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Molecular phylogenies suggest some major radiations of open-ocean fish

clades occurred roughly coincident with the Cretaceous–Palaeogene

(K/Pg) boundary, however the timing and nature of this diversification is

poorly constrained. Here, we investigate evolutionary patterns in ray-

finned fishes across the K/Pg mass extinction 66 million years ago (Ma),

using microfossils (isolated teeth) preserved in a South Pacific sediment

core spanning 72–43 Ma. Our record does not show significant turnover of

fish tooth morphotypes at the K/Pg boundary: only two of 48 Cretaceous

tooth morphotypes disappear at the event in the South Pacific, a rate no differ-

ent from background extinction. Capture–mark–recapture analysis finds

two pulses of origination in fish tooth morphotypes following the mass

extinction. The first pulse, at approximately 64 Ma, included short-lived

teeth, as well as forms that contribute to an expansion into novel morpho-

space. A second pulse, centred at approximately 58 Ma, produced

morphotype novelty in a different region of morphospace from the first

pulse, and contributed significantly to Eocene tooth morphospace occu-

pation. There was no significant increase in origination rates or expansion

into novel morphospace during the early or middle Eocene, despite a near

10-fold increase in tooth abundance during that interval. Our results suggest

that while the K/Pg event had a minor impact on fish diversity in terms of

extinction, the removal of the few dominant Cretaceous morphotypes trig-

gered a sequence of origination events allowing fishes to rapidly diversify

morphologically, setting the stage for exceptional levels of ray-finned fish

diversity in the Cenozoic.
1. Introduction
Fishes are the dominant group of aquatic vertebrates, with over 33 000

described species [1]. Over 90% of that species diversity is found within the

ray-finned fishes (Actinopterygii) [1]. While actinopterygian history reaches

back over 400 million years, most extant family-level lineages originated

within the past 100 Ma [2–5]. Fossil and molecular evidence suggest that

open-ocean fishes radiated following the Cretaceous–Palaeogene (K/Pg) mass

extinction, expanding into novel morphospace and size classes in the early

part of the Palaeogene [6–9]. However, it has been difficult to precisely
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resolve the temporal relationship of the K/Pg mass extinc-

tion to the inferred radiation in open-ocean dwelling

ray-finned fishes, due to large temporal uncertainties of

molecular clocks and the sparse body fossil record.

There are reasons to suspect that the K/Pg mass extinc-

tion may have directly contributed to part of the Cenozoic

radiation of ray-finned fishes. Mass extinction events have

profoundly shaped the diversity of life on the planet

[10–12], removing previously abundant taxa and allowing

surviving lineages to diversify in their aftermath [13]. Fol-

lowing mass extinctions, there is often an interval of low

diversity and high dominance assemblages, where one or

two taxa account for most of the fossils present. These

assemblages are eventually replaced by more complex

and persistent ecosystems [14–16]. Ray-finned fishes

have a history of survival across mass extinctions and

diversification in the aftermath of ecological disaster

[4,17]. The K/Pg event caused a selective extinction of

large and fast-jawed predatory fishes [18], and both mol-

ecular and fossil data suggest that an ecologically diverse

range of ray-finned fishes radiated afterward [7–9,19].

Further, it appears that open-ocean ray-finned fishes

were disproportionately successful in maintaining and

expanding their ecological dominance following the

extinction event relative to other marine vertebrate

groups such as sharks [6].

There are a number of significant palaeoclimatic events in

the early Cenozoic which may have also played a role in

shaping fish diversity following the K/Pg event. For

example, the Palaeocene–Eocene Thermal Maximum

(PETM), a period of rapid greenhouse-induced global warm-

ing and ocean acidification 56 Ma [20], had profound effects

on marine and terrestrial ecosystems [20], and has been impli-

cated in inferred extinction in some marine fish groups [21].

Here, we evaluate changes in morphological disparity and

estimate rates of origination and extinction of open-ocean

fish tooth morphotypes, a metric related to ecological and

taxonomic diversity, across the K/Pg mass extinction and

early Palaeogene climatic events through the middle

Eocene, using a unique microfossil resource: isolated micro-

fossil fish teeth (ichthyoliths) preserved in a deep-sea

sediment core from the South Pacific Ocean. Such remains

cannot, at present, be matched to specific taxonomic

groups, though this is currently under investigation by Eliza-

beth Sibert. While some fish clades uniformly bear a common

tooth morphotype, others display a wide range of dentitions

even within a single genus, and some fishes have distinct

tooth morphotypes within their oral and pharyngeal jaws.

Regardless, teeth play a significant role in prey capture and

handling, meaning that changes in tooth shape, size, and

geometry likely represent a combination of both taxo-

nomic and ecological shifts within fish communities. We

use the terms ‘diversity’ and ‘origination rates’ of pelagic

fishes throughout to refer to these morphotype-based

metrics, as tooth shape can be a proxy for the dynamics

of the group. Ichthyoliths are abundant in deep-sea sedi-

ment cores and can be studied at high temporal

resolution, representing the most abundant and complete

fossil record of fishes from the open ocean, complementing

the more taxonomically informative but rare body fossils,

and providing unique insights on marine vertebrate evol-

ution from an ecosystem otherwise under-represented in

the described fossil record.
(a) Two pulses of Palaeocene origination
Microfossil fish teeth are preserved in nearly all marine

sediments but have often been overlooked by micropalaeon-

tologists due to their small size and low abundance when

compared to other microfossils. Ichthyolith morphotypes

and assemblages exhibit distinct changes through strata and

have been used for biostratigraphy, suggesting that these fos-

sils capture evolutionary or ecological changes in fish

communities through time [22,23]. To quantify this morpho-

logical variation, we developed a novel character-state coding

system (see electronic supplementary material for details),

and classified 1 897 teeth ranging in age from 72 to 43 Ma

from Deep Sea Drilling Project (DSDP) Site 596, a red clay

sediment core from the South Pacific gyre. We identified

136 unique tooth morphotypes, each defined as a unique

combination of character-states. DSDP 596 has a prominent

iridium anomaly at the K/Pg boundary [24], and an estab-

lished age model based on cobalt accumulation rate and

biostratigraphy [25]. Continuous sedimentation through the

study interval and abundant ichthyoliths make DSDP 596

an ideal site for evolutionary studies of open-ocean fishes,

as the site has remained within the gyre habitat throughout

the past 85 million years [25]. Prior work at DSDP Site 596

has shown that there was an increase in the relative abun-

dance of fishes at the K/Pg extinction, and a period of

increased relative abundance of extremely large teeth span-

ning approximately 64 to 62 Ma [6]. These changes in the

post-K/Pg ichthyolith assemblages are also observed in

Ocean Drilling Program (ODP) Site 886, in the North Pacific

gyre, as well as several locations in the North and South

Atlantic [6], though hiatuses, limited sampling, and low

tooth abundance preclude detailed morphological work at

those sites.

The stratigraphic ranges of the identified ichthyolith

morphotypes are presented in figure 1. No morphotypes in

our dataset disappear in the Cretaceous prior to the K/Pg

boundary. Further, similar to plankton groups (e.g. calcar-

eous nannofossils [26]), there is no evidence for a drawn-

out extinction or assemblage shifts in the latest Cretaceous

[27], suggesting that any environmental change prior to the

mass extinction was not a significant factor in driving

changes in fish tooth diversity or community structure.

Cretaceous assemblages were dominated by three morpho-

types, which together commonly comprised approximately

50% of each assemblage (figure 1). Other late Cretaceous

morphotypes were rarer, with only 1–2 teeth per morpho-

type in assemblages of 50–70 teeth. Only two of 48

Cretaceous morphotypes went extinct at the K/Pg event

(approximately 4% extinction). However, these two morpho-

types represented two of the three most abundant forms in

the Late Cretaceous, so their extinction resulted in a marked

change in assemblage composition. The third dominant Cre-

taceous morphotype persisted just two million years into

the Palaeocene, but was present at much lower relative

abundances than before the mass extinction.

Most of the remaining Late Cretaceous morphotypes per-

sisted into the Palaeocene, many becoming more common

than they were in the Cretaceous. The early Palaeocene fish

assemblage shows higher evenness than the Cretaceous

assemblage, with surviving morphotypes present at slightly

elevated abundances when compared to novel Palaeocene

forms. In contrast to the Cretaceous, no single morphotype
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Figure 1. (a) Stratigraphic range chart of ichthyolith morphotype occurrences
using the ‘low reworking’ dataset (see electronic supplementary material).
Size and colour of dot represents the relative abundance of each morphotype
observed in a time bin, with larger dots representing higher relative abun-
dances of those fossils. The red horizontal line is the K/Pg boundary. The
vertical axis is individual tooth morphotypes defined for this study, ordered
by first occurrence then last occurrence age. A key for translating number to
morphotype is in electronic supplementary material, table S4.
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was present consistently at high relative abundance during

the first half of the Palaeocene. Further, despite a nearly

8-fold increase in tooth accumulation rate in the early

Eocene (figure 1b), relatively little tooth morphological

novelty appeared during that interval. Instead, the majority

of new morphotypes were first observed in the Palaeocene,

which has consistently low numbers of total teeth in each

sample. We suggest that the novelty observed in the Palaeo-

cene is likely underestimated, masked by low tooth

abundances. Together, these imply that the K/Pg event
disrupted the high-dominance structure of Late Cretaceous

fish communities, likely facilitating the morphological diver-

sification observed during the Palaeocene. Notably, this

morphological diversification of tooth types does not con-

tinue into the Eocene, despite a massive increase in fish

tooth abundance during that time. It is likely that the appar-

ent Palaeocene radiation in pelagic fishes was linked to the

ecological restructuring that followed the K/Pg extinction

while the increase in Eocene tooth abundance was built on

morphotypes that had already appeared in the Palaeocene.

To quantify the radiation of tooth morphotypes, we

estimated origination and extinction probabilities using

capture–mark–recapture (CMR). This method accounts for

incomplete sampling by estimating the probability of detec-

tion and probability of survival for each morphotype

throughout the study interval, by taking advantage of mor-

photypes which range through multiple time steps but are

not detected in every sample in-between [28–30]. Traditional

palaeontological methods (e.g. Boundary Crossers [31]) yield

similar patterns for our data (see electronic supplementary

material, discussion and figure S4). There is no obvious

increase in extinction rate of fish tooth morphotypes associ-

ated with the K/Pg event, with the best-fit models

estimating a near-constant 5% extinction probability per

million years throughout the entire study interval (figure 2).

However, there are two distinct peaks in morphotype orig-

ination following the extinction event, at 64 Ma and 58 Ma,

respectively (figure 2). As both peaks in origination rate pre-

cede, rather than coincide with, peaks in absolute abundance

of teeth, it is unlikely that our estimates of increased novelty

are artefacts of increased sampling intensity. It is more likely

that we underestimate the magnitude of morphological

novelty during these intervals, as the absolute number of

teeth observed during them is small (see electronic sup-

plementary material, figure S2). Further, despite the

relatively low abundances of teeth compared to the Eocene,

the Palaeocene was a time of net origination of tooth morpho-

types, with origination rate exceeding extinction rate. In

contrast, the Eocene was a time of net extinction, while absol-

ute abundance of teeth was greater than 5-fold that of

Palaeocene levels, suggesting that evolutionary dynamics

were distinctly different between the two epochs, and

that high tooth accumulation is not correlated with high

diversification rates.

Migration or shifts in geographical range might contrib-

ute to the peaks in novelty observed at this site. However,

migration is unlikely to be the principal process underlying

the patterns presented here. Migration includes both immi-

gration (which could be confounded with origination) and

emigration (which could be confounded with extinction).

While there are distinct changes in origination rate, there is

nothing in our extinction estimates consistent with large-

scale emigration. Further, open-ocean fishes tend to have

cosmopolitan distributions [1], making it geometrically more

difficult for point occurrences to be governed by changes in

range than for species with more restricted distributions.

The K/Pg extinction event is not associated with a

decrease in fish tooth morphospace occupation. The vast

majority of teeth in this study occupy a central region of

the morphospace that does not change substantially during

the study interval (figure 3). While the majority of origination

in the Palaeogene occurred within already occupied morpho-

space, each of the Palaeocene origination pulses included an
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expansion into a distinct region of previously unoccupied

morphospace (figure 3). While both time periods produced

short-lived, novel morphotypes, Pulse 1 included a higher

number of morphologically extreme, short-lived morpho-

types, and corresponds to a period of elevated relative

abundance of extremely large teeth in both the North and

South Pacific ocean basins [6]. This suggests that the two

Palaeocene pulses of novel morphotypes were distinct from

each other, possibly due to differing ecological and climatic

conditions between the two intervals (figure 3). However,

the novel morphotypes at the extremes of morphospace com-

prised a relatively small proportion of the total teeth in the

assemblages, so fish represented by these extreme morpho-

types may not have played a substantial ecological role in

earliest Palaeocene ecosystems. Alternatively, as some fishes

have more than one tooth morphotype present throughout

their jaws and skulls, it is possible that these early Palaeocene

fishes had only a small number of large, novel teeth, while

also producing a larger number of less distinctive teeth,

which would dilute the observed relative abundance of

these morphotypes, contributing to their relative rarity in

the assemblages. Despite these significant incursions into

novel morphospace, the vast majority of teeth in the Late Cre-

taceous and early Palaeogene occurred within previously

occupied regions of morphospace, suggesting that fishes

were able to maintain their established tooth morphological

diversity across the K/Pg event, at least in this region, poten-

tially priming the group for the Palaeocene radiations

observed here.

The timing of these pulses in morphological innovation in

the South Pacific Ocean do not correlate with the known

major environmental events of the early Palaeogene. For

example, PETM, 56 Ma is associated with a significant extinc-

tion in benthic foraminifera [32], range contractions in

calcareous nannofossils [33], and ocean acidification [34,35],

as well as dwarfing and rapid turnover of mammal commu-

nities on land [36]. Extinction in tetraodontiform fishes at the

PETM has been inferred from molecular phylogenies [21],

although most members of this clade are associated with
shallow or coastal settings rather than the pelagic ones. Our

data do not support evidence for a major turnover in open-

ocean fishes at the PETM. The PETM occurred just after the

second pulse of origination, so it is possible that the event

put an end to the period of elevated morphotype origination

in the late Palaeocene. However, as there is no significant

turnover in tooth morphotypes between the late Palaeocene

and early Eocene, our dataset does not support any clear

negative impact of the PETM on the diversity of open-ocean

fishes, at least in the South Pacific gyre.

In the South Pacific Ocean, rates of fish tooth accumulation

reached peak values of more than five times higher than those

in the Palaeocene or Cretaceous at approximately 50 Ma [37].

Peak tooth accumulation coincides with the Early Eocene Cli-

mate Optimum (EECO), a period of extreme global warmth

[38]. Many plankton groups reached a peak in diversity

during the early–middle Eocene [39,40], suggesting that this

may have been a formative time for open-ocean biodiversity.

However, while tooth abundance appears to increase and

decrease in concert with bottom water temperature at DSDP

Site 596 in the early Cenozoic [37], there is little origination

in morphotype diversity or morphospace occupation during

the interval. The Eocene is the only time within our record

where extinction rate consistently exceeds origination. Esti-

mated rates of extinction, however, are not significantly

higher in the Eocene than during the rest of the record: if

anything, this period of extreme greenhouse warmth and

high fish abundance is associated with reduced origination

in pelagic fishes. It is possible that the reduced origination

rates in the Eocene may be in part due to diversity-

dependence or ecological saturation of extant morphotypes,

as it occurs following a period of increased origination and

high standing morphological diversity, a phenomenon

previously observed in planktonic foraminifera throughout

the Cenozoic [41].

It is possible that considerable origination and extinction

occurred during the early Palaeogene climatic events that is

not observed in our dataset. Tooth morphology is determined

by a combination of function and phylogenetic history, and
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the morphotypes defined here likely represent higher order

taxonomic or ecological groupings than species. For example,

the average duration of a tooth morphotype in this record is

approximately 12 million years, which is considerably longer

than the estimated species duration for freshwater fishes,

approximately 3 million years [42], and is at the upper end

of the range for marine invertebrate species, which have

been estimated to last between 5 and 12 million years [43].

As such, it is possible that considerable speciation and extinc-

tion occurred within already extant genera, families, or

ecological guilds, which may not be observable in these

teeth or at this location. However, even if this is the case,

the evolutionary changes throughout the Palaeocene were

greater than observed shifts that occurred during the other

parts of this record, including across the PETM and during

the early Eocene. This suggests that the K/Pg event catalysed

a radiation within the group that occurred largely during the

Palaeocene and was finished by the early Eocene, defining

the morphological and ecological role of fishes into the

early Cenozoic.

2. Conclusion
The K/Pg extinction did not produce a large change in the

morphological diversity of the latest Cretaceous open-ocean

fish community, but did remove some of the most abundant

forms and reduced the dominance in tooth morphotype

assemblages. In the aftermath of the extinction, there were

two distinct pulses of origination during the Palaeocene in

the South Pacific, at 64 and 58 Ma, each expanding into a

different region of previously unoccupied morphospace.

While the first pulse or origination was likely a direct

response to the K/Pg event, the mechanism behind the

second pulse remains unclear: as there is no obvious climatic

driver, it may have been driven in part by ecological restruc-

turing as other marine groups recovered from the event.

Further, while there was a peak in abundance of fish teeth

during the early Eocene, there was very little origination of

novel tooth morphotypes during that interval. This is in con-

trast to the patterns observed in other open-ocean plankton

groups, such as planktonic foraminifera which have an initial

radiation in the early Palaeocene, but do not reach peak diver-

sity until the early/middle Eocene [40]. However, the
patterns of extinction for fish and foraminifera are nearly

opposite: while the fishes saw an extinction of only two mor-

photypes of 48 at the K/Pg event, only three species of

planktonic foraminifera out of 50 are thought to have sur-

vived the extinction event. Calcareous nannofossils, which

also suffered considerable extinction at the K/Pg event

reach peak diversity in the middle to late Eocene [39].

Fishes were likely able to respond rapidly in the aftermath

of the extinction event in part because they retained their

standing tooth morphotype diversity and existing morpho-

space occupation across the K/Pg event. In addition, the

extinction of other abundant pelagic consumers, including

ammonites [44], may have opened up opportunities for the

surviving fish lineages. The disruption of the high-domi-

nance Cretaceous fish tooth assemblages, with a small but

ecologically significant extinction in fish tooth morphological

diversity at the K/Pg boundary, combined with the rapid

pace of diversification in the early Palaeocene suggests that

overall, the K/Pg extinction event and the conditions of the

Palaeocene allowed fishes to diversify rapidly following the

extinction event, laying the foundation for the high Cenozoic

levels of diversity in the clade.
3. Methods summary
(a) Sample preparation
Ichthyoliths were isolated from discrete sediment samples from

DSDP Site 596, a red-clay sediment core from the South Pacific

gyre, following standard protocols for ichthyolith isolation and

preparation [45]. DSDP 596 has a well-constrained age model

for a red clay site, with a prominent iridium anomaly at the

K/Pg event [24], a cobalt-accumulation based age model [25],

and additional biostratigraphic tie points [46]. To facilitate

ichthyolith description, ichthyolith assemblages were imaged

at high resolution (approx. 1 mm pixel21), and measured

using the Hull Lab Imaging System and AutoMorph software

at Yale University [47]. Individual teeth which appeared to be

obviously reworked were removed from some analyses, to

assess the impact of reworking. Our results were robust to a

variety of reworking scenarios, and main text figures show

the intermediate ‘low reworking’ results (see electronic

supplementary material for details).
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(b) Morphological disparity
Fish teeth have distinct morphological shapes that are likely a

combination of taxonomic history and ecological role, and

which exhibit distinct stratigraphic ranges (figure 1). To

quantify morphological variation in these microfossils, we

developed and employed a character-based coded system to

create a non-hierarchical, ‘taxon-free’ morphological classifi-

cation based on prior ichthyolith work [22,23,48–52],

updated to include additional morphological diversity, and

to use reflected, rather than transmitted light microscopy

(see electronic supplementary material for details of the full

coding scheme and electronic supplementary material,

figure S1 for a visual summary of the characters considered).

For this study, we defined any tooth that had a unique set of

character-states as a distinct morphotype: 136 unique tooth

morphotypes were identified and given descriptive in-

house names to facilitate analysis. As our character-coding

system is non-hierarchical, we felt this splitting of morpho-

types was the most reasonable way to consider tooth types

without introducing a potentially false hierarchy into the

system.

(c) Evolutionary rate calculations
Evolutionary rates were evaluated using capture–mark–

recapture methods. Analyses were carried out in R [53]

using the package RMark [54] as an interface with MARK

[55], a maximum-likelihood capture–mark–recapture calcu-

lation software. We used the Pradel 1996 [29] formulation of

CMR, which can used to simultaneously estimate extinction

and origination. We present results of the Pradel-Recruitment

model formulation [55], as this is a model often used in

palaeontological studies [28]. These results were compared

with more traditional ‘boundary crosser’ metrics [31] on the

same dataset, and both show similar patterns. Please see elec-

tronic supplementary material for additional discussion and

electronic supplementary material, figure S4 for a comparison

of all estimated origination and extinction rates.
(d) Morphological disparity analysis
All analyses were carried out using the R Statistical Package

[53]. Using the morphological coding system, we calculated

dissimilarity between each fossil in the dataset, using a

custom R function that allowed for nonlinear dissimilarity

between character-states within each character (see electronic

supplementary material for additional details), to reduce

the likelihood of introducing false hierarchy into the

analysis. This dissimilarity matrix was visualized using a 3-

dimensional non-metric multidimensional scaling (NMDS)

analysis (stress ¼ 0.11) using the R package vegan [56]. To

facilitate visualization, the samples were grouped into time

intervals of: Cretaceous (greater than 66 Ma), Palaeocene

Pulse 1 (66–60 Ma), Palaeocene Pulse 2 (60–56 Ma), and

Eocene (less than 56 Ma). All data, distance matrices, and

code are available at www.github.com/esibert/toothmorph.
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