445 1924 3788 1.0BE 0103 0303 7576
Mean I
Cl 31370 B.630 1.164 7445 4 697 0783 -3.236 3493 5.050 0.152 0264 7.347 D956
2 40,090 4766 2980 2876 -4 645 0351 0.069 2406 6175 0.028  0.063 3065 4571
C3 48 810 -1.684 3025 -2633 4735 0169 -1.655 0870 3617 0076 0107 0060 -0.342
Mean 5
Cl 1.802 s3546 7769 26282 31.5T7 4606  0.000 19118 9955 0.988 -0.03% £675 15910
c2 4 B85 14008 BS04 3832 65991 1089 0.082 1474 2118 1013 0106 1257 -1.226
C3 TO68 -346 6628 1077 5.168 0380 -2999 3360 2343 -0.208 0281 0447 -3.389
Var-1 16.000 14.752 15284 9357 44198 4493 B.T789 0601 3349 2489 2475 12287 10875
Var-5 2,000 14685 15135 7089 91791 4865 9175 5237 8081 2990 3050 4.746 19.027
Cov 0300 244100 254867 -56.158 1021.698 65533 150433 185441 74435 37133 35067  -10.188 Be1s2
Besidual 0.500 4180 3930 8845 -5.625 1.580 1.060 -9 185 -6.100 1.200  1.300 4155 1.792
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4.3.2.10 3-Class Prop=45/45/10 MD=1/1 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
45/45/10 MD = 1/1 conditions are presented in Tables 24, 25 and A9. RIMCMC and DP
correctly estimated the number of classes, although the percentage of selecting a 3-class
solution by RIMCMC was relatively lower (all below 70%). The class proportions were
recovered poorly by B-Diff and B-Weak across all sample sizes where the class size of
the minority class was largely overestimated (bias levels were above 224%). RIMCMC
also tended to overestimate the class size of the minority class when the sample size was
small but the bias level decreased as the sample size increased; however, bias levels were
always above 10%. DP yielded slightly high bias levels for the class size of the minority
class when n = 200 and n = 400 (bias level were around -16% to 28%), but levels
decreased for n = 600 (bias level decreased to 13%).

The intercept means were estimated well by all estimation methods for all sample
sizes, although B-Diff slightly underestimated the intercept mean of the minority class
(bias levels were all below or slightly higher than 10%). B-Diff and B-Weak consistently
underestimated the slope mean in the minority class (bias levels were around -32% to -
36%), and it overestimated the slope mean in Class 1 (bias levels were around 30%)
across sample sizes. RIMCMC yielded inconsistent bias for the slope means (bias levels
were around 2% to 12%). DP produced slightly high bias levels (above 10%) for the
slope parameter means, but the bias levels decreased to below 10% when n = 600. The
growth parameter variances were recovered well by B-Diff and B-Weak (bias levels were
all below 10%) but were recovered relatively poorly by RIMCMC and DP (bias levels
were around -9% to 56%). The covariance had very high bias levels (ranging up to 501%)
for all estimation methods for all sample sizes. The MSE values are small for most
parameters, although RIMCMC and DP yielded a few high MSE values (around 15 to 54)
for the intercept variance under some conditions.
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Table 24. Parameter Estimates for 3-Class 45/45/10 MD=1/1

=200 =400 =600

Pop B-Ihif B-Wezk RIMCMC DP B-Dhif B-Weak BEIMCMC DP B-Dhif B-Weak EIMCMC DP

#classes 3000 3000 3000 3194 2676 3.000  3.000 1318 2861 3000 3000 274 2 825
(0.680) {0.644) (0.678)

Cl 0339 0340 0494 0444 0342 0342 0480 0433 0342 0344 0477 0439
Prop C2 0334 0328 0387 0428 0331 0.326 0405 0483 0334 0326 0410 0467

C3 0328 0332 0119 0129 0327 0332 0115 0.084 0324 0330 0,113 0.095
Tean I
Cl 31370 31720 31582 30468 31581 318} 31742 33136 32122 31.857 31.802 20458 33304
C2 34290 34802 33556 35357 32601 33353 33496 34357 33.206 33325 335% 36047 34045
C3 37210 33280 34763 38946 38637 34753 34.703 36486 35934 34757 34621 36357 38839
Mean 5
Cl 1.802 2352 2331 1625 1987 2351 2319 1.714 189355 2341 23M 1.724 1931
c2 2834 2620 2516 3147 3187 2612 254 2773 2905 2627 2507 2635 2818
C3 3E67 2471 2,594 4152 4271 2485 2504 4053 - 4.125 2492 2620 3147 3490
Var-1 16.000 15977 16088 18217 21839 16249 16.245 13215 19.014 16401 16493 19842 21125
Var-5 2.000 2015 2017 L7687 2577 2082 2059 3.117 2898 2086 2086 1823 2385
Cov 0300 1.252 1268 0442 1806 1274 1265 1369 1.78% 1.248 1.265 0239 1352
Residual 0500 0522 0521 0.704 0541 0509 0508 0672 0455 0504 0505 0.708 0.507
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Table 25. Percent Bias for 3-Class 45/45/10 MD=1/1

=200 =300 n=600

Pop B-Diff B-Weak RIMCMC DP B-Diff B-Weak RIMCMC DP B-Diff B-Weak RIMCMC DP

C1 2474 -5 9716 -1444 -24.053 -131.929 6667 -3.756 -13.987 -13.587 6044 -2556
Prop c2 SI5ETE 27011 14044 4956 36344 27649 -100000 7356 -15851 -27.562 8933 3778

c3 127790 13180 19450 25800 226,790 232100 12000 -16.200 224270 230170 13,000  -5.500
Mean I
Cl 31370 L1155 0707 2874 0672 1449 1186 5629 239 1551 1376 -£0%0 6184
C2 34290 1.784 -2141 3113 4925 2734 2316 0196 -3.162 2814 2205 5123 0714
C3 37210 10537 6576 4666 3834 £603 -6736 -1947 3429 6594 £959 2792 4377
Mean §
Cl 1.802 30544 10345 9839 10.286 Jo461 19245 4007 BA447 10000 29495 4352 71179
C2 1B34 -7.562 -1121 11039 12445 TEI -10.%48 2136 2650 -7322 -11.524 7032 0564
C3 3867 -36.108 -32.881 7382 10438 35738 32925 4810 5.661 -35552 32358 -183.623 0758

Var-1 16,000 -0.145 0550 13.856 36491 1557 1533 -17404 18.837 2505 3082 4011 32034
Var-5 2.000 0760 0835 -1L662 15843 3075 2950 £5.848 44.890 4290 4305 -2.842 19.748
Cov 0300  317.433 311800 47.354 501901 314567 311533 356310 496167 316067 311600  -20.296 350.T18
Fesuidual 0.500 4320 4180 40.753  8.101 1.780  1.640 34455 -8.923 0820 0500 41600 1347
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4.3.2.11 3-Class Prop=45/45/10 MD=1/3 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
45/45/10 MD = 1/3 conditions are presented in Tables 26, 27 and A10. The number of
classes estimated by RIMCMC and DP was correct for all sample sizes. The percentage
of selecting a 3-class solution by RIMCMC ranged around 65% - 75%, which suggests
moderate certainty about the 3-class solution. The class size in the minority class was
overestimated by all estimation methods (bias levels were all above 10%) except for
RIMCMC, which yielded a relatively low bias level (i.e., -5.57%). The bias for the class
proportions decreased as the sample size increased, especially for B-Diff and B-Weak,
whose bias levels decrease to below 10%.

The intercept means were recovered well for all estimation methods across sample
sizes. B-Diff and B-Weak yielded relatively higher bias levels (above 23%) for the slope
means in the minority class and Class 1, compared with RIMCMC and DP (bias levels
were below 18%) for the same parameters. B-Diff and B-Weak recovered the growth
parameter variances well (bias levels were all below 10%), and RIMCMC and DP
recovered them relatively poorly (bias levels ranging up to 37%). All estimation methods
yielded high bias levels (ranging above 400%) for the covariance parameter. The MSE
values were small for all parameters except for the intercept variance under DP (which
was around 18).
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Table 26. Parameter Estimates for 3-Class 45/45/10 MD=1/3

n=200 =400 n=600

Pop B-Dhiff B-Weak RIMCMC DP B-Diff B-Weak RIMCMC DP B-Daiff B-Weak RIMCMC DP
#classes  3.000 3000 3000 (ﬂ%%%ﬁ} 332 3.000  3.000 m_;;;; 2977 3.000  3.000 (02;;; 3.308

Cl 0429 0428 0457 0503 D436 0438 0430 0446 0439 0436 0420 0475
Prop c2 0391 0408 0439 0418 0449 0447 0458 0429 0452 0454 0468 0413

C3 0181 0184 0024  DOTE 0116 0115 0112 0125 0110  0.I10 0.112 0111
Mean I
Cl 31.370 31.679 31587 30485 29278 31638 31.635 33357 313123 31.681 31.681 33357 339
c2 34 290 34847 34430 32536 31.5% 33.796 33.803 342136 34082 33.788 33790 35466 35.034
c3 43.010 40374 40892 41 835 45.000 42356 42291 41573 41716 42460 42479 43357 42210
Mean 5
C1 1.802 27289 2289 1984 1838 2351 2248 2076 2114 2226 2225 1885 2032
c2 2834 1674 2492 3.047  3.090 302 234 2906 2968 233 2339 2946 2572
c3 5917 4970 51353 6205 6201 5636 35660 6125 6183 572 5726 5536 5.517
Var1 16.000 16825 16.793 13072 17317 16590 16556 13983 16.351 16584 16602 18353 20325
Var-5 2.000 2116 2113 2519 26M 2084 2086 2539 2T46 2082 2090 1.937 2441
Cow 0.300 1070 1.057 0208 1504 0901 0E9E 0.518 1360 0871 0873 0198 L1073
Rasidual 0.500 0523 0521 0697 0495 0s02 0510 0574 0472 0.507 0.506 0.727 0518
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Table 27. Percent Bias for 3-Class 45/45/10 MD=1/3

=200 =400 n=500

Pop B-Dhff B-Weak RIMCMC DP B-Dnff B-Weak FIMCMC DP B-Dhff B-Weak EIMCMC DP

Cl 4722 4911 3727 11.867 3184 2511 4460 0989 2480 -3.129 6778 5.580
Prop c2 213180 5336 2489 7044 0269 0TI 1778 4591 0347 0578 4044 8133

3 80560 64.110 -5.570 -11.700 155840 14950 12070 22110 9600 9680 12300 11.490
Mean I
Cl 31.370 0986 0691 282 6668 085 0384 6335 5588 0931 05990 6335 6151
C2 34290 1623 0435 5116 7874 -1.440 -1420 0158 0608 -l484  -1.459 2404 2170
C3 43.010 6130 4925 2733 4617 -1.753 1673 3340 -3.008 -12357  -1.249 0807 -1.B61
Mean §
Cl 1.802 16098 17.026 10,086 4764 14917 24.761 15183 17309 23,535 1349 4584 11787
C2 2834 -5.635 -12.082 7510 9038 -18.776 -15.T0& 2535 4717 -17.558 -1747D 3040 9251
C3 5917  -16.008 -12.912 4862 4797 4403 4348 3509 4495 323 3225 -6.444 6762
Var-1 16.000 5153 4955 5799 823 3690 3478 12603 2195 3714 3760 14,704 17.032
Var-5 2.000 5775 5623 12975 31178 4215 4295 16953 373N 4575 4515 -3.162 22074
Cow 0300 256,700 2152200 30531 401.293 200167 199.233 TLE6T 353.431 133 191100 -34.107 257.619
Residual 0500 4500 4280 39360 -1085 1.340 1940 14865 -5529 1380 1220 45361 3512
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4.3.2.12 3-Class Prop=45/45/10 MD=3/1 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
45/45/10 MD = 3/1 conditions are presented in Tables 28, 29 and A11. RIMCMC and DP
correctly estimated the number of classes. The percentages of selecting a 3-class solution
by RIMCMC were around 74% to 78%. The class size in the minority class was
consistently overestimated by B-Diff, B-Weak, and DP (bias levels were above 200%)
and underestimated by RIMCMC (bias levels were -19% to -24%) across sample sizes.
Both B-Diff and B-Weak yielded high levels of bias (above 200%) for the class
proportions when n = 200.

The intercept mean in the minority class were estimated well by all estimation
methods. B-Diff and B-Weak produced high levels of bias (above 10%) for the slope
means in the minority class and in Class 1; the bias levels for Class 1 decreased to below
10% as the sample size increased. The slope means were recovered well by RIMCMC
and DP. The growth parameter variances were recovered well by B-Diff and were
recovered with high bias levels (around 33%) by B-Weak when » = 400. Both RIMCMC
and DP yielded high bias levels (around 10% to 85%) for the growth parameter variances
when n = 200; the bias levels decreased slightly (around 7% to 34%) when the sample
size increased. All estimation methods produced very high bias levels (ranging -23% to
over 1200%) for the covariance parameter. DP yielded a few high MSE values (i.e.,
159.517) for the variance parameters when n = 200, and other parameters all had
relatively small MSE values.
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Table 28. Parameter Estimates for 3-Class 45/45/10 MD=3/1

n=20{ =400 =500
Pop B-Diff B-Weak RIMCMC DF BIhff B-Weak RIMCMC DP BIhff BWeak RIMCMC DP
" 2500 3.115 2955
#elasses  3.000 3.000  3.000 (0.741) 3133 3.000  3.000 ©.782) 3.108 3000  3.000 (0737 3.248
Cl 0356 0377 0.432 0396 0387 0401 0431 0438 0411 0420 0439 0416
Prop c2 0328 0307 0493 0478 0302 0295 0498 0437 0299  D3B& 0478 0468
C3 0316 0316 0.076 0129 0311 0.303 00El D125 0290 0295 0083 0116
Mean I
Cl 31370 248 31742 322347 31286 31802 31572 33356 32733 31.573 314438 28468 32049
c2 400090 37658 38971 10468 3E394 JER5E 30504 38875 3BD95 39997 39997 30364 3E.844
Ci 43.010 40088 39860 45708 43029 30976 310877 42076 42032 30648 30005 45212 44141
Mean 5
Cl 1.802 2253 1.997 1835 1.385 2025 1905 1985 2110 1895  1.8355 1.884 1.830
c2 4885 4814 4446 5.148 5.140 4306 4698 4975 5292 4729 4830 5024 5019
C3 5917 4019 4768 5.236 6.226 4439 4777 6285 6177 4821 4842 5534 5542

Var-1 16.000 16453 16466 17.744 28630 15959 21.184 14877 18245 15983 16.008 18.686 1B.932
Var-5 2.000 2060 2062 2533 imo7 2011 2678 1672 2765 2007 2005 1768 2485
Cov 0,300 0.663  0.661 0.209 4.008 h460 0462 0523 115 0436 0433 0238 (0838
Fesidual 0.500 0.523 03521 0.529 0.475 307 0509 0.608 0483 0504 0506 0.524  0.508
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Table 29. Percent Bias for 3-Class 45/45/10 MD=3/1

=200 =400 n=6{

Pop B-Dnff B-Weak RIMCMC  DP B-Diff B-Weak RIMCMC DP B-Diff B-Weak EIMCMC DP

Cl -10.942 -16.289 4000 -12.067 -14.060 -10.81% 6444 2568 2693 8773 -254%  -T460
Prop c2 27108 -3L.TTE 9333 5689 -32.811 -34.378 10667 -2927  -33.624 36527 6311 3933

c3 116230 216.200 24000 2 23700 0 210920 203430 -19000 24730 190430 194850  -16.930 15870
Mean I
Cl 31370 3431 1185 2795 0267 1697 0643 6332 4345 0648 0248 9250 2165
C2 40.090 6068 -2.701 1551 41 B3.074 1236 3032 2730 £330 00231 -LEI1 -3.108
C3 43.010 6793 7325 6482 2138 -7.053 7285 2171 224 -T816 -T.008 5120 2629
Iean 5
Cl 1302 14061 10.810 1.BO7 4501 12353 3716 10133 17.094 5112 2919 3457 1555
48385 -1455 -B979 5374 5.226 1609 38X 1849 8339 3204 -1.128 2837 2752
C3 5817 32079 -19.417 -11.514 5221 -24.979 -19.267 6214 4393 18521 -18.163 -6.649 6342
WVar1 16.000 2833 2011 10898 78919 0256 32307 -T020 14034 0109 0048 16.784 18.32%
Var-5 2.000 3015 31.090 3.637T  BsAM 0.540 33,780 16380 38250 0325 0245 11596 23272
Cov 0300 120933 1210333 3049 1136163 531 53.90Q 74378 185139 45167 44167  -13.643 176070
Residual 0,500 4540 4120 5847 -5.043 1320 1800 223 -3349 0860 1220 4766 1810
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4.3.2.13 3-Class Prop=45/45/10 MD=3/3 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
45/45/10 MD = 3/3 conditions are presented in Tables 30, 31 and A12. RIMCMC and DP
correctly estimated the number of classes. The percentages of selecting a 3-class solution
by RIMCMC were relatively high (i.e., 96.7% to 99.5%) across sample sizes, compared
with the percentages in other conditions with prop = 45/45/10 (around 64% to 78%). The
class sizes of the minority class and Class 2 were estimated inaccurately by B-Diff and B-
Weak when n = 200 and n = 400 (bias levels were mostly above 10%) and the bias levels
decreased to below 10% when n = 600. RIMCMC and DP yielded some levels of bias
(around 13% to 25%) for the class size of the minority class, but improved as the sample
size increased (bias levels decreased to below 10% when n = 600).

The intercept means were estimated well by all estimation methods; the bias levels
for B-Diff and B-Weak in the n = 200 condition were slightly high (around -11% to -
15%), but they decreased to below 10% as the sample size increased. RIMCMC and DP
correctly recovered the intercept means. B-Diff and B-Weak yielded high bias levels
(around -26% to 46%) for the slope means in the minority class and Class 1 when n =
200; the bias levels decreased to below or slightly higher than 10% as the sample size
increased. RIMCMC and DP produced relatively low bias levels (all below or slightly
higher than 10%) for the slope parameter means. B-Diff and B-Weak yielded high bias
levels (all above 54%) for the growth parameter variances when n = 200 and improved as
the sample size increased (bias levels decreased to below or slightly higher than 10%).
RIMCMC estimated the growth parameter variances well (bias levels were all below or
slightly higher than 10%) and DP had more inaccuracy (bias levels were mostly around
23% to 184%) across sample sizes. The covariance parameter was recovered with very
high bias levels (mostly around 34% to over 3100%) by all estimation methods. Most
parameters had small MSE values except for the growth parameter variances (around 76
to 261).
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Table 30. Parameter Estimates for 3-Class 45/45/10 MD=3/3

o=20 n=40{ o=600

Pop B-Ihif B-Weak EIMCMC DP B-Ihif B-Weak RIMCMC DF B-Thif B-Weak EIMCMC DP
. 2981 2081 2082
#classes  3.000 3.000 3.000 (0.967) 3294 3.000 3.000 (0.995) 3138 3000  3.000 (0.973) 3.044

Cl 0391 0.405 0.433 0.439 0441 0.443 0.458 0438 0447 0448 0434 0451
Prop C2 0.313 0.343 0442 0448 0404 0.425 0421 0454 0443 0448 0462 D439

c3 0.296 0.252 0125 0113 0.155 0132 0.121 0.108 0110 0.104 0104 0111
Mean I
Cl 31370 33433 32445 29357 32385 31837 315X 32536 33132 31418 31383 32.537 30304
c2 40,090 39936 39971 38345 38391 40375 39920 39225 39199 40059 39961 38575 38828
c3 48 E10 41424 43031 50468 50757 46 620 47509 46246 47513 482128 48400 50467 50,012
Mean 5
Cl 1.802 2637 2339 1.6 1.986 1.983 1874 1.736 1951 1821 1801 187 1841
2 4 835 5258 4 6568 547 5.141 4962 4 800 4724 4822 4866 4875 5047 4925
c3 7968 4.847 5.885 8.236 8.267 7.197 7.507 8.236 8234 1761 7574 1525 T266
Var-I 16.000 25123 247958 15992 24013 17637 17453 17285 32179 1639 16440 16990 16.697
Var-5 2,000 3.150 3.103 L.761 5.698 2210 2154 1.836 4.350 2059 2062 240 2466
Cov 0.300 3895 3.749 0281 9679 0_8E6 0820 2133 6.136 0422 0429 0.197 0357
Residual 0.500 0.526 0.524 0614 0472 0.508 0506 0.513 0471 0.506 0506 0613 0501
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Table 31. Percent Bias for 3-Class 45/45/10 MD=3/3

=20 o=4 =60

Pop B-Dhiff B-Weak RIMCMC DP B-Ihff B-Weak RIMCWMC op B-Inff B-Weak RIMCMC DP

Cl1 13009 DE9G 3711 2444 2000 -1e42 1778 2503 0620 0464 3578 0156
Prop c2 Sn4se 2382 -1.867 0533 10264 5502 -6.444 0926 -1.553 0376 2e6T -2.556

c3 195,500 151.730 15100 13.400 55190 32150 21000 T.500 97RO 3780 4100 10804
Mean I
Cl 31.370 6.577 3426 -6.416 2917 1490 0.492 M7 5.617 0.154  0.042 3.721 -3.39%
c2 40090 0384 D795 4352 4239 0.711 0425 2158 2019 0077 0322 -3.TBD -3.148
c3 48 810 -15133 -11.839 3.397 3089 4468 2665 5253 2657 1193 0840 33096 2463
Mean 5
Cl 1.802 46.310 29817  -14.227  10.193 10.03% 35873 -3.678 8.266 1049  -0.033 2484 2146
c2 4885 7627 4442 7415 5232 1570 -1.746 3289 1299 0381 0205 3316 0822
c3 7968 30174 -2aldl 3362 3751 L6680 5789 3369 3337 2508  0.078 -5.566 -B.B05
Varl 16.000 ET.018 54735 0610 S0.080 10,232 9081 8033 101121 2473 2753 6.185 4.357
Var-5 2.000 ET.S08 SE155 11953 184.8377 10.520 9,690 B.178 117.486 2965 3090 L1987 13.282
Cov 0300 1198.400 1149800 -6.365 3116469 195233 173167 6LO0BTT 1945467 40533 42933 34169 19.009
Residual 0.500 5.160 4740 IL768  -5.682 1540 1.120 2883 -5.817 1240 1120 X505 0222
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4.3.2.14 3-Class Prop=70/20/10 MD=1/1 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
70/20/10 MD = 1/1 conditions are presented in Tables 32, 33 and A13. RIMCMC and DP
correctly estimated the number of classes. The percentage of selecting a 3-class solution
by RIMCMC was higher when n = 600 (i.e., 86.7%) than when the sample sizes were
smaller (i.e., below 65%). The class proportions were estimated poorly by all estimation
methods across sample sizes (bias levels were mostly above 10%). B-Diff and B-Weak
tended to overestimate the class size in the minority class (bias levels were around -47%
to 230%), while underestimating it in the majority class (bias levels were around 47% to
50%). The bias for the minority class size under DP (bias levels were below or slightly
higher than 10%) decreased when the sample size increased, but it was consistently high
for B-Diff and B-Weak across all sample sizes (bias levels were all above -46%).
RIJMCMC tended to underestimate the class size in the minority class (bias levels were
all above -37%), and it overestimated the majority class slightly (bias levels were slightly
higher than 10%).

The intercept means were recovered well by all estimation methods for all sample
sizes. B-Diff and B-Weak yielded relatively high bias level (around 12% to -36%) for the
slope means, while RIMCMC and DP estimated these parameters with relatively low bias
levels (below or slightly higher than 10%). Overall, B-Diff and B-Weak estimated the
growth parameter variances well except for B-Weak, which produced slightly higher bias
levels (around 23%) when n = 200. RIMCMC and DP consistently yielded relatively
high bias levels (around 11% to 44%) for the variance parameters across all sample sizes.
All estimation methods yielded high bias (around 15% to 425%) for the covariance
parameter. The MSE values are small for most parameters. The variance of the intercept
had relatively high MSE values (around 10 to 24) in some conditions.
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Table 32. Parameter Estimates for 3-Class 70/20/10 MD=1/1

=200 n=40{ n=6[M
Pop B-Ihff B-Weak ETMCMC DP B-Inff B-Weak EIMCMC DP B-Inff B-Weak ETMCMC DP
. 3338 3352 2721

#elasses  3.000 3.000 3000 (0.649) 1656 3.000  3.000 0.621) 1656 3000 3.000 (0.867) 3309

C1 0.351 0352 0.788 0627 0358 0362 0.812 0.636 0369 0371 0758 0.653
Prop c2 0.334 0317 0174 0232 0338 0312 0177 0238 0344 0315 0180 0254

Cc3 0315 0331 0039 0142 034 0326 0011 0125 0287 0314 0063 0.093
Mean I
Cl 31370 31021 30932 32048 30034 311465 31046 31996 30.899 31222 31041 20448 32292
c2 34 200 32572 32872 33357 32712 32586 32904 32735 34932 32490 33409 32780 33.840
c3 37.210 34365 34180 36358 30143 34439 34147 33547 35829 34727 33989 38736 3B.TM
Mean 5
Cl 1.802 2004 2076 25 1971 22323 2055 2059 1907 2203 2024 1.784 1919
c2 2834 2716 21278 21054 20482 2041 2325 2704 269 1996 2425 Jood 2928
c3 3867 2443 2400 4135 4167 2367 2465 4337 4125 2T 2470 3249 3486
Var-1 16.000 15903 19781 12378 18876 15893 15908 13.858 20418 15760 15831 19189 20903
Var-5 2.000 2007 2495 176l 2713 2007 2011 2807 2647 1996 2006 1.857 23579
Cov 0.300 1173 1.576 1181 1187 1.039 1472 0682 1.757 0805 0919 0253 1.383
Besidual 0.500 0523 0521 0727 0470 0509 0510 0479 0461 0507  0.507 0713 0509
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Table 33. Percent Bias for 3-Class 70/20/10 MD=1/1

=200 n=40{ n=6[M

Pop B-Ihff B-Weak ETMCMC DP B-Inff B-Weak EIMCMC DP B-Inff B-Weak ETMCMC DP

C1 -49.826 49,701 13518 -10.476 -48.559 48.294 16.000 -9.095 47.336 -46.997 8238 £T14
Prop c2 67.020 58705 -13.2150 15900 69,145 56,130 -11L.300 19.160 TI165 57400  -10.250 27.000

c3 114740 230500 61200 41.530 2037 225700 -B9.400 25350 187020 214180 37167  -T.000
Mean I
Cl 31370 1112 -1.39% 2160 -41%4 0653 -1.032 1995 -1.501 0473 -1048 062 2938
c2 34 300 5010 4135 27 4573 4971 3780 43536 1872 5250 2570 4403 -131
c3 37210 -Tede  B144 2200 5196 7447 8131 9845 3442 6674 B63T 4100 4123
Mean 5
Cl 1.802 15.089 15223 13526 9378 23351 144018 14.240 5852 11259 112342 -1.027 6480
c2 1834 SIL090 -19.633 4235 4518 -17.985 -17.960 4605 4855 10587 -14.450 9185 3252
Cc3 3.867 -36.827 37934 6921 7746 -33.618 -36.261 0563 6.682 19452 -36.137 -15985 9846

Var-I  16.000 0607 23.61% -1L636 17875 0670 0577 -13.38T7  IT.6l3 -1.500  -1.056 19918 30.646
War-5 2.000 0330 XM.7Ted  -11.953 36170 0360 0525 44.835 3LM5 0180 0315 -71.145  28.941
Cov 0300 I90.867 415333 193.635 195819 146167 390700  1IT.467 48571 I0L.TOO 106333  -I5.T00 361.096
Residual 0.500 4520 4180 45343 6044 L.780  1.90d 4140 -7.734 1340 1380 41508 1716
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4.3.2.15 3-Class Prop=70/20/10 MD=1/3 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
70/20/10 MD = 1/3 conditions are presented in Tables 34, 35 and A14. RIMCMC and DP
correctly estimated the number of classes. The percentage of selecting a 3-class solution
by RIMCMC (around 63% to 79%) indicates a moderate confidence of the 3-class
solution. The bias for the class proportions yielded by B-Diff and B-Weak were relatively
high (mostly above 22%). The recovery of the class size of the minority class by B-Diff
improved as the sample size increased (bias levels decreased below 10%) while the bias
for the class sizes in the other two classes were consistently high. B-Weak produced high
bias levels (all above 11%) for the class proportions for all sample sizes. RIMCMC
consistently underestimated the class size of the minority class (bias levels were above -
30%), while DP consistently overestimated the same parameter (bias levels were above
40%).

The intercept means were estimated accurately by all estimation methods for all
sample sizes. The slope means in Class 2 were underestimated by B-Diff and B-Weak
(bias levels were around -28%). RIMCMC also yielded slightly higher bias levels (above
10%) when n = 400 and n = 600. B-Diff and B-Weak recovered the growth parameter
variances well (bias levels were below 10%), and RIMCMC and DP yielded some higher
bias levels (above 10%). The covariance parameter was recovered with high bias (around
110% to 159%) by all estimation methods. The MSE values were quite small for all of
the parameters.
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Table 34. Parameter Estimates for 3-Class 70/20/10 MD=1/3

=200 n=400 =600

Pop BIhif B-Weak EIMCMC DP B-Dhif BWeak RIMCMC DP B-Diff B-Weak RIMCMC DP
#elasses  3.000 3.000  3.000 {02721-? 3.287 3000  3.000 (ﬂz‘}‘?‘; 3333 3000  3.000 {02:;; 2862

Cl 0441 0443 0.728 0621 0447 0446 0.720 0.632 0452 0443 0745 D649
Prop c2 0433 0434 0217 02M 0443 0442 0233 0218 0440 0434 0186 0210

c3 0.126 0.123 0055 0155 0109 D112 0.047 0150 0107 0123 007 0141
Mean I
Cl 31370 30.773  30.764 20845 20054 30897 30.891 33268 32201 30940 30764 31.066 30287
c2 34290 33.254 33177 33246 327TR2 32990 33.003 35.027 32937 32086 33177 35536 3281
3 43.010 42 036 42155 41935 45015 42574 41581 42794 42509 42659 42155 423248 45208
Mean 5
| 1.802 2003 2004 1936 1972 1.985 1.977 2105 1906 1963 2004 2182 184D
c2 2834 2051 2018 3074 2968 2015 2023 2376 2604 2052 2018 3146 2930
Cc3 5917 5.568 5.611 5236 6197 5761 5761 6174 6287 5790 35611 5521 5518
VarI 16.000 15.892 15892 14726 15921 15915 15893 14302 1B.845 15935 15892 17534 17888
Var-5 2.000 2004 2000 2618 3092 2008 2006 2172 2858 2009  2.000 2345 2538
Cov 0.300 0897 D696 077 0T 0648 0639 0.713 1.065 0631 D696 0671 0784
Residual 0.500 0.520  0.522 0.537 0478 0508 0.508 0.704 0475 D506  0.522 0525 0507
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Table 35. Percent Bias for 3-Class 70/20/10 MD=1/3

=200 =100 =600

Pop B-Diff B-Weak RIMCMC DP B-Diff B-Weak RIMCMC DP B-Diff B-Weak RIMCMC DP

Cl _36.989 -36.740 4000 -11L314  -36.106 -36.296 2886 9684 -35417 -36.740 6357 7301
Prop C2 116.365 117.180 B.500 11.800 121.715 121220 16500 £8%0 110245 117180 2 -7.050 5030

c3 26190 22520 45000 S5.600 9290 1L630 -53.200 50.010 7430 22820  -30.400 41.050
Mean I
Cl1 31370 -1%02  -1531 4858 -7382 -1.509  -1.526 6050 2650  -1372 -1931 0988 -3453
c2 14290 3022 3245 3044 4573 3790 -3.753 2149  3.945 AR03 3245 3634 4260
c3 43010 2264 -1987 2498 4.661 1014 0998 0303 -1164 0817 1987 1771 5109
Mean 5
Cl 1802  1L138 11.204 7421 9415 10161 9734 16831 5777 8957 11204 21.069 2100
c2 2834 27625 -18.807 E451 4726 28913 28603 -16161 4924 17608 28807 10996 3386
c3 5.917 -5.895  -3.168 5384 4736 2633 -1636 4336 6258 2153 5168 6688 6743
Varl  16.000 0678 0676  -T964  -0.455 03530 0669 -10.615 17.782 0404 0676 93585 11.802
VarS  2.000 0.195 0000 30900 54.586 0380 0315 8589 42900 0470 0000 17265 26.881
Cov 0300 132167 131867  159.700 157109  116.133 112900 137.635 154.983 110300 131.867 123.634 154731
Residuzl 0.500 4080 4380 7340 4415 1540 1560 40900 -4992 1220 4380 5080 1456
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4.3.2.16 3-Class Prop=70/20/10 MD=3/1 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
70/20/10 MD = 3/1 conditions are presented in Tables 36, 37 and A15. The number of
classes was estimated correctly by RIMCMC for all sample sizes. However, DP yielded
an estimate that was rounded to 2 (i.e., 2.448) for the number of classes in the n = 200
condition. This indicates that DP selected a 2-class solution when the sample size was
200, which is not accurate. It appears that DP was unable to find one of the minority
classes in this condition. The percentages of the selecting a 3-class solution by RIMCMC
suggest moderate certainty (ranging between 75% and 82.6%). The class proportions
were recovered inaccurately by B-Diff and B-Weak, which consistently overestimated
the class size of the smallest minority class (bias levels were around 200%) and
underestimated the class size of the majority class (bias levels were around -46%).
RIJMCMC tended to underestimate the class size of the minority class (bias level were
around -20% to -56%) while producing low bias levels for majority class size (bias levels
were all below 10%). DP was not able to yield accurate estimates for the class
proportions for n =200, and it overestimated the class size of the minority class when n =
400 and n = 600 (bias levels were over 30%).

The intercept means were estimated well by all estimation methods, although B-Diff,
B-Weak, and RIMCMC yielded some bias levels that were slightly higher than 10%. DP
was not able to provide the estimate for the intercept mean in the third class because it
could not find that small minority class. B-Diff and B-Weak yielded relatively high bias
levels (around -26% to -40%) for the slope parameter means in Class 2 and the smallest
minority class (Class 3). RIMCMC produced low bias levels (all below or slightly higher
than 10%) for all the slope parameter means. DP failed to provide an estimate of the
slope mean in the third class for the same reasons stated above. The covariance parameter
was recovered with very high bias levels (around 23% to 159%) by all estimation
methods. The MSE values were relatively high for some intercept means (around 18 to
50) and low for other parameters (below 10).
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Table 36. Parameter Estimates and Percent Bias for 3-Class 70/20/10 MD=3/1

n=200 =400 =600
Pop B-Diff B-Weak RIMCMC DF B-Dnff B-Weak RIMCMC DP B-Ihff B-Weak RIMCMC DP
27137 3205 2854

#elasses  3.000 3.000  3.000 (0.787) 2448 3000  3.000 (0.826) 3.263 3.000 3.000 (©.713) 3.327

Cl 0371 0377 0.7 0684 0375 0376 0728 0654 0375 0380 0713 0677
Prop c2 0328 0326 0233 0316 0325 0335 0220 0215 0324 03321 0207 0.189

C3 0300 0297 0.043 s 0300 0298 0.051 0.131 0301 0298 0080 0134
Mean I
Cl 31370 30809 30.706 33 469 34054 30879 30801 27984 32004 30922 30875 29253 32292
c2 40.090 35580 35430 40345 42 601 35316 35198 19789 40719 35264 35280 39980 386ds
3 43010 38271 38852 50096 - 38458 3E.687 41953 41.726 38522 3R629 40264 45142
MMean 5
Cl 1.802 1867 1849 1.600 1271 1853 1B41 1952 1.E05 1856 1844 1.754 1878
c2 4,885 3.014 2957 5.155 3.013 2963 2917 5174 5251 2956 2966 5169 4976
3 5017 4243 4350 6299 = 4305 4365 6285 6180 4331 4350 5250 5542
Var-1 16.000 16135 16.103 14.726 18288 16022 16007 17893 15175 16052 16033 18936 19484
Var-5 2.000 2030 2028 2518 2678 2014 2015 2214 2301 2016 2016 2331 2299
Cov 0300 0&28  0.624 0779 0.110 0551 0548 0689  0.684 0540 0537 0133 0371
Residwal 0.500 0519 0519 0537 0518 0507 0508 0529 0525 0505 0506 0536 0523
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Table 37. Percent Bias for 3-Class 70/20/10 MD=3/1

=200 =400 o=60

Pop B-Dnff B-Weak RIMCMC DP B-Ihff B-Weak RIMCMC DP B-Ihff B-Weak RIMCMC DP

Cl 46,934 46097 3400 -2286 46467 -46.237 4114 6571 46457 45877 1905 -3271
Prop c2 64.045 62960 16.500 £8.000 61.535 61605 10165 7.500 62.240 60.655 3333 5650

c3 100,450 196,760  -56.500 100.200 198450 49130 31000  200.7I0 198430  -10.001 200
Mean I
Cl 31.370 -1.788 -2118 6.690 B.556 -1.365 -1815 -1o.m9r 2020 -1429 1577 -6.748 2938
40000  -11.249 -11.624 0.637 6264 -11.908 12102 0.750 1568 -12.038 -11.998 0274 3603
c3 43010  -11.019 -10.132 16474 - -10.585 -10.052 -2.458 -2.585 -10.436 -10.186 6385 4956
Mean 5
Cl 1.802 35T 2597 £.232  _29.461 2841 2142 B349 0189 299 2314 2680 4217
c2 4885 -38.307 -394T0 5321 -38331 -39.353 40.187 5909 7498 -39.490 -39.186 5810 1838
c3 5917 28290 -26.488 6.449 - 17248 -2ail4 6226 4440 -26.806 -26.483 11267 6345
Var-I 16.000 0841 0642 -7.964 14301 0137 06 11.833 -515% 0324 0206 18349 11648
Var-5 2.000 1480 1395 30.900 33004 0720 0740 10.694 15043 0810 0815 16538 149017
Cov 0300 109467 107867 159.T00 63344 §3.500 81500 129590 1I15.068 30.000 79.033 55614 I13.659
Besduzl 0,500 3740 3880 T7.340 3537 1320 1560 5748 4942 1000 1140 7146 4533
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4.3.2.17 3-Class Prop=70/20/10 MD=3/3 Conditions

Results for the parameter estimates and percent bias levels in the 3-class prop =
70/20/10 MD = 3/3 conditions are presented in Tables 38, 39 and A16. The number of
the classes estimated by RIMCMC and DP were accurate. The percentages of selecting a
3-class solution by RIMCMC were relatively high (all above 90%), suggesting a high
certainty of the 3-class solution. The class proportions were recovered with relatively
high bias levels (around -25% to 69%) by B-Diff and B-Weak when n = 200, and the bias
levels decreased (to below 30%) when the sample size increased. RIMCMC and DP
yielded bias levels for the class proportions that were inconsistent (around -2% to 41%)
across the sample sizes. In general, the estimates were improved for all estimation
methods when n = 600 (bias levels were mostly below or slightly higher than 10%).

The intercept means were estimated well for all estimation methods across sample
sizes. The bias levels for the slope means in Class 2 were relatively high (slightly higher
than 10%) for B-Diff and B-Weak in the n = 200 condition; however, they decreased to
below 10% as the sample size became larger. RIMCMC and DP yielded relatively low
bias levels (below 10%) for the slope means for almost all sample sizes with the
exception that DP produced a moderate bias level (around -46%) for the slope mean in
the majority class when » = 200. The bias levels for the growth parameter variances were
high (around 20% to 70%) for B-Diff, B-Weak, and DP when n = 200 and decreased to
below 10% or slightly higher than 10 as the sample size became larger. RIMCMC
estimated the variances of the growth parameters with relatively low bias levels (below or
slightly higher than 10%) across sample sizes. The covariance was estimated with very
high bias levels (mostly around 15% to over 400%) by all estimation methods. The MSE
values were relatively high (e.g., around 20 to 49 for the intercept means and around 5-8
for the intercept variances) for some mean and variance parameters and low for other
parameters (around 10 to 21).
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Table 38. Parameter Estimates for 3-Class 70/20/10 MD=3/3

=200 o=4{{) o=600

Pop B-Thif B-Weak RTMCMC DP B-Dnff B-Weak EIMCMC DP B-Dhff B-Weak BIMCMC DP

#elasses  3.000 3.000 3000 aald 2528 3000 3.000 s 3263 3.000 3000 L0 3048
{0.943) (0.935) (0.967)

Cl 0506  0.523 0.742 (666 0633 Q8638 0632 0672 0677 0692 0.684 0635
Prop c2 0325 0313 0183 0243 0240 0224 0226 0230 0212 0210 0220 0217

C3 0169 014 0074 0091 0127 0118 0141 0098 0112 0098 00% 0128
Mean I
C1 31370 31157 31.147 32457 31054 31270 31276 33277 33904 31313 31067 33.043 30291
c2 40.090 35424 35804 334 37521 38158 38.745 37343 38712 39184 39388 37568 38614
C3 43.E10 46487 46637 30450 40784 47852 48126 46946 47517 48332 48762  51.003 30.005
Mean 5
Cl 1.802 1997 1969 2037 0971 1849 1316 1926 1935 1812 1780 1895 1.368
C2 4 835 2939 3103 5158 5019 4107 4353 4934 4849 4528 43811 5007 5187
c3 7968 7148 7.193 B.247 B260 7627 IR 8284 BZ35 7798 7957 7548 7571
WVarl 16.000 19285 185998 17277 20492 17.125 16768 15835 16744 16516 16258  16.784 16342
Var-5 2 D00 2412 2386 1908 3401 2154 2108 1928 2279 2071 2037 2251 2344
Cov 0.300 1688 1.580 0373 2203 0.738 0576 0664 0767 0475 0353 0274 0345
Residual 0500 0520  0.520 0564 0483 0.506 0508 03521 0430 0.506 0506 0524 0525
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Table 39. Percent Bias for 3-Class 70/20/10 MD=3/3

n=200 =400 n=600

Pop B-Ihiff B-Weak RIMCMC DP B-Ihif B-Weak REIMCMC DP B-Ihff B-Weak EIMCMC DP

Cl 27767 -15.354 6.043 4857 H641 5936 Dadd 4000 3344 -1073 -2.356 -5.400
Prop 2 61470 S6.620 £335 I1.500 0155 11905 13180 15.036 5910 4895 10100 &.500

3 69.430 64240 -X5630 5000 IT180 17740 41150 -20T71 11L.590 -2280 3710 2T 00
Bean I
C1 31370 D681 0712 3485 -1.007 0320 0299 6079 8079 0181 D965 5332 3440
2 40090 -11.638 -10.690 3782 5408 4820 3356 6354 3412 2250 0503 -5.290 -3.681
C3 48 810 4758 4453 3398 1995 1964 -1.402 -1818 -2.650 0930 0098 4493 24490
hlean &
C1 1.802 10,794 9262 13,015 -46.08D 16830 0755 6903 TiM 0538 -1232 5144 3678
C2 4 BES -39.840 36477 5585 2748 -15930 -10.8%0 0995 0730 1296 -151 2491 6178
3 T.068 10292 -5.733 3499 3660 4777 3089 3962 3133 2132 0142 -5268 4983

War-I 16.0:00 10.534 18.739 7983 18075 7033 4800 1029 4653 313 1610 4897 2135
War-5 2000 20.585 19275 4586 T0.038 7680 5405 3614 13972 3570 1865 12584 17219
Cowv 0300 462700 416.667 4476 634234 145833 91000 121.443 155780 58367 17.7e7 -5.776 154075
Residual 0.500 4020 4000 11768 -2.330 1.280  1.340 4.148 2073 1.220  L.160 4708 3.016
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4.4 Study 2 Discussion

In Study 2, RIMCMC, DP, and the Bayesian estimation method with diffuse and weakly
informed priors were examined through various levels of class separation, class proportions and
sample size. The primary goal was to investigate the performance of RIMCMC, DP, and the two
Bayesian methods under different class separation conditions, when crossed with other
influencing factors. The following are some conclusions of Study 2.

4.4.1 Estimation Methods

In general, RIMCMC and DP performed comparably well and sometimes better than the
Bayesian estimators with diffuse and weakly informed priors in recovering the model parameters.
As detailed in the Study 1 Discussion (Section 3.6.4), RIMCMC and DP were able to provide the
estimates for the number of classes without comparing across competing models with different
class structures. This made RIMCMC and DP more efficient than Bayes, although DP failed to
yield the correct class solution under two conditions (i.e., prop = 80/20, MD = 1 and prop =
70/20/10, MD = 3/1). The percentage of selecting a class solution by RIMCMC also helped with
the decision making on the number of classes. Within the Bayesian estimation methods, B-Weak
performed better than B-Diff under some conditions and both Bayesian estimators yielded close
outcomes under other conditions.

4.4.2 Model Parameter Recovery

Akin to the results of the simulation in Study 1, the accuracy of the recovery of model
parameters varied under different conditions. The number of classes was extracted correctly by
RIMCMC under all conditions. However, DP was not able to detect the correct number of
classes for conditions prop = 80/20, MD = 1 and prop = 70/20/10, MD = 3/1. Specifically, DP
extracted one class less for each of these two conditions. This could be due to the sensitivity of
the decision on the number of classes to the decimal values of the estimate, as detailed in Section
3.6.3. This also suggests that when there was a minority class, and when the class separation
between this minority class and its adjacent class was relatively small, DP could have difficulty
correctly extracting the number of classes.

The percentage of selecting a class solution by RIMCMC became higher as the MD values
increased under the 2-class model conditions. It was more complicated for 3-class models. In
general, the percentages were the lowest under the MD = 1/1 conditions and highest under the
MBD = 3/3 conditions for all class proportions and samples sizes. Conditions where MD = 1/3 and
MD = 3/1 had the moderate magnitude of the percentages. This indicates that class separation,
and the location of the separation, could affect the percentage of selecting a class solution. The
percentage did not vary much between evenly split class proportions and unevenly split class
proportions for 2-class and 3-class models, or across sample size.

In general, the class proportions were recovered better under RIMCMC and DP than under
the Bayesian conditions. Within the Bayesian conditions, the performance of B-Weak and B-Diff
were comparable in estimating the class proportions under most conditions. The class
proportions were recovered better when the classes were evenly split than when they were
unevenly split for 2-class and 3-class models. The Bayesian estimators tended to overestimate
the minority class while underestimating the majority class when classes were unevenly split.
Within the non/semi-parametric methods conditions, RIMCMC tended to underestimate the
minority class while DP overestimated the minority class under most conditions where the
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classes were unevenly split. The recovery of the class proportions was best in conditions where
the MD values were the highest (e.g., MD = 3 or MD = 3/3) and were the worst when the MD
values were the lowest (e.g., MD =1 or MD = 1/1). The class size of the minority class were
recovered better when the class separation between the minority class and its adjacent class were
higher (e.g., MD = 1/3) and vice versa. The recovery of the class proportions usually improved
as the sample size increased in general.

Overall, the intercept parameter means were recovery better than other growth parameters;
they were recovered comparably well under all four estimation methods. The slope parameter
means were recovery better under RIMCMC and DP than the B-Diff and B-Weak under most
conditions. The recovery of the growth parameter means generally improved when the MD
values were higher and when the sample size became larger. The location of class separation did
not affect the recovery of the growth parameter means very much.

The covariance structure of the growth parameters was estimated worse than other
parameters. The growth parameter variances were recovered better under B-Diff and B-Weak
than under RIMCMC and DP. The growth parameter variances were recovered the worst when
MD =2 for 2-class models when MD = 3/3 for 3-class models under B-Diff and B-Weak. The
recovery for the growth parameter variances was not consistent across MD values under
RIJMCMC and DP. Larger sample sizes did not improve the recovery of the growth parameter
variances under all B-Diff and B-Weak and showed inconsistent effects on RIMCMC and DP.
The covariance was recovered poorly under all conditions for all estimation methods while the
residual variances were recovered well under all conditions (with only a few exceptions).

4.4.3 Implications

The findings of Study 2 have several implications. First of all, RIMCMC and DP, as
non/semi-parametric methods, proved to perform comparably to the Bayesian conditions with
diffuse and weakly informed priors. These approaches can be used as alternatives to the
traditional Bayesian estimation framework, especially because they eliminate the need for
estimating multiple competing models and using model fit indices or information criteria to aid
in model selection.

Second, between the two Bayesian estimation methods, B-Diff and B-Weak did not show
much difference in the recovery of model parameters. Considering the prior specifications
implemented for these two estimators, B-Weak differed from B-Diff only in the growth
parameter means. Specifically, the priors on the growth parameter means in for B-Weak used the
population values as the hyperparameter means and 100 as the hyperparameter variances; all
other prior specifications remained the same for both estimators. The fact that the performance of
B-Weak and B-Diff were quite comparable under the same conditions suggests that this level of
informativeness of the growth parameter mean priors might not impact the parameter recovery.

Third, the covariance structure was recovered poorly under DP, as well as RIMCMC at times.
For DP and RIMCMC conditions, the prior specifications implemented on the covariance matrix
were quite diffuse and contained very little information. The inaccurate recovery of the
covariance structure might be due to the uninformative prior specifications, which is consistent
with the previous findings in the SEM literature (see e.g., Depaoli, 2013).
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Chapter 5

Main Discussion

In this section, I discuss the main conclusions and implications of the two studies in this
dissertation. I also include the contributions and limitations of the model estimation methods
introduced in this dissertation and discuss some future directions for methodological research.

5.1 Contributions

This dissertation introduced two Bayesian non/semi-parametric methods, RIMMC and DP,
as alternative estimation techniques for LGMMs in the SEM framework. The two simulation
studies showed valid and comparable results regarding RIMCMC and DP, and they compared
these methods with traditional ML and Bayesian estimation approaches. An empirical example
was also included as an illustration of the application of RIMCMC and DP on a longitudinal
dataset, and the substantive interpretation of the results was highlighted.

The major advantage of RIMCMC and DP as detailed in Sections 3.6.1 and 4.4.1, is that they
provide the number of classes as a parameter estimate, without the presumption and model
comparison used in the traditional approaches (e.g., ML estimation). This feature can make the
modeling process more efficient and straightforward since the traditional model comparison
approaches are dependent on statistical tests and model fit indices (and the indices often
disagree!). With these non/semi-parametric methods, researchers may use the numeric values
directly calculated by the algorithms as the final estimate of the number of latent classes. They
can also use the percentage of selecting a certain number of classes provided by the algorithm as
a reference or guideline for decision making in the case of using RIMCMC. The percentage of
iterations aligning with a certain class solution can also be interpreted as the degree of
(un)certainty in that class solution. The non/semi-parametric approach not only avoids multiple
model fitting and comparison processes, it also circumvents the potential contradiction in the
model comparison measures. For example, Tofight and Enders (2008) and Nylund et al. (2010)
found conflicting evidence in support of model fit indices and information criteria. This
contradiction makes it difficult for applied researchers to know which measures to trust (and
which not to). Despite being compared with the traditional model comparison methods in this
dissertation, the non/semi-parametric methods are not designed to be a replacement of the
traditional approach. Instead, they provide cross validation that is complementary to the
traditional methods. Researchers should not be confined with the use of only one approach. In
conclusion, RIMCMC and DP can benefit the SEM framework by simplifying the modeling
process and quantifying the certainty of selecting a particular number of classes for LGMMs.
They can also be easier to interpret than some of the model comparison measures traditionally
used.

Another advantage of RIMCMC and DP is that they performed better than ML or Bayesian
estimators under certain conditions. For example, according to the findings of Study 1, DP
performed well in recovering the class proportions when ML and RIMCMC tended to
overestimate or underestimate the class size of the minority class when classes were unevenly
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split. Another example is that RIMCMC and DP performed better than the Bayesian estimation
methods with diffuse and weakly informed priors in recovering the slope parameter means.

5.2 Limitations, Suggestions, and Future Directions

The number of latent classes is on a categorical scale, while the numeric value of the estimate
calculated by RIMCMC and DP is on a continuous scale. Deciding on the number of classes
based on the non/semi-parametric methods is essentially turning a continuous scale into a
categorical scale. Therefore, one of the limitations of RIMCMC and DP is that the numeric value
can be sensitive to a cutoff threshold. As I have discussed in Section 3.6.3, a value at the middle
point between two integers can be rounded/truncated to either end, and the consequent model
and the interpretation of the parameter estimates can be completely different in each scenario.
Therefore, purely relying on the model estimate to decide on the number of classes can be quite
dangerous, especially for applied researchers who might have very little knowledge about the
non/semi-parametric modeling process.

This limitation of RIMCMC and DP requires researchers to be very careful when interpreting
the results, especially the estimate for the number of classes when they decide to use the
non/semi-parametric methods. Therefore, my suggestion for applied researchers is to always
make a decision in conjunction with statistical evidence and the substantive meaning of the
dataset. When the number of classes calculated by an algorithm falls within more than one
category (i.e., between two class solutions), then researchers should use their substantive
knowledge to help them decide which class solution would better explain the phenomenon being
studied.

As discussed in Sections 3.6.4 and 4.4.3, the current model and prior specifications of
RIJMCMC and DP in this dissertation did not solve the estimation issues linked to the covariance
structure for LGMMs. These issues of poor parameter recovery are prominent in ML and the
Bayesian framework as well (see e.g., Depaoli, 2013). One important future direction is to
identify prior specifications that improve the estimation the covariance structure. Sensitivity
analyses can be done through simulation studies to examine how different priors may affect the
covariance structure, as well as other parameters. Specifically, different prior implementations
should be examined for the inverse Wishart prior, which is directly related to the covariance
matrix parameters for both RIMCMC and DP. Another prior that is specific for DP is the
dispersion parameter, a, in DP(a, N(u, 2)). Previous studies indicated that this dispersion
parameter affects the number of mixture components (i.e., latent classes) in DP mixture models
(e.g., Teh, 2010; Gelman, et al., 2014). However, there is no investigation about the effect of the
dispersion parameter on the covariance structure in LGMMs. Simulation studies should be done
to examine the recovery of the covariance matrix with different specifications of a in a DP
distribution. If this matrix can be recovered more accurately, then many of the problems plaguing
the estimation of LGMMs will have been solved.

Overall, RIMCMC and DP appear to be interesting and viable approaches for detecting the
number of latent classes in an LGMM. More research on the particular settings that should (or

should not) be used within these approaches will help to further illuminate their utility within the
field.
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Appendix A

A.1 Additional Tables for Study 1 and Study 2

Appendix A contains the additional tables for Study 1 and Study 2. Tables Al and A2
contain MSE values for the parameter estimate for Study 1. Tables A3 — A16 contain MSE
values for the parameter estimate for Study 2.
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Table Al. Mean Square Errors of the Parameters for GCM, 2-Class 50/50, and 80/20

=20 =400 =G0
MI. BIMCMC Dp M. BIMICMC DP M. BRIMCMC DP
M
Mean-T 0000 0312 0.011 00D 0,025 (D67 0000 0036 0.001
Mean-5 0000 002G 0004 .000 0.000 0003 0000 0000 0.014
Nar-1 0010 0.158 3218 0000 0000 2400 0000 0062 1560
Var-5 0000 0428 0.073 0004 0016 (D1 0000 0035  0.000
Comr 0000 0.9460 0048 0000 0.132 03254 0000 0.000 024
Fesidual 0000 0.0 00465 0000 0.038 0035 0000 0.0 0038
2-Class 50450
Mean-TC1 0071 D552 0.340 0014 0131 0124 0.003 0142 0.053
Mean-TC2 0002 1.355 1.548 062 0018 (022 0027 1530 1LA0TS
Mean-5 C1 0221 0.0 0.037 0187 0058 0024 001 0241 0013
Mesn-5 C2 0:252 .05 0.0a2 0.194 0.084 0uDSD D116 0011 0005
Var-1 0003 1L3g) 10.732 0108 0608 22288 009 0026 12.054
Var-5 0001 (.04 0243 .00l 0.018 (G623 0000 0014 0376
Cow 0778 0. 280 1.464 0558 0027 1343 0381 011§ 0884
Fesidual 0.000 0045 0000 0000 0042 (D00 0000 0040 0000
2-Class BONI0
Mean-TC1 0613 0280 0080 0244 0052 (050 0004 0168 1208
Meap-1C2 0.o0a7 0445 0.030 o1l 0143 156 0015 0ol 04
Mean-5 C1 0.0E2 0.010 0.11%8 0037 0037 0023 0014 0382 0026
Mean-5 C2 0327 0004 000D 0118 0es  0l6 00467 0.006 0.091
War-I 0767 5058 25.088 iRE ] 0,637 G482 (.0s9 0064 12.681
War-5 0017 0012 0920 0000 0.007 601 0002 0025 0245
Cow 0268 0084 1.221 0141 0076 2250 0086 0107 1506
Fesidual 0000 0054 0. i 0000 0053 0000 0000 0048 0,000

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2; Var-
I = the variance of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept
and the slope; the variances and the covariance were held equal across latent classes; Residual = residual variance.
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Table A2. Mean Square Errors of the Parameters for GMM, 3-Class 33/33/33, 45/45/10, and
70/20/10

=201 =300 n=H01
ML EMMCMC DP ML ERIMCMC DP ML RIMCMC nDp
3Class 3373333
Mean-IC1 0.124 0.130 0.557 0.154 0.661 0054 0153 0.169 (.388
Mean-1C2 0.017 2749 26071 0017 1.126 0572 0017 1217 0.739
Mean-TC3 0671 3640 307 0759 0.794 0.810 0.734 0333 1.208
Mean-5 C1 0.042 0006 0007 0.005 0017 0016 0000 0.022 0.024
Mean-5 C2 0.018 0.002 0.048 0026 0.002 0.002 0.026 0052 0048
Mean-5 C3 0.060 0420 0284 0023 0.004 0.004 0012 0.003 1721
Var-1 0171 1515 67289 0.057 7640 49435 0.069 1.130 0574
Var-5 0027 0003 1.932 01010 .018 273 0005 0055 0284
Cov 0.570 0426 9.163 0155 0.010 55900 0071 0046 0738
Residual 0.000 0.057 0000 0.000 0.042 0.000 0000 0038 0.000
3-Class 43/45/10
Mean-I1C1 0.345 1.266 3557 0.1%0 1.350 1306 0.106 0249 487
Mean-TC2 0.835 1.345 9290 0498 0658 0.783 0365 0814 0372
Mean-1C3 0.118 3073 0.023 01014 L4864 330 0002 0.110 040
Mean-5 C1 0.053 0.018 0.002 0.033 0.047 0.032 0.023 00249 0.031
Mean-5 C2 0.130 0.072 0.178 0.072 0.106 0068 0.052 0009 0.008
Mean-5 C3 0.423 0.312 0309 D257 075 0.173 0177 0.002 0.082
Var-1 0.500 3115 1125615 0025 1.369 117592 0.007 0.026 10426
Var-5 0075 0002 2592 0.023 0.003 2924 0.010 0027 0548
Cov 0.740 0295 14738 0527 2048 12173 0371 0153 1.348
Residual 0000 0.057 0000 0.000 0.049 0.000 0000 0035 0.000
3-Class TO20/10
Mean-IC1 0.968 2135 1:513 0.650 0376 0371 0504 0.127 4.088
Mean-TC2 1.404 08635 7513 0869 0.064 1067 0.667 16.032 4024
Mean-1.C3 0.215 1.801 1362 0380 1.232 2917 0444 2074 2025
Mean-5 C1 0.00S 0.030 0002 0012 0.005 0.005 0002 0.003 0.003
Mean-5 C2 0.284 0471 01034 2746 0.081 0052 0.073 0.001 0.001
Mean-5 C2 0.01% 0408 0.132 0.011 (084 0.050 0012 0325 0174
Var-1 3.112 3077 124189 1353 0972 E2828 0637 64.048 0.306
Var-5 0115 0007 2836 0.051 0.001 1.685 0.028 0.000 1.563
Cov 0.006 0055 14033 0.000 0.071 6492 0000 0011 6.T76
Fesidual 0000 0046 0000 0.000 0.052 0000 0000 0.044 0.000

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and
C3 = latent Class 3; Var-I = the variance of the intercept, Var-S = the variance of the slope, and Cov = the
covariance between the intercept and the slope; the variances and the covariance were held equal across latent
classes; Residual = residual variance.
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Table A 3. Mean Square Errors of the Parameters for 2-Class 50/50 and 80/20, MD=1

o=200 o=100 n=600
B-Ihff B-Weak RIMCMC DP B-Diff B Weak RIMCMC DP B-Inff B-Weak RIMCMC DP
2Class 550

Ié{lm-l 0.014 0015 4427 1223 0040  0.032 1.543 0410 00532 0049 2736 1077
Mean-1

c 0010 0016 1971 1963 0041 7508 0.837 0.342 0053 0.053 2873 0.008
Mean-5

c1 0181 0172 0226 0.008 0171 0174 0.036 0.023 0.163 0171 0008 0.013
C & 0185 0172 0150 0233 D178 0176 0045 0017 0170 0176 0051 0053
Var-I 0.054 0080 0830 2310 0092  0.067 1.057 2353 0132 0134 1869 13965
Var-5 0003 0003 0057 0599 0003 0.003 0.002 0426 0003 0003 D011 0060
Cov 0382 0367 0026 0100 0377 0368 0516 0.704 0360 0358 0.138 0380
Residual 0000 0000 0040  0.000 0.000  0.000 0.035 0.001 0060 0.000 0.047 0.000

2 Claszs 80v20

ré{faﬂ_l 0472 D464 3512 2749 0343 0335 6037 0203 0284 0291 4465 1228
1 4 1016 00594 5198 - 1.166 1.160 0.132 2091 1212 1208 2650 0417
Mean-5 &

1 0025 0023 0075 0278 0028 0027 0.137 0.003 0027 0025 0033 0008
E{Zean-ﬂ 0591 0591 o072 - 0593 0.587 0073 0129 0575 0570 0053 0110
Var-1 0163 0154 21800 TEBI12 0109 0110 6528 1.268 D06l 0.062 5973 8922
Var-5 0.000 0000 0267 0192 0001 0000 0.089 0191 0000  0.000 0.050 0.108
Cov 0158 0154 0065 0213 0.163 0.165 2515 0507 0159 0138 0092 0266

Fesidual 0.000 0001 0.054  0.000 0.000  0.000 0.056 0.001 0,000 0.000 0,000 0.000

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2; Var-
I = the variance of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept
and the slope; the variances and the covariance were held equal across latent classes; Residual = residual variance.
indicates there is no estimate for this parameter.

@
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Table A4. Mean Square Errors of the Parameters for 2-Class 50/50 and 80/20, MD=2

w=200 o=4{{ =600
B-Dhff B-Weak EIMCMC DP B-Dhiff B-Weak RIMCMC DP B-Ihif B-Weak EIMCMC DP
2-Class 5050

Idean-I

c1 0520 0490 3.129 0573 026 0197 2696 2713 0.067 0067 JeeT 0190
Meaan-I

2 0493 0485 4020 4036 0194 0185 3667 08X 0071 0071 3629 4368
I(':u{:an-ﬂ 0158 0.136 0.052 0016 0050 0052 0044 0029 0.016 0015 0.004 0002
o 0158 0155 3343 0059 0051 0.052 0075 0.053 0018 0018 0080 0018
Varl 11.806 11.354 4.550 73822 4256 4219 1.057 41641 1.533 1.578 1076 76580
Var-5 0194 0192 0160 2667 0077 0078 0002 1399 0031 0029 0.000 1.080
Cov 2259 2229 0.286 11.109 0843 0832 0516 5939 0315 0307 0.05% 7.701
Fesidual 0.000 0000 0.037 0.000 0000 0.000 0268 0.000 0.000 0000 0.047 0.001

2-Class 80720

l(':.\{:an—l 0.063 0072 5508 0116 0046 0.048 5229 2120 0.038 0038 2157 0.012
. 3 5818 5541 5198 0578 2654 2506 2149 6071 1.105 1.038 5626 1858
Mean- 5

c1 0.017 0.01% 0.004 0.030 0.001 0.001 0007 0001 0.000 0000 0.014 0007
- 1219 1.206 0072 0.031 0506 0482 0.029 04407 0183 0180 0053 0112
Var-I 4545 4190 7519 34164 L1000  1.00& 2683 15539 0215 0185 0.188 10.758
Var-5 0086 0.088 0135 1.234 0025 0023 0081 1.309 0.005 0005 0.019 0.085
Cov 1.309 1302 0002 5664 0375 0349 0908 3129 0073 0072 0007 0336
Residual 0.000 0000 0.015 0.001 000D 0.000 0.002  0.000 0.000  0.000 0.002 0.000

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2; Var-
I = the variance of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept
and the slope; the variances and the covariance were held equal across latent classes; Residual = residual variance.
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Table AS. Mean Square Errors of the Parameters for 2-Class 50/50 and 80/20, MD=3

n=200 n=400 =600
B-Dhff B-Weak EIMCMC DP B-Dnff B-Weak RIMCMC DP B-Inff B-Weak EIMCMC DP
2Class 50550

Mean-1

c1 0.005 0005 0365 1212 0001 0.001 1304 0423 0.000 0000 1360 1.084
Mean-I

o 0.005 0.005 1971 1982 0000 000D 0001 3633 0.000  0.000 0.009  0.009
I(':.!llean—S 0.000 0001 0.005 0.006 0000 0000 0.008 0012 0.000 0000 0.000 0.000
2 0.001 0.001 0.619 0.081 0uoDD 0000 0.137 0138 0.000 0000 0.000 0.000
Var- 0918 0933 5.669 56.761 0139 0141 1.034 0475 0.053 0.053 2082 0027
Var-5 0017 0017 0064 1943 0,003 0.004 0.004 0024 0.001 0,001 0.072 0140
Covw D048 0051 0036 B37S5 0upDe 0006 0.070 0.065 0.002 0.002 0003  0.009
Fesidual 0.000  0.000 0.039 0.000 0uD00  0.000 0.027 0001 0.000  0.000 0016 0.000

2Class B0v20

Mean-1

c1 0.011 0011 1761 2123 0,003 0.000 1474 2133 0.001 0.000 0781 1239
Mean-1

o 0307 0287 0410 0.223 0043 0.000 6.081 0223 0018 0000 0108 4.601
I(':.!Ilean—S 0.001 0.001 0.010 0.001 0000 0000 0021 000 0000 0000 0.027 0007
o 0040 0038 0.029 0.028 0upDe  0.000 0.030 0028 0.003 0000 0005 0018
Varl 0437 0401 3523 0448 0036 0117 3602 0448 0018 0055 11370 0448
Var-5 0.002  0.009 0.007 0.0BT 0,001 0.003 0.004 0087 0.000 0001 0.021 Q.087
Covw 00l 0013 0010 0001 0upDo 0003 0.065 D001 0000 0002 0016 ©.001

Fenidual 0.000  0.000 0.029 0.001 0.000  0.000 0004 0001 0000  0.000 0.000 0.001

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2Var-I
= the variance of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept
and the slope; the variances and the covariance were held equal across latent classes; Residual = residual variance.
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Table A6. Mean Square Errors of the Parameters for 3-Class 33/33/33, MD=1/1

=200 n=400 n=000
B-Ihif B-Weak EIMCMC DP BIDnff B-Weak EITMCMC DP B-Dnff B-Weak EIMCMC DP

l(':.![:an-I 1.348 1.004 2135 2199 1.690 1.214 2474 0173 1.734 1.329 1206 0817
Mean-I

ca 0.000 0089 6038 1277 0004 0073 7263 0283 0005 0090 1339 0.025
Mean-I

3 2416 1.753 0454 1028 1464 1.863 6345 1301 1583 2108 4335 0.830
IE[:E“_S 0.613 0561 0017 0.038 0982 0520 0060 0000 0572 0487 0004 0024
bean-5

o 0000 0002 1320 0.572 0.062  0.002 0138 0021 0.00% 0.004 0004 0.002
3 0610 0654 0001 0.083 0566 0619 0068 0101 0558 0602 1.189 0011
Varl 1.535 1.798 6061 54317 1968 2019 048 26698 2190 2462 17331 31979
Var-5 0.032 0.031 o0ss  1.376 0.041 0.039 0008 0851 0.040 D042 00858 0845
Cav 1.838 1.877 0161 5584 1.690 1.677 084 4414 1.565 1.573 0008 5272

Fesidual 0000  0.000 0.046  0.000 0.000  0.000 0023 0.001 0.000  0.000 0.047  0.000

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-1 = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A7. Mean Square Errors of the Parameters for 3-Class 33/33/33, MD=1/3

=200 =400 o=5{0
B-Dhiff B-Weak FEIMCMC DP B-Dnff B-Weak FIMCMC DP B-Dhff B-Wezak RIMCMC DP

c1 : 1849 0056 3936 0266 1946 0041 0328 2.500 1910 0.0 2887 0497
Maan-1

- 0534 0891 1.782 3.512 1.774  0.001 0837 0451 1874 0016 3740 3382
Mean-I

c3 0360 LD49 0.013 1.724 0031 0065 2443 0.880 0013 0025 2048 3671
Mean-5

c1 0258 0108 0137 0217 0244 0.067 00ls  0.000 0252 0054 0024 0.041
g[zean-ﬁ 0.065 0.009 0037 0320 0226 0.033 0001 0010 0257 0.043 0067 0.128
Mean-5

c3 0054 0143 0Ms 0171 0005 0.009 0.135 0035 0002 0004 0017 0.017
Var-I 0.38% 0393 2680 3411 0.134 0.131 0208 2202 0.118 0.090 £.204 40564
Var-5 0.009 0.009 0045 0869 0.004  0.004 0.000 0075 0003 0003 0128 0.076
Core 0.187 0.180 0.041 1.061 0oes  0.093 0534 0482 0076 0071 0033 03537

Fendual 0.000  0.000 0.000 0000 0000 0000 0001 0002 0000 0,000 0045 0000

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A8. Mean Square Errors of the Parameters for 3-Class 33/33/33, MD=3/3

=200 n=400 n=5600
B-Dhff B-Weak FIMCMC DP B-Diff B-Weak RIMCMC DP BInff B-Weak RIMCMC DP
c1 1 7344 0133 5457 2173 0.061 1.030 1.201 2509 0.002  0.007 5313 0.090
Mean-I
2 3 652 1.428 1.328 3467 0020 0.001 0931 6126 0.000 D001 2528 3380
Mean-1
c3 0676 2179 1651 5341 0007 06353 0181 3119 0.001 0.003 0.001 0.028
MMean-5
c1 0.231 0.020 0.225 0324 0.007  0.000 0.112  0.032 0.000  0.000 0.024 0.001
Mean-5
2 0468 0172 0031 0.117 0.003  0.000 0.005 0.011 0.002  0.000 0.004  0.004
Mean-5
c3 0.08% 0.279 0.007 0170 0.001  0.057 0.072  0.035 0.000  0.000 0.001 0.073
Var-1 5570 5978 2241 50.013 0.516 1.977 0.009 0287 0.158 0157 3B46 2863
Var-5 0.086 0.093 0.020 3371 0.010  0.034 0011 0.026 0.004  0.004 0.009 0.145
Cov 0536 03585 0028 92413 0.03% 0203 0309 0.050 0012 D013 D008  0.067

Fesidual 0000 0000 0002 0001 0.000  0.000 0002  0.001 0.000 0.000 0.000 0.000

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-1 = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A9. Mean Square Errors of the Parameters for 3-Class 45/45/10, MD=1/1

=200 =40 =000
B-Inff B-Weak RTMCMC DP B-Dhff B-Weak RIMCMC DP BInff B-Weak RIMCMC DP

I(':J;an-l 0.123 0.049 2135 2190 0206 0.138 3.119 0.566 0237 0187 3656 3.740
Mean-I

2 0375 0.539 6938 1277 0878 0.630 0004 1175 0831 0572 3.087 0.060
Mean-I

c3 15374 5988 0494 1.028 6037 6285 0524 1.628 6017 6.703 0728 2654
c1 0.303 0.280 0.017 0.038 0.301 0.278 0.008 0.023 0291 0.283 0006 0.017
Mean-5

o 0046 0101 1320 0572 0.049  0.096 0.004  0.006 0.043 0.107 0.040 0.000
3 1.949 L.615 0.001 0.083 1910 1.621 0.035  0.067 1.891 1.555 0518 0.142
Var-I 0.001 0.008 6.061 34317 D062  0.080 T.756 0.084 0.161 D243 14.761 26.266
Var-§ 0.0600  0.000 0099 1376 0004  0.003 1.248  (.806 0067 0007 0031 0.156
Corv 02068 0937 0161 53584 05949 0931 1.143 2217 DB 0931 0.004 1.107

Residual 0000 0000 0046  0.000 0.000  0.000 0.030  0.002 0000 0000 0043  0.000

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-1 = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A10. Mean Square Errors of the Parameters for 3-Class 45/45/10, MD=1/3

=200 =400 =500
B-Ihif B-Weak FIMCMC DP B-Dnff B-Weak RIMCMC DP BInff B-Weak RIMCMC DP
c1 1 0.095 0.047 0.783 4376 0072 0070 Jodgg  3.073 0.097  0.097 Jo48 0721
Mean-I
2 0310 0022 3077 7290 0244 0237 0003 0043 0252 0250 D679 0554
Mean-1
c3 6048 4486 1381  3.960 05689 0517 2065 1674 0293 0288 0.120 0Q.640
MMean-5
c1 0237 0237 0.033 0007 0202 0199 0.07% 0.097 0180 0179 0.007 0.053
Mean-5
2 0026 0117 0.5 0066 0283 0.3281 0.005 0.018 0248 0245 0.013 0Q.069
MMean-5
c3 0.897 0584 0.083 0.081 0.068 0.066 0.043 0071 0036 0.036 0.145 0.160
Var-I D.681 0.629 0.861 1.734 0348 0309 4068 0123 0353 0382 5537 18.706
Var-5 0.013 0.013 0.26% 0389 0.007  0.007 0291 0557 0.008 0.008 0.004 0.194
Cov 0593 0.573 0008 1450 03681 0358 o4 1124 032 0328 D010 0598

Fesidual 0001 0000 0039 0.000 0.000 0000 0.005  0.001 0.000 0.000 0.052 0000

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A11. Mean Square Errors of the Parameters for 3-Class 45/45/10 MD=3/1

=200 =40 =500
B-Inff B-Weak EIMCMC DP B-Ihff B-Weak RTMCMC DP B-Inhff B-Weak RIMCMC DP

cl i 1.158 0138 0.783  0.007 0283 0041 3944 1.858 0041 0006 8422 1136
Mean-I

c 50815 1.252 0387 2R76 L1518 0244 1476 1.197 0009 0009 0527 1.593
Mean-I

C3 B538 9923 7775 0B45 Q25 9R14 0872 0956 11303 9084 4840 49028
Mean-5

c1 0203 0038 0.001  0.007 0050 0011 0033 0095 0009  0.003 0.004 0.002
Mean-5

2 0.005 0193 0083 0065 0D0s 0035 0008 0165 0024 0003 0019 0.002
c3 Je02 1320 0591 D095 2184 1.300 0135 0.068 1.201 1.156 0797 1820
Var-I 0.205 0217 3.042 158517 0.002 26874 1.261 5.040 0000  0.000 T215 0.486
Var-5 0.004  0.004 0284 2914 0.000 0457 0.108 0585 0000  0.000 0.054 0.217
Cov 0132 0.130 0.008 13.749 0026 0028 0050 0.733 0018 0018 0005 0.003

Fesidual 0001 0000 0001  0.001 0.000  0.000 0012 0.000 0000 0000 0001 0.000

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-1 = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A12. Mean Square Errors of the Parameters for 3-Class 45/45/10, MD=3/3

=200 =400 =500
B-Ihif B-Weak FIMCMC DP B-Dnff B-Wezk ETMCMC DP B-Inff B-Weak RIMCMC DP
c1 1 4256 1.156 4052 0837 0218 1.156 1.360  3.105 0002  0.000 13682 1.136
Mean-I
2 0024 0102 Ms  2BR7 0081 0102 0748 0794 0001 0017 2295 1593
Mean-1
c3 54553 33397 274 3791 4757 33397 6574 1.682 0339 0148 2746 1445
MMean-5
c1 0697 0288 D065 0034 0033 0288 0004 0022 0.000  0.000 0.002 0.002
Mean-5
o 0139 0047 0131 0066 000e 0047 0026 0004 0000  0.000 0026 QU002
MMean-5
c3 o741 4339 0.072 0089 0594 4339 0072 0071 0.043  0.000 0196 0493
Var-I 83219 T6.T03 0.010 64.208 2680 76703 1.651 261.760 0.157 0194 0580 0486
Var-5 1.323 1.217 0.057 13.675 0.044 1.217 0027 5523 0.003 0.004 0.002 0217
Cov 12824 11.896 0.000 B7.966 0343 11.894 3360 34059 0015 Q007 0.011 0.003

Fesidual 0001 0001 0013 0001 0.000 0001 0.000 0001 0.000 0.000 0013 0000

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-1 = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A13. Mean Square Errors of the Parameters for 3-Class 70/20/10, MD=1/1

=200 =400 =601
B-Dhif B-Weak RITMCMC DP B-Ihiff B-Weak FIMCMC DP B-Dhif B-Weak RIMCMC DP

l(':.-llean-'{ 0122 0192 D460 1.732 0.042  0.105 0.352 0222 0022 0.108 3618 0850
Mean-I

o 2952 2011 0870 2459 2904 1680 2418 0412 3240 0776 2280 0203
Mean-I

3 8024 91B1 0.726 3.736 7678 9382 13418 1.641 6165 10373 2320 ‘2353
Mean-5

c1 0.074 0075 0.060 QU029 0177 0.064 0066 0011 0.161 0049 0.000 0014
Mean-5

- 0358 0309 0.014 0016 0.629 0.259 0017 0019 0702 0167 0068 0.008
l&[;an—ﬁ 2028 2152 0072 0090 1690 1966 0137 0067 1297 1952 0382 0145
Var-I 0.008 142395 13.119 8271 0.011 0.008 4588 19.519 0,058 0.029 10,170 24.039
Var-5 0.000 025 0057 0.523 0000  0.000 0805 0419 0000  0.000 0020 0335
Cov 0.762 1.628 0776 0787 0546 1374 0145 2123 0366 0383 0002 1173

Fesidnal 0.001  0.000 0.052 0.001 0.000  0.000 0.000 0002 0.000 0000 0.045 0000

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-1 = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A14. Mean Square Errors of the Parameters for 3-Class 70/20/10, MD=1/3

=200 =400 n=5600
B-Inff B-Weak RIMCMC DP B-Dhff B-Weak RTMCMC DP BInff B-Weak FIMCMC DP

I(':.![lean—l 0356 0367 2323 5364 0224 0229 3.602 0691 0185 D367 0092 1173
I(':.Ileml 1.073 L.239 1.080 2450 1.650 1.656 0.543 1.B31 1.700 1.239 1553 2135
Mean-1

3 0948 0731 1153 4.020 0.190  0.184 .47 0251 013 0731 0581 4831
Mean-5

1 0040 0.4l 0.018 0.029 0.033  0.031 0092 0011 0026 0.041 0144 0.001
Mean-5

c 0.613 0.666 0.058 (0.01B 0671 0.658 0210 0.020 0612 0686 0.097  0.009
I(':.![;an-ﬂ 0.122 0.094 0102 0.078 0024 0024 n.pss 0137 0016 0.094 0.157 0139
Varl 0012 0012 1.623 0.006 o007 0011 1883 B.Oo4 0004 0012 2353 3.565
Var-5 0.000 0.000 0382 1.192 0000  0.000 0030 0736 0.000  0.000 0119 0289
Covw 0.158 0.157 0228 D222 0121 0115 0,171 0585 0110 0157 0.138 0215

FResidual 0000  0.000 0001  0.000 0.000 0000 0042 0000 0.000  0.000 0.001 0,000

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A15. Mean Square Errors of the Parameters for 3-Class 70/20/10, MD=3/1

=20 =400 =600
B-Dhff B-Weak RIMCMC DP B-Dhff B-Weak RIMCMC DP B-Iuff B-Weak RIMCMC DP

c1 1 0315 0441 4406 7204 0241 0324 11465 0402 0201 0245 4482 1.164
Mean-I

€ 20340 21.718 0065 6305 22791 23932 0081 039 23290 23136 0012 2179
MMean-I

3 22458 18.992 50211 - 20721 18.688 L.117 1649 20142 19193 7541 48930
MMean-5

cl1 0.004  0.002 0013 0282 0003 0002 0023  0.000 0005 0002 0002 0004
o 5 3.501 3717 0073 3504 3694 3873 0.084 0134 3721  3.683 0081 0091
3 3 2802 2455 0.145 - 2500 2400 0.135  0.069 2515 2455 0445 2736
Var-I 0018 0011 1.6 53235 0.000  0.00D 3.583 0681 0.003 0001 86X 0117
Var-5 0.001  0.001 0382 0460 0.000  0.000 .04 0091 0.000 0.000 0110 0118
Cov 0108 0.105 0.229 0036 0.063 0.062 0.151  0.147 0.058 0.056 0028 0.002

Resdual 0.000  0.000 0.001 0,000 0.000  0.000 0.001 0001 0000 0000 0.001  0.001

Note. Mean-1 = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-1 = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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Table A16. Mean Square Errors of the Parameters for 3-Class 70/20/10, MD=3/3

=200 n=40{ n=800
BInff B-Weak RIMCMC DP BInff B-Weak RTMCMC DP BInff B-Weak EIMCMC DP

cl1 ! 0045  0.050 1.182  0.100 0.010  0.000 3637 6421 0003 0092 2799 1ls4
Mean-I

o 21772 18370 2298 6600 3733 LED 5487 1.871 0821 0041 6380 2179
Mean I

c3 5306 4722 2752 D049 0918 0458 3474 167 0228 0002 4809 1428
Mean-5

c1 0038 0028 0055 D91 0002 0,000 0015  0.018 0000 D000 0009  0.004
P 37T 3176 0075  D01E 0605 0283 0.002  0.001 0127 0.005 0015 0.091
€3 0672 060l 0078 D085 0.116  0.061 0.100 0071 002 D000 0176 0.158
VarI 10.791  B.9E8 1.631 20178 1266 0500 0.027 0554 0266 0067 0615 0117
Var-5 0170 0.149 0008  1.963 0.024 0012 0.005 0.078 0005 0001 0.063 0.118
Cov 1927 1438 0005 3.621 0.192 0076 0132 0218 D031 0.003 0.001 0.002

Flesidual 0000 0.000 0.004  0.000 0.000  0.000 0000 0.000 0.000 0000 0.001 0.001

Note. Mean-I = mean of the intercept and Mean-S = mean of the slope; C1 = latent Class 1, C2 = latent Class 2, and C3 = latent Class 3; Var-I = the variance
of the intercept, Var-S = the variance of the slope, and Cov = the covariance between the intercept and the slope; the variances and the covariance were held
equal across latent classes; Residual = residual variance.
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