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Improving Systematic Generalization Through Modularity and Augmentation
Laura Ruis (laura.ruis.21@ucl.ac.uk)

University College London

Brenden M. Lake (brenden@nyu.edu)
New York University; Facebook AI Research

Abstract
Systematic generalization is the ability to combine known parts
into novel meaning; an important aspect of efficient human
learning, but a weakness of neural network learning. In this
work, we investigate how two well-known modeling principles—
modularity and data augmentation—affect systematic general-
ization of neural networks in grounded language learning. We
analyze how large the vocabulary needs to be to achieve system-
atic generalization and how similar the augmented data needs
to be to the problem at hand. Our findings show that even
in the controlled setting of a synthetic benchmark, achieving
systematic generalization remains very difficult. After training
on an augmented dataset with almost forty times more adverbs
than the original problem, a non-modular baseline is not able
to systematically generalize to a novel combination of a known
verb and adverb. When separating the task into cognitive pro-
cesses like perception and navigation, a modular neural network
is able to utilize the augmented data and generalize more sys-
tematically, achieving 70% and 40% exact match increase over
state-of-the-art on two gSCAN tests that have not previously
been improved. We hope that this work gives insight into the
drivers of systematic generalization, and what we still need to
improve for neural networks to learn more like humans do.
Keywords: Modularity; Systematic Generalization; Data Aug-
mentation

Introduction
Humans are efficient learners. Once someone has seen a single
example of a wampimuk, they know how to recognize a small
wampimuk. Once someone learns how to walk cautiously,
they know how to cycle cautiously, even though cycling re-
quires a novel sequence of low-level actions. Our aptitude for
this type of generalization is a consequence of the fact that
word meanings like “small” and “cautiously” compose sys-
tematically (Chomsky, 1957; Montague, 1970) — a property
of language called systematic compositionality.

A discrepancy between humans’ ability to interpret novel
compositions and that of neural network models has long been
discussed (Fodor & Pylyshyn, 1988; Marcus, 1998; Fodor &
Lepore, 2002; Marcus, 2003; Calvo & Symons, 2014) and this
issue has been revitalized in recent years (Gershman & Tenen-
baum, 2015; Lake & Baroni, 2018; Bastings, Baroni, Weston,
Cho, & Kiela, 2018; Loula, Baroni, & Lake, 2018; Bahdanau
et al., 2019). While conventional models assign low likelihood
to unseen combinations of familiar tokens, there has been a
recent surge of interest in developing models that generalize
more systematically (Russin, Jo, O’Reilly, & Bengio, 2019;
Lake, 2019; Andreas, 2020; Nye, Solar-Lezama, Tenenbaum,
& Lake, 2020; Gordon, Lopez-Paz, Baroni, & Bouchacourt,

2020; Bogin, Subramanian, Gardner, & Berant, 2021). De-
spite progress, we are still very far from neurally-grounded
models that provide a fully satisfying account of systematic
compositionality, and certain types of complex composition
remain especially elusive.

The methods that systematically handle prototypical ex-
amples of compositionality like verb-object binding do not
address other less studied cases like adverb-verb composition.
Similarly to the “cycle cautiously”-example above, this type
of generalization requires making non-local changes to the
action sequence, transforming it entirely. The example reflects
a more general property of adverbs; combining a verb with
an adverb in a sentence can substantially change the actions
required to perform said verb. We study this phenomenon
using the recently proposed gSCAN benchmark for evaluating
models for systematic reasoning in a controlled environment
(L. Ruis, Andreas, Baroni, Bouchacourt, & Lake, 2020). The
grounded nature of this benchmark allows it to evaluate new
dimensions of systematicity that have not been captured by
previous work, like the additional complexity of adverb-verb
compositionality. Grounding meaning in a world state re-
quires models to do something that is more like real language
understanding; the correct action sequence for a language com-
mand changes based on the world state.1 Several recent works
have proposed methods to improve performance on the tests
(Heinze-Deml & Bouchacourt, 2020; Gao, Huang, & Mooney,
2020; Kuo, Katz, & Barbu, 2021; Nye, Tessler, Tenenbaum,
& Lake, 2021; Qiu, Hu, Zhang, Shaw, & Sha, 2021; Jiang &
Bansal, 2021), yet there has been little progress on the types
of unseen adverb combinations discussed above.

Here, we study two key modeling principles, modularity and
structured data augmentation, and their effect on systematic
generalization in grounded language learning. The notion
that modular architectures generalize better is a longstanding
principle in cognitive science (Fodor, 1983) and AI (Poole &
Mackworth, 2017), just as programmers know that modular
systems are more reusable and robust (Meyer, 1997). Densely-
connected neural networks may be especially prone to the
pitfalls of non-modular systems, as spurious correlations in the
input can affect the whole system in unpredictable ways. There

1Of course, the meaning of a word is not equivalent to the ability
to perform it – you can know the meaning of “ski jumping” without
actually being able to do it. In this domain, we assume that actions
are simple and executing them is a noiseless process.
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is ample evidence that modularity can improve systematic
generalization in neural network models, (Andreas, Rohrbach,
Darrell, & Klein, 2016; Bahdanau et al., 2019; Purushwalkam,
Nickel, Gupta, & Ranzato, 2019; D’Amario, Sasaki, & Boix,
2021) and here we apply modularity to the gSCAN challenge,
decoupling navigation, perception, and reasoning.

Data augmentation is a widely used technique in machine
learning to increase the diversity of training examples without
explicitly collecting new data (for surveys in computer vision
and natural language processing, see Shorten and Khoshgof-
taar (2019) and Feng et al. (2021), respectively). However,
applying data augmentation techniques to get examples for
adverb-verb composition is difficult. The transformative effect
an adverb has on the output sequence and the grounded nature
of the benchmark makes the class of augmentation techniques
called interpolation-based, like those proposed by Andreas
(2020) and Kagitha (2020), inapplicable. Instead we take a
structured augmentation approach and infer a set of rules that
characterize how adverbs operate in our domain, subsequently
using these rules to generate new data. We evaluate how much
and what kind of experience is needed to generalize to exam-
ples exhibiting the type of compositionality illustrated by the
“cycle cautiously”-example.

We propose a modular approach to systematic generaliza-
tion and design a structured data augmentation technique to
generate experience for the modules. From extensive experi-
ments with the proposed setup we deduce three main findings.
Firstly, simply providing a neural network with more data
might not be sufficient to achieve systematic generalization;
even after adding as much as 150 extra adverbs to the four
original adverbs in the gSCAN dataset (arguably enough given
the simple, controlled environment of the tests) the model is
not able to generalize systematically. Secondly, implement-
ing modularity by separating the problem into higher-level
cognitive processes enables the model to use the additional
experience and generalize systematically on tests related to
the additional experience. Finally, naively adding experience
does not enable systematic generalization. For the model to
learn how to generalize systematically, the experience it sees
needs to be sufficiently similar to the type of systematicity it
is tested on.

The three key contributions of this paper are (1) We investi-
gate a type of adverb-verb compositionality that has seen little
progress in the past, (2) We propose a neural architecture for
systematic generalization that is modular at the task-level, (3)
We analyse the amount and type of data this network needs to
achieve improved systematic generalization.

Related Work
In recent years systematic generalization has seen a revived
interest from the machine learning community, in computer
vision (Johnson et al., 2017; Misra, Gupta, & Hebert, 2017;
Atzmon, Kreuk, Shalit, & Chechik, 2020; F. Ruis, Burghouts,
& Bucur, 2021), natural language processing (Lake & Baroni,
2018; Baroni, 2020; Keysers et al., 2020; Kim & Linzen,

2020), and more generally (Nam & McClelland, 2021). Two
fundamentally different approaches are taken by the literature;
one utilizes additional data while making few changes to the
conventional setup and architecture (Furrer, van Zee, Scales,
& Schärli, 2020), while the other utilizes additional inductive
biases that aim to support systematic generalization (Russin
et al., 2019; Lake, 2019; Andreas, 2020; Nye et al., 2020;
Gordon et al., 2020; Bogin et al., 2021; Chaabouni, Dessı̀, &
Kharitonov, 2021). In this work we apply both approaches,
the former through data augmentation, and the latter through
modularity.

Using modularity to improve systematic generalization is
a common strategy in the literature. Some approaches intro-
duce modules that directly map to different parts of the input
command (Andreas et al., 2016; Corona, Fried, Devin, Klein,
& Darrell, 2021), and others map to different attributes of an
input image (Purushwalkam et al., 2019). In this work we
design modules that tackle different parts of the task, like navi-
gation and perception. Additionally, we use data augmentation
to provide the modules with separate experience. Data aug-
mentation for systematic generalization is also a well-studied
area (Lake, 2019; Andreas, 2020; Kagitha, 2020). Here we
take a structured augmentation approach that works even in
the grounded setting of the benchmark, designing a set of rules
that can generate novel examples. This allows us to generate
separate data for each module as well as additional data with
novel concepts that are not part of the original dataset.

Evaluating Systematic Compositionality
To evaluate the systematicity of the model’s predictions, we
will use the grounded SCAN benchmark (gSCAN). The bench-
mark tests a broad set of phenomena in situated language un-
derstanding where humans should easily generalize, but where
computational models struggle due to systematic differences
between the training data and the test data. In gSCAN, agents
are asked through language commands to execute instructions
in a 2D gridworld. The benchmark has seven different tests
that require combining known concepts into novel meaning.
For example, one test requires recognizing a novel object with
a familiar color and shape that have never been observed to-
gether. Another test evaluates whether a model is able to
interpret a command containing an unseen composition of a
familiar verb and adverb. This latter test is of the kind that is
unsolved by prior work, hence the subject of our focus.

Figure 1 depicts examples of gSCAN tasks with adverbs2.
The use of an adverb in the input command indicates a changed
manner of navigation across the grid, requiring a complete
transformation of the output. For example, transforming a
sequence that simply navigates from the bottom right to the
top left to one that does this while spinning works as follows:
“turn left walk walk turn left walk walk”

↓ fwhile spinning

“spin* turn left walk spin* walk spin* turn left walk spin* walk”

2Note that some of the adverbs mentioned are adverbial phrases.
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(a) (b)
Figure 1: This figure depicts the two tests of adverb compositionality in gSCAN. Figure (a) denotes a few-shot learning test; a model has access
to few (k) examples of how the adverb “cautiously” translates to an output sequence and needs to generalize to all other examples. Figure (b)
denotes the “pull while spinning”-test; reminiscent of the “cycle cautiously”-example, a model learns all examples of pushing while spinning
or walking while spinning, and is tested on its ability to interpret “pull while spinning”.

where spin* is not a primitive but an action sequence of four
times “turn left”. The underlying rule is to add a spin before
turning to a direction and moving (e.g., “turn left walk” or
“turn right push”). When the manner is “cautiously”, the trans-
formed sequence would look as follows: “turn left cautious*
walk cautious* walk turn left cautious* walk cautious* walk”,
where cautious* is an action sequence of “turn left turn right
turn right turn left” (looking to the left and right). Here the
rule is slightly different, as the agent first needs to turn to the
direction it will continue in, then be cautious, and then take
the movement action. This difference will prove important in
the experiment section where we analyze what kind of data
augmentation results in systematicity.

Figure 1 exemplifies the two types of systematic generaliza-
tion within our focus here and that have not been solved by
prior work. One of the tests focuses on learning something
new from few examples, and the other on composing familiar
things. Figure 1a shows a test of few-shot generalization to
“cautiously.” At training time, the model only sees a few (k)
examples of commands with “cautiously”; at test time, the
model needs interpret all unseen commands with that manner.
Figure 1b shows a test of adverb-to-verb generalization. At
training time, the model sees all commands that contain “push
... while spinning” and “walk ... while spinning”, and at test
time it needs to interpret “pull ... while spinning”.

The object properties and their denotations are combined
to form a training set of 367,933 different examples. Each
command in the output sequence can be one of five actions
(e.g., walk, turn left, etc.). For a full description of the dataset
statistics refer to the appendix of L. Ruis et al., (2020).

Method
The problem posed by gSCAN naturally divides into modules
reminiscent of high-level cognitive processes. Below we de-
scribe what each module does, how we generate data for these
modules, and how the resulting model is trained.

The modular architecture. To facilitate modularity, we
aim to separate the task at hand into different cognitive mod-
ules; perception, navigation, interaction, and manner of nav-
igation (or, transformation). Each module has its own input

and output, all modules additionally have access to the lan-
guage command, and some have access to the world state. For
an overview of the modules and their input-output flow, see
Figure 2.

Figure 2: The input command (“Push a circle cautiously.”) and world
state are processed by different modules, each dealing with a different
question about the input task. The final output is produced by the
transformation module. *: cautious is in reality not a primitive action
but a sequence of “turn left turn right turn right turn left”

The perception module takes the input command and world
state and outputs where the agent is (a tuple with a row and
column number), what direction it is facing (east, north, south,
or west), and where the target is (a tuple with a row and col-
umn number). The navigation module uses that information
and outputs a plan to get from the agent location to the target
location. This module needs access to the input command
because there are adverbs like “while zigzagging” that require
the module to output a different plan (instead of “turn left
walk walk turn left walk” like the plan in the figure, it would
output “turn left walk turn left walk turn right walk”). Ad-
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ditionally, some adverbs require an egocentric plan like the
one in Figure 2, but others require an allocentric plan. The
allocentric equivalent to the plan in Figure 2 is “North North
West”. The navigation module decides what mode of output,
allo- or egocentric, to use based on the input command. In the
next paragraph the reason for this distinction is detailed. The
interaction module gets the output from the perception module
and the world state, and can use the target location to decide
how to interact with the object. In this case, it needs to be
pushed once. This module uses the input command to decide
whether to push or pull. Finally, the transformation module
gets the plan and the interaction commands, and transforms
the whole sequence to adhere to the manner of navigation. In
this case, it needs to navigate cautiously (“turn left turn right
turn right turn left”, i.e., looking to the left and right, short-
ened in Figure 2 for clarity) before each movement command
(“walk”, “push”, and “pull”). This module uses the input com-
mand to decide which transformation is necessary and always
outputs egocentric commands, even if the input is allocentric.
Inputs like “North” are transformed to “spin* turn left walk”
if the adverb is “while spinning” (where spin* is “turn left
turn left turn left turn left”). Sometimes an example requires
no interactions and/or no transformation (e.g., “walk to the cir-
cle”). In that case, the interaction and transformation modules
output a special end-of-sequence token.

Structured data augmentation. Each module needs expe-
rience to learn, and in order to analyze how much experience
they need, we construct a domain-specific language (DSL)
under which the original gSCAN benchmark is grammatical.
The DSL contains everything to generate the already existing
manners of navigation found in gSCAN and can be used to
sample new manners of navigation. We can use it to generate
as much data as needed. The DSL is constructed as a func-
tional L-system (Lindenmayer, 1968). L-systems are parallel
rewriting systems of rules. An L-system has a set of symbols
that can form sequences, and production rules to rewrite those
sequences. By applying rules from the L-system to sequences
(which can be empty), a sequence can be grown. L-systems
are executed in parallel, meaning that a rule gets applied to all
symbols in the sequence at once. Each adverb gets assigned
a set of rewrite rules, called a program. Applying this set of
rules to a sequence will transform it into a sequence with the
manner that the program corresponds to.

To show how the DSL works, we will walk through an
example. The DSL uses allocentric and egocentric symbols,
which are indicated by capitalized and lowercase symbols
respectively (e.g., “North” or “turn left” and “walk”). This
distinction more naturally fits the already existing adverbs in
gSCAN and results in less rewriting rules for their programs.
For the adverb “while spinning” the transformation can be
applied to allocentric commands, and for the adverb “cau-
tiously” to egocentric commands. For example, to construct
the sequence in Figure 2, we apply the following rewrite-rule
to the egocentric plan “turn left walk walk turn left walk”:

walk → turn left turn right turn right turn left walk

Which puts the “cautious”-sequence at the right location, be-
fore the movement symbol. Because L-systems are parallel
rewriting systems, the above rule needs to be applied once to
transform the sequence. For “while spinning”, and an allocen-
tric plan “North North West”, the rewrite rules will be:

North → turn left turn left turn left turn left North

West → turn left turn left turn left turn left West
If then, based on the agent’s starting direction, North gets
rewritten to “turn left walk” the spin is already at the right
location in the sequence (namely before turning into the direc-
tion that the agent will be walking in). Rules can be applied
recursively, which is why the DSL can theoretically generate
infinite data. If the above rules are applied ad infinitum the
agent will never stop spinning.

Constructing the rules for each adverb leads to a set that
we call the meta grammar. We extend the meta grammar
with additional rules to be able to sample new programs that
correspond to different manners and adverbs. For example,
one rule that can generate manners of navigation that aren’t a
part of the original gSCAN is the following:

East → North East South
Applying this type of rule will make the agent take a small
detour instead of going east immediately. To get a dataset with
X extra adverbs, we sample as many programs from the meta
grammar. If a program gets generated that has the same set of
rules as one of the original gSCAN adverbs, it is rejected3.

The subtle differences among the original gSCAN manners
induce a categorization of adverb types; “while spinning”-
type adverbs can be described by transformations that are
naturally applied to allocentric commands and do not result
in changed movement across grid-cells (they only result in
changed movement within grid-cells), “cautiously”-type ad-
verbs are described by transformations that are applied to
egocentric commands and also do not result in changed move-
ment, and “while zigzagging”-type adverbs are applied to
allocentric sequences and do result in a changed path across
the grid. Finally, the manners resulting from rules that make
the agent take a detour are not part of the original gSCAN
dataset and are different in that they cause the agent to walk
more than needed. We use this taxonomy to evaluate the type
of experience a model needs to generalize systematically.

Network architecture & training details. The neural net-
work we use as a non-modular baseline is exactly the same as
the one described by L. Ruis et al. (2020), as well as the hyper-
parameters used. For each module in the modular network we
re-use the parts of the baseline architecture that apply. Based
on the input-type and output-type a module requires, different
neural networks are combined into a module. For example,
the perception module’s encoder is exactly the same as the
baseline, since it also needs to process the input command
and the world state. The decoder does not need to output a
sequence but three integer predictions (initial agent direction
and position, and target position), therefore the decoder is an
multi-layer perceptron (MLP) with three output heads. The

3Find the full DSL: https://github.com/LauraRuis/msa.
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transformation module processes the concatenation of the se-
quences that the navigation and interaction modules output
and outputs a sequence, hence both the encoder and the de-
coder are recurrent neural networks. The full architecture and
code for the experiments can be found in the same repository
as the DSL. The modules get trained independently and in
parallel with ground-truth inputs and targets generated by the
DSL. At test time, the forward-pass through the modules hap-
pens sequentially and the modules that take the output from
the previous module take their predicted output. We train
everything with Adam optimizer (Kingma & Ba, 2015). For
both the baseline and the transformation module we found that
when adding additional augmented data, the neural network
size needs to be increased to prevent underfitting. Whenever
we add augmented data to a model, we increase the recurrent
hidden sizes from 100 to 400, the embedding dimension from
25 to 50, and decrease dropout from 0.3 to 0.2.4

Experiments
To analyze the effect of modularity and data augmentation on
systematic generalization we evaluate the models on gSCAN.
Besides the two tests of our focus that require the type of
adverb compositionality that prior work struggles with, we
report the performance on the five remaining tests to ensure
that a performance increase doesn’t present a trade-off between
tests, as well as on a “random” test set that is sampled from
the same distribution as the training set. This is a sanity check
that all models are able to solve the gSCAN task when the
test set has no systematic differences with the training set. We
compare the proposed models to the end-to-end neural network
used in the original gSCAN paper. Upon establishing the best
performing model, we run several experiments to understand
the performance increase. Specifically, we look at the effect of
the number of adverbs in the training set, the type of adverbs
in the training set, and the number of “cautiously”-examples
in the training set (i.e., the k in k-shot).

The effect of modularity and augmentation. We train
the baseline and the modular model outlined above on the
original gSCAN training set containing four adverbs and on
a training set containing 150 additional adverbs generated by
the DSL. In Table 1 the results on a random test set with no
systematic differences with the training set and on the seven
systematic generalization tests is shown. When looking at the
tests of our focus, row “Cautiously k=5-shot” and “Pull while
spinning”, we see that the modular network (column “Modular
only”) gives a clear improvement over the non-modular base-
line (column “Baseline”) for the few-shot learning test. For the
adverb-to-verb generalization there is no clear improvement
from modularity alone. However, once we add the augmented
dataset with 150 extra adverbs the performance jumps signifi-
cantly (column “Modular & Augmentation”). This provides
an improvement of +/- 80% exact match over the baseline for
the few-shot split, and 55% for the “pull while spinning”-split.

The question is whether modularity is necessary; what if we

4Full hyperparameter details: https://github.com/LauraRuis/msa

simply train the baseline with the augmented data? This exper-
iment is depicted in the column labeled “Augmentation only”
of Table 1. We observe two things in this result. Firstly, the
modular method with augmentation outperforms the baseline
with augmentation for the “pull while spinning”-split. Sec-
ondly and more importantly, training the non-modular baseline
with the augmented dataset results in worse performance than
the baseline for four of the five other tests in gSCAN. One
interesting possible explanation for this is the fact that the
augmented data has the same systematic differences with the
test sets as the original training set and more exposure to
this data increases confidence in the biases extracted from
the original training set. For example, in the augmented data
generated yellow squares are still never mentioned in the input
command. This means that the performance increase for the
adverb-splits becomes a trade-off, whereas in the modular case
we can simply only provide the transformation module with
the augmented data to circumvent this issue.

The best method from literature for the 5-shot split achieves
10.31% exact match (Kuo et al., 2021), and for the pull while
spinning split the best method achieves 33.6% exact match
(Gao et al., 2020), making this work is the first to improve on
these tests. Even though our method is advantaged through the
augmented adverb set, an important result is evident: to make
progress on systematic generalization simply adding extra data
is not always enough. In this case, we use high-level modular-
ity to make full use of the structured data augmentation.

The effect of vocabulary size and varied k. Figure 3a
contains the results of runs on training sets with different vo-
cabulary sizes. For the 5-shot “cautiously” split, we observe
a slow increase of performance when going from 0 to 100
adverbs in the training set, and a big jump when adding the
final 50 adverbs. For the “pull while spinning” split adding
extra adverbs is not always strictly better5. This result shows
that simply adding more adverbs does not guarantee perfor-
mance increase. If the model could transfer experience with
any adverb to the two that are the subject of the adverb tests
we should see a steady increase in performance when adding
additional adverbs. What we can infer from these results is
that the vocabulary size is not the full picture, and we need to
break the dataset down per adverb type to get a clearer idea,
which we do in the next section.

Figure 3b shows the performance as a function of the num-
ber of training examples with “cautiously”. The result is
unsurprising; more is better, and after 10 examples the effect
of adding more diminishes. The difference in performance for
the “pull while spinning” split can be explained by the high
variance of these results.

The effect of manner-similarity. It turns out simply adding
more adverbs to the training set does not suffice for strong

5In the training sets containing 0, 10, 50, or 150 adverbs the
dominant adverb type is the “while spinning”-type. In the training set
with 100 extra adverbs however, it’s the “cautiously”-type (3% more
“cautiously”-type examples). This might explain the performance dip
for the “pull while spinning” test when training on 100 adverbs. To
test this hypothesis more experiments are needed.
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Table 1: Results obtained by the models for each split, showing exact match accuracy (average of 5 runs ± std. dev.). The rightmost three
columns show current state-of-the-art (SOTA) models.

Exact Match (%)
Split Baseline Modular & Augmentation Modular only Augmentation only Qiu et al. Kuo et al. Gao et al.
Random 97.15 ± 0.46 96.34 ± 0.28 96.35 ± 0.29 96.13 ± 0.28 99.95 ± 0.02 97.32 98.6 ± 0.95
Cautiously k=5-shot 1.12 ± 0.46 80.04 ± 6.06 11.40 ± 5.59 76.26 ± 17.18 - 10.31 -
Pull while spinning 19.04 ± 4.08 76.84 ± 26.94 25.87 ± 32.09 25.27 ± 4.89 22.16 ± 0.01 21.95 33.6 ± 20.81
Yellow squares 30.05 ± 26.76 59.66 ± 23.76 59.66 ± 23.76 22.89 ± 22.40 99.90 ± 0.06 95.35 99.08 ± 0.69
Red squares 29.79 ± 17.70 32.09 ± 9.79 32.09 ± 9.79 10.27 ± 4.09 99.25 ± 0.91 80.16 80.31 ± 24.51
Novel direction 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 5.73 0.16 ± 0.12
Relativity 37.25 ± 2.85 49.34 ± 11.60 49.34 ± 11.60 31.42 ± 3.91 99.02 ± 1.16 75.19 87.32 ± 27.38
Class inference 94.97 ± 1.12 94.16 ± 1.25 94.06 ± 1.21 93.65 ± 2.49 99.98 ± 0.01 98.63 99.33 ± 0.46

(a) (b) (c)
Figure 3: The average exact match of five runs on the adverb splits varying (a) the number of additional adverbs (0, 10, 50, 100, 150), (b) the k
in k-shot learning (1, 5, 10, 50), or (c) the distribution of adverb types in the training set. The error bars show the std. dev. over 5 training runs.

systematic generalization. As detailed in the method section,
the different gSCAN adverbs can be divided in three different
groups. Adverbs in the same group require a similar man-
ner of navigation. In this experiment (depicted in Figure 3c),
we train a model on different subsets of the dataset contain-
ing 150 augmented adverbs in addition to the original four
gSCAN adverbs (“All adverb types” in Figure 3c). Sorted
from most number of adverbs to least number of adverbs we
have; a subset containing the “while spinning” and “while
zigzagging”-type adverbs but not the “cautiously”-type (“No
cautiously-type”), a disjoint subset with only the “cautiously”-
type adverbs, a subset containing just one adverb (picked to be
highly similar to “cautiously”, requiring an action sequence
of “turn right turn left turn left turn right” before movement
actions instead of “turn left turn right turn right turn left”),
and a subset without extra adverbs containing only the original
four gSCAN adverbs (“No extra adverbs” in Figure 3c). The
results of this experiment give a clearer picture than vocab-
ulary size alone. It shows that the type of adverb is crucial
for the performance. The model trained on the dataset with-
out “cautiously”-type adverbs does only slightly better on the
few-shot “cautiously” split than when trained without extra
adverbs, but very well on the “pull while spinning” split. In
fact we see that taking out the adverbs that are similar to “cau-
tiously” boosts performance significantly over using all 150
adverbs on the “pull while spinning” split. This shows that
the adverb similarity is important for knowledge transfer be-
tween adverbs and adding adverbs of another type can even
hurt performance. When taking this experiment to the extreme
by adding a single adverb that is similar to “cautiously” to
the original adverbs (“one cautiously-type” in Figure 3c), we
observe that this almost explains all performance increase for
the few-shot “cautiously”-split. This experiment suggests that
it is not the quantity, but the quality of data that we add that
is important, and that the models may be relying on nearest-

neighbor-style reasoning when generalizing to new adverbs.

Conclusion

In this work we investigate adverb-verb compositionality that
has a transformative effect on action sequences required to
perform a verb. This type of compositionality has seen little
progress in the past. By applying two influential modeling
principles, modularity and data augmentation, we set a new
state-of-the-art on two grounded language understanding tests
that evaluate this. Even though the method has an advantage
over previous methods due to the augmented data, the results
give insight into what can bring about progress on the set of
tests that thus far have proven difficult. We find that naively
adding substantial experience with different adverbs to the
training set of a neural network is not sufficient for strong
generalization, but when separating the architecture into dif-
ferent modules reminiscent of high-level cognitive processes
the model is able to generalize more systematically. Moreover,
we find it is not the quantity of experience that matters, but the
quality; adding additional adverbs to the training set that corre-
spond to a different manner of navigation than the one that is
tested barely results in transfer of the learned knowledge and
can even hurt generalization, whereas adding a single adverb
that is very similar to the tested adverb almost explains the
entire performance increase. These lessons may translate more
broadly; to move towards truly systematic neural networks
we may need to take into account the quality of experience
a model sees, and the inductive biases it needs to be able to
utilize this experience systematically.

One weakness of the proposed architecture is that some
aspects are specialized for the task at hand. For future work,
it would be an interesting challenge to eliminate the need for
designing a structured augmentation method by hand, as well
as learning the module layout from data in order to readily
apply it to other domains.
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