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ABSTRACT OF THE DISSERTATION

Advancing Regional Seismic Impact Assessment using Building Strong Motion Data with

Statistical and Causal Inference

by

Eusef Abdelmalek-Lee

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2024

Professor Henry Burton, Chair

Strong motion building response data has been shown to be useful for supporting decision-

making in the post-earthquake environment. However, most of the prior research in this

area has focused on individual buildings. Moreover the few studies that have addressed

regional impact assessment using strong motion data have only focused on structural response

reconstruction. In other words, stakeholder-driven performance metrics such as repair costs

from earthquake-induced damage have not been addressed. Another major challenge with

prior research stems from the mostly low-to-moderate response demands that are present in

the measurements from prior earthquakes. This research seeks to advance regional seismic

impact assessment using strong motion data by addressing the aforementioned limitations

and other gaps in the research. The first major issue that is addressed is the lack of a

comprehensive and easily accessing database of building strong motion response recordings.

To this end, a relational database of strong motion responses from buildings across California

subjected to historical earthquakes is addressed. In addition to the response measurements,

various characteristics of the buildings and seismic events are included in the database to

support predictive modeling. As a compliment to the database, a python-based tool that

enables ease of access and streamlined queries is also developed. Because all of the buildings

in the constructed database are only partially instrumented, within a given structure, only
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a subset of floors have response measurements. Moreover, within a given inventory, only a

subset of the buildings will be instrumented. To deal this challenge, a structural response

reconstruction (SRR) model is developed for use in a regional impact assessment context.

This model takes in response measurements in partially instrumented buildings as well as

structural and seismic event parameters and estimates the full set of responses for all the

building in the inventory. A dual modeling approach is utilized, which initiates with using

kriging to estimate the peak ground acceleration at the location of the uninstrumented

buildings. Then, the extreme gradient boosting algorithm is used to reconstruct the EDPs

across all buildings in the inventory. This study raised questions about which ground motion

intensity measures (IMs) are most suitable for use as inputs in SRR models. To further probe

this question, the strong motion data from the database was used to evaluate the effectiveness

of several IMs. An important distinction from prior IM evaluation studies is the use of strong

motion response data. In other words, most prior studies on assessing IM effectiveness used

data from response history analysis.

Because the input data comprised mostly linear elastic (or near-elastic responses), the

applicability of the SRR model was limited to use in low-to-moderate-sized earthquakes. To

increase the generalizability of the SRR model, the dataset of measured EDPs was augmented

with responses obtained from nonlinear response history analyses (NRHAs). Through this

augmentation, the range of structural responses was increased, particularly in terms of non-

linear responses. To facilitate this data augmentation, an end-to-end framework was de-

veloped to automate the generation of simulated structural responses in an inventory that

includes multiple lateral force resisting systems (LFRS). Steel moment frames, woodframe

shear walls, reinforced concrete shear walls and steel braced frames are the lateral systems

that were included in the simulated response development. The benefits of the augmented

dataset was demonstrated by comparing the performance of SRR models developed using

(i) only the measured responses and (ii) the combined simulated and measured responses.

Lastly, the SRR model based on the combined dataset was used to perform a regional im-

pact assessment of a building inventory using the earthquake-induced repair costs as the

iii



performance metric of interest.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Strong motion building response data has been shown to be useful for near real time seismic

impact assessment in the post-earthquake environment. However, the issue of partial instru-

mentation is a major challenge in utilizing these models to support real decision-making.

Specifically, it is often the case that only a subset of the floors in an individual building

and a fraction of buildings within an inventory is instrumented. This challenge can be ad-

dressed using structural response reconstruction (SRR) whereby the ”missing” responses are

generated using a predictive model that utilizes, in part, the measured responses. While

post-earthquake SRR has been addressed in prior studies, there are several outstanding is-

sues such as the lack of well-organized strong motion response data sets and uncertainty

quantification that have not been adequately addressed. The performance-based earthquake

engineering (PBEE) paradigm has been shown to be useful for post-event evaluations in-

formed by strong motion measurements. However, most of the work in this area has focused

on individual buildings. Another challenge in this regard is the fact that the overwhelm-

ing majority of response measurements from historical earthquakes contain linear elastic

responses. This significantly limits the usefulness of the SRR models developed because the

domain of application is restricted to buildings that have experienced minimal damage.

The goal of this dissertation is to advance the state-of-the-art in using strong motion data

for near real time seismic impact assessments in the post-earthquake environment. To address

the issue of the lack of well-curated and easily accessible data sets, a relational database is

developed, comprising historical data from 216 buildings subjected to historical California
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earthquakes over a period of 36 years. This data is used to develop a dual SRR model

that combines kriging with the extreme gradient boosting algorithm. A key departure from

prior SRR methods is the ”event-agnostic” nature of the model whose performance is not

constrained by the number of recordings in the event of interest. The work will also consider

regional seismic impact using performance metrics that are useful for stakeholders and overall

decision making including economic losses. The model will propagate and quantify the

uncertainty in different stages of the assessment including the SRR and loss assessment.

Within the PBEE paradigm, the relative effectiveness of different ground motion intensity

measures (IMs) in estimating responses is a key issue. This issue has been well-studied

in simulation-based studies. In this dissertation, building strong motion recordings are,

for the first time, used to assess the relative efficacy of different ground motion intensity

measures. The culmination of this work concludes with a hybrid-data machine learning

model, combining the benefits of both measured and simulated building response data to

develop a multi-LFRS seismic response reconstruction and risk framework.

1.2 A Review of Relevant Literature

This section provides a brief review of the relevant literature in the context of the various

sub-topics that are addressed in this dissertation. The objective of the review is to discuss

pertinent prior studies, identify key areas for improvement, and set the stage for the research

gaps that this dissertation will address. Relevant topics include structural health monitoring

technologies and its role in structural response reconstruction modeling, the performance

based earthquake engineering (PBEE) paradigm, data-driven predictive modeling, and other

foundational studies. Subsequent chapters further explore literature relevant to the study

being introduced where necessary.
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1.2.1 Advancements and Techniques in Structural Health Monitoring (SHM)

Structural Health Monitoring (SHM) technology is an important aspect of new building

design and analysis. It aids in more rapid and precise post-event damage assessments, can

inform the sequencing and timing of on-site inspections, and allows for the advancement of

structural modeling. SHM has been researched and improved greatly since its inception.

The original sensors were much larger, hardwired, and costly due to the required installation

labor. One estimate of the expected cost of installing a single wired sensor in a tall building

exceeded $5000 [73]. There is also the distinction between passive and active sensors, where

passive sensors merely record the states and excitations of structures, providing engineers and

researchers with measurement data. Active sensors have the ability to excite the buildings

themselves and record the response to that excitation [69]. Regardless of the type, size, or

installation costs, these sensors were developed with the common goal of monitoring and

improving structural health. Buildings are typically designed with an intended minimum

“service life”. To guard against the effects of both extreme (e.g., earthquakes) and slow

onset (e.g., material degradation due to aging) events, the ability to monitor and maintain

structural integrity through a building’s service life, is of utmost importance. SHM enables

a dynamic maintenance approach that is based on the current condition rather than the

design life, potentially prolonging the structural longevity [48]. The trade-off is the need

for advanced sensing technologies and analytical methods for measurement and performance

assessment. However, like any other technology, SHM is not without its drawbacks. In most

contexts, only a subset of the buildings within an inventory are equipped with sensors. This

poses the challenge of using only the data collected from instrumented buildings to estimate

the post-event impact to an entire inventory. One way to alleviate this challenge is to further

expand the use of SHM technology. However, equipping an entire building portfolio with

sensors is typically not economically feasible, so other methods must be employed to account

for this information gap.

An important aspect of SHM is the post-processing of the data into models that can be

used to make meaningful observations and predictions. Response reconstruction modeling
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serves as a way of understanding, predicting, and assessing structural responses to natural

hazards which can also help fill the information gap left by partial instrumentation. Advance-

ments in SHM have aided in the development of these types of models. Much of the more

recent literature seeking to improve SHM methodologies use machine learning algorithms

to make predictions and conduct damage assessments [69]. Some of these methodologies are

limited to global damage categorizations, lacking the ability to identify and assess localized

damage [1]. In [66], this issue is addressed, and a model is developed using neural networks

that can characterize damage at both the local and global scales. However, simulated data

from a finite element model was used rather than real measured data that would be provided

by sensor-equipped structures. Similarly, [128] developed vibration-based models that can

detect both global and local damage using finite element analyses paired with experimental

data. These model-dependent damage assessments are limited by the ability of the finite

element analyses to replicate the response of a real structure. Alternatively, [1] used con-

volutional neural networks for damage detection using measured data for a building at the

University of British Columbia. The study used nine different structural damage conditions

to test the algorithm, which was trained only with either damaged or undamaged states.

The algorithm successfully assigned global (building-level) damage scores to each case but

was unable to detect local damage. Another recent study coupled cumulative absolute veloc-

ity features with different machine learning (ML) algorithms to assess damage [83]. Global

structural damage was classified with an accuracy of 84 % on the low end and 97% on

the high end. The model also predicted damage severity and location with high accuracy

(97% and 95%, respectively). The authors of this study noted that the performance of the

models could be significantly improved with auxiliary data, thus highlighting the need for

a well-established database of recorded building structural responses. Such a database can

support the future development of robust models to assess both local and global damage in

individual structures as well as the cumulative impact to building inventories.
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1.2.2 The Role of Performance Based Earthquake Engineering (PBEE)

With advancements in structural modeling capabilities, seismic risk frameworks, such as the

Pacific Earthquake Engineering Research (PEER) Center’s Performance Based Earthquake

Engineering (PBEE) [81] have been developed, utilizing nonlinear response history analyses

(NRHA) to estimate building performance. PBEE enhances seismic risk decision-making by

focusing on performance metrics like financial losses, downtime, and casualty risks to guide

mitigation decisions. These principles are central to the PEER center’s efforts to develop a

comprehensive PBEE framework. To summarize, PBEE implements a probabilistic hazard

approach, generating a seismic risk profile based on site conditions and location. Fragility

models that estimate the probability of damage as a function of an intensity measure are

used to estimate probable damage and losses. The predicted outcome from this procedure

is described as a function of an intensity measure (IM), engineering demand parameters

(EDP), damage measures (DM), and decision variables (DV). IMs describe the hazard level

(i.e. ground motion when considering seismic hazards). EDPs are parameters of the structure

response, such as the accelerations and drifts at various floors/stories in a building. DMs

relate the responses from the EDPs to levels of damage to building components. DVs then

relate these damage measures to important metrics for risk assessment such as economic

losses and life safety. The risk prediction procedure can be described by the following triple

integral:

λ(DV ) =
∫ ∫ ∫

G(DV |DM)dG(DM |EDP )dG(EDP |IM)dλ(IM) (1.1)

In this equation, λ(DV ) is a probabilistic characterization of the loss exceedance. For

example, one might want to determine the probability of the average loss exceeding a certain

fraction of the replacement cost for a building. G(·|·) is a conditional probability of exceeding

one variable conditioned on the value of another. For example G(EDP |IM) would represent

the probability of exceeding some response demand level, given a specific ground motion

intensity value. This framework has had major implications on the field. For example, studies

have been conducted that utilize the framework for optimizing automated building design
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and analysis [53, 36, 5, 94], potentially reducing the time and cost for building design. These

automated programs also led to the development of comprehensive risk-focused databases,

that include code-conforming designs [45], as well as building responses to suites of ground

motions [78], providing repositories to support more efficient studies. Traditionally, PBEE

is employed based on simulated responses obtained from NHRA of structural models, with

few studies using instrumentation data [92, 60, 34]. This highlights an area for further

exploration within PBEE. [34] directly addresses this as an area with potential. The study

explored the benefits of including instrumentation data in the PBEE framework, evaluating

how varying levels of instrumentation affect the accuracy of structural response data during

seismic events. The results showed that, unsurprisingly, increasing the number of building

instruments significantly reduces prediction errors, with substantial improvements even when

only a few floors are instrumented. However, the arrangement of the sensors plays a critical

role in prediction accuracy. The location of sensors in buildings across a region, for example,

is not guaranteed. The findings offer practical guidance for building owners, informing

optimal instrumentation placement. This study was also limited in scope, applying the

methodology only to two 7-story buildings

1.2.3 Hybrid Data and Structural Response Reconstruction

As mentioned earlier, a common theme amongst many of the prior response reconstruction

studies is that they often depend on one data type (measured or simulated). Comparatively,

much less work has been done on the use of hybrid data (i.e. combining instrumentation

data with simulated data) to ”fill the gaps” in the data distribution. The existing literature

implementing this type of hybrid data is limited, and those that do often focus on recon-

structing seismic excitations [127, 124], as opposed to structural responses and performance.

For example, [127] presents a hybrid identification method to estimate structural parame-

ters and ground motions in multi-story buildings. Shake table tests on a scaled building

model validated the method, with acceleration data used to calculate velocity and displace-

ment. The method identified stiffness and damping parameters and reconstructed seismic
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inputs. [124] introduced a method that combines sparsity-promoting transforms and rank

reduction techniques. This hybrid approach improves signal-to-noise ratio (S/N) and data

recovery efficiency. Tested on both synthetic and real seismic data, it outperformed existing

methods in reconstruction and de-noising. Both of these studies employed some form of hy-

brid data modeling, but focused on reconstructing seismic excitations. One study that does

focus on hybrid response reconstruction, published earlier this year, developed a two-step

hybrid method that combines model-based and data-driven approaches to reconstruct the

seismic response of non-instrumented floors in buildings [52]. The approach first calibrates a

simplified shear-flexural beam model using data from instrumented floors. Then, Gaussian

Process (GP) regression is applied to model the residual differences between measured data

and model predictions, enabling the estimation of seismic responses at non-instrumented

floors with quantified uncertainty. This study provided valuable insights on reconstructing

responses at uninstrumented floors, but focused on a single building. The model performance

was also largely dependent on sensor placement location and was limited by the simplified

beam model and potential numerical convergence challenges that may arise when using GP

regression.

1.2.4 Foundational Works

The proposed study aims to address some of the gaps in the state-of-the-art in using building

strong motion response data to inform decision-making in the post-earthquake environment.

An approach for developing structural response reconstruction models at the inventory level

is proposed. The relative effectiveness of different ground intensity measures used in these

predictive models is also examined. Next, data retrieved from the California Strong Mo-

tion Instrumentation Program (CSMIP) [35] are combined with simulations based on a

comprehensive seismic design and analysis (SDA) platform, consisting of a conglomerate of

previously developed SDA programs: AutoSDA ([53]) for steel moment frame structures,

woodSDA [36], and RCWallSDA. Simulated response data generated from this platform is

combined with the instrumentation data, creating a more extensive data distribution to be
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used as inputs into the predictive models. Using any kind of model introduces a level of

uncertainty in the resulting inferences and predictions. So, quantifying this uncertainty will

be important as it provides the level of confidence associated with the predictions. It also en-

ables a comparative assessment of the models developed using a single data type (measured

vs simulated) to those developed using hybrid data.

A portion of this work, specifically chapter 3, is similar in spirit to the work of [114],

utilizing most of the same data, excluding recordings that were taken post-publication. The

study developed a cross-building response reconstruction (CBRR) model that combines a

structural response prediction model (SRPM) with the Kriging algorithm. The SRPM was

used to estimate the median response demands and kriging was used to interpolate the resid-

uals. Embedded in the SRPM was a ground motion model (GMM) that provided the benefit

of a large data set of historical records. The use of the GMM and kriging on the residuals

differs from the implementation outlined in this proposal. Other major differences between

what this and the [114] study are as follows:

• Hybrid Data: A key limitation to the use of instrumentation data alone is that many

buildings are not equipped with sensors. The typical solution is the development of

predictive models, such as one study performed in this project, but a less-recognized

approach is combining recorded data with simulated data to create a more comprehen-

sive data repository.

• Causal Inference: A portion of this study focuses on using causal inference method-

ologies to assess and compare the effectiveness of ground motion measures on building

responses.

• Uncertainty Quantification: In order to foster confidence in the models developed,

part of the study will consider the various sources of uncertainty that contribute to the

results.

• Loss Assessment: Rapid response reconstruction modeling is only one aspect of
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impact assessment. The ability to assess potential losses can aid in directing resources

to areas of most significant need.

The goal is to develop a comprehensive framework for rapid post-event impact.The study

builds upon the foundations of previous work, implementing novel ideas to advance regional

seismic impact modeling.

1.3 Objectives

The proposed study seeks to improve previous methodologies, as well as implement new ones,

to advance regional impact assessment using building strong motion response measurements.

To do so, the primary research tasks are outlined as follows:

1. Develop a comprehensive and well-organized database of strong motion instrumentation

data that is easily accessible.

2. Implement novel modeling techniques for predicting regional building responses at unin-

strumented locations using only the instrumentation data, seeking to improve single-data

type predictions.

3. Evaluate the effectiveness of different ground motion parameters for predictive modeling

using strong motion building response data.

4. Create a computational platform that can generate simulated responses for multiple types

of lateral force resisting systems including steel moment frames and braced frames, reinforced

concrete shear walls and woodframe shear walls. The simulated data generated using this

platform will be combined with the strong motion recordings to create the hybrid data set.

5. Use the hybrid structural response data (i.e., measured data from (1) and simulated

data from (4) to develop a structural response reconstruction model and use the predicted

responses to perform earthquake loss assessment at the building inventory level. The var-

ious sources of uncertainty are quantified and propagated and used to inform the level of

confidence in the resulting conclusions.
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1.4 Organization

The main study is comprised of five chapters, two of which are based on published journal

articles.

In chapter 2, a summary of the development of a relational database in MySQL which

aims to serve as an aid to engineers and researchers is provided. The database is hosted

on DesignSafe and includes data from a wide range of building heights, construction types,

and materials, aiding in modeling and analysis. It supports dynamic updating, eliminat-

ing tedious data collection and providing an efficient way to manage the information. The

relational structure of the database serves as an efficient medium for storing data and re-

trieving specific information. The data collected for this database is integral to the research

initiatives outlined in the following chapters.

Chapter 3 presents a machine learning model utilizing the database to make predictions

on maximum building response parameters when subjected to seismic loading. It utilizes

a dual-phase modeling technique that takes advantage of spatial relationships in the data

to improve model performance. This study builds upon the work of [114], taking an event-

agnostic approach to create a more generalized model formulation.

The goal of chapter 4 is to evaluate the effectiveness of various ground intensity measures

(IMs) that could potentially be used as inputs into the response prediction models chap-

ter 3. The commonly used sufficiency and efficiency are used as metrics for evaluating the

performance of the IMs. Additionally, an evaluation approach based on causal inference is

also introduced.

Chapter 5 summarizes the development of an Automated Seismic Design and Analysis

(AutoSDA) platform that is used to generate the simulated responses used in the hybrid

data employed in the final chapter. The program unifies three previously developed SDA

programs (Steel-SDA [53], Wood-SDA [36], and RCWall-SDA [5]. In addition, it develops

a module to conduct loss assessments on the buildings designed and analyzed in the SDA

modules using the performance based earthquake engineering (PBEE) methodology.
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Chapter 6 combines data and methodologies from previous chapters to develop a struc-

tural response reconstruction (SRR) model. Models designed and analyzed using the pro-

gram developed in chapter 5 are combined with the data from chapter 2 to train a machine

learning model similar to that of chapter 3. Building response parameters outlined in chap-

ter 4 are integral to the reconstruction. The model improved full-profile response predictions

of measured data by augmenting it with the simulated response data. It serves as a way to

alleviate the persistent problem of partial instrumentation (both within a single building and

across a building portfolio) in response reconstruction. This chapter (and study) culminates

with a regional assessment of the earthquake induced economic losses (or repair costs) that

relies on the aforementioned response reconstruction model.

Finally, in chapter 7, the key findings of the dissertation are summarized, highlighting

the potential impact of the outlined studies, the limitations, and future work.
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CHAPTER 2

Relational Database for Building Strong Motion

Recordings used for Seismic Impact Assessments

2.1 Introduction

A robust set of historical data from instrumented buildings impacted by earthquakes is cru-

cial to system-identification, predictive modeling, and risk mitigation efforts. Such models

can be used for “forward-prediction” in the case of likely future events or reconstructing

responses for an event that has already occurred. These models also facilitate rapid impact

assessment on a regional scale, serving as complement to in-person inspections which often

take much longer to complete [40]. The field of Structural Health Monitoring (SHM) was

established with the goal of creating technologies and tools for collecting and synthesizing

response measurements from instrumented structures. SHM has enabled faster identifica-

tion of structural deficiencies [10] and more accurate modeling capabilities. Compared to

building-specific problems, the use of SHM data for inventory-based seismic impact assess-

ments has received much less attention in the research literature. This is partly due to the

absence of a single, well-curated and easily accessible repository of building strong motion

data.

A review of the SHM literature found many developments to improve both the func-

tionality and ease of installation and maintenance of sensors. [73] discusses different types of

sensors, including active and passive. The distinction between the two is that, unlike passive

sensors which only record the response, those that are active have the added ability to excite

the structure. Other studies have documented changes in the cost of installation and main-
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tenance with the development of more advanced technology, which allows the sensor and

the data acquisition unit to be separately located. These advancements have led to smaller

sensors that are easier to access [69, 114, 40, 116]. While older sensors were installed by con-

necting them to coaxial wires located throughout the instrumented building, wireless sensors

are becoming the standard, greatly reducing the cost of installation and maintenance. With

these improvements in SHM , it is becoming more accessible and feasible to be included in

construction projects.

The engineering demand parameters (EDPs) used in performance-based assessments

can be calculated from sensor data [81]. In [113], spatial correlation of simulated EDPs was

leveraged and the kriging interpolation algorithm was used to estimate peak responses for a

given building and set of event parameters. A later study by the same authors [114] used

strong motion data to develop a generalized cross-building response reconstruction model.

The formulation followed that of typical ground motion models (GMMs) and kriging was

applied to the residuals of a structural response prediction equation.

The purpose of this paper is to develop a relational database that is easily accessible

and facilitates response visualization, modeling, and performance assessment. The database

is designed for ease of expansion as new data becomes available. The database has been

developed using MySQL [84] [3] and made available on the DesignSafe platform [93] using

SQLite. It is paired with a Jupyter Notebook tool developed using the Python language.

The tool allows the user to visualize specific data within the database without the need for

prior knowledge in SQL or querying. The scripts are compartmentalized based on the type

of information to be accessed, and is organized in a way that requires minimal user input

and manipulation. The following sections will summarize the data included in the database

and how the sensor data is collected. The organization structure of the database is also

described, including examples that demonstrate how to visualize the tabular layout of the

different data types.
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2.2 Summary of the Data

The relational database consists of data collected from the California Strong Motion In-

strumentation Program (CSMIP ) [35]. Most of the data was used in the study by [114],

however, additional recordings from 10 recent events have been included as part of the cur-

rent database. The set includes sensor data from instrumented buildings that recorded events

from 1984 to 2020. Apart from a few exceptions, only events with M > 4 and more than 5

recordings are included. Table 2.1 shows the type of data collected for each event and Table

3.1 shows the data collected for each building for a given event. Note that only a small

subset of the buildings in the database is included in Table 3.1 for illustration purposes. The

latitude and longitude information is important for calculating the Joyner-Boore distance

for each building, which is often used as a feature in training predictive models. The Joyner-

Boore distance is defined as the closest distance to the fault surface projection [64]. The

fault types were collected from the US Geological Survey [120]. For the building parameters,

time-series responses (acceleration, velocity, and displacement histories) for the vertical and

two horizontal directions were collected, and the channel numbers that correspond to the

sensor layout plans (e.g., Figure 3.4) are included. The floor level where the sensor is located

and its height relative to the ground is also recorded.

Shown in Figure 3.1 is the distribution of the number of stories for the buildings and

event magnitudes that are included in the data set. These distributions highlight the lack

of recordings for buildings with more than 20 stories, which has implications to the gener-

alizability of the models developed using these responses. Figure 2.2 and Figure 2.3 show

the recorded EDPs (calculated using the Python tool) for each building, which are grouped

based on the magnitude of the earthquake. Note that peak story drift ratios (PSDR) (Fig-

ure 2.2) and peak floor acceleration (PFA) Figure 2.3 are used to denote the peak response

corresponding to each story and floor respectively. We will use maxPSDR and maxPFA to

denote the maximum PSDR and PFA over all stories and floors, respectively.The individ-

ual story drift ratios are calculated by taking the difference in the horizontal displacement

between the two floors that make up a story and dividing by the story height. The floor
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Table 2.1: Summary of all events included in the database

Event

Name

Depth

(km)
Magnitude Date Latitude Longitude

Fault

Type

No. of

Records

Morgan Hill 9 6.2 4/24/1984 37.32 -121.68 Strike Slip 7

Mount Lewis 6 5.8 3/31/1986 37.466 -121.691 Strike Slip 3

Whittier 9.5 6.1 10/1/1987 34.06 -118.07 Strike Slip 16

Loma Prieta 18 7 10/17/1989 37.04 -121.88 Strike Slip 29

Sierra Madre 12 5.8 6/11/1991 34.26 -118.00 Reverse 8

Big Bear 1 6.5 6/28/1992 34.20 -116.83 Strike Slip 5

Landers 1.1 7.3 6/28/1992 34.217 -116.433 Strike Slip 23

Northridge 19 6.4 1/17/1994 34.2057 -118.5539 Reverse 35

Bolinas 7 5 8/17/1999 37.91 -122.69 Strike Slip 12

Gilroy 7.6 4.9 5/13/2002 36.97 -121.6 Strike Slip 23

Big Bear C 12.7 5.4 2/22/2003 34.31 -116.85 Strike Slip 6

Simi Valley 5.1 3.7 10/29/2003 34.29 -118.75 Reverse 1

San Simeo 4.7 6.5 12/22/2003 35.71 -121.1 Transform 6

Parkfield 7.9 6 9/28/2004 35.81 -120.37 Strike Slip 3

Anza05 13.1 5.2 6/12/2005 33.53 -116.57 Strike Slip 13

Alum Rock 9.2 5.4 10/30/2007 37.432 -121.776 Strike Slip 43

Chino Hill 13.6 5.4 7/29/2008 33.95 -117.77 Strike Slip 56

Calexico 10 7.2 4/4/2010 32.26 -115.29 Strike Slip 40

Borrego 14 5.4 7/7/2010 33.42 -116.49 Strike Slip 50

Berkeley11 8 4 10/20/2011 37.86 -122.25 Strike Slip 22

Anza13 13.1 4.7 3/11/2013 33.50 -116.46 Strike Slip 5

Encino 9.9 4.4 3/17/2014 34.13 -118.49 Strike Slip 22

South Napa 11.3 6 8/24/2014 38.2155 -122.3117 Strike Slip 45

Borrego 12.3 5.2 6/10/2016 33.43 -116.44 Strike Slip 21

Berkeley18 12.3 4.4 1/4/2018 37.8552 -122.2568 Strike Slip 31

Trabuco 11.2 4 1/25/2018 33.741 -117.4912 Strike Slip 5

Cabazon 12.9 4.5 5/8/2018 34.016 -116.7798 Reverse 19

Laverne 5.5 4.4 8/28/2018 34.1363 -117.7747 Reverse 6

Ridgecrest 8 7.1 7/5/2019 35.7695 -117.5993 Strike Slip 67

Pleasant Hill 14 4.5 10/14/2019 37.938 -122.057 Strike Slip 21

Petrolia 3.2 5.8 3/8/2020 40.3917 -125.0937 Strike Slip 2

Anza 10.3 4.9 4/3/2020 33.4932 -116.505 Strike Slip 9

Searles Valley 8.4 5.5 6/3/2020 35.6148 -117.4282 Strike Slip 7

Pacoima 8.8 4.2 7/30/2020 34.3017 -118.4383 Reverse 11

South El Monte 16.9 4.5 9/18/2020 34.0385 -118.0803 Blind Thrust 28
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Table 2.2: Summary of information for a sample set of buildings in the database

Building

ID
Latitude Longitude

No.

Channels

Story

Above

Story

Below

X

Channel

Y

Channel

Z

Channel

Story

Height

(cm)

Instrumentation

Date

13589 33.6243 -117.9304 18 11 0 3;6;9;13 4;7;10;14 0;3;6;11 0;1229.36;2418.08;4478.02 1990

13620 33.979 -117.373 12 2 0 2;4;8 3;5;10 0;1;2 0;365.76;838.2 1991

14578 33.7567 -118.0851 31 8 1 6;8;25;11;14 7;10;18;12;16 -1;0;1;5;8 -487.68;0;441.96;2209.8;3535.68 1989

14606 33.9749 -118.0366 12 8 0 3;6;9 4;7;10 0;4;8 0;1158.24;2316.48 1991

14654 33.9206 -118.3914 16 14 0 5;8;10;13 4;7;9;11 0;3;8;14 0;1310.64;3291.84;5730.24 1993

23285 34.1822 -117.3242 10 5 1 3;9;5 1;10;6 -1;2;5 -396.24;853.44;2042.16 1976

23287 34.0655 -117.2802 9 6 0 3;5;8 1;4;7 0;2;6 0;530.86;1557.02 1976

23497 34.1044 -117.5739 16 4 1 16;15;14 12;9;6 -1;0;4 -426.72;0;1828.8 1985

23540 34.0721 -117.3359 13 1 0 13;8 6;4 0;1 0;883.92 1988

23634 34.1318 -117.3219 12 5 0 2;5;9 3;7;11 0;2;5 0;975.36;2103.12 1992

accelerations are directly measured by the sensors.

Figure 2.1: Histograms showing empirical distribution of (a) the number of stories and (b)

earthquake magnitude

Using their locations, a map of all buildings that have recordings for an event can be

rendered, as shown in Figure 3.2, which is associated with the 2019 Ridgecrest earthquake.

The epicenter is marked with a red star and building locations are marked with green crosses.

The EDPs by floor are also visualized in Figure 3.3, which shows PSDR and PFA profile

over the building height.
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Figure 2.2: Maximum (over the building height) peak story drift ratio (maxPSDR) for all

buildings disaggregated based on event magnitude: (a) M < 5.0, (b) 5.0 ≤ M < 6.0, (c) 6.0

≤ M < 7.0 and (d) M ≥ 7.0
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Figure 2.3: Maximum (over the building height) peak floor acceleration (maxPFA) for all

buildings dissagrregated based on event magnitude: (a) M < 5.0, (b) 5.0 ≤ M < 6.0, (c)

6.0 ≤ M < 7.0 and (d) M ≥ 7.0
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Figure 2.4: Map showing the location of buildings with recordings from the M 7.1 Ridgecrest

earthquake
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Figure 2.5: Building response profiles for the M 7.1 Ridgecrest earthquake: (a) PSDR and

(b) PFA

Figure 3.4 and Figure 3.5 show information that are specific to each building. In Fig-

ure 3.4, a partial sensor layout plan for building 23285 (CSMIP ID) is shown. It shows the

exact location of the sensors in the building and the associated direction of motion. The

time-series roof displacement response for the same building is visualized in Figure 3.5. Fig-

ure 3.6 is similar to Figure 3.3, except that it shows the PSDR and PFA at each story/floor

for building 23285 during the corresponding event (in this case, Ridgecrest). The Python tool

provides additional animated visualizations that show the real-time displacement response

of each building.

Figure 3.5 only shows the displacement time-series data for a single building. However,

as noted earlier, the corresponding acceleration and velocity responses are also included in

the database. From this raw data, the EDPs can be calculated, which is also performed and

visualized in the Python tool. The lateral force resisting system (LFRS) of each building

is also indicated in the database (Table A.1). Many of the buildings contain mixed LFRS

types, which is common. For example, it is not uncommon for a building to be constructed

with a concrete shear wall and steel moment frames. This information is important because

it can be used as a feature in predictive models. By including the LFRS as a feature, the
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strength limits of different materials and system configurations are considered.

Figure 2.6: Building 23285 partial sensor layout

Figure 2.7: Building 23285 roof displacement time series for the M 7.1 Ridgecrest earthquake

2.3 Relational Database

2.3.1 Overview of Relational Databases

Relational databases are digital platforms that organize data in a tabular form based on

relationships in the data [84]. This allows the data to be easily queried and users can extract

specific information. Relational databases can easily be modified without affecting the origi-

nal organization or data. The database presented in this paper was developed using MySQL
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Figure 2.8: Building 23285 (a) PSDR and (b) PFA recorded during the M 7.1 Ridgecrest

earthquake

and can be dynamically updated as more events occur, and additional data is generated. A

relational database containing organized information from a large set of earthquakes and

instrumented buildings would, for example, allow for easily accessible training data for ML

models. The relational database introduced in this paper aims to serve as a medium for

public use. Within the earthquake engineering community, relational databases have been

used to organize data related to the seismic performance of buidings [47], ground motion liq-

uefaction [17], post-earthquake damage and recovery of buildings [88] and subduction ground

motions [76].

2.3.2 Schema

Shown in Figure 3.7 is the schema for the relational database, which provides a graphical

visualization of how it is organized. In other words, the schema defines the structure of the

relational database and has three main components. The primary key identifies the type of

information in the table. This could correspond to the title of the table if the data were to be
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organized in Excel. The foreign key is a field within the table that links to the primary key

of another table. This is important because it eliminates the need for duplicate information

in the database. Attributes are the descriptors of the data points i.e., specific properties or

values associated with the data. These can be in the form of integers, dates, strings, etc.

The schema in Figure 3.7 shows the tables that are included in the database as well

as their relationships to one another and Figure B.1 shows the Schema implementation in

MySQL. There are 3 categories of data: earthquake properties, building properties, and

response data. These categories contain tables that summarize information about each of the

primary keys. Tables A.1 - A.5 provide more detailed information about the data displayed

in the schema. The earthquake properties table (Table A.2) contains the earthquake name,

the date that it occurred, latitude and longitude of the epicenter, magnitude, type of fault,

focal depth, and the number of buildings that recorded data for the event. The earthquake

properties table does not include any foreign key relationships, but is referenced by other

tables.

In the building properties section, there are the site information and building information

tables. The building information table contains details that are specific to each building,

including the IDs and locations of the sensors. The table has a foreign key to the site

information table. The site information table provides the geography of the building location.

The response information category is where the actual data that was collected by the

sensors is stored. The time-series data is stored in a single cell of the table as a comma-

separated MEDIUMTEXT type object. This method was chosen as it simplifies the structure

of the database, while ensuring ease of use. The earthquake-building pair table is a junction

table that is used to alleviate the many-to-many relationship between earthquake and CSMIP

building IDs. Each building is not limited to recording data from only one event and each

event has recordings from many different buildings. The table creates a unique ID for each

earthquake-building pair, which makes accessing the specific data more intuitive.
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Figure 2.9: Schema for the relational database

2.3.3 Description of Tables and Relationships

Tables A.1 to A.5 visualize the tabular data organization within the database. Similar to

the schema, in each table, the primary keys are highlighted blue, and the foreign keys are

highlighted in green. There are 6 different data types used in the database: INT, DECIMAL,

VARCHAR, DATE, YEAR and MEDIUMTEXT. The INT and DECIMAL types are used

to display numbers in either integer or decimal format, respectively. VARCHAR is used

for strings that may contain up to a specified number of characters (usually 255). DATE

displays the date in the MM/DD/YYYY format. The MEDIUMTEXT is used to store the

time series data in a single cell as a comma separated list for each sensor in each building.

The example column in each table corresponds to the Ridgecrest 23285 earthquake-building

pair.

Table 3.1 shows how the information in each building is defined and organized in the

database. It has a foreign key to the site information (Table A.4). It should be noted that

the Channels attributes are defined by the channel ID and the story at which the channel is

located in parenthesis. There are two non-numeric story level identifiers used in the database

(P and F). These correspond to Penthouse and Foundation levels, which are not included
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in the number of stories in a building, but may have sensors in these locations. The site

information contains details of the geography of the building site such as the location, geology,

site class, average shear wave velocity in the top 30 meters of soil (Vs30), and elevation. Note

that Vs30 is provided as VARCHAR to allow for distinction between measured and inferred

Vs30 values. This table does not have foreign keys to other tables because the attributes

are specific to each building. Table A.2 shows the earthquake table, displaying information

about each event. This table is only referenced by the junction table shown in Table A.3, but

does not reference other tables. The junction table creates a unique ID for each earthquake-

building pair which is used to extract response history data. This avoids the inadvertent

retrieval of incorrect data. For example, if a building is associated with multiple events, but

the response data for one earthquake is needed, without this junction table, it would be easy

to accidentally obtain the data for one of the other events recorded by that building. The

response history table uses the earthquake-building pair ID as well as the Response History

ID to identify each recording. It contains the time-dependent displacement, velocity, and

acceleration data for each sensor.

2.3.4 Example Queries

This section demonstrates how to perform queries in MySQL to extract specific information

from the database. Five queries are presented, starting with a simple example, and pro-

gressively becoming more complex. The goal is to show how information can be extracted

without knowing the exact structure of the database i.e., labels, join tables, etc. Figure 3.9a

shows a simple query, selecting all columns and entries from the earthquake table for M

¿ 5. The ‘*’ symbol after ‘SELECT’ is the syntax for selecting all columns/entries. The

‘WHERE’ command is used to specify the data to be selected, in this case, selecting rows

in the table where the value in the magnitude column is greater than 5. Figure 3.9b shows

the table that is output from this query.

If all columns from a table are not needed, a specific subset within the table can also

be selected, as shown in Figure 3.10. The ID, date, magnitude, and fault type columns are
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(a)

(b)

Figure 2.10: Query used to retrieve all attributes for earthquakes with M > 5: (a) MySQL

commands and (b) query results
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selected from the earthquake table using this simple query.

(a)

(b)

Figure 2.11: Query used to retrieve the ID, date, magnitude, and fault type from earthquakes

table M > 5: (a) MySQL commands and (b) query results

Another important feature is the ability to query data without fully specifying the name

or label in the database. This is done using the LIKE command with the ‘%’ symbol. For

example, in Figure 3.11, the response data for building ID 47796 is queried. The channel
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number is not specified, but replaced with a % symbol. This means that the response data

for every entry beginning with “AlumRockArea 47796 Chn” will be selected. This will select

all channels in this building since the response data all have the same label, except for the

channel number. The output is shown in Figure 3.11b. The LIKE command is useful not

only when multiple outputs are desired, but if the user is unsure of the exact label, but is

aware of one that is similar.

(a)

(b)

Figure 2.12: Query performed without specifying the exact database label: (a) MySQL

commands and (b) query results

The JOIN command is particularly useful for simultaneously retrieving data from differ-

ent tables. Figure 2.13 shows how to obtain data from both the building and site information

tables by joining them using the relationship between the tables, i.e., the foreign key, in one
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table associated with the primary key in the other. In this case, the site ID is a foreign key

in the building table and the primary key in the site information table. The AS command is

useful for this type of query as it allows the user to modify the column heading. For example,

“building.ID AS ‘Building ID’ will label the column as ‘Building ID’ instead of the default

label in the database. Figure 2.13b shows the resulting output from the query.

(a)

(b)

Figure 2.13: Query used to simultaneously retrieve data from different tables: (a) MySQL

commands and (b) query results

The final, and most involved example shown in Figure 2.14, illustrates how to query data

using the junction that relates the earthquake and building tables. The JOIN command

links the earthquake ID and building ID into the eq building pair IDs. The LIKE command

is then used to specify the earthquake, “AlumRockArea”. This will select only the building
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IDs associated with the AlumRockArea earthquake because of the defined eq building pair

IDs. The associated output is shown in Figure 2.14b, where all buildings associated with

AlumRockArea taller than 700 inches are displayed with the information specified in the

SELECT command.

2.4 Applications and Potential Extensions of the Database

2.4.1 Summary of Prior Applications

[114] used a subset of the data in the database to develop a structural response reconstruction

model for an inventory of buildings. A structural response prediction model (SRPM) was

coupled with the kriging algorithm to estimate building responses for post-earthquake impact

assessments. The dataset used for this study did not include the responses from several recent

events (e.g., 2019 M 7.1 Ridgecrest, 2020 M 5.8 Petrolia). The specific aim of the paper

was to create a generalized model that can perform post-earthquake prediction of responses

in non-instrumented buildings using the measurements from those that are instrumented.

The SRPM is a modified version of the GMM developed by [64]. The model is comprised

of a combination of ground motion and building response terms. The GMM part of the

model is used to predict the median value of the ground motion intensity measure (IM).

This prediction is then modified using structural features to predict the PSDR and PFA.

Using the responses from the SRPM , residuals are calculated as the difference between the

predicted and measured EDPs. The Kriging algorithm is then used to spatially interpolate

the residuals for the uninstrumented buildings. The final prediction is made by taking

the median value predicted by the SRPM model and adding the residual estimated from,

Kriging. A limitation in this study was the use of a linear SRPM for the initial predictions,

as it does not capture the nonlinearity of responses that are expected from most buildings

[114]. Another limitation was use of the estimated period based on ASCE 7-10 Equation

12.8-7 (instead of more precise approaches such as system identification) as a feature in the

prediction model.
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(a)

(b)

Figure 2.14: Query performed using the junction table: (a) MySQL commands and (b) query

results
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Portions of the CSMIP (i.e., the original source) data have been used in several other

prior studies. The data has been used to estimate damping ratios in different types of building

structures [37, 70, 65]. Several system identification studies have also been performed using

the CSMIP data. [68, 44, 91]. More recent studies have applied ML algorithms to the

building strong motion data to develop response prediction models [126, 125, 67].

2.4.2 Possible Future Applications

The previously mentioned studies (in this section and the Introduction) all have limitations,

many related to the type of data used to develop the models as well as the size of the

data set itself. Some studies improved upon others in one respect (e.g., using measured

data rather than simulated data), but fell short in others (e.g., inability to assess localized

damage). One study by [83] was able to address both of these issues, but was limited by a

small set of measured data. A common feature of several recent studies is the use of ML

to develop the damage models. The limitation of a small data set can have a large impact

on the accuracy of ML models, which are dependent on high-quality training data. Most of

the prior damage detection studies focused on a single building, but a useful application of

SHM technology is the ability to assess the impact to an entire inventory of structures after

an event. This would allow for rapid damage assessments, better pre-allocation of resources

for likely natural hazard events, and more efficient regional recovery efforts. The database

developed in this paper therefore contributes to the development of models that can, with

reasonable accuracy, assess the damage to a portfolio of building structures. Much of the

existing seismic SHM literature focuses on structural responses in the horizontal direction

with comparatively much less studies considering vertical responses. Having a repository of

vertical response histories, such as in the developed database, is likely to spur much-needed

future research on this topic.

In addition to providing a robust collection of earthquake response data for rapid damage

assessments, the database can serve as a template for those that consider other types of

hazards (e.g., windstorms and floods) and infrastructure (e.g. bridges). Developing a multi-
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hazard response database would allow for generalized assessments of building performance

damage modeling. Additionally, the database developed in this paper is exclusive to building

response data, but expanding it (or creating new ones) with multiple infrastructure types

could further improve impact estimation and recovery efforts. The current database can

also be expanded to consider other LFRS types. Much of the current literature is focused

on predicting responses for a single type of LFRS. Expanding the current database to

include more LFRS and construction material types would increase the generalizability of

data-driven predictive models.

2.5 Summary and Conclusion

A database of historical earthquake response records from instrumented buildings in Califor-

nia is developed in MySQL and hosted on DesignSafe. It includes data from a wide range

of building heights, construction types, and materials, to support modeling and analyses. A

total of 216 buildings linked to 35 historical events with magnitude 4 or higher are recorded.

The buildings range from single-story to more than 70 stories. The time-series responses (i.e.,

accelerations, velocities and displacements) are organized into MEDIUMTEXT objects in

the database. This type of data structure allows for simple extraction of the entire response

history for a given event-building pair. A python-based tool is included with the database

to facilitate ease of extraction, manipulation, and visualization of the data.

Building response data from structural health monitoring technology has driven innova-

tion in natural hazard engineering. However, most of the prior studies on the use of building

seismic strong motion data have focused on individual buildings and specific structure-types.

Mutli-event and multi-building (structural system) type databases such as the one developed

in the current study can increase the feasibility and generalizability of data-driven models

focused on regional impact assessment. The database has been constructed to facilitate dy-

namic updating, which eliminates the need for tedious data collection efforts and provides

an efficient and intuitive medium for curating information. Future efforts should focus on

expanding the current database to increase the diversity of events and building construction
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types that are covered. The database can also serve as a template for others that incorporate

other types of hazards (e.g., hurricanes) and infrastructure types (e.g., bridges). Ultimately,

a single database that considers different types of hazards and infrastructure would facilitate

a unified approach to multi-hazard risk and resilience assessment of communities.
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CHAPTER 3

A Dual Kriging-XGBoost Model for Reconstructing

Building Seismic Responses Using Strong Motion Data

3.1 Introduction

In the post-earthquake environment, Structural Response Reconstruction (SRR) models aim

to estimate the seismic demands in buildings/locations that are not equipped with sensors

using the response measurements from instrumented buildings/locations. To date, most of

the methods that can be found in the literature have been focused on interpolating measured

responses within a single building [85, 75, 58, 121]. Meaning that demands are reconstructed

in those parts of the building that don’t have sensors using the measurements from the instru-

mented locations. However, to support rapid post-earthquake assessment at the inventory

scale, there is also a need for cross-building reconstruction, where responses measured in an

instrumented building inform the demands in those without sensors. The initial studies in

this area used responses from numerical simulations [113, 111].

The current study aims to develop a cross-building response reconstruction (CBRR)

model that integrates kriging and the extreme gradient boosting algorithm [26] (XGBoost)

for reconstructing seismic responses across an inventory of buildings. Using the dataset

developed in chapter 2, the dual model is constructed in two phases. In the first phase,

kriging is used to interpolate the peak ground acceleration (PGA) at the location of the

uninstrumented buildings. The second phase trains an XGBoost model that is used to

reconstruct the maximum (over the building height) peak story drift ratio (over the response

history) (maxPSDR) and peak floor acceleration (maxPFA) in the uninstrumented buildings.
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The performance of the dual model is then discussed, including a detailed analysis of the

residuals. The next section provides an overview of the dual model followed by a detailed

description of the dataset. The two phases of the model development, (kriging and CBRR)

are then discussed. An evaluation of the model performance is presented and the paper

concludes with a summary of the findings, the limitations of the study and suggestions for

future related work.

3.2 Overview of Dual Model

An overview of the dual model formulation is shown in Figure 3.1. The raw data comprises

of acceleration response histories measured at a subset of floors (usually three) in each

building. This data is preprocessed to obtain the engineering demand parameters (EDP)

of interest, namely, peak floor accelerations (PFA) and peak story drift ratio (PSDR). Note

the distinction between the peak response demand at a given floor/story (i.e., PSDR and

PFA) and the maximum of the peak response over the height of the building (maxPSDR

and maxPFA). The latter represents the demand parameters that are reconstructed in the

dual model. The data set comprising the EDPs of interest and model features (or input

variables) is subdivided into training and testing sets. The specific details of the split are

provided in Section 3.5.

In the first phase of the dual model development, empirical semivariograms are con-

structed based on the euclidean distance between data points as measured by the event

magnitude, source-to-site distance and site separation. Several theoretical semivariograms

are fit to the empirical data and the most appropriate one is chosen based on the root mean

square error (RMSE) metric. Using the fitted semivariograms, universal kriging is applied

to predict the PGA at the sites where structural response demands are to be reconstructed.

The performance of the Kriging model is evaluated using the data in the test set.

In the second phase of the dual model development, the XGBoost algorithm uses the PGA

estimated in Phase 1 along with the following additional features: the building location,
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distance from the corresponding event epicenter, number of stories, lateral force resisting

system (LFRS) type, event magnitude, average shear wave velocity (Vs30), and the calculated

ASCE 7-16 fundamental period. During the training process, a grid-search is performed

along with K-fold cross validation, to tune and optimize the XGBoost hyperparameters.

To evaluate its performance, the tuned model is then used to predict the maxPSDR and

maxPFA on the test sets. The complete details of the dual model development are provided

in Section 3.5.

Figure 3.1: Overview of dual model development procedure

Figure 3.2 shows a compact summary of some of the more important features contained in

the data set. The off-diagonal plots show interactions between the features and the diagonal

plots show the empirical distributions. Note that there is a large skew towards buildings

with fewer stories. This is generally consistent with the overall building population and the

fact many taller buildings are not equipped with sensors. Some key limitations of this data
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set are its confinement to a single state (California) and the very limited representation of

very tall buildings. Expanding the set to include data points outside of California and a

more diverse building inventory will likely increase the robustness of the model.

Figure 3.2: Pair plot summary of data features and their interactions

3.3 Kriging

3.3.1 Overview

The initial phase of this study uses spatial interpolation to predict a feature (PGA) that

is known to be correlated with maxPSDR and maxPFA (more so the latter). Kriging was
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originally developed as a spatial interpolation algorithm that makes predictions on new data

using a fitted model that represents the similarity between data points. It has since been

advanced and applied to problems that include non-spatial features. This method was chosen

as PGA is independent of the building in which the data was collected, but rather related to

the seismic event itself and the location of the recording. The event magnitude and location

of the building are features that would be known at the time of prediction, therefore, they

can be used to predict the ground acceleration for a building that is not instrumented. The

moderate and high correlation between PGA and recorded maxPSDR and maxPFA values,

respectively, is an indication that it is an important feature in the learning model.

Kriging is commonly used on geospatial data sets but can also be used on non-spatial

data as it utilizes Euclidian space to determine distance between data points. In other

words, if the data display higher response similarity between points that are “close” together

(i.e., share similar features) and lower similarity between points that are further apart,

kriging may be a feasible strategy. The features used in the kriging algorithm for this study

include both spatial and non-spatial data: the geographic location coordinates (spatial),

event magnitude, and distance from event epicenter (non-spatial). Depending on which

variation of the algorithm is being utilized, there are assumptions that are made about the

data. Some of the most commonly used forms are simple, ordinary, and universal kriging.

The general assumptions of kriging are that the data follow a stationary process (can be

relaxed depending on which form is used) and a normal distribution (for best performance,

but not required), and there are no trends. A “stationary” process refers to a constant

trend (mean) and variance in a stochastic process. Simple kriging assumes a stationary

process in which the mean and the variance are constant known quantities. This is often

useful when analyzing residuals that are normal around 0. Ordinary kriging also assumes a

stationary process, but the mean is instead an unknown constant. Universal kriging is the

most relaxed. It utilizes a “weak stationarity” assumption, where the unknown mean follows

some polynomial trend, and the variance is constant across the spatial field. If the raw data

do not fit the criteria, data transformations and trend removal methods may be necessary
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to optimize the performance of kriging.

Kriging fits the data to either a semivariogram or covariance function (also known as a

covariogram). Each function models the spatial correlation based on the distance between

data points. According to these models, points that are closer together have higher corre-

lation, which decreases as they become further apart. The commonly used spherical and

powered-exponential covariance functions are defined in Equations 3.1 and 3.2, respectively.
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C(h) is the covariance between data points at separation distance, h. C(0) is the total

variance or the “sill”, r is the range, and n is the nugget. The sill is a term for the value that

the variance approaches as the distance between points become larger and where there is no

longer spatial correlation in the data. The range is the separation distance at which the sill

is reached, and the nugget is a term used to account for the measurement error. A nugget

value greater than 0 implies there is some non-zero difference in the values for observations

at the same location. In Equation 3.2, the exponential covariogram is defined by p = 1 and

the Gaussian covariogram is defined by p = 2. Kriging algorithms are often modeled using

semivariograms rather than the covariogram. The relationship between the semivariogram

and covariogram is given by:

γ(h) = C(0) − C(h) (3.3)

Where γ is the semivariogram model. It should be noted that not all semivariograms have

a corresponding covariogram. Examples of this are the linear and power models. Neither

model has a sill, so the variance increases infinitely. For this study, the root mean squared

error (RMSE) for each empirical semivariogram was calculated after being fit to the data.

As shown in Figure 3.6, the data was fit to multiple covariance functions to select the
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most suitable model. The kriging procedure in this paper will use the covariogram for the

derivations for consistency with the utilized model. The semivariogram-based formulation

can be obtained by substituting Equation 3.3 into the one based on the covariogram.

3.3.2 Formulation

Universal kriging is used in this study as it makes fewer assumptions about the data than

simple or ordinary kriging. It also allows for local trends to vary by location, which is

important because, as shown in Figure 2.2, the data is primarily clustered around two distinct

regions. Consider a stochastic process defined by random variable Z(s), where si is the spatial

location (or non-spatial feature) of data point i and Z(si) is the corresponding variable value

of interest (PGA in this study). Kriging uses a weighted average of the known PGA values

to predict the unknown value, Ẑ(s0). The weights, wi, are based on spatial similarity of the

known data to the unknown data point, s0.

Ẑ(s0) =
n∑

i=1
wiZ(si)

s.t.
n∑

i=1
wi = 1

(3.4)

The objective function is defined as the minimization of the squared error between the

predicted and observed values.

min σ2
e = E

[
Z(s0) − Ẑ(s0)

]2

= E

[
Z(s0) −

n∑
i=1

wiZ(si)
]2 (3.5)

Equation 3.5 can be rewritten using covariance,

min σ2
e = C(0) − 2

n∑
i=1

wiC(s0, si) +
n∑

i=1

n∑
j=1

wiwjC(si, sj) (3.6)
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To consider the constraint in Equation 3.4, the optimization problem becomes

min σ2
e = C(0) − 2

n∑
i=1

wiC(s0, si) +
n∑

i=1

n∑
j=1

wiwjC(si, sj) − 2λ

(
n∑

i=1
wi − 1

)
(3.7)

where λ is a lagrange multiplier for the constrained optimization problem. Differentiating

with respect to wi and λ and solving the minimization by setting equal to 0 gives

∂σ2
e

∂wi

=
n∑

j=1
wjC(si, sj) − C(s0, si)λ = 0, i = 1, . . . , n (3.8)

∂σ2
e

∂λ
=

n∑
i=1

wi − 1 = 0, i = 1, . . . , n (3.9)

This can be written in matrix form and rearranged to solve for the weights and Lagrange

multiplier

CW = c

W = C−1c
(3.10)



w1

w2
...

wn

−λ


=



C(s1, s1) C(s1, s2) . . . C(s1, sn) 1

C(s2, s1) C(s2, s2) . . . C(s2, sn) 1
... . . .

. . . . . . 1

C(sn, s1) C(sn, s2) . . . C(sn, sn) 1

1 1 1 1 1



−1

C(s0, s1)

C(s0, s2)
...

C(s0, sn)

1


(3.11)

Once w and λ are computed, the equation for the error variance, σ2
e , can be simplified

using the differentiation in Equation 3.8. Multiplying the derivative by wi, the equation

becomes:

n∑
i=1

n∑
j=1

wiwjC(si, sj) −
n∑

i=1
wiC(s0, si) −

n∑
i=1

wiλ = 0 (3.12)

Equation 3.12 can be simplified through substitution into the error variance equation
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σ2
e = C(0) −

n∑
i=1

wiC(s0, si) + λ (3.13)

The DiceKriging R package [99] was used for model training and performance assessment.

3.4 Gradient Boosting

The second phase of the dual formulation develops the machine learning model that is used

to make the response predictions. Gradient Boosting (GB) is a supervised learning technique

that uses gradient descent to optimize the predictions of the response variable(s). In other

words, GB fits a new model to the residuals of a previous model, taking a step in the direction

that minimizes the error. This process continues until the change in prediction error between

the current and previous models (the gradient) reaches a minimum. Extreme Gradient

Boosting (XGBoost) is a variation of the GB technique that is modified to prevent overfitting

while maintaining performance. This is achieved by including regularization terms. GB

was selected not only for its performance, but because it is a highly customizable learning

algorithm that can be adapted to the needs of the study.

To provide further insight into the inner workings of gradient boosting machines (GBMs),

decisions trees must be introduced. GB is an ensemble learning method that sequentially

combines a set of weak learners to obtain a final model. Each new learner improves upon the

previous one and the final model performs better than any of the individual weak learners.

Typically, this is done using decisions trees, where the tree leaves are assigned a prediction

score and a weight. These weighted scores are summed for each input x to obtain a final

prediction score. Decision trees can be utilized for both classification and regression (CART).

As the response variables are continuous, regression trees were used to develop the model

predictions in the current study. Given a dataset D = {(xi, yi)}(∥D∥ = n, xi ∈ Rm, yi ∈ R),

where n represents the number of examples, and m is the number of features, the following

equation represents a tree ensemble used to make a prediction for observation i, ŷi, as a

function of xi. The goal is to approximate the functional dependence between x and y.
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ŷi = F (xi) =
K∑

i=1
fk(xi), fk ∈ F (3.14)

where K denotes the total number of decisions trees, and fk defines decision tree k. The

space F is defined by the trees and their corresponding leaves, which is given by F = {f(x =

wq(x)}(q : Rm → T, w ∈ RT ). Q is a function that describes the structure (or the rules) of

each tree, which has weights (or scores), wi, for leaf i. T is the number of leaves in the tree.

Using this prediction method, an objective function is defined that tracks the performance

of the model. This function includes a loss function and a regularization term. The goal is

to minimize this objective function, and in turn, the loss, in order to optimize the predictive

capability of the model. The objective function can be written as:

L
(
F (x)

)
=
∑

i

l(ŷi, yi) +
∑

k

Ω(fk)

where Ω(f) = γT + 1
2λ ∥ w ∥2,

l(ŷi, yi) = (ŷi − yi)2

(3.15)

The loss function is an error function that is used to compare the predicted value ŷi to

the target (yi). In this study, the commonly used squared error is set as the loss objective.

The regularization terms control the model complexity, which helps to reduce overfitting.

The hyper-parameters used to construct the model include the type of regularization (e.g.,

L2, L1), the learning rate, and the maximum step size. L2 regularization (represented by

the equation above) is used in conjunction with a pre-defined learning rate and step size.

With the objective function defined, GB iteratively creates new trees, adding the tree (ft)

that minimizes the loss to the ensemble. This is one of multiple methods used in GB, called

the exact greedy algorithm, detailed in [26]. This algorithm is effective for the relatively

small dataset in this paper, but for larger data sets, an approximate algorithm may provide

better performance. Equation 3.15 is rewritten to represent the iterative process, where t

represents the current iteration. So, the objective function to be minimized is:
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L(t) =
n∑

i=1
l

(
yi, ŷt−1

i + ft(xi)
)

+ Ω(ft) (3.16)

Calculating every possible tree structure at each iteration and comparing the loss to find

the best performing one is computationally inefficient. Instead, GB creates trees starting

with a leaf node and expanding the tree based on the calculated losses at each split. It then

uses a second-order approximation to find a local minimum of the loss function over all trees

at the current iteration, ft(x). Here, gi and hi define the first and second order gradients of

the loss.

L̃(t) =
n∑

i=1

[
gift(xi) + 1

2hif
2
t (xi)

]
+ Ω(ft)

where gi = ∂ŷt−1
i

∂l(yi, ŷt−1
i )

and hi = ∂ŷt−1
i

∂2l(yi, ŷt−1
i )

(3.17)

Expanding the regularization function, Ω(ft), and approximating the optimal leaf weights

using Equation 3.18, the simplified scoring function for a tree, q, is given in Equation 3.19,

and the resulting change in loss calculation for each split is given in 3.20.

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
(3.18)

L̃(t)(q) = −1
2

T∑
j=1

(∑
i∈Ij

gi

)2

∑
i∈Ij

hi + λ
+ γT (3.19)

Lsplit = 1
2

[
T∑

j=1

(∑
i∈IL

gi

)2

∑
i∈IL

hi + λ
+

(∑
i∈IR

gi

)2

∑
i∈IR

hi + λ
+

(∑
i∈I gi

)2

∑
i∈I hi + λ

]
− γ

where Ij = {i|q(xi) = j} is the instance set of leaf j

and IL = I at the left split and IR = I at the right split

(3.20)

The overall additive ensemble that defines the model for the entire data set can be written

as
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F (t)(x) = F (t−1)(x) + min
ft∈F

L̃(t) (3.21)

Figure 3.3 shows an example of one of the trees that was developed from training the

XGBoost model. The leaf values are the predictions that a particular decision tree is making

for a given data point. The final prediction value for a data point is the sum of all of the

tree predictions at that point.

Figure 3.3: Example of a decision tree from maxPFA Gradient Boosting model

3.5 Dual Model Development

The training set consists of both categorical and numerical data, which presents a problem

for many machine learning models as they can only interpret the latter of the two. Two

methods of conversion from categorical to numerical values are considered. Target encoding

replaces the categorical information with the average target value for the data points within

the same category. For example, the LFRS-type categorical variable for all data points

with reinforced concrete (RC) frames is replaced with the corresponding mean maxPSDR or

maxPFA . The benefit of this method is that it maintains the number of training features,

while still assigning different numerical values to the data based on the category. This

should be done carefully, where the target encoding is performed separately for each of the
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training and testing data sets to prevent data leakage from the test data into the trained

model. Alternatively, one-hot encoding involves replacing the categorical variables with an

n × c matrix of ones and zeros, where n is the number of data points in the set and c is

the number of categories. A “1” is placed at the position corresponding to the category

associated with the current data point. The remaining values in the row will be zero. This

method increases the overall number of training features by c − 1, so this is best used when

there are a relatively small number of categories, otherwise the trade off of increased model

complexity may outweigh the benefits. This method also avoids any artificial scaling of

category importance since all categories are given the same value of 1.

One-hot encoding was ultimately chosen since the additional features are easily handled

by the XGBoost algorithm. The encoding is performed on the LFRS feature to convert the

categorical data to numerical values. For this data set, there are 6 LFRS-types: concrete

shear wall, concrete moment frame, steel moment frame, masonry shear wall, wood frame,

and steel braced frame. Note that some buildings use a combination of LFRS-types, and in

those cases, two or more of the columns in the one-hot encoded vector have a 1 instead of a

0.

For developing and evaluating the model performance, a 70-30 train-test split is used.

Only buildings within 100km of the corresponding event epicenter are considered, as the

PGA trend dissipates at larger distances. This is especially important because the kriging

model relies on the spatial correlation of the PGA values. The training and testing sets are

developed using stratified sampling by event to ensure that the ratio of data points from

each event is the same across both sets. This gives a more accurate representation of how

the model would perform on new data as simple random sampling may result in a different

training distribution than would be used in practice. The model is meant to be completely

“event-agnostic”. The model is not fit individually to the data for each event, rather to the

entire set, so in instances where a new event occurs and there is very limited data, it can

leverage data from other events with similar features and buildings to make predictions.

The approach used in [114] performed kriging on the SRPM residuals. As such, only data
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from the other buildings involved in the same event are used to estimate the residuals. The

model presented in this paper takes a different approach. Rather than depending only on the

spatial relationship between data points from the same event, buildings from other events

are also included. This approach increases the generality of the model because it can also

deal with events that have a limited number of recordings from instrumented buildings. The

response values for data points involved in other events may share similar features and, in

turn, similar EDPs. Whereas, for a single event with a small sample of recorded responses,

some of them may appear to be outliers. However, when expanded into a larger data set,

they actually fall within the expected range. Compared to the [114] model, the one developed

in this paper is less dependent on having an ample number of instrumented buildings for the

event of interest.

3.5.1 Predicting Peak Ground Acceleration

As shown in Figure 3.4, PGA is predictably found to be highly correlated with maxPFA and

moderately correlated with maxPSDR. As such, it was determined that including PGA as

a feature would be beneficial to the model. To do this, the model must be able to estimate

the PGA at any given site location for an uninstrumented building. Since PGA is not a

structural characteristic, but dependent on the seismic event itself as well as the location of

the building with respect to the event epicenter, the recordings obtained from instrumented

structures can be used to estimate the ground acceleration in various locations for those

without sensors. The training set was used to construct the kriging model and estimate the

PGA values for the test set.

As noted earlier, the following key assumptions are associated with kriging: stationar-

ity, normality, and lack of trend. Because universal kriging is being used, the stationarity

assumption can be relaxed. To address the normality assumption, Figure 3.5 shows a his-

togram and quantile plot for ln(PGA) . It is seen that the ln(PGA) follows an approximately

normal distribution with the histogram having a bell shape and the quantiles falling mostly

along the diagonal. It is also worth noting that the normality assumption is often mistaken
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(a) (b)

Figure 3.4: Scatter plots for (a) PGA vs maxPSDR with a correlation coefficient ρ = 0.675

and (b) PGA vs maxPFA with ρ = 0.921

as a strict requirement and that if the data do not fit the normal distribution, then kriging

cannot be used. This is not entirely true, as is discussed by [13]. The use of kriging as a

predictor does not necessarily require the data to be normal. Rather, for the model to be

the best linear unbiased estimator (BLUE), the data should be normal. In other words, the

data being normal generally improves the overall performance of the algorithm.

The main benefit of including PGA as a feature is the lower dispersion of the errors

in the XGBoost model. Also, as shown in Figure B.1, PGA is one of the most important

features in the Boosting model for maxPSDR and maxPFA predictions. Since the test data

is a subset of the full dataset, some recorded PGA values were used to assess the kriging

model’s performance. Once the kriging model is determined to perform reasonably well,

the PGA values in the test set are replaced with the predicted values. This is because

for a new data point or uninstrumented building, the PGA value would be unknown and

must be predicted. The original PGA values were initially maintained simply for assessing

the kriging performance. Replacing the PGA values with the predicted ones from kriging

provides a more accurate representation of how the model would perform on new data.

Kriging relies not only on correlation among the dependent and independent variables,
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(a) (b)

Figure 3.5: (a) Histogram and (b) normal quantile plot of the log-transformed PGA values

but on autocorrelation of the error. In other words, the errors are dependent on separation

distance, not exact location. PGA is a function of the event magnitude, geographic con-

ditions, and distance from the event where the measurement is being taken. Data points

with similar features should, according to kriging, display similar response values. This can

be seen in the empirical variogram plots presented in Figure 3.6 that are fit to the data for

the purposes of determining which would be the most suitable one. The performance of the

different variograms are compared through visual inspection and the root mean square error

(RMSE). Figure 3.6 shows that the Stable, Cubic, Matern and Gaussian variograms have

similar fit with RMSE = 0.16.

The kriging model is fit using the gaussian covariance function for its performance and

familiarity. In the literature, kriging for PGA is often performed on the residuals rather

than on PGA itself due to the assumption of residual normality. A study by [63] provides a

thorough explanation on how ground motion models implement kriging into their prediction

of PGA residuals. The current study uses building-independent features as the independent

variables since the PGA does not rely on building characteristics. Specifically, the event

magnitude, site distance, and the location coordinates are used as features. In Figure 3.2,

a positive trend is observed between event magnitude and PGA, and a negative trend is
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Figure 3.6: Fitted empirical semivariograms for PGA (a) Spherical (RMSE = 0.17), (b)

exponential (RMSE = 0.18), (c) gaussian (RMSE = 0.16), (d) matern (RMSE = 0.16), (e)

stable (RMSE = 0.16), (f) cubic (RMSE = 0.16)

observed between the site distance and PGA. Vs30 was thought to be a likely candidate, but

was found not to improve the model. This may be due to the Vs30 being based on a mixture

of measured and inferred data (according to the CESMD description), so it is subject to

a higher level of uncertainty than the corresponding measured features. Nevertheless, the

model performed well, with a mean-normalized root mean squared error (NRMSE) of 0.139.

A leave-one-out analysis is also performed and plotted to show the match between the fitted

and measured values and the residuals are plotted to verify normality (see Figure 3.7). To

ensure that the relationship between the PGA and EDPs is maintained, the correlation

coefficients between the original PGA and test EDPs and the predicted PGA and test EDPs
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are calculated and compared. The original test set coefficients are 0.618 and 0.896 for PSDR

and PFA, respectively. The coefficient between the predicted PGA and test EDPs are 0.665

and 0.765, respectively, which are similar to the original values.

After using the kriging model to estimate the PGA values on the test set and analyze

the performance, the real PGA values in the test set are replaced with the predictions. This

ensures that when the XGBoost model is developed, it is the same as if an entirely new set

of PGA values are being estimated.

3.5.2 Phase II - Gradient Boosting

The second phase of the dual formulation is training the XGBoost model that will be used

to reconstruct the maxPSDR and maxPFA values for the test set. To evaluate the efficacy

of the first phase of the dual formulation, two XGBoost models are developed i.e., with

and without the inclusion of PGA as a feature. A grid search is performed to optimize

the parameters for the mean squared error from the model. The optimized parameters are

summarized in Table 3.1. The max depth parameter limits the number of splits within a

tree to prevent overfitting. The learning rate shrinks the feature weights in each step by the

defined factor. Gamma specifies the loss reduction needed for a split to occur. Lambda is

an L2 regularization parameter and the minimum child weight specifies the smallest number

of samples required for a node.

To determine if the recorded features are useful in the prediction model, the F-score of

each feature is computed. The F-Score is a numerical representation of how much influence

each feature has on the model. XGBoost automatically ignores any features that do not

contribute to the tree predictions, which is why the maxPFA importance plot has fewer

feature scores than the maxPSDR plot. Figure B.1 shows plots of the feature importance for

both maxPFA and maxPSDR. According to these plots, the displacement-based response is

more sensitive to the LFRS than the acceleration-based response.

After fitting the models, the R2 values are calculated to determine if the model fit the

data well. The training set R2 values are 0.888 and 0.863 for maxPSDR and maxPFA,
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(a)

(b)

(c)

Figure 3.7: (a) Kriging Leave-One-Out Analysis, (b) standardized residuals and (c) residuals

normal quantile plot
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(a)

(b)

Figure 3.8: Feature importance scores for (a) maxPSDR and (b) maxPFA models
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Table 3.1: Grid-search optimized parameters

Parameter Range
maxPSDR maxPFA

w/ PGA w/o PGA w/ PGA w/o PGA

max depth [1,2,3,4,5] 2 5 2 5

learning rate [0.01,0.1,0.3] 0.3 0.1 0.3 0.3

gamma [0,0.25,0.5,1] 0.5 0.25 0.25 0.25

lambda [0,0.1,0.5,1] 1 1 0 0.1

min child weight [0,1,2,3,5] 5 0 5 3

respectively. With a max possible value of 1, this shows a good fit for the models. As

a comparison, the adjusted R2 values considers how many features are being used, so if

there are any unnecessary features, it will be penalized and be significantly smaller than the

traditional R2 which improves with more features regardless if the feature is useful. The

adjusted R2 values are 0.885 and 0.858 for maxPSDR and maxPFA respectively, which is

very close to the traditional R2. This indicates that the XGBoost algorithm successfully

removed the unnecessary features.

Due to the relatively small number of data points, rather than having an additional

validation set, a five k-fold cross validation (KFCV) repeated 50 times is performed on the

training set. In KFCV, the data is split into k sets (folds). One of the folds is a “hold-out”

or validation set, that is used for assessing the model performance. The remaining k-1 folds

are used to train the model. This continues with each fold being used as the hold out set

and the performance score is calculated as the mean score for that iteration. This process

is repeated a specified number of times. More repeats typically leads to more consistent

performance metric values. For maxPSDR, the RMSE over the 50 repeats is 0.84 with a

standard deviation of 0.08 and maxPFA has a RMSE of 0.42 with a standard deviation of

0.05.

55



3.6 Results

Figure 3.9 and Figure 3.10 show the observed/predicted ratios plotted against the Source-

to-Site Distance for each data point. The ratios corresponding to 2 and 0.5 are indicated

by the dotted lines. A majority of the data fall within these limits indicating good overall

predictive performance. The median observed/predicted ratios for maxPSDR and maxPFA

are 1.003 and 1.006, respectively, which shows that the model is unbiased. The absence

of a trend between the observed/predicted ratios and the source-to-site distance is also a

desirable property. The histogram in Figure 3.11 shows the residual distributions for both

quantities of interest, which are centered around 0.

Another metric that can be used to evaluate the model performance is the absolute value

of the mean normalized error/residual (MNE) which is computed in Equation 3.22.

MNE = 1
N

N∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ (3.22)

where yi and ŷi are the observed and predicted responses (i.e., maxPSDR and maxPFA),

respectively and N is the number of observations. The dual model achieved MNE values of

0.078 (maxPSDR) and 0.196 (maxPFA), indicating better performance for the former. To

quantify the effect of including the PGA obtained from kriging as a feature in the reconstruc-

tion model, we compare the mean and standard deviation of the residuals of the “with-PGA”

and “without-PGA” models. For PSDR, the mean residual with and without the inclusion

of PGA is 0.015 and -0.04, while the standard deviation is 0.797 and 0.795, respectively.

This result indicates that the inclusion of the PGA obtained from kriging as a feature in

the XGBoost model slightly reduces bias and maintains dispersion, but did not significantly

impact its ability to predict maxPSDR. For maxPFA with and without PGA being included

as a feature, the residual had means of -0.008 and -0.08 and standard deviations of 0.56 and

0.62, respectively. These results suggest that the inclusion of PGA has a measurable effect

on the model bias and accuracy when predicting maxPFA.

The inclusion of PGA provides a decrease in the residual dispersion for the maxPFA
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(a)

(b)

Figure 3.9: Observed/Predicted ratio vs source-to-site distance for model with PGA (a)

maxPSDR and (b) maxPFA
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(a)

(b)

Figure 3.10: Observed/Predicted ratio vs source-to-site distance for model without PGA (a)

maxPSDR and (b) maxPFA
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(a)

(b)

Figure 3.11: Histograms showing the residuals for (a) maxPSDR and (b) maxPFA
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predictions. This is important when reconstructing uninstrumented building responses for

events that have very few recordings, which is often a limitation in other models that depend

on within-event residual distributions. Overall, the XGBoost model achieved good predictive

performance, but was limited by how well the kriging model performed on estimating PGA.

Unlike the one developed in [114], the model presented in this paper is capable of reconstruct-

ing EDP’s in regions with a low number of instrumented buildings. However, more complex

estimation methods can be explored to better estimate and minimize the error propagation

from phase 1 to phase 2 of the model.

Also of note are the multiple sources of uncertainty in the data that, in future studies, can

be analyzed to determine the effect that individual features have on the outcome. Sensitivity

analyses utilizing a distribution of variables that have higher levels of uncertainty due to mea-

surement error or were estimated by various means could illustrate whether the uncertainty

has a significant effect on the model. For example, the Vs30 obtained from CESMD are a

combination of measured and inferred values, so the data are subject to measurement error as

well as misspecification. The Vs30 values could be obtained from a distribution while holding

all other features constant and predicting the outcome to show how the predictions change

over the adopted range. This could also be done on other features, such as the fundamental

period, which was estimated using the ASCE 7-16 equation (ASCE 2017), or even the PGA,

which was calculated by spatial interpolation. The earthquake engineering literature on un-

certainty quantification (UQ) is primarily focused on structural response simulation. Future

work can be done to apply UQ methods to research such as this, which utilizes measured

data, to better understand how each feature influences the target predictions.

3.7 Conclusion

A dual Kriging-XGBoost model for predicting seismic structural demands was developed

using measured response history data from 35 events and more than 200 buildings. Peak

ground acceleration (PGA) was identified as a potentially useful feature in reconstructing

the engineering demand parameters (EDPs) for individual buildings. The maximum peak
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story drift ratio (maxPSDR) and maximum peak floor acceleration (maxPFA) were chosen

as the response quantities due to their known relationship to structural damage.

The first phase of the dual model used kriging to estimate PGA values at the sites of

buildings without sensors. Based on its performance on the empirical data and general

familiarity, the Gaussian semivariogram is adopted. The kriging model was able to predict

the PGA at the site locations of buildings without sensors with a normalized root mean

squared error (NRMSE) of 0.139. The second phase of the dual model used the PGA values

obtained from kriging as part of the feature matrix and the Extreme Gradient Boosting

(XGBoost) algorithm was implemented for predicting maxPSDR and maxPFA. The other

considered features include the building location, source-to-site distance, period, number of

stories, lateral force resisting system (LFRS) and the site Vs30.

The XGBoost-based structural response reconstruction produced near unity observed-to-

predicted ratios (1.003 and 1.006 for maxPSDR and maxPFA, respectively) and near zero

mean residuals, indicating unbiased models. Another desirable outcome was the absence of a

trend between the observed-to-predicted ratios and source-to-site distance. The model pre-

dictions were assessed using Mean-Normalized Error (MNE) with values of 0.078 and 0.196

being obtained for maxPSDR and maxPFA, respectively. Including the PGA from kriging

as a feature was found to improve the maxPFA prediction but did not have a measurable

impact on the estimation of maxPSDR.

Some limitations of this study include the size and sparsity of the data set. Much of the

data are from events with magnitudes between 4 and 6 and buildings with fewer than 20

stories located within 100km of the source event. Also, the data largely represents buildings

with responses that are in the linear-elastic range, which reduces the generalizability of the

model, especially in terms of its ability to detect damage. One of the inherent features of

this model, its two-phase structure, could also be considered a limitation. The initial kriging

that was used to estimate the PGA introduced an error into the data that was not previously

present, although, as noted earlier, it did improve the overall model performance (relative to

if PGA is excluded). The model could potentially perform better if the PGA residuals were

61



reduced. PGA is known not to be well-correlated with displacement- and deformation-based

EDPs, which explains the lack of improvement in maxPSDR predictions when it is included.

Future studies should explore the other potential features, such as Peak Ground Velocity

(PGV), Cumulative Absolute Velocity (CAV) or the first mode period spectral acceleration

(SaT1).

Another limitation of the predictive model is that the methodology reduces the com-

plex structural response to a single value (maxPSDR or maxPFA) in order to inform the

performance of a large number of buildings, without providing information about localized

damage. Lastly, the uncertainty in the response reconstruction was not quantified in the

current model and should be considered in future studies. This research is an initial step

towards the goal of developing a data-driven post-earthquake evaluation model that can be

used for regional damage assessments as well as direct and indirect economic loss estimations.
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CHAPTER 4

Evaluating the Effectiveness of Ground Intensity

Measures using Building Strong Motion Data

4.1 Introduction

Structural health monitoring has been shown to be useful for informing rapid damage as-

sessments of infrastructure following an earthquake. For individual facilities, strong motion

response measurements can be incorporated into the decision-making process that deter-

mines whether an affected building is safe to occupy. For building portfolios, in addition to

informing damage (or functionality) state determination, response measurements can also be

used to guide the sequencing and timing of post-earthquake inspections. Numerous studies

have been conducted to develop methodologies that use strong motion response measure-

ments to assess post-earthquake structural integrity. While the earliest studies used metrics

related to the change in the physical state of the structure [97, 95, 46, 28], more recent efforts

have sought to leverage the performance-based earthquake engineering (PBEE) framework to

assess immediate impacts using decision variables such as monetary losses and/or downtime

[24, 80, ?, 96].

An important aspect of the PBEE methodology is determining the most suitable ground

motion intensity measure (IM) for structural response estimation. In simulation-based PBEE

assessments (i.e., without the use of strong motion data), structural responses or engineer-

ing demand parameters (EDPs) are estimated using nonlinear response history analyses

(NRHAs). In this context, numerous studies have been carried out to appraise the suitabil-

ity of different IMs for structural response estimation. The basic formulation of such studies
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includes constructing a nonlinear structural model, performing NRHAs using a set of either

site-specific or site-agnostic ground motions, and using the empirical distributions of the gen-

erated EDPs to evaluate alternative IMs using different criteria. Efficiency and sufficiency

are the most commonly used criteria, however, IMs have also been evaluated based on their

robustness to scaling and predictability.

The efficiency criterion evaluates an IM based on its ability to minimize the dispersion

in the generated EDPs. The earliest studies focused on efficiency-based IM evaluations

date back to the early 1990’s where the primary IMs of interest were the peak ground

acceleration (PGA) and the spectral acceleration at the first mode period (SaT 1). The

latter was found to be more suitable for estimating displacement-based EDPs such as peak

story drift ratio [104]. Later studies considered other spectral acceleration-based parameters

that were conditioned on two or more periods. Studies by [79] and [32] showed that the

performance of SaT 1 could be enhanced by including additional modal periods (e.g., 1st

and 2nd mode). This idea has since been extended by using the geometric mean spectral

acceleration over a range of periods (Saavg), which has been shown to be very efficient for

structures with highly nonlinear response or whose behavior is influenced by multiple modes

(e.g., taller buildings) [42, 103]. Peak ground velocity (PGV) has also been shown to be

effective (from an efficiency standpoint) for estimating peak story drift responses, especially

in tall structures [21] while the filtered incremental velocity has been demonstrated to be

suitable for collapse performance estimation [38]. In general, PGA has been shown to be the

IM that is most suitable for estimating acceleration-based EDPs (e.g., peak floor acceleration)

[103, 21].

The sufficiency criterion evaluates an IM based on the conditional independence assump-

tion that is embedded in the PBEE triple integral. Specifically, this assumption implies that,

conditioned on a given IM, the EDPs are independent of the ”upstream” parameters used in

ground motion models (e.g., earthquake magnitude, source-to-site distance) [72]. There are

alternative approaches to assessing the sufficiency of an IM. One uses a two-stage regression,

the first step of which develops a linear model that predicts the EDP as a function of the
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IM. The second step regresses the residuals from the first model against the upstream pa-

rameter of interest. The statistical significance of the coefficient from the second regression

determines the sufficiency of the IM with respect to the considered upstream parameter. A

p-value that exceeds some predefined significance threshold (usually 5%) implies that the

upstream parameter is statistically independent of the EDP after conditioning on the IM

and is therefore sufficient. An alternative approach to the two-stage regression is to using

scaling to condition the ground motions on a predefined IM level. The EDPs generated by

the scaled ground motions are then regressed against the upstream parameter and the re-

sulting p-value is interpreted as described earlier. Like efficiency, the sufficiency criterion has

been widely used in prior simulation-based IM evaluation studies [72, 104, 117, 42, 103, 38].

However, a recent study by [21] showed that the results of the sufficiency-based assessment

varies depending on the number of ground motions considered in the analysis. Recently,

alternatives to the sufficiency-based assessments have been proposed including the use of

information theory [41, 39, 62] or methods and principles from the field of causal inference

[21]. The latter has recently been shown to produce results that are invariant to the number

of considered ground motions.

Because PBEE assessments are typically performed using simulated EDPs, the afore-

mentioned studies utilized responses generated from NRHAs to evaluate the adequacy of

IMs. However, as noted earlier, there is a growing emphasis on using strong motion building

response data to conduct rapid PBEE-type assessments in the post-earthquake environment.

A major challenge in this context is that the response measurements in a given building or

portfolio are never ”complete”. Meaning, within in a given building, only a subset of the

floor levels are instrumented. Also, in a given portfolio, only a subset of buildings are instru-

mented. For this reason, response reconstruction models are used to generate EDPs in the

uninstrumented locations (i.e., a subset of the stories in a given building or a subset of the

buildings in a given inventory) [97, 2, 113, 111, 114, 87, 98]. These response reconstruction

models often utilize one or more IMs as predictor variables. Therefore, understanding the

relative suitability of different IMs based on different criteria can inform the development
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of the EDP reconstruction models, especially when they are incorporated into a PBEE-type

evaluation.

In this study, we assess the effectiveness of several different IMs using data from building

strong motion response measurements. In addition to the sufficiency- and efficiency-based

criteria, we evaluate the IMs using the principles and methods from the field of causal

inference. The six IMs considered in the evaluation include PGA, PGV, cumulative absolute

velocity (CAV), arias intensity (Ia), SaT 1 and Saavg. The response measurements are taken

from the database developed by [4], which contains historical data from more than 200

buildings located in California that have been subjected to M > 4 earthquakes during a

period of more than 35 years. The recorded floor acceleration histories are used to generate

peak story drift ratios (PSDRs) and peak floor accelerations (PFAs), which are the considered

EDPs. The acceleration history measured at the ground level is taken as the input motion for

each building and used to compute IM values. Several different causal inference methods are

considered in the evaluation to determine whether the findings are invariant to the adopted

model. We also evaluate the consistency of the findings for the three types of assessment

(sufficiency, efficiency and causal inference) with respect to the size of the data set or the

number of considered responses.

The next section provides an overview of the considered data set including the geomet-

ric and structural characteristics of the buildings that make up the inventory and the IM

and EDP distributions. A brief but broad overview of the relevant aspects of causal infer-

ence is then presented followed by a detailed description of the considered methods. The

sufficiency- and efficiency-based assessment criteria are then summarized. The subsequent

section presents the results of the IM evaluation using the three approaches (sufficiency,

efficiency and causal inference). The paper concludes with a summary of the key findings,

limitations of the study, and suggestions for future related work.
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4.2 Summary of Building, Event and Strong Motion Response

Data

The building strong motion responses are obtained from the relational database developed in

chapter 2. After removing data points with relevant missing information, 150 buildings with

recordings from 35 earthquakes are considered, giving a total of 479 response measurements.

The pertinent building properties include the number of stories (above ground), lateral force

resisting system (LFRS) type, period estimated by ASCE 7-16 [9] (T1,ASCE), and the response

measurements, including their locations within the structure. The site properties include the

location, source-to-site distance (epicentral), average shear wave velocity to a depth of 30m

(VS30), and site class. The event magnitude associated with each response measurement

is also considered. Figure 6.7 shows histograms of the VS30, source-to-site distance, PGA,

PGV, and the LFRS type. For the LFRS type histogram, many of the buildings have multiple

systems, so each system is counted individually for this plot. In Figure 4.2, a histogram of

the number of stories is overlayed by plots showing the bin averages of (a) the ASCE period

and (b) SaT1 and SaAvg. In (c), the coefficient of variation (COV) for each bin is plotted.

These plots help to understand the data distribution and serve as a preliminary check. For

example, in plot (a), we see that as the number of stories increases, the average period within

a bin increases. Conversely, the spectral IMs in (b) decrease with the increase in number

of stories (i.e. increase in period). From a physical standpoint, this is expected. The COV

plots in (c) help to understand how the number of data points within a bin may effect the

results we obtain from the analysis performed later. There are multiple factors considered

in the analysis, and given that there are more data points in the low to mid-rise buildings,

there is more variation in the building, site, and event characteristics, leading to the higher

observed COV. This information will aid in interpreting the results and drawing conclusions.

The ASCE 7-16 estimated period is used to determine SaT1 and Saavg. Figure 4.3 shows

the geometric mean spectra (considering ground motions in the two orthogonal directions)

for all buildings in the set. Saavg is calculated as the geometric mean for the range 0.2T1
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Figure 4.1: Histograms showing the empirical distribution of (a) VS30, (b) source-to site

distance, (c) PGA, (d) PGV, and (e) the lateral force resisting system types
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Figure 4.2: Bin averages and histograms for (a) the ASCE Period (b) SaT1 and Saavg and

(c) the corresponding coefficients of variation (COV)
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to 3T1, as recommended by [43], where this range was found to perform well for collapse

prediction in the study. It is important to note that the lack of moderate to highly nonlinear

responses is one of the limitations of the current study. Specifically, the findings in terms

of the most suitable IM(s) would only be applicable to problems involving structures that

respond in the near-elastic range. Nevertheless, we believe the IM evaluation using measured

responses provides new information that has overall relevance to PBEE-type assessments.

The EDPs (maxPSDR and maxPFA) are extracted from the time-series data. The story

drift ratio is calculated as the difference in the displacement values in two adjacent stories

divided by the story height. This value is calculated at each floor, using the maximum over

the entire response history as the PSDR for that floor. The maximum over all floors is then

taken as the maxPSDR. The instruments record the accelerations at their respective floors.

The maximum at each floor over the entire response history is computed (PFA), and the

maximum of these values over all floors is the maxPFA for a given building.

Figure 4.3: Geometric mean spectra (considering ground motions in the two orthogonal

directions

70



4.3 Fundamentals of Causal Inference

4.3.1 Potential Outcomes

This section provides an overview of the relevant fundamental aspects of causal inference. In

a broad sense, causal inference aims to utilize observational data (i.e., data not generated by a

controlled experiment) to identify and/or quantify the causal effect of one variable (described

as the ”treatment”) on another (described as the ”outcome” variable) in the presence of

”covariate” or ”confounding” variables. This can be contrasted with traditional statistics

which is centered around establishing associative relationships among a set of variables.

Potential outcomes, a cornerstone of causal inference, provide a conceptual mathematical

framework for representing causal relationships. Originating from the works of Neyman and

Rubin, potential outcomes are hypothetical outcomes that would have been observed under

different treatment conditions [108, 100]. This framework lays the foundation for estimating

causal effects and drawing causal conclusions.

In any causal problem, each individual or unit possesses two potential outcomes: the

outcome that would be observed if the unit receives the treatment (denoted as Y1), and the

outcome under the condition that the treatment is not assigned to the unit (denoted as Y0).

However, the fundamental challenge of causal inference stems from the fact that only one of

these potential outcomes can be realized in an observational data set, depending on whether

a given unit actually receives the treatment or not. The potential outcomes framework allows

us to define the causal effect of a treatment as the difference between Y1 and Y0 or Y1 − Y0.

This causal effect captures the change in the outcome that can be attributed solely to the

treatment itself while holding all other factors constant. To estimate causal effects within

this framework, researchers rely on data from various study designs such as observational

studies or randomized controlled trials. Regardless of the context, the main challenge lies in

addressing the unobserved potential outcomes. Overcoming this challenge requires making

identification assumptions that relate to the relationship between the potential outcomes and

the treatment assignment mechanism. These assumptions play a critical role in estimating
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causal effects.

One widely recognized identification assumption is the stable unit treatment value as-

sumption (SUTVA) [59]. SUTVA assumes that the potential outcome for a given unit is

not influenced by the treatment assignment or potential outcomes of other units. This as-

sumption ensures that the estimated causal effect can be solely attributed to the treatment

itself. Another important criterion within the potential outcomes framework is related to

the assignment mechanism or the process by which units are assigned to different treat-

ment conditions. In randomized controlled trials, the assignment mechanism is typically

random, ensuring that treatment assignment is independent of unit characteristics or covari-

ate variables. In observational studies, however, the assignment mechanism may be affected

by confounding factors, which can introduce bias into the estimated causal effects. This

leads to the ignorability assumption, which says that the treatment assignment should be

independent of potential confounding factors (variables affecting both the treatment and

the outcome). Lastly, the consistency assumption says that the potential outcome of unit i

corresponding to the treatment condition for the same unit is the outcome that is observed.

So, in other words, if the treatment condition for unit i, Ti = t, then outcome, Y t
i = Y T

i = Yi

[90].

The potential outcome framework provides a principled approach to understanding causal

relationships. By considering the hypothetical potential outcomes and making appropriate

identification assumptions, effect estimates can be quantified and more defensible conclusions

can be drawn about the causal relationships between variables.

4.3.2 Directed Acyclic Graphs (DAGs) and Structural Causal Models (SCMs)

Causal graphical models have been proposed as a compliment to the potential outcomes

framework [90]. Causal graphical models provide a visual representation of causal rela-

tionships and facilitate the identification of causal effects based on structural causal models.

Directed Acyclic Graphs (DAGs) and Structural Causal Models (SCMs) are used to represent

and understand causal relationships between variables. They provide a formal framework
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for modeling causal structures and making causal claims based on observed data.

In a DAG, variables are represented as nodes, and causal relationships are depicted by

directed edges connecting the nodes. Importantly, DAGs impose a structure where causal

effects flow from parent nodes to child nodes, creating a clear directionality of influence. The

acyclic property ensures that there are no feedback loops or circular dependencies among

variables. DAGs are useful for encoding prior knowledge about the causal relationships

between variables. They help define the assumptions underlying the causal models and

identify the confounding variables that need to be addressed when estimating causal effects.

Figure 4.4 shows an example of a DAG for a hypothetical causal problem with outcome Y,

treatment T, a set of covariates [X], and the corresponding unmeasured influences, U.

Figure 4.4: DAG for a hypothetical causal problem with treatment T, outcome Y and

covariates [X]

SCMs are mathematical representations of the causal relationships described by a DAG.

SCMs specify the interactions among variables in the system and how their values are deter-

mined. Each variable is associated with a structural equation that describes its dependence

on its parent variables. The structural equations encode the causal mechanisms or processes

that generate the values of the variables. In an SCM, there are endogenous variables and

exogenous variables. Endogenous variables are those whose values are determined by other

variables in the system, while exogenous variables are treated as inputs or sources of external

influence, which are not affected by other variables in the system. The structural equations

in an SCM provide a mathematical representation of the causal relationships implied by the

DAG. By specifying the functional forms and parameters of these equations, causal effects

can be estimated using statistical methods under different scenarios. The SCM associated
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with the DAG in Figure 4.4 is described in Equation 4.1.

Xi = fXi
(UXi

) (4.1a)

T = fT (X1, ..., Xn, UT ) (4.1b)

Y = fY (X1, ..., Xn, T, UY ) (4.1c)

In summary, the combination of DAGs and SCMs enables causal conclusions to be drawn

from observational data. DAGs provide a clear graphical representation of the causal as-

sumptions, while SCMs formalize these assumptions into mathematical models. These mod-

els can the be used to estimate causal effects, perform counterfactual analyses, and assess

the sensitivity of results to different assumptions.

4.4 Methods used to Evaluate the Efficacy of Ground Motion In-

tensity Measures

In addition to the well-established efficiency and sufficiency criteria, three different causal

inference methods are used to evaluate the relative performance of the considered IMs.

The subsequent subsections provide an overview of the causal inference approach to the IM

evaluation problem as well a detailed description of the three methods. A brief summary of

the efficiency and sufficiency-based assessment is also presented.

4.4.1 Causal Inference-Based Intensity Measure Evaluation

4.4.1.1 Overview

According to the sufficiency criterion, an effective IM is one that produces EDPs that are

independent of the upstream parameters used in ground motions models (e.g., event magni-

tude, source-to-site distance) after conditioning on said IM. As discussed in the Introduction

section, the sufficiency-based assessment of this conditional independence criterion can be
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evaluated using one of two approaches: (i) regressing the conditional EDP (i.e., EDPs asso-

ciated with a single IM level) against the upstream parameter of interest or (ii) a two-stage

process that first regresses the EDP against the IM and then regresses the residuals from

the first model against the upstream parameter of interest. In either approach, if the up-

stream parameter of interest is found to be statistically insignificant (based on the associated

p-value), the IM is deemed sufficient.

As described in [21], the conditional independence criterion can also be evaluated through

the lens of causal inference. The DAG shown in Figure 4.5 provides a conceptual representa-

tion of the IM evaluation problem from a causal inference perspective. In this formulation,

the EDP is the outcome variable and the IM is the treatment. The considered upstream

parameters include the event magnitude (M), epicentral source-to-site distance (R), and site

class (as defined by ASCE 7-16). Note that site class (SC in Figure 4.5) is used (as a categor-

ical variable) in lieu of V s30 because of the large uncertainty associated with the latter. Also,

many of the V s30 values provided by the Center for Strong Motion Data [25] are not directly

measured but inferred from topological features. In the Figure 4.5 DAG, M, R and the site

class (denoted by the vector X1 = {M, R, SC}) are confounders because they affect both

the IM and the EDP. It then follows that the causal effect of a given upstream parameter

(e.g., M) on the EDP can be interpreted as having two parts. The direct effect represented

in Figure 4.5 by the arrow from the upstream parameter to the EDP and the ”mediated”

effect which flows through the IM. From a conditional independence standpoint, a desirable

IM is one that maximizes the ”mediated” effect and minimizes the direct effect. However,

since the direct effect is independent of the IM, the IM that maximizes the effect on the EDP

while controlling for the upstream parameters is the most desirable (from a causal inference

perspective).

In a typical NRHA-based IM evaluation study (like the prior studies described in the

Introduction section), each structure is considered individually and the uncertainty is derived

from using multiple ground motions. In the current study, the set of measured EDPs are from

a portfolio of buildings. In other words, the IMs are being evaluated across multiple structure
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types. As such, the number of stories (Ns), LFRS-type and ASCE 7-16 estimated period

(T1) (denoted by the vector X2 = {Ns, LFRS, T1}) are also confounders because they affect

both the IM and the EDP. Therefore, the causal inference-based IM evaluation considers

both the upstream parameters and building/structural properties shown in Figure 4.5 as

confounders (denoted by the vector X = {X1, X2}). Note that T1 only affects the SaT 1 and

Saavg IMs, which is why the arrow between the two variables is shown using a dashed line.

The IM evaluation problem shown in Figure 4.5 is solved using the following three causal

inference methods: Inverse Propensity Weighting (IPW), Covariate Balancing Propensity

Score (CBPS) and Entropy Balancing for Continuous Treatments (EBCT). Recall that for

any causal problem, a primary challenge with estimating the effect of the treatment on the

outcome variable is the presence of one or more confounders. One approach to addressing

this challenge (illustrated in Figure 4.6) is to ”balance” the effect of the confounding variables

(or covariates) before estimating the treatment effects using statistical regression. The dif-

ferences among the IPW, CBPS and EBCT methods lie primarily in the covariate balancing

strategy that is used before estimating the treatment effect. Considering all three methods

will allow us to assess the invariance of the causal inference-based IM evaluation results to

the covariate balancing strategy. Ideally, the relative performance of the considered IMs

in estimating the EDPs should should not vary across the different covariate balancing ap-

proaches. As shown in Figure 4.6, two types of regression are considered after the covariate

balancing is performed. Using simple linear regression provides a single average treatment

effect (ATE) value. However, to consider any nonlinearity in the post-balancing relationship

between the treatment and outcome, local linear regression is also performed to obtain an

exposure outcome relationship.

4.4.1.2 Inverse Propensity Weighting (IPW)

To account for non-random assignment of the treatment in observational studies, inverse

propensity weighting (IPW) [101] is a widely used technique in causal inference. It assigns

weights to each observation based on their propensity scores, which represent the conditional
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Figure 4.5: DAG showing a conceptual representation of the IM evaluation problem. The

unmeasured influences are not shown.

Figure 4.6: Schematic illustration of the covariate balancing approach used to solve the IM

evaluation problem using causal inference
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probability of receiving the treatment given the observed covariates.

Consider a binary treatment setting with a dataset comprised of N observations denoted

by (Yi, Ti, Xi) for i = 1, 2, ..., N . Here, Yi is the outcome of interest, Ti is the binary treat-

ment indicator (0 for control, 1 for treatment), and Xi represents the vector of observed

covariates for the observation i. The propensity score, denoted as π(Xi), is the conditional

probability of receiving the treatment given the covariates Xi, i.e., π(Xi) = P (Ti = 1|Xi).

The goal is to estimate the average treatment effect (ATE), which is the average difference

in outcomes between the treated and control groups. To balance the covariates across the

treatment groups, we assign weights to each observation based on the inverse of the propen-

sity scores. The weight for the ith observation is given by w(Xi) = 1/π(Xi) for the treated

group (Ti = 1) and w(Xi) = 1/(1 − π(Xi)) for the control group (Ti = 0). The w(Xi) op-

erates by upweighting the underrepresented group and downweighting the overrepresented

group, effectively balancing the covariate distributions between the treatment groups. The

IPW estimate of the ATE is then calculated as:

ATEIP W = (1/N)
∑

[TiYiw(Xi)] − (1/N)
∑

[(1 − Ti)Yiw(Xi)] (4.2)

where the first term on the right-hand side represents the weighted sum of outcomes in

the treated group, and the second term represents the weighted sum of outcomes in the

control group. By incorporating the weights based on the inverse propensity scores, the

IPW estimator effectively creates a pseudo-population where the treatment assignment is

independent of the observed covariates. This allows for unbiased estimation of the treatment

effect by removing the confounding bias induced by the non-random treatment assignment.

For continuous treatment variables (as is the case in the IM evaluation problem), the

IPW methodology can be extended by replacing the binary treatment indicator with the

continuous treatment values. The propensity scores are then estimated using the appropri-

ate models, such as logistic regression for binary treatments or generalized propensity score

models for continuous treatments. The weights are calculated as the inverse of the estimated

propensity scores, similar to the binary treatment case. The IPW estimator for the aver-
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age treatment effect with continuous treatments follows a similar formulation as the binary

treatment case:

ATEIP W = (1/N)
∑

(Ti − µ(T ))wiYi (4.3)

where Ti now represents the continuous treatment values, and w(Xi) is the corresponding

weight based on the inverse propensity score. µT is the conditional mean of the treatment

given the covariates.

Estimating the propensity scores and choosing of the appropriate model for estimating

treatment effects are the two main steps in the IPW methodology. Various techniques, such

as logistic regression, machine learning algorithms, or propensity score matching, can be

employed to estimate the propensity scores.

IPW is a useful technique in causal inference that addresses the issue of non-random

treatment assignment in observational studies. By assigning weights based on the inverse of

propensity scores, IPW balances the covariate distributions between treatment groups and

allows for unbiased estimation of treatment effects. The methodology can be applied to both

binary and continuous treatment settings, with appropriate modifications in the calculation

of weights and estimation procedures.

4.4.1.3 Covariate Balancing Propensity Score (CBPS)

Covariate Balancing Propensity Score (CBPS), originally developed by [61], is a method

used in causal inference to estimate treatment effects while achieving balance in the co-

variates between the treatment and control groups. The method was extended by [50] to

consider continuous treatments. It combines the principles of propensity score estimation

and weighting techniques to address confounding bias and enhance the validity of causal

analyses. Similar to IPW, the CBPS method begins by estimating the propensity scores,

πβ(Xi) = P (Ti = 1|Xi) using logistic regression:
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πβ(Xi) = exp(XT
i β)

1 + exp(XT
i β) (4.4)

where β is an unknown parameter vector of size equal to the number of covariates, which

can be estimated by maximizing the log-likelihood in Equation 4.5. Once the propensity

scores are estimated, the CBPS method assigns weights to each unit based on their propensity

score and covariate values. The definition of weights based on the covariates is where CBPS

differs from IPW. In the CBPS framework, the weight assigned to unit i, Wi, is given by

Equation 4.6.

β̂MLE = arg max
β

N∑
i=1

Tilog(πβ(Xi)) + (1 − Ti)log(πβ(Xi)) (4.5)

Wβ(Ti, Xi) = Ti − πβ(Xi)
πβ(Xi)(1 − πβ(Xi))

(4.6)

This ensures that units with covariate values that are unbalanced between the treatment

and control groups receive higher weights, facilitating covariate balance. When extended to

continuous treatments, transformation of the treatment and covariate vectors is performed so

that the means and variances are 0 and 1, respectively. The transformed vectors are denoted

as T̃i and X̃i. The transformation of the treatment variable is shown in Equation 4.7. The

same equation is used to transform the covariate vector.

T̃i = Ti − T̄
√

sT

(4.7a)

T̄ =
N∑

i=1

Ti

N
(4.7b)

sT =
N∑

i=1

(Ti − T̄ 2)
N − 1 (4.7c)

The weights for the continuous treatment case are defined by:
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wi = f(T̃i)
f(T̃i|X̃i)

(4.8)

To satisfy the covariate balancing conditions that the weights (i) remove the correlation

between X̃i and T̃i and (ii) maintain their marginal means, the following constraints are

applied.

N∑
i=1

wig(X̃i, T̃i) = 0 (4.9a)

N∑
i=1

wi − N = 0 (4.9b)

where g(X̃i, T̃i) = (X̃i, T̃i, X̃iT̃i)⊤. Equation 4.8 can be rewritten in terms of wi as

f(T̃i, X̃i) = 1
wi

f(T̃i)f(X̃i). To maximize the likelihood of the full sample, we maximize

the following function with the corresponding contraints:

N∏
i=1

f(T̃i, X̃i) =
N∏

i=1

1
wi

f(T̃i)f(X̃i) (4.10)

s.t.
N∑

i=1
wig(X̃i, T̃i) = 0

N∑
i=1

wi = N

N∑
i=1

wiX̃iT̃i = 0

wi > 0 for all i

The likelihood is equivalent to ∑N
i=1 log(f(T̃i)) + log(f(X̃i)) − log(wi). Since we are only

interested in wi, this equation simplifies to

arg min
N∑

i=1
log(wi) (4.11)
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Using the Lagrange method to evaluate the optimization problem and solve for wi, we

obtain

wi = 1
1 − γ⊤g(X̃i, T̃i)

(4.12)

where γ is the Lagrange multiplier associated with the first constraint. With the assigned

weights, the CBPS method computes the weighted average treatment effect. The wi’s are

incorporated in the estimation of the ATE by giving more weight to units whose covariate

values are unbalanced between the treatment and control groups.

By achieving covariate balance, the CBPS method aims to reduce confounding bias and

provide more reliable estimates of the treatment effect. It allows for the adjustment of

multiple covariates simultaneously and can handle both binary and continuous treatments.

CBPS combines propensity score estimation and weighting techniques to achieve covariate

balance. By assigning weights based on the estimated propensity scores and covariate values,

CBPS aims to reduce confounding bias and provide more accurate treatment effect estimates.

4.4.1.4 Entropy Balancing for Continuous Treatments (EBCT)

Entropy Balancing for Continuous Treatments, or EBCT, was developed by [118] as a con-

tinuous treatment extension to the original entropy balancing method for binary treatments

[54]. The primary function of EBCT is to minimize the correlation between the moments

of the pre-treatment covariates and the treatment by weighting each unit. The weighted set

can then be used to estimate the ATE with minimal influence from the confounders. EBCT

works by first partitioning the observations into bins based on the treatment variable. Then,

within each bin, the covariate distributions are balanced using a weighting scheme that min-

imizes the dispersion of the weights (the entropy). This ensures that the weights are evenly

distributed across the treatment and control groups. Once these weights are obtained, they

can be used in techniques such as weighted linear regression to estimate the ATE.

The binary entropy balancing case will be first introduced then expanded to deal with
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continuous treatments. The binary treatment variable is denoted as T such that each data

point assigned to either the treatment (1) or control (0) group. For a set of N observations

(N = N0 +N1), each unit, i, has a treatment status Ti and covariates Xi. Entropy balancing

seeks to find the weight, wi, for each unit that balances the covariate distribution in the

treatment and control groups. The formulation uses the Kullback entropy metric (h(w) in

Equation 4.13).

h(wi) = wi ln
(

wi

πi

)
(4.13)

where πi, the selected base weight, is set equal to 1/N1 for all i when not specified. The

goal is to minimize this entropy subject to certain constraints via the loss function H(w) in

Equation 4.14.

min
w

H(w) =
∑

i|Ti=0
h(wi) (4.14)

s.t.
∑

i|Ti=0
wicri(Xi) = mr, r ∈ 1, ..., R

∑
i|Ti=0

wi = 1

wi ≥ 0 for all i such that Ti = 0

where cri(Xi) is the covariate moment functions of the control group, which can be

defined as cri(Xi) = Xr
ij or a de-meaned version of the moment functions given by cri(Xij) =

(Xij − µj)r, where µj is the mean and j is a corresponding covariate for observation i. mr

represents the rth moment of the treatment group for covariate Xj. For example, if r = 1,

the constraint is such that only the means of the covariates are balanced. If r = 2, then the

means and the variances are balanced, and so on. In summary, the constraints impose that

the sum of the weighted covariate moments in the control group must equal the moments of

the covariates in the treatment group.
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The extension of EBCT to consider continuous treatment variables is based on [118].

The treatment T is now a continuous variable, with Ti > 0 for treated units. The covariate

moment function for the binary case, cri(Xi) , is rewritten as X̃i = f(Xi) − 1
N1

∑
i|Ti>0 f(Xi)

where f(·) is a function of the covariate and any interaction terms to be balanced, and the

de-meaning is done with respect to the treatment group. The variables p and T̃ are used to

denote the order of the treatment term to be balanced and a de-meaned representation of the

treatment (similar to X̃ for the covariates), respectively. The column vector g(p, X̃i, T̃i) =

[X̃i
′
, T̃i, ..., T̃i

p
, X̃i

′ · T̃i, ..., X̃i
′ · T̃i

p] considers all necessary covariate and treatment moments

and interactions. Equation 4.14 can then be re-written for continuous treatments as

min
w

H(w) =
∑

i|Ti=0
h(wi) (4.15)

s.t.
∑

i|Ti=0
wig(p, X̃i, T̃i) = 0

∑
i|Ti=0

wi = 1

wi > 0 for all i such that Ti = 0

To obtain the weights, the constrained optimization problem can be reformulated by

applying Lagrange multipliers (λ, γ) to the constraints. Recall from Equation 4.13 that

h(w) = wi ln
(

wi

πi

)
, so the new unconstrained problem becomes

min
w,λ,γ

L(w, λ, γ) = wi ln
(

wi

πi

)
− λ

{N1∑
i=1

wi − 1
}
−γ′

{N1∑
i=1

wig(p, , , X̃i, , , T̃i)
}

(4.16)

Differentiating with respect to λ and wi produces the equation for calculating the bal-

ancing weights

wi =
qi exp

{
γ′g(p, , , X̃i, , , T̃i))

}
∑N1

i=1 qi exp
{
γ′g(p, , , X̃i, , , T̃i)

} (4.17)
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4.4.2 Efficiency and Sufficiency

In general (statistical) terms, efficiency and sufficiency are two approaches to quantifying the

quality of an estimator. The efficiency criterion gauges how effectively the available data is

utilized to estimate the outcome of interest. Sufficiency assesses whether the estimator alone

is sufficient with respect to one or more covariates in explaining the response. Sufficiency is

evaluated by conditioning on the estimator and evaluating the dependence of the response

on the covariate(s) of interest. In the context of the current study, the IM is the estimator

and the upstream parameters are the covariates.

The primary objective in efficiency-based evaluation is to identify the IM that offers the

most precise estimates of the EDPs given certain assumptions or conditions. Specifically,

an estimator is deemed efficient when it achieves the smallest variance among the class of

estimators being compared. In other words, it strives to minimize the dispersion between

estimated values and the true value of the parameter. Consider the following regression:

ln Ŷ = ln a + b · ln X + ϵ (4.18)

where Ŷ is the response variable of interest, X is a predictor variable, a and b are

regression parameters and ϵ is the error. An efficient estimator is one that minimizes the

variance in the error term ϵ.

The sufficiency criterion is a measure of how well the estimator alone predicts the out-

come. The two stage regression approach is adopted in the current study. The first regression

is between the intensity measure and the response, the same as for efficiency in Equation 4.18.

The second regression takes the residuals from the first stage and regresses them against each

covariate, shown in Equation 4.19. The p-values obtained from this second regression indi-

cate the sufficiency of the IM. If the p-value is greater than 0.05 (a commonly used threshold

for statistical significance), then the covariate is rendered independent of the first stage

regression residuals conditioned on the treatment, deeming the IM sufficient.
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ϵ = c · Z + η (4.19)

where Z is the covariate or upstream parameter, c is a regression parameter and η is a

second error term. The baseline unbalanced data set is evaluated for both efficiency and

sufficiency for comparison with the causal inference approaches that use covariate balancing.

4.5 Ground Motion Intensity Measure Evaluation and Results

This section evaluates the relative effectiveness of five ground motion intensity measures in

estimating two types of engineering demand parameters. The considered IMs include PGA,

PGV, CAV, Ia, SaT 1 and Saavg. Each sensor in a building that is subjected to a given

event provides response history data at a specific location (i.e., floor level). The response

histories are recorded at small intervals over the duration of the event. In most buildings,

sensors are not placed on every floor, so linear interpolation was performed to calculate

the response histories on those floors that are not instrumented [114]. This information

is then used to calculate the peak response demands. The peak story drift ratio (PSDR)

and peak floor acceleration (PFA) are used to denote the peak response corresponding to

each story and floor respectively. The maximum PSDR and PFA over all stories and floors,

respectively, denoted as maxPSDR and maxPFA, are the considered EDPs. To calculate

the peak response demands, the diaphragm is assumed to be rigid and torsional effects are

neglected. The causal inference-based evaluation via the three alternative covariate balancing

methods are implemented in addition to the efficiency and sufficiency criteria.

4.5.1 Covariate Balancing

This subsection presents the results of the covariate balancing sub-step of the causal inference-

based evaluation illustrated in Figure 4.6. Recall that the goal of covariate balancing is to

remove the correlation between the confounding covariates and the treatment variable (EDP)

to minimize bias in the effect estimation. Balancing also reduces the effective sample size
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(ESS) which are summarized in Table 4.2. ESS measures the amount of precision in the

data. Specifically, higher correlations in data results in lower ESS due to data redundancy.

The considered covariates include M, R, SC, and T1. Since the number of stories (Ns) and

lateral force resisting system (LFRS) only affect the IM through the first mode period, they

are not included as covariates. More formally, it can be shown that considering T1 in the

covariate balancing also addresses confounding effects of LFRS and Ns. For this data set,

it is expected that the ESS will be significantly reduced given the high correlations that M

has with the exposure variables.

The results from the covariate balancing are shown in Table 4.1 which summarizes the

Pearson correlations between the confounding covariates and treatment variable (IM) before

and after balancing is performed. The post-balancing correlations, which are computed after

applying the weights (wi) to each observation, serve as an indication of the relative balancing

ability of each method. The values reported in the table are the Pearson correlations between

the covariates and treatment variables. Prior to balancing, the earthquake magnitude has

the highest absolute correlation - which is positive, as expected - with the IMs. Also, as

expected, T1 has relatively high pre-balancing correlations with SaT 1 and Saavg. R has low

to moderate correlations with PGV, SaT 1 and Saavg and low positive correlations with PGV,

CAV and Ia before balancing. Recall that SC is a categorical variable, which, for the purpose

of the analysis, is assigned values of 0 and 1 for site class C and D, respectively. As such,

the positive (but low) pre-balancing correlations between SC and the various IMs indicate

that site class D increases the IM level relative to site class C. Based on the observed post-

balancing correlations, it is clear that EBCT provides the best balance, effectively eliminating

the correlations for all variables while maintaining a larger ESS (see Table 4.2) than the other

two methods. Nevertheless, the results using all three balancing methods are reported to

evaluate the consistency of the relative performance of the different IMs.
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Table 4.1: Pearson correlations between the IMs and covariates before and after balancing

Covariate IM Unweighted IPW CBPS EBCT

PGA 0.279 -0.143 0.013 0.000

PGV 0.661 0.196 0.001 0.000

M CAV 0.742 0.367 0.198 0.000

Ia 0.742 0.330 0.166 0.000

SaT 1 0.514 0.001 0.041 0.000

Saavg 0.533 -0.055 0.110 0.000

PGA -0.381 -0.354 -0.111 0.000

PGV 0.046 0.146 0.003 0.000

R CAV 0.091 0.084 -0.002 0.000

Ia 0.092 0.051 -0.020 0.000

SaT 1 -0.007 -0.263 -0.161 0.000

Saavg -0.041 -0.284 -0.115 0.000

PGA 0.011 -0.039 0.015 0.000

PGV 0.056 0.078 -0.005 0.000

Site Class CAV 0.079 0.047 0.071 0.000

Ia 0.070 0.021 0.046 0.000

SaT 1 0.196 0.069 0.056 0.000

Saavg 0.135 0.039 0.049 0.000

SaT 1 -0.470 -0.521 -0.201 0.000

T1 Saavg -0.478 -0.313 -0.153 0.000

4.5.2 Causal Effect Estimation Results

After the balancing is performed and the weights (wi) for all samples are determined, a

weighted linear regression is performed for each method. Both simple and local linear re-

gressions are performed. The local linear regression provides more flexibility in the functional

relationship between the exposure and outcome, so the form does not need to be assumed.
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Table 4.2: Effective sample size corresponding to the different covariate balancing methods

IM IPW CBPS EBCT

PGA 132.9 69.9 220.1

PGV 99.8 52.8 171.7

CAV 126.3 53.9 129.3

Ia 90.5 36.2 130.5

SaT 1 46.8 122.3 154.0

Saavg 140.5 85.6 1141.3

It serves as a way to evaluate how the effect may vary at different intensity levels of the IMs.

The simple linear regression allows for a more direct and intuitive comparison of the popu-

lation ATE, which is taken as the regression coefficient. When the relationship is nonlinear,

the effect cannot be simply summarized into a single value for the population. However,

the exposure-outcome curve is useful for highlighting important aspects of the relationship

between the treatment (IM) and outcome (EDP).

The results of the simple linear regression are summarized in Table 4.3 and Table 4.4.

The reported values are the regression coefficient (β) (causal effect) which is interpreted as

the β% increase in the outcome (EDP) caused by a 1% increase in the treatment (IM). Recall

that, from a conditional independence standpoint, the most desirable IM is the one with the

largest β value (shown in bold font). From Table 4.3, it is observed that, across all three

covariate balancing methods, CAV has the highest causal effect for PSDR and is therefore

the best performing IM (from a causal inference perspective). It is notable that CAV is one

of the least studied IMs specifically as it relates to its relative performance in estimating

EDPs. However, this finding is consistent with that of the study by [82] which found that

CAV is well-correlated with damage, even moreso than other IMs such as PGA. The worst

performing IM for PSDR, which is the one with the lowest causal effect, is PGA. Again, this

is consistent with several prior studies which showed that PGA does not perform well for

displacement-based EDPs [42, 103].
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The results from Table 4.4 show that CAV is also the best performing IM for PFA across

all balancing methods. It is a bit unusual that PGA is outperformed by most of the other

IMs (with the exception of SaT 1) when estimating PFA. Most prior simulation-based studies

have shown that, at least from an efficiency standpoint (discussed later in this section), PGA

performs relatively well for acceleration-based EDPs. On the other hand, the fact PGA

generally performs much better for PFA than for PSDR (when comparing the causal effects

in Table 4.3 and Table 4.4)) is consistent with the principles of structural dynamics. Further,

when attempting to benchmark the current results against findings from the prior literature,

it is important to highlight that (i) all prior studies utilize simulation-based data whereas

this study uses response measurements and (ii) the current study is based on aggregated data

from multiple structure types and configurations whereas all prior studies utilize data from

one structure type at a time. Although the covariate balancing is implemented to consider

these differences, the analysis is limited by the amount of available data. The strata for some

variables have few data points compared to others (i.e. high-rise vs low-rise buildings). The

results are also dependent on the performance of the balancing methods and the resulting

effective sample sizes. Results where the ESS is less than 10% of the original sample size are

excluded due to the low precision.

When evaluating the results across the different methods, it is important to acknowledge

their respective performance. For example, it can be observed that the causal effect esti-

mation for PGA on PSDR is significantly larger when balanced using EBCT compared to

IPW and CBPS. This may initially seem concerning without considering that not only was

EBCT better at eliminating the correlations in the covariates, but for this IM-EDP pair,

EBCT maintained a larger ESS. The ESS for CBPS, for example, is only just barely above

the 10% cutoff criterion.

The results of the weighted local linear regressions are shown in Figure 4.7 and Figure 4.8.

The estimated relationships using weights from each balancing method are overlaid on the

original data and plotted with the solid colored lines. We see that although the linear model

assumption was not unreasonable for most IM-EDP pairs, there is a more complex relation-
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ship as the intensity level increases. Specifically, for CAV, Ia and Saavg, the relationships

take a sigmoidal shape, with the effect on the EDP’s reduced at the lower and higher ends

of the IM distributions. In one case (Saavg effect on the EDPs), an unrealistic negative

trend is observed when using equally-weighted or CBPS-weighted regression. As noted by

Table 4.1 and Table 4.2, not only was CBPS unsuccessful in eliminating the correlations, but

it reduced the ESS substantially. It is unsurprising that in a range of the data that has very

few points to begin with, that the relationship may not be appropriately captured. Similarly

for the equally weighted case, equal weight is being given to points that represent a very

small subset of the entire data, as is noted by the scatter plots in Figure 4.7 and Figure 4.8.

EBCT, which performed best, relative to the other methods, maintaining the highest ESS

and lowest correlation, does not display this negative trend.

Table 4.3: Estimated causal effect (β) for PSDR from post-balancing linear regression

IM IPW CBPS EBCT

PGA 0.324 0.379 0.686

PGV 0.926 0.85 0.849

CAV 1.316 1.635 1.698

Ia 1.053 - 1.401

SaT 1 - 0.58 1.122

Saavg 0.335 0.867 1.091

4.5.3 Efficiency and Sufficiency

This section presents the results of the efficiency and sufficiency-based evaluations. Table

6 summarizes the standard errors from the probabilistic seismic demand models (based on

Equation 4.18) which serve as a measure of efficiency. For PSDR, PGV produces the lowest

dispersion and is therefore the best performing IM for that EDP. Although, it is noteworthy

that CAV and Ia have dispersion values that are comparable with (5% higher than) PGV,

which is generally consistent with the findings from the causal analysis. It is interesting that
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Figure 4.7: Exposure-outcome Curves for PSDR vs a) PGA, b) PGV, c) CAV, d) Ia, e) SaT1

and f) SaAvg using Naive simple linear regression, Naive LOESS, IPW-weighted LOESS,

CBPS-weighted LOESS, and EBCT-weighted LOESS
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Figure 4.8: Exposure-outcome Curves for PFA vs a) PGA, b) PGV, c) CAV, d) Ia, e) SaT1

and f) SaAvg using Naive simple linear regression, Naive LOESS, IPW-weighted LOESS,

CBPS-weighted LOESS, and EBCT-weighted LOESS
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Table 4.4: Estimated causal effect (β) for PFA from post-balancing linear regression

IM IPW CBPS EBCT

PGA 0.687 0.672 0.689

PGV 0.758 1.041 1.037

CAV 1.194 1.597 1.549

Ia 0.992 - 1.371

SaT 1 - 0.625 0.609

Saavg 0.718 0.935 1.053

PGA outperforms SaT 1 and Saavg in estimating PSDR. This runs counter to the findings from

prior simulation-based studies. One possible explanation is that the inventory considered

for the current study comprises primarily low-rise buildings (as summarized in Figure 4.2).

In fact, more than half of the buildings in the inventory have five stories or less. This,

coupled with the fact that most of the responses are in the linear elastic realm may explain

the superior performance of PGA relative to SaT 1 and Saavg. For PFA, PGA produces the

lowest dispersion and is therefore the most efficient. This is consistent with the findings from

prior simulation-based studies which have shown that PGA performs well for acceleration-

based EDPs.

The p-values from the sufficiency-based evaluations are summarized in Table 7. For each

upstream parameter (i.e., M and R), the p-values for the sufficient IMs (i.e., p-values above

the 5% significance threshold) are highlighted in bold. The fact that CAV and Ia are sufficient

with respect to both M and R when estimating PSDR while PGA isn’t, is consistent with

the findings from the causal analysis. For PFA, only SaT 1 and Saavg are sufficient with

respect to M and none of the IMs are sufficient with respect to R. The latter finding is a

bit surprising and inconsistent with the results from prior studies [72, 89, 16]. However, as

described in [21], this may be explained by the sensitivity of the sufficiency-based findings

to the size of the data set.
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Table 4.5: Efficiency of IMs as measured by the standard error from the PSDM (Equa-

tion 4.18)

IM PSDR PFA

PGA 1.30 0.43

PGV 1.07 0.58

CAV 1.12 0.66

Ia 1.13 0.67

SaT 1 1.55 0.85

Saavg 1.51 0.78

Table 4.6: The p-values from the sufficiency-based IMs evaluations

Covariate IM PSDR PFA

PGA 0 0

PGV 0.33 0

M CAV 0.58 0

Ia 0.58 0

SaT 1 0 0.24

Saavg 0 0.06

PGA 0 0

PGV 0.41 0

R CAV 0.46 0

Ia 0.45 0

SaT 1 0.26 0

Saavg 0.94 0
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4.6 Conclusion

The goal of this study was to assess the effectiveness of ground intensity measures (IM’s)

using strong motion building response data. Sufficiency, efficiency, and causal analyses are

used to evaluate the performance of different IMs for potential use in a structural response re-

construction context. In the causal analyses, covariate balancing methods are implemented

to control for known confounding variables that contribute to building response, and the

weights from these methods were used to perform regressions that define the causal relation-

ship between the IMs and engineering demand parameters (EDPs).

The IMs considered include peak ground acceleration (PGA), peak ground velocity

(PGV), cumulative absolute velocity (CAV), Arias Intensity (Ia), first mode period spec-

tal acceleration (SaT1), and the geometric mean spectral acceleration over a range of periods

(Saavg). For the causal analysis, each IM was balanced against common cause covariates

of the IM and EDP (or confounders), then regressed using weights calculated from the co-

variate balancing. The simple linear regression provided an intuitive understanding of the

population level average treatment effect (ATE), which represents how a change in the in-

tensity level of the IM, on average, changes the response. A local linear regression was also

performed to allow for a more complex functional relationship that captures the variation

in the effect across the intensity levels. This revealed potential heterogeneous effects in the

data, where the effect varies among covariate subgroups. The effects of the IMs on the EDPs,

including when accounting for confounding, were shown to be mostly linearly positive, but

the results also highlighted some complexity in the relationships.

The results from the causal analysis indicated that CAV generally outperforms the other

IMs. A prior study by [82] also found that CAV generally outperforms other IMs, especially

in terms of damage detection. Also consistent with prior studies, PGA was found to be

the worst performing IM when estimating PSDR. There were some surprising observations,

such as PGA being outperformed by most of the other IMs in the causal analysis. However,

this was explained by a number of factors including the structural heterogeneity within the

data. In terms of efficiency, the findings were generally consistent with the causal evaluation.
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The sufficiency-based evaluation also produced some unexpected results. For example, the

spectral IMs (SaT 1 and Saavg) were generally outperformed by PGA and none of the IMs

were sufficient with respect to source-to-site distance. The inconsistencies (with respect to

prior studies) in the sufficiency analysis may be explained by the relatively small size of the

data set as it has been shown in past studies to be sensitive to sample size [21].

There are several limitations of this study which serve as motivation for future related

research. The EDP data set comprises mostly elastic responses, which means that the find-

ings cannot be generalized to nonlinear demand levels. The imbalance in the distribution

of structural characteristics also produced some challenges. For instance, the majority of

buildings can be classified as low to mid-rise with very few high rises. While it is conceptu-

ally possible to account for heterogeneous effects (e.g., variations in IM performance across

different building heights) in the causal analysis, this was not feasible in the current study

because of the relatively small size of the data set.

Future studies can address some of the aforementioned limitations by expanding the

suite of strong motion data to consider a broader range of demand levels (i.e., elastic and

inelastic). Alternatively, a hybrid data set can be constructed by combining recorded and

simulated responses. In addition to addressing issues related to sample size, a hybrid data

set can be used to ensure greater balance in the structural characteristics of the considered

building inventory. This would enable an assessment of heterogeneous effects (in the causal

evaluation) using subgroup analysis.
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CHAPTER 5

An end-to-end framework for portfolio-scale seismic

design, analysis and performance assessment of

building inventories with multiple lateral force

resisting systems

5.1 Introduction

Evaluating building performance using the PBEE paradigm involves multiple steps, includ-

ing hazard characterization, structural response analysis, and damage and loss assessment.

When performed manually (i.e., without automation), this process can be very time con-

suming, requiring on the order of days to evaluate a single building. This time sink becomes

especially challenging for regional assessments where the PBEE steps are applied to hundreds

or even thousands of buildings. One solution to this challenge is to generate an automation

procedure that implements the PBEE steps in sequence where human input is only required

at the first (i.e., defining the necessary inputs) and last (i.e., receiving the outputs) steps.

This could potentially cut down the amount of time engineers spend on the design, analysis,

and performance assessment processes.

The evolution of structural engineering software has led to the creation of programs

capable of automating various aspects of the design process. Early efforts in automation

included software for structural analysis and design that required substantial user input

and expertise. Recent advancements have produced more sophisticated tools that integrate

multiple design stages, from conceptual design to detailed analysis, significantly reducing the
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need for manual intervention. Programs such as ETABS, SAP2000, and RAM Structural

System represent milestones in automating structural design and analysis [30, 31, 115]. These

tools not only perform complex calculations but also offer design optimization features,

user-friendly interfaces, and the ability to handle a variety of structural systems. They

support various materials and structural forms, including steel, concrete, and timber, aligning

with modern design codes and standards. More recently, python-based programs have been

developed that perform code-conforming building design, nonlinear response history analysis,

and in some cases, damage and loss assessment. In fact, multiple python-based programs

have been developed to automate some or all PBEE steps for individual lateral force resisting

systems [53, 36, 5], requiring minimal inputs from the engineer. The Automated Seismic

Design and Analysis (AutoSDA) [53], WoodSDA [36], and RCWallSDA [5] platforms were

developed to advance the state of the art in automated design, analysis and performance

assessment. The advancements in automated design have the potential to allow engineers

to conduct performance-based design optimization and regional scale seismic performance

assessments using the PBEE framework [49].

The current study aims to streamline the design and analysis process for buildings for steel

moment frame, wood frame, and concrete shear wall lateral force resisting systems (LFRS).

The program is developed in Python and includes an additional module for performing

loss assessment based on Federal Emergency Management Agency (FEMA) P-58 PBEE

methodology [49]. The program can be used to perform end-to-end design and analyses

of a single building or a portfolio of buildings. This type of program could be used for

regions where there is limited information on the building composition and instrumentation

data. Reasonable building designs can be generated, ground motions applied to the resulting

model, and nonlinear analyses and loss assessments performed to determine the potential

impact.
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5.2 Program Overview

AutoSDA is comprised of three previously developed and tested seismic design and analysis

programs for buildings with a steel moment frame (SteelSDA), wood frame (WoodSDA),

or concrete shear wall (RCWallSDA) LFRS. The intention of this program is to stream-

line the design, analysis, and assessment of building portfolios by combining these into a

unified program. With general information about the building geometry, location, loading

conditions, and occupancy, an entire region of buildings can be assessed using this program.

The program structure is illustrated in Figure 5.1. Each of the previously developed LRFS-

specific platform is included as a module in AutoSDA and an additional module is developed

for performing loss assessment using the pelicun package [129], which follows FEMA P-58.

The user inputs include basic building information and ground motions to be applied to the

models. Based on the LFRS type, the program executes the appropriate design module,

where an iterative procedure is implemented (outlined in the corresponding publications ).

Structural models are created in the Open System for Earthquake Engineering Simulation

(OpenSees) [77], applying the selected ground motions and the design and response infor-

mation are generated as outputs into excel, csv, and text files. These outputs can then be

used to execute the Loss Assessment module, which takes the EDPs and information on the

building and its components to provide estimates of the potential loss and uncertainty. The

program is structured such that a portfolio of buildings that comprises some combination of

these three LFRS types can be run simultaneously when provided with the necessary inputs

for each building. The loss assessment module uses the story- and floor-level demands of the

building along with component input information and applies the FEMA P-58 framework

to assess potential damage and losses. Each sub-routine takes in excel files for the inputs to

make its use accessible.
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Figure 5.1: AutoSDA program Structure

5.2.1 Design Modules

The inputs required to run the design and analysis of a building depend on the LFRS type.

The user creates a file or folder for each building with the corresponding inputs. In the top

level, the user creates a csv file with the building ID, location, Site Class, Risk Category,

and LFRS type. The program takes this information and initiates the appropriate sub-

module based on the LFRS type. The buildings in this list can be run simultaneously using

parallel processing. This initial input information is also used to perform a lookup of the

seismic design parameters according to ASCE 7-16 [9] if the user does not want to input

them manually. After the design and analyses are performed by the sub-modules, the results

are stored in an output folder in the top level. The following sections briefly describe each

sub-module. Figure 5.2 - Figure 5.4 outline the general inputs that are expected by each

sub-module in order to execute.
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5.2.1.1 SteelSDA

The SteelSDA module was developed by [53] and is originally named ”AutoSDA”. The

name was changed to SteelSDA for this project to better identify the module and the name

AutoSDA was repurposed to define the entire program and its modules. SteelSDA performs

full code-conforming design and OpenSees analysis of steel moment frame buildings. The

details of programming the design process are outlined in [53]. SteelSDA takes in information

about the building geometry, loading conditions, and initial beam sizes to begin the design

process of the frames. A summary of the required inputs is shown in Figure 5.2. Only three

excel files are needed to run the program. The outputs include the code-conforming building

design, connection design, component demands, and full-profile building responses.

SteelSDA determines the design forces and deformations using the Equivalent Lateral

Force (ELF) method. Based on a set of pre-defined assumptions, the design is performed

iteratively, checking demand limits specified in Table 12.2-1 of ASCE 7-16 [9], adjusting

member sizes until the criterion is met. A structural model is then created and analyzed in

OpenSees. An example archetype for a fourteen-story building with a five-bay steel moment

frame LFRS is shown in Figure 5.7. Designs generated by steelSDA were validated in the

corresponding publication by designs generated by Englekirk professional engineers as well

as other researchers, reporting similar design layouts and story drifts. SteelSDA was also

used to create a database [78] of steel moment frame (SMF) buildings and responses to

ground motions at service, design, and maximum considered earthquake (MCE) levels that

can serve as a repository for data-driven modeling.

5.2.1.2 WoodSDA

The WoodSDA module was developed by [36] to automate the design and analysis of wood

framed buildings. WoodSDA requires more detailed information on the wall schedule and

panel properties, so template building information files are provided that can be modified to

aid in creating the necessary input files. Similar to the SteelSDA module, WoodSDA performs
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Figure 5.2: SteelSDA inputs

an iterative design process until demand limits are met and returns the full-detailed design

before running the nonlinear analysis in OpenSees. The original Auto-WoodSDA included a

loss assessment portion, but this was decoupled from WoodSDA and exists as a standalone

module that can be applied to any LFRS type in AutoSDA. An example of the inputs for

WoodSDA are shown in Figure 5.3. The inputs shown in the figure include general building

geometry and properties, but WoodSDA does require more extensive effort to initialize due

to the program structure. Loading and material properties, similar to those outlined in the

figure must be manually defined for each grid of the building layout.

In order to simplify and generalize the building design sub-module, WoodSDA operates

under certain assumptions in the design process. The assumptions are as follows: the building

layout is simplified to a rectangular shape for modeling purposes, floor systems are initially

treated as flexible (though this can be adjusted to rigid or semi-rigid behavior if needed),

Solid shear walls without openings are used in the model to reduce complexity, and shear wall

dimensions are kept constant throughout the building height. In the publication associated

with WoodSDA, the model outputs were validated against a FEMA P-2139 project archetype

and found to have good agreement.
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Figure 5.3: WoodSDA inputs

5.2.1.3 RCWallSDA

The RCWallSDA module was inherited from [5] as a python-based platform for the design

and analysis of concrete shear wall buildings. Similar to the previous two modules, the code

conforming design is performed iteratively, until the specified input criteria are satisfied.

This tool streamlines the entire design process, from model construction to member sizing,

significantly reducing the manual effort and time. The process begins with user-specified in-

put parameters, including the building geometry, loads, site conditions, material properties,

and initial wall dimensions. RCWall-SDA then implements the ASCE 7-16 equivalent lat-

eral force procedure (with the option to use Response Spectrum Analysis, or RSA, instead)

to determine seismic forces, and constructs an OpenSees model for linear elastic analysis

to calculate story drifts. The WallDesign class performs design and analysis calculations

according to ACI 318-19 provisions for special structural walls, evaluating the need for spe-

cial boundary elements using a displacement-based approach. The iterative design process

repeats until an adequate design meeting all code requirements is achieved. The necessary

inputs to run RCWallSDA are shown in Figure 5.4.

5.2.2 Loss Assessment Module

The loss assessment module in AutoSDA uses the FEMA P-58 methodology to estimate po-

tential losses for a particular building, and in the case of this project, a portfolio of buildings.
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Figure 5.4: RCWallSDA inputs

Additional information regarding the component (structural and non-structural) population

of a building is required to run this module. Aside from the components, the input necessary

to perform the assessment are the EDP (i.e. peak story drift ratio and peak floor accelera-

tion). The EDPs are converted to structural and non-structural component damage, which

is used to compute the associated repair costs. Uncertainties in seismic hazard, structural

response, damage, and consequences, are propagated throughout the methodology.

An overview of the PBEE methodology, as implemented in pelicun, is illustrated in

Figure 5.5. First, the facility must be defined, D. This is where the building attributes

such as the number of stories, occupancy type, any corresponding component definitions,

are specified. Once this information is provided, the model proceeds to the probabilistic

seismic hazard analysis (PSHA). The PSHA determines the probability distribution of one

or more intensity measures at the site of interest. The result is a site hazard profile, p[IM ],

characterizing the seismic intensity distribution at the location of interest. Next, nonlinear

dynamic analysis or simplified nonlinear static analysis procedures are used to simulate how

a structure will respond to seismic loading. Detailed structural models are developed to

assess the response under a suite of ground motions. The structural response is evaluated

with respect to the probabilistic site hazard obtained from the previous step. The outcome

is the probability distribution of the structural response profile, p[EDP ].

Fragility assessments are then conducted to determine the probability of observing dif-

ferent damage states for each component conditioned on the seismic demand. This includes
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Figure 5.5: FEMA P-58 loss assessment procedure

both structural components such as beams and columns, and non-structural components

like mechanical systems and cladding. These damage states are subsequently translated into

economic losses, downtime, and casualties through consequence functions. These functions

relate the extent of physical damage to repair costs, restoration time, and potential injuries

or fatalities, also considering indirect losses such as business interruptions.

In the final phase, the potential losses associated with the damage are quantified using

a loss model. This model calculates the decision variables (DV), which could include repair

costs, downtime, or any other relevant metrics, given the damage measures (DM). The output

of the FEMA P-58 methodology is typically expressed in probabilistic terms, providing

metrics such as expected annual losses (EAL) and loss exceedance curves.

The pelicun package that is used in AutoSDA only performs the last two steps of this

process. The structural response profile, p[EDP ] , is defined by the structural analysis per-

formed in the design and analysis modules and directly implemented into the damage analysis

step, where the EDP distribution is combined with the component fragility information to

obtain a probabilistic damage distribution.

5.2.2.1 Component Definitions

As part of the facility definition for the loss assessment, additional information on the com-

ponents is required. This information must be provided in a CSV file formatted with details
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on the quantity, location, and demand direction of the component. Table 5.1 shows an ex-

ample of a set of both structural and nonstructural components that were collected from

the Seismic Performance Prediction Platform (SP3) [57], which also implements the FEMA

58 methodology. The table lists the component ID, description, type, location, the demand

directions being considered, quantity units, and the quantity (θ0). θ0 refers to the quantity of

the component in each direction at each location. As an example, for this 14-story building,

there are 24 units of the B.10.31.001 component (bolted shear tab gravity connections) in 2

directions at 14 floors, for a total of 672 units.

The pelicun package in Python includes a database of component fragilities at installa-

tion. This database does not include all potential components, so the user has the option to

manually input the fragility parameters for any additional components. Table 5.2 lists the

fragility parameters for the components from the Table 5.1 and Figure 5.6 shows an exam-

ple visualization of fragilities for two of the components, one for a component governed by

drift demands (bolted shear tab gravity connections) and the other governed by acceleration

(suspended ceiling). Each components fragility parameters define a lognormal cumulative

distribution function. The generated example component table is an inexhaustive list of

components generated by SP3 for a fourteen-story steel moment frame commercial office

occupancy building. Once the component information is supplied, pelicun retrieves the ap-

propriate fragility parameters, and estimates the per component loss based on the demand

(EDPs). The component-level losses are aggregated to estimate the losses and repair times

for a specified building.

5.3 Illustrative Example

In this section, a 14-story steel moment frame (SMF) archetype (Archetype 1188) from the

database in [78] is used to illustrate loss module. The complete design and analysis are per-

formed in steelSDA. A plan view of the building layout as well as an elevation of the moment

frame are illustrated in Figure 5.7. A suite of 40 maximum considered earthquake (MCE)

level ground motions are applied to the model for the dynamic analysis in AutoSDA. The
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Table 5.1: Example component quantities

ID Component Description Type Location Direction Units θ0

B.10.31.001 Bolted shear tabconnections Structural all 1,2 ea 24

B.10.31.011c Steel Column Base Plates Structural 1 1,2 ea 10

B.10.31.021c Welded column splices Structural
2,4,6,8,

10,12,14
1,2 ea 10

B.10.35.002
RBS connection w/ welded web,

beam one side of column only
Structural all 1,2 ea 4

B.10.35.012
RBS connection w/ welded web,

beams both sides of column
Structural all 1,2 ea 6

B.20.22.002
Curtain Walls -

Generic Stick-Built Curtain wall

Exterior

Cladding
all 1,2 ft2 3000

C.20.11.001b Prefabricated steel stair Other all 1,2 ea 1

C.30.11.001b
Wall Partition,

Type: Gypsum + Wallpaper

Interior

Finishes
all 1,2 ft 37.8

C.30.27.002 Raised Access Floor
Interior

Finishes
2–14 0 ft2 7500

C.30.32.003a
Suspended Ceiling, SDC D,E

Area (A): A <250

Interior

Finishes
2–14 0 ft2 2250

C.30.32.003b
Suspended Ceiling, SDC D,E

Area (A): 250 <A <1000

Interior

Finishes
2–14 0 ft2 2250

C.30.32.003c
Suspended Ceiling, SDC D,E

Area (A): 1000 <A <2500

Interior

Finishes
2–14 0 ft2 2250
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Table 5.2: Example component fragility parameters

ID
Demand

Type

Demand

Unit

LS1

θ

LS1

β

LS2

θ

LS2

β

LS3

θ

LS3

β

LS4

θ

LS4

β

B.10.31.001 PID unitless 0.04 0.4 0.08 0.4 0.11 0.4 - -

B.10.31.011c PID unitless 0.04 0.4 0.07 0.4 0.1 0.4 - -

B.10.31.021c PID unitless 0.02 0.4 0.05 0.4 - -

B.10.35.002 PID unitless 0.03 0.3 0.04 0.3 0.05 0.3 - -

B.10.35.012 PID unitless 0.03 0.3 0.04 0.3 0.05 0.3 - -

B.20.22.002 PID unitless 0.021 0.45 0.024 0.45 - -

C.10.11.001b PID unitless 0.01 0.3 0.013 0.3 0.018 0.3 - -

C.20.11.001b PID unitless 0.005 0.6 0.017 0.6 0.028 0.45 - -

C.30.11.001b PID unitless 0.0064 0.3 - - - - - -

C.30.27.002 PFA g 1.5 0.4 - - - - - -

C.30.32.003a PFA g 1.6 0.3 1.95 0.3 2.07 0.3 - -

C.30.32.003b PFA g 1.47 0.3 1.88 0.3 2.03 0.3 - -

C.30.32.003c PFA g 1.21 0.3 1.75 0.3 1.95 0.3 - -

C.30.32.003d PFA g 1.09 0.3 1.69 0.3 1.91 0.3 - -

C.30.34.002 PFA g 1.5 0.4 - - - - - -

5 % damped acceleration spectra of the applied ground motions and the median spectrum

are shown in Figure 5.8. Here, the suite of ground motions represents the site hazard char-

acterization, p[IM ], in the hazard analysis stage of the FEMA P-58 methodology outlined

in Figure 5.5. The distribution of EDPs to these ground motions represent the structural

response characterization, p[EDP ]. The individual and median responses are shown in Fig-

ure 5.9. In addition, pelicun requires the total building area and estimated replacement cost

of the building for the loss assessment. For this example, the total building area is 315, 000ft2

and the estimated replacement cost ($323/ft2) and time (670 days) were extracted from SP3.

With this information, pelicun can be used to perform the damage and loss analysis. The
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(a) (b)

Figure 5.6: Component fragilities for a) a suspended ceiling (C.30.32.003c) demand and b)

bolted shear tab gravity connections (B.10.31.001)

distributional parameters of the full-profile response are sent to the loss assessment module,

as well as component information. The component population is generated from SP3. The

components in Table 5.1 are used for this example. The median and log standard deviation

of the response are used to generate 10,000 Monte Carlo sample realizations of the structural

response in the loss module and descriptive statistics of the loss and repair estimates are

reported. Figure 5.10 shows the distribution of aggregated repair costs and times for the

10,000 response realizations. Table 5.3 shows the estimated aggregated loss statistics for this

building.

In this example, the code conforming design and analysis of a 14-story steel special mo-

ment frame building generated by steelSDA was used to showcase the loss assessment module.

Based on the distributional parameters of the response to MCE-level ground motions, the

loss assessment provided estimates of the repair costs and repair times. This is a simple

example of how the end-to-end framework that AutoSDA provides can be used to develop

designs and anticipate potential losses in a single program. The loss module functions inde-

pendently of the three design and analysis modules, and can be run with response data from
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Figure 5.7: Archetype 1188: 14-story steel special moment frame

Figure 5.8: 5% damped spectra for the ground motions used in the structural response

analysis
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(a) (b)

Figure 5.9: Full-profile structural responses including the median and log-standard deviation

response for a) peak story drift ratio and b) peak floor acceleration

(a) (b)

Figure 5.10: Estimated repair a) costs and b) times for the 10,000 realizations

external sources as well.
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Table 5.3: Estimated repair cost and repair time statistics

repair cost

($)

repair time

(days)

count 10000 10000

mean 6.20E+07 403.40

std 4.92E+07 327.62

min 2.93E+05 0.17

25% 1.61E+06 0.87

50% 1.02E+08 670.00

75% 1.02E+08 670.00

max 1.02E+08 670.00

5.4 Summary

In this chapter, three previously developed automated design and analysis programs are

unified, allowing for portfolio-level generation of building designs and full-profile analyses. An

additional module that uses the pelicun-implemented FEMA P-58 methodology to perform

loss assessment is also introduced. In addition to building-specific component information,

the engineering demand parameters (EDPs) from the analysis modules are read into the loss

module to perform the assessment.

Limitations of AutoSDA are inherited from each of its modules as well as in its intended

use. A notable module-specific limitation is that WoodSDA requires substantial user inputs

to be executed, especially when compared to the other modules. Templates are included in

the top level folder of the program to help alleviate this, but deviations from the provided

building layouts would require substantial user effort to initiate the WoodSDA module.

The design and assessment of an entire region of buildings includes many simplifying as-

sumptions, as the actual composition of a building portfolio would likely include significant

irregularity. A major usability limitation of the program is the lack of a graphic user inter-
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face (GUI), which could make the program more accessible to those without a programming

background. This would be especially useful for WoodSDA due to its extensive set of input

files. This is a limitation that can be addressed in future versions. RCWall-SDA is limited

in its displacement-based design approach, which is only applicable to continuous slender

walls [5]. The loss assessment module requires an additional user input file containing the

relevant component information. This module is also limited by the available component

database provided in pelicun. Additional component fragility parameters must be manually

provided by the user, which may not be feasible for large-scale assessments. FEMA P-58

provides a normative quantity tool that can be used to alleviate the limited component list in

pelicun, but that tool is also limited as it does not include structural components. The loss

module acts as a step towards portfolio-level loss estimation, but is limited by the pelicun

implementation and databases.

The benefit of this unified program is that it allows for efficient multi-LFRS portfolio-

scale design and assessments that can serve as an aid in determining where damage and losses

have likely occurred during an event. This information could inform decisions on where to

prioritize resources after an event, potentially reducing recovery times and downtime losses.

The ability to generate portfolio-scale code-conforming designs and analyses may also be a

powerful tool when limited instrumentation data is available. The following chapter shows an

example use case, where the generated structural responses are combined with strong motion

data to develop a generalized full-profile structural response prediction and loss estimation

model for a portfolio of buildings.
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CHAPTER 6

Development of a regional seismic impact assessment

model for building inventories using hybrid data

6.1 Introduction

Structural health monitoring (SHM) has been shown to be an effective tool for enhancing

civil infrastructure safety and resilience, particularly in seismically active regions. Develop-

ments in SHM have enabled real-time assessments of structural response during events and

provide insights for engineers and policymakers in risk mitigation efforts. Often, traditional

approaches to structural response reconstruction modeling rely solely on analytical models

or on limited sensor data (e.g. partially instrumented buildings or regions of sparsely in-

strumented buildings). More recently, significant developments have been made to advance

data-driven methodologies for structural response reconstruction. Many of these approaches

take advantage of the predictive power of machine learning techniques, offering an alter-

native to conventional analytical models. However, existing models still face limitations in

effectively capturing the complex and nonlinear dynamics exhibited by structures subjected

to seismic excitation.

A previous publication [2], outlined in chapter 3, presented a dual model formulation to

improve the predictive performance of a structural response reconstruction (SRR) model us-

ing only building strong motion response data. This model leveraged the spatially correlated

peak ground acceleration (PGA) with Kriging to estimate the values at locations of unin-

strumented buildings. The spatially interpolated PGA was then included as a feature in the

ML model, improving predictions for the maximum peak floor acceleration (maxPFA), while
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maintaining performance for the maximum peak story drift ratio (maxPSDR). This was an

alternative to another ML approach, performed in [110], that developed a cross-building

response reconstruction (CBRR) model. It used a modified ground motion model (GMM)

to estimate median structural responses combined with kriging on the within-event resid-

uals. The model performed well overall, but was limited by its event-dependent approach.

Despite the limitations, both of these studies were steps towards developing generalized re-

sponse prediction models that can aid in rapid post-event assessment, which is crucial in

natural hazards recovery efforts.

Many response reconstruction studies typically rely on a single type of data, either mea-

sured or simulated, while the use of hybrid data that integrates both measured and simu-

lated responses to address data gaps remains less common. Existing literature on this hy-

brid framework is limited, often focusing on reconstructing ground motion data rather than

structural responses. [127] developed a hybrid identification method for estimating struc-

tural parameters and ground motions in multi-story buildings. Similarly, [124] introduced a

hybrid approach, which improved signal-to-noise ratio and data recovery efficiency. Recently,

a study by [52] proposed a two-step hybrid method for reconstructing seismic responses in

partially instrumented buildings, utilizing a shear-flexural beam model calibrated with data

from instrumented floors, and Gaussian Process regression to model residuals. While these

studies enhanced our understanding of hybrid-data response reconstruction, they either fo-

cused on ground motion parameter (not response) reconstruction or the measurement data

in the hybrid set was obtained from simplified models (as opposed to strong motion data).

Moreover, all of the prior studies in this area focused on individual buildings and none of

them incorporated performance-based assessment.

This study introduces an approach using data augmentation to address some of the short-

comings of existing methodologies by integrating simulated structural response data with

measured responses from instrumented buildings. An Extreme Gradient Boosting (XG-

Boost) model is used to develop a full-profile reconstruction of building responses at the

regional scale. Augmenting the measured data with simulated response data enables the
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Figure 6.1: Hybrid data-driven structural response reconstruction and regional impact as-

sessment procedure

model to learn from a broader spectrum of structural behaviors, resulting in a more robust

model. Moreover, by incorporating regional seismicity data, the model can account for vari-

ations in ground motion characteristics, further improving its predictive capabilities. This

approach to structural response reconstruction facilitates more accurate damage assessment

than models based only on simulated or measured data alone. The study culminates in us-

ing the structural responses from the predictive model to perform a regional seismic impact

assessment using the repair costs associated with earthquake-induced damage as the perfor-

mance metric. The overall procedure for the hybrid data-driven SRR model and regional

impact assessment is outlined in Figure 6.1.

.
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6.2 Description of the Data

The data set used in this study consists of strong motion recordings for buildings across

the state of California from various historical events, as well as simulated responses from

nonlinear structural models using OpenSees. Ground motions from a subset of the event

set are applied to the simulated models to obtain the response parameters of interest. The

augmented nature of the data is an important aspect in this study that compensates for

the inadequacies of the measured data alone. In general, buildings are only partially in-

strumented, typically containing sensors at the ground and roof levels, and few intermediate

levels, if any. Of course, this varies building to building, but none of the buildings in this

study are fully instrumented, and this is true in most cases. This means that other tech-

niques need to be employed in order to obtain full-profile responses. Interpolation and

machine learning methods are commonly used to fill in this information gap. The current

study attempts to alleviate this issue by augmenting the data set with simulated structural

response data, where the full-profile responses of analytical models are available. The ulti-

mate goal is to leverage this expanded set to make predictions on the full-profile responses

of uninstrumented or partially-instrumented buildings, which can be used as inputs into the

loss assessment.

6.2.1 Event Set and Instrumented Buildings

The data used in this study consists of instrumentation data from buildings across the state

of California, subjected to nearly 40 different events spanning from 1984 to 2020 with M

≥ 4. Information on the events, their locations, and the number of records for each event

can be found in chapter 2. The simulated set uses a subset of these events with M ≥ 6,

which are highlighted in Table 6.1. The instrumented recordings were collected from the

Center for Engineering Strong Motion Data (CESMD) database [25]. The ground motions

applied to the nonlinear structural models in OpenSees were collected from various station

recordings from the PEER NGA-West2 database [15]. The events in bold are the events
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whose ground motions were applied to the OpenSees models. Eight of the events with M

≥ 6 were selected from the set and ground motions from these events. Five ground motion

recording stations were selected for each event, resulting in a total of 40 ground motions

applied to each structural model. Figure 6.2 shows the 5% damped acceleration spectra of

the applied ground motions, as well as the median spectrum. Figure 6.3 shows a map of

station locations and the recorded ground motions for the Northridge Earthquake that are

applied to the simulated building models to illustrate the ”placement” of simulated buildings.

The event epicenter is indicated by the red dot, and the blue dots are the station locations.

As the source-to-site distance will be a feature in the predictive model, it was important to

obtain ground motion recordings at various distances from the event.

For each event, the data collected includes the magnitude, location, and depth of the

epicenter, shown in Table 6.1. For each building that has recordings for any of the events in

the set, the location, number of stories, story heights, Lateral Force Resisting System (LFRS),

ASCE 7-16 estimated period, and response history data are collected. These features will be

important in the predictive model for reconstructing the full-profile responses. After data

selection, the combined data set contains 718 unique data points that are included in the

analysis.

6.2.2 Nonlinear Structural Models

The structural models used to develop the simulated data set were generated using the Au-

tomated Seismic Design and Analysis (AutoSDA) platform, which is powered by OpenSees.

AutoSDA is a compilation of three previously developed design and analysis programs

(steelSDA, woodSDA, and rcwallSDA, [53, 36, 5]), created for their respective lateral force

resisting system types. An additional module for performing loss assessment was developed

and implemented into the platform.

For each LFRS type in AutoSDA, multiple archetypes were used to represent various

building configurations. Each archetype was subjected to the ground motions collected from

PEER-NGA. The seismic parameters were estimated based on the station locations where
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Table 6.1: Summary of events for which ground motions are used in the nonlinear response

history analysis

Name Depth (Km) M Date Latitude Longitude

Morganhill 9 6.2 4/24/84 37.32 -121.68

Whittier 9.5 6.1 10/1/87 34.06 -118.07

LomaPrieta 18 7 10/17/89 37.04 -121.88

BigBear 1 6.5 6/28/92 34.20 -116.83

Landers 1.1 7.3 6/28/92 34.22 -116.43

Northridge 19 6.4 1/17/94 34.21 -118.55

SanSimeon 4.7 6.5 12/22/03 35.71 -121.10

Parkfield 7.9 6 9/28/04 35.81 -120.37

Figure 6.2: Spectra of 40 ground motions used in the nonlinear response history analyses
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the ground motions were recorded. After applying all ground motions to each archetype, the

peak responses were recorded. When ”moving” an archetype to a new station location, this

is considered a new data point in the set. This not only refers to the seismic parameters,

but the source-to-site distance is based on the station location as well. The archetypes are

effectively placed at the locations of the ground motion recording stations. For example,

ground motions from eight of the events in the set are applied to the simulated models.

Five stations from each event are selected for the ground motions records. So, there are

40 ground motions applied to each model (80 when considering both directions). For the

steel moment frame buildings, 5 archetypes are created, resulting in 40 ground motions x 5

archetypes = 200 data points for just this LFRS type. After all data points are generated

for each LFRS type, only a subset is used in the final augmented set. Some responses

may be too small. Also, in rare cases, the simulation may detect collapse, and in the final

case, the buildings are selected such that the feature distributions of the simulated and

instrumented sets are similar. Additionally, it was decided that the number of simulated

points should not exceed the number of instrumented as the simulations are only meant

to aid the predictions of uninstrumented or partially instrumented buildings, not create a

model that is good at predicting simulated building responses. The goal is, again, to develop

a generalized response prediction model that will better capture the full-profile response of

buildings than an instrumentation-only set. The loss assessment, which utilizes FEMA P-58

methodology also depends on demand data at each floor and story of a building to estimate

potential losses and repair times. Missing data is a limitation for this type of assessment,

such as with partially instrumented buildings.

6.2.2.1 Steel moment frame archetypes

The steel frame building models are based on building designs generated and stored in the

database developed in [78]. The database of 621 code-conforming designs consists of 1, 5,

9, 14, and 19-story steel moment frame buildings with various configurations. One building

from each class of number of stories was randomly selected from the database to be used as
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Figure 6.3: Map showing the stations where ground motions for the Northridge earthquake

were recorded

archetypes for generating the structural models and responses in AutoSDA. Figure 6.4 shows

a visual representation of one of the steel moment frame archetypes used in the study. A

summary of the selected steel moment frame archetype geometries are outlined in Table 6.2.

The inputs include information about the building geometry and the loading conditions.

The loading conditions for each archetype can be found in Table C.1

6.2.2.2 Woodframe archetypes

The woodframe buildings in the set were obtained from the Applied Technology Council

(ATC) 116 project archetypes [11]. The archetypes are for 1, 2, and 4 story woodframe

buildings. Basic inputs for these archetypes are shown in Table 6.3, but it should be noted

that woodSDA requires significantly more input information than the other modules in order

to be executed. Extensive information on the panel properties and loading are also necessary.

To aid in the creation of the input files, there are templates included in WoodSDA, also based
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Figure 6.4: Archetype 279: Five Story Steel Moment Frame

Table 6.2: Steel moment frame archetype building geometry

Archetype

ID

No.

Stories

No.

X Bays

No.

Z Bays

1st

Story

Height

Typical

Story

Height

X Bay

Width

Z Bay

Width

No.

X LFRS

No.

Z LFRS

22 1 3 3 26 13 20 20 2 2

279 5 5 5 13 13 30 30 2 2

765 9 5 5 13 13 30 30 2 2

1188 14 5 5 26 13 20 20 2 2

1566 19 5 5 13 13 20 20 2 2
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Figure 6.5: Floor plan for woodframe building Archetype 196481

on the ATC-116 archetypes. The floor plan for one of the woodframe archetypes is shown

in Figure 6.5. Information on the building loads are listed in Table C.2.

6.2.2.3 Concrete shear wall archetypes

Archetypes developed by [5] were used to create the concrete shear wall models. The

archetypes have the same floor plan, but vary based on the number of stories in the building

as well as the length of the shear walls. A typical plan for the RCWall building type is shown

in Figure 6.6. The building geometry for each archetype is outlined in Table 6.4 and the

loading conditions are presented in Table C.3. Because the archetypes all share the same

plan configuration, a few more archetypes are selected for the RCWall buildings to introduce

more variation into the set for this building type.

6.2.3 Component Population

For the loss assessment module, information such as the total replacement cost of a building

and component definitions are needed. The component populations were generated using the

Seismic Performance Prediction Platform (SP3) [57], which relies on a database of building
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Table 6.3: Woodframe archetype building geometry

Archetype

ID

No.

Stories

Length

(ft)

Width

(ft)

Floor

Areas

(ft2)

Floor Max X

Dimension

(in)

Floor Max Z

Dimension

(in)

Story

Height

(in)

No. X

Wood

Panels

No. Z

Wood

Panels

148321 1 48 32 1536 576 384 120 13 8

196481 1 96 48 4608 1152 576 120 17 16

248321 2 48 32 1536 576 384 120 13 8

296481 2 96 48 4608 1152 576 120 18 9

496481 4 96 48 4608 1152 576 120 16 16

Figure 6.6: Typical floor plan for reinforced concrete shear wall building archetypes
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Table 6.4: Summary of geometric information for RC shear wall archetypes

Archetype

ID

No.

Stories

Building

length

(ft)

Building

width

(ft)

No.

Parallel

Bays

No.

Perpendicular

Bays

1st

Story

Height

(ft)

Typical

Story

Height

(ft)

Wall

Length

(in)

1 2 75 150 3 6 12 12 144

2 2 75 150 3 6 12 12 120

3 4 75 150 3 6 12 12 288

5 4 75 150 3 6 12 12 192

7 8 75 150 3 6 12 12 576

11 8 75 150 3 6 12 12 288

12 12 75 150 3 6 12 12 864

16 12 75 150 3 6 12 12 432

and component information collected from FEMA. In order to generate the potential losses

for a portfolio of buildings, as is the aim of this study, unique building models were created

and used to generate likely components based on attributes such as the LFRS-type, occu-

pancy type and number of stories. The program outputs a table that lists the components

as well as their locations within the building and fragility parameters. The components,

building area, estimated costs per square foot and median collapse capacity and dispersion

in terms of SaT1 for the building models are the only information being used from the pro-

gram. The median collapse capacity, which are used to generate a global collapse fragility,

is estimated in SP3 as the spectral acceleration at which the building has a 50% probability

of collapse. This is calculated using FEMA P-154 [49], which provides a simplified scoring

procedure.

The building occupancies for the instrumented set from CESMD were matched using the

station name. Many of the names included common phrases such as ”Hospital”, ”School”,

or ”Office Building”, which made assigning their occupancies straight forward. FEMA P-
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58 uses occupancy designations (Warehouse, Healthcare, Education, Hospitality, Single and

Multi-Unit Residential, and Commercial Office) to classify buildings by use. The simulated

set of buildings were randomly assigned one of these occupancies. The unique combinations

of LFRS-type, occupancy type and number of stories were extracted from the data, resulting

in approximately 90 unique component population models created in SP3. After each model

was created, the component information was compiled into csv files to be used in the loss

assessment. When the loss assessment is run, the building is matched to one of the population

models, so that the appropriate component information csv file is selected for the assessment.

An example of the component information as well as component fragilities that can be

collected from SP3 are outlined in chapter 5.

6.3 Description of Machine Learning Model

For this study, an extreme gradient boosting (XGBoost) model is used to perform the full-

profile EDP predictions. A detailed description of XGBoost models is provided in chapter 3.

For model training, a 70-30 train-test split is used with the augmented set (instrumentation

+ simulated data). Uncertainty quantification is not native to XGBoosting models, but will

be necessary to propagate to the loss assessment. To alleviate the lack of native support,

bootstrapped boosting is performed over 1000 repetitions, and the median and logarithmic

standard deviation of the predictions will be used for the loss assessment. The simulated

data serves two purposes: in training, it provides full-profile response data that the instru-

mentation set lacks, and in testing, it acts as a full-profile response prediction validation

set. Two separate models are trained for comparison. One model is trained on the measured

data only, and the other is trained with both simulated and instrumented data.

Features used in model training include the building height (Hj for building j), first mode

period (T1), source-to-site distance (R), event magnitude (M), Base Area of the building

(A), one-hot encoded LFRS-type, and the story height ratio (SHR). The SHR, shown in

Equation 6.1, is essentially a normalized story height, which is used in lieu of the absolute

story height (hi at story i) value, as it is expected that the relative position in the building is
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more useful in terms of potential correlational relationships with the response. This feature

will also allow for more apt comparison of model performance with a data set that has a

wide range of building heights and number of stories. The simulated building set is selected

such that the number of simulated data points did not overwhelm the measured data, leaving

approximately half of the training points as instrumented and half as simulated. The feature

distributions of the buildings across the two groups are also similar. In Figure 6.7, the

distributions for the number of stories, source-to-site distance, and LFRS types are shown.

The primary goal of this model is to assess how the data augmentation process may provide

a more generalized model when predicting full-profile structural responses. The performance

at various SHRs will be evaluated and compared between the two models to directly address

this point.

SHRij = hi

Hj
(6.1)

6.4 Full-Profile Response Prediction

Figure 6.9 shows the observed vs predicted points with a red line indicating perfect agree-

ment. These plots show, similarly for PFA and PSDR that the measured-only training set

does not perform as well as the augmented set. This is likely due to the additional infor-

mation on intermediate SHR values for buildings in the augmented set. To assess the fit

of the models to the training and testing sets, the R2 values are shown in Table 6.5. The

measured-only model fits well to the training data, but does not perform well on new data,

as shown by the significantly lower R2 for the test set. This is not surprising, given the model

is being expected to predict full-profile structural responses with only partially-instrumented

building data for training. The augmented model shows similar fits to the training and test-

ing set, meaning it generalizes well for predictions at new data points. Again, this follows

expectation as this model has full-profile response data in its training set, and therefore, is

better able to make full-profile response predictions.
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(a) (b)

(c)

Figure 6.7: Comparison of building characteristics in the simulated versus measured data

sets: a) number of stories, b) source-to-site distance, and c) LFRS type
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Table 6.5: R2 values for both models

Augmented Measured

Train Test Train Test

PFA 0.99 0.93 0.99 0.25

PID 0.99 0.90 0.99 0.38

NRMSE = 1
Ymax − Ymin

√∑N
i=1 (Yi − Ŷi)2

N
(6.2)

The normalized root mean squared errors (NRMSE) of the two models are compared

for the overall models as well as at binned SHR levels. In Equation 6.2, Ymax and Ymin are

the maximum and minimum values of the observed target, and Yi is the observed target for

data point i. Ŷi is the predicted target for data point i. The NRMSE is 0.191 and 0.108 for

PSDR, for the measured and augmented models, respectively. This shows that the error is

nearly twice as large for the measured-only model. Similarly, for PFA, the values are 0.130

and 0.062. In addition, Table 6.6 and Table 6.7 describe the performance at various SHRs

in the buildings. The augmented model outperforms the measured model at every binned

level. An important detail to point out is that at the floor, roof, and mid levels of the

buildings, the measured model performs best. This is consistent with our intuition because

these are often locations at which sensors are placed. The model performance decreases at

the intermediate levels where sensors are less often placed. Figure 6.8 shows a histogram

of the SHRs where sensors are located in the instrumented buildings. From this figure, the

most common locations are the ground level, roof level, and a slight peak around an SHR

value of 0.5, which corroborates the findings.

The superior predictive performance of the model trained on augmented data can be

seen in Figure 6.11 and Figure 6.12, where the full profile response predictions for a 12-

story simulated building and 10-story instrumented building in the test set are visualized.

The augmented model better captures the shape of the full-profile response of the simulated
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Figure 6.8: Histogram of story height ratios in the instrumented set

(a) (b)

Figure 6.9: Predicted vs Actual for PFA a) measured-only trained model and b) augmented-

trained model
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(a) (b)

Figure 6.10: Predicted vs Actual for PSDR a) measured-only trained model and b)

augmented-trained model

Table 6.6: NRMSE for PFA

SHR Augmented Measured

0 0.083 0.129

(0,0.2] 0.144 0.342

(0.2,0.3] 0.131 0.301

(0.3,0.4] 0.147 0.332

(0.4,0.6] 0.121 0.251

(0.6,0.8] 0.126 0.284

(0.8,1] 0.131 0.329

1 0.070 0.155

Table 6.7: NRMSE for PSDR

SHR Augmented Measured

0 - -

(0,0.2] 0.163 0.246

(0.2,0.3] 0.153 0.231

(0.3,0.4] 0.109 0.224

(0.4,0.6] 0.100 0.162

(0.6,0.8] 0.099 0.207

(0.8,1] 0.154 0.278

1 0.118 0.221
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(a) (b)

Figure 6.11: Full-profile response predictions of a 12-story simulated building in the test set

building, with narrower confidence bands. In the second example, showing the response

of a partially instrumented building, the performance is more similar with respect to the

information available on the buildings response. This is promising because the simulated

dataset appears to at least meet the performance of a measured-only trained model predicting

responses of instrumented buildings. The ability to better predict the full-profile response

of a building reduces reliance on the instrument location for rapid response reconstruction,

though it does still introduce uncertainty. The uncertainty in these predictions will be

propagated to the loss assessment, replacing what would traditionally be the median and

logarithmic standard deviation of the demand obtained through nonlinear response history

analysis, with the median and logarithmic standard deviation of the predicted demand from

the ML model.

6.5 Assessment of Potential Losses

In traditional approaches, the distributional demand parameters that would be used in the

loss assessment would be obtained by applying a suite of ground motions to a structural
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(a) (b)

Figure 6.12: Full-profile response predictions of a 10-story instrumented building in the test

set

model and calculating the median and logarithmic standard deviation of the demand. With-

out generating a structural model for each instrumented building in the set, we are unable to

perform the necessary analyses to do this for these buildings. The current implementation

seeks to perform this loss assessment incorporating real demands of the instrumented build-

ings by predicting the full-profile response with an ML model. Based on the predictions and

the model uncertainty obtained in the model application, the FEMA P-58 loss assessment in

pelicun is run. The predictions and uncertainty from the model are used as the demand me-

dian and the log-standard deviation that define the lognormal sampling distribution for the

assessment. Each building is matched to a component population file, as outlined in 6.2.3.

For comparison to the real responses in the test set, and as an estimate of the uncertainty in

the measured responses, the maximum allowable accelerometer noise of 0.03mg, as outlined

in the CSMIP guidelines for instrumentation [22], was assumed as an approximation of the

dispersion for the loss assessment. For accelerometers, noise is often described in terms of

Root-Mean-Square (RMS) noise. As the noise type was not specified, this was assumed. The

equation for RMS is shown in Equation 6.3, which is very similar to the standard deviation

calculation for data centered around 0. A brief example illustrating the loss assessment on an
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individual building level is outlined in chapter 5. This process is performed on each building

in the set in this study, but the results are aggregated for a regional-scale assessment.

XRMS =

√√√√ 1
N

N∑
i=1

x2
i (6.3)

Figure 6.13 and Figure 6.14 show box plots of the mean building-specific repair costs and

repair times, separated by event magnitude for each of the 2 model predictions and the test

set. The plots show a general upward trend in repair costs as the magnitude increases. The

wider box plot whiskers in the estimate based on measured model predictions reflect the

higher uncertainty. Again, the demand realizations are generated from the uncertainty in

the ML model predictions. It is important to note that the test set contains missing data, as

the non-instrumented floors in the building do not have recordings. These values are left as

NaN in the analysis, and do not contribute to the damage and loss calculations. Given the

limited response range of the data set, the loss analysis returned that some buildings did not

experience any damage in any of the 10,000 realizations of the response. The loss estimates

based on the predictions from the augmented model returned 33 undamaged buildings, the

measured model returned 29, and the test returned 38. The box plots in the mentioned figures

omit the buildings that were not assessed to experience damage for visualization purposes.

The distributions of aggregated repair costs for each event are shown in Figure 6.15. The

figures show similar distribution of the repair costs across the different models. It is notable

that the test set often underestimates the repair costs, in some cases, reporting no repair

costs, where the other models report minor or moderate costs. This is expected behavior

given that the trained models have more information on the intermediate floors.

Figure 6.16 shows a positive trend for the mean building-specific repair cost against the

individual building demand, with respect to SaT1 , for all 3 conditions. While the models fol-

lowing the expected general trends is promising, in a more practical setting for rapid response

and recovery, the loss would be estimated at an event-level. Even with the augmented data,

the size of the dataset is still limited relative to a regional-scale assessment, but the example

provided in Figure 6.3 illustrates a potential use for the model implementation, especially
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(a) (b)

(c)

Figure 6.13: Box plots showing the relationship between the magnitude of mean building-

specific repair cost for buildings experiencing damage for the a) augmented model predictions,

b) measured model predictions, and c) test set
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(a) (b)

(c)

Figure 6.14: Box plots by magnitude of mean repair time for buildings experiencing damage

for a) augmented model predictions, b) measured model predictions, and c) test set
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(a) (b)

(c)

Figure 6.15: Aggregated repair costs by event for a) augmented model, b) measured model,

and c) test set
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Figure 6.16: Mean repair cost vs median demand (SaT1)

given a much larger and more robust dataset. The Northridge earthquake was selected from

the set, as it is one of the events with the most recordings. The buildings in the test set

corresponding to this event are plotted on a map with the event epicenter. The individual

repair cost for each building is normalized by its replacement cost, and the coefficient of

variation of the Monte Carlo samples generated for a building are scaled by color to compare

the uncertainties in the estimates. The map generated based on losses from the augmented

model predictions show that there is, in general, lower uncertainty in the estimates compared

to the measured and test set models. It appears that the model trained on measured-only

data makes larger predictions with large uncertainty. This may be explained by the fact

that instruments are often placed in locations in buildings that are expected to experience

larger responses. So, the predicted building responses are based on training data that are

generally larger in magnitude. These maps are shown as a way to compare the loss output

from the various models. Figure 6.18 shows a map with an expanded set by combining the

augmented model predictions and the training set, in order to better illustrate what a more

realistic map with more data may look like. These maps are similarly scaled based on size

and color by the normalized repair cost/time and coefficients of variation.
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(a) (b)

(c)

Figure 6.17: Map showing building locations, color coded by median-normalized repair cost

for a) augmented model, b) measured model, and c) test set

140



(a) (b)

Figure 6.18: Map showing building locations of the combined training set and augmented

model predictions with color scaled by mean and size scaled by standard deviation for a)

repair cost and b) repair time

6.6 Conclusions

In this chapter, a hybrid data approach to regional response reconstruction and loss estima-

tion is introduced. Strong motion data collected from buildings across the state of California

are combined with simulated responses to create a more generalized training set for predicting

full-profile structural responses. An Extreme Gradient Boosting (XGBoost) model is trained

on the hybrid data (measured + simulation) and used to predict the full-profile responses

on a hold out set. The model trained with augmented data significantly outperformed the

one trained on only measured data, better capturing the profile of the test set responses.

This can be attributed to the larger training set and the full-profile response data (the lat-

ter is not included in the measured-only model). The normalized root mean squared error

(NRMSE) was compared across the two models for overall performance, as well as at various

story height ratios (SHR). The model trained on the hybrid data had an overall NRMSE of

0.108 and 0.062 for PSDR and PFA, respectively. The predictions from the measured-only

model were 0.191 and 0.130. This shows that the data-augmentation doubled the predictive
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performance for this metric. Also, the hybrid data model performed better at every level of

the binned SHR values. An instrumented building and a simulated building from the test

set are used as an example to further highlight the performance, with the hybrid data model

predictions better capturing the response shape with lower uncertainty.

The median and log-standard deviations of the predictions, obtained from bootstrapped

sampling, are used as input into the loss assessment performed using the pelicun package

in Python. The estimated repair costs and times obtained from each model are compared

and mapped to highlight spatial patterns in the predictive performance. The overall trends

in the augmented, measured, and test model repair costs/times are similar, with the latter

two models consistently showing higher degrees of uncertainty in the estimates. This larger

uncertainty of the measured model compared to the augmented model is explained by the

propagated uncertainty from the response predictions. The larger uncertainty in the test set

relative to the augmented set is likely due to the missing data. The instrumented buildings

in the test set do not have the full-profile responses, as sensors are not placed at every floor.

So, the responses at these floors are omitted from the assessment, increasing the uncertainty

in the estimates.

The current implementation of this hybrid data model for regional assessments has various

limitations. While the approach to utilize the uncertainty in the predictions from the machine

learning model for the loss assessment allows for defining a demand distribution of real

responses that would otherwise require additional nonlinear response history analysis, the

trade-off is that the loss output depends on model selection/performance, so this should

be carefully considered. Also, if the full design and analysis are to be run, it requires

substantial computational expense and time. Running the entire design and analysis for every

simulated building takes extensive computational power before even reaching the predictive

modeling stage. In practical settings, hybrid models would benefit from a suite of previously

analyzed structural models. The structural models can be selected such that the feature

composition matches the needs of the engineer or researcher for a particular region being

analyzed. This would remove the need to perform the design and/or analysis for every
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simulated building that is attached to the set, and the EDPs can be directly extracted,

making it more feasible for rapid post-event impact assessment. Future studies could utilize

the full extent of databases, such as that developed in [78]. Finally, the loss assessment is

highly dependent on the resolution of the information provided. In this study, for example,

unique component population models were created in SP3 based on the LFRS type, number

of stories, and occupancy. Every building that is paired with a specific population model has

the same component distribution, and only components available in the fragility database

provided with pelicun are used. The analysis also did not use the ”blocking” feature in

pelicun to consider damage states in series, and assumed components/floors were damaged

in parallel.

The prediction model presented in this study offers a novel implementation of using

hybrid data for structural response reconstruction and regional impact assessment. It comes

with limitations related to assumptions in the information provided, given specifying detailed

information for each building may be infeasible on large scales. Despite these limitations,

it presents a promising avenue in rapid post-earthquake impact assessment utilizing strong

motion data.
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CHAPTER 7

Conclusions

7.1 Summary

The studies outlined in this dissertation sought to improve upon and develop new methods

for rapid post-earthquake impact assessment suing strong motion data. In chapter 2, a

well-organized database of strong motion building response data was developed, creating an

easily accessible repository for future research studies. The database addressed limitations

found in other seismic data repositories. Some of these databases are limited to a single

building type, whereas the one presented has a wide range of structural systems. Another

issue is often related to accessibility. Some users may not have the necessary background for

extracting the database information, an example of this is the need for targeted querying. A

python tool that allows users to extract and visualize data without manually writing queries

is provided to help mitigate accessibility issues. The database is also expandable to include

more buildings and events, and even potentially data from other hazards.

In chapter 3, a novel dual-model formulation for predicting event-agnostic maximum

building responses was created that improves on previous similar models. The dual model

used kriging to leverage the spatial relationship of peak ground acceleration (PGA) with

the event and site characteristics in a machine learning model. This phase successfully

improved the predictive performance of an extreme gradient boosting (XGBoost) algorithm

for the engineering demand parameters (EDPs) of interest. The dual model was particularly

effective in improving maximum peak floor acceleration (maxPFA) predictions.

Chapter 4 evaluated the effectiveness of several ground motion intensity measures that

are candidates for input features into the response prediction models. Sufficiency, efficiency,
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and a series of causal inference methods were used to evaluate the performance of the various

ground intensity measures (IM) using building strong motion response data. This contrasts

with prior IM evaluation studies which have all utilized simulated structural responses. The

findings showed that cumulative absolute velocity (CAV) generally outperformed the other

considered IMs, which is consistent with prior studies based on simulation data. PGA was

generally the least effective, especially with respect to estimating the peak story drift ratio

(PSDR). Some unexpected findings were related to the spectral IMs under-performing and

all IMs being insufficient with respect to source-to-site distance, which was likely due to the

small sample size, as sufficiency is documented as being sensitive to this.

In chapter 5, a platform for generating code-conforming designs and performing nonlinear

response history analyses was developed, building on three previously developed LFRS-

specific platforms. The combination of these programs with the addition of a module for

performing loss assessment using FEMA P-58 methodology provides for an end-to-end multi-

LFRS framework for design, analysis, and performance assessments on the regional scale.

An single example building, designed and analyzed in AutoSDA, was used to illustrate the

end-to-end process that can be aggregated over a portfolio for regional impact assessments,

as shown in chapter 6. In this chapter, the platform was used to generate a suite of simulated

building responses, based on the ground motions from events collected in chapter 2. The

instrumentation data from the database was then combined with these simulated responses to

create a hybrid data training set for a structural response reconstruction model. This data

augmentation, or hybrid dataset, provided for a more generalized prediction model that

better characterized the full-profile response of buildings in the test set compared to the

instrumentation data alone. This was exhibited in the better overall predictive performance,

especially when stratified by the normalized floor height of the building, as well as the

reduced uncertainty of these predictions. This technique served as a way to address the

limitation of partial building instrumentation which is a common research problem in the

literature. It is important to note that the benefits of this model formulation may not only

be attributed to the full-profile responses provided by the simulated set, but also by the fact
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that there is simply more data available in model training. It helps to address two forms of

partial instrumentation: (1) within a single building and (2) across a portfolio of buildings

where some are entirely uninstrumented, but it also can be seen as a way to mitigate issues

of small sample size, in general. The study then proceeds to a loss assessment, showcasing

the potential use of this model formulation for rapid-response resource allocation. The

uncertainty from the response predictions were propagated to the loss assessment, and the

potential benefit of this model formulation was showcased using loss maps for an inventory

of buildings subjected to an event. The uncertainties in the loss assessment were generally

lower for the estimates generated based on the augmented model predictions compared to

the measured-only model predictions and the test set.

7.2 Limitations and Future Work

The studies presented in this dissertation are not without their limitations, which can serve

as a source of inspiration for future research.

The database presented in chapter 2 is primarily composed of structural response data

that remains in the linear-elastic range, which limits its applicability for studies on nonlinear

behavior in structures. The database was developed with the intention of supporting future

expansion. Future work can focus on integrating a more robust building response range into

the database, as well as expanding it to a multi-hazard data repository.

Chapter 3 developed a predictive model for reconstructing maximum seismic building

responses. The study had several limitations. The dataset is limited in size, primarily con-

sisting of events with magnitudes between 4 and 6 and buildings under 20 stories located

within 100 km of the earthquake source. Additionally, it inherits the limitation from the

database, representing mostly linear-elastic building responses, limiting the model’s ability

to generalize, particularly for damage detection. The two-phase model structure introduces

error and uncertainty during the initial kriging phase used to estimate Peak Ground Acceler-

ation (PGA), although it improves overall performance. However, PGA is not well-correlated
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with displacement- or deformation-based engineering demand parameters (EDPs), which re-

sulted in insignificant effects on model performance for drift predictions. Given the model’s

focus on only maximum responses, it also doesn’t capture localized damage. A later chap-

ter implements a similar model that addresses this limitation, predicting full-profile peak

responses.

Chapter 4 attempts to address one of the limitations presented in the previous chapter,

where an IM was well-correlated with one demand parameter, but poorly correlated with

another. This chapter focused on assessing the effectiveness of various IMs with building

response. Notably, in this study, the structural characteristics of the buildings are imbal-

anced, with most being low- to mid-rise structures and very few high-rises. This imbalance,

combined with the small dataset size, prevented the study from accounting for heterogeneous

effects, such as varying performance across different building heights. The limited data size

also restricted the effectiveness of some of the causal analysis methods. Future research can

overcome these limitations by expanding the dataset to include a broader range of demand

levels, potentially through a hybrid set combining recorded and simulated data (similar to

chapter 6). This would allow for better balance in structural characteristics and enable more

comprehensive causal analyses and moment balancing. Additionally, as the study in this

chapter sought to provide insights on how to better implement the IMs in a model such as in

chapter 3, future studies should consider the uncertainty in the prediction of these IMs. This

would help to answer whether the trade-off of increased average predictive performance is

worth the additional quantified uncertainty that is introduced in the first phase of the model.

Although some IMs may be determined to be more effective predictors for a particular EDP,

they may not be well-correlated spatially, possibly eliminating any presumed advantage of

the first phase of the model.

Building upon techniques and limitations of previous chapters, chapter 6 sought to in-

troduce a hybrid data model to alleviate the issue of partial instrumentation. Structural

responses obtained from models designed and analysed in an automated seismic design and

analysis (AutoSDA) platform were combined with instrumentation data from the developed
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database. The addition of the simulated structural model responses improved the models

ability to reconstruct full-profile responses. This directly addresses a major limitation of

chapter 3, but the model selection/performance still introduces uncertainty. Another source

of uncertainty lies in the assumptions that were necessary in order to execute the study. It is

assumed that the simulated structural models accurately depict real building responses, how-

ever, it would be interesting to quantify the validity of this assumption. Future studies could

attempt to measure the difference in simulated models and their instrumented building coun-

terparts and include this in the uncertainty quantification portion of the framework. A recent

study [52] that implemented a hybrid method did this by using a calibrated shear-flexural

beam model and calculating the residuals between measurements and the beam models pre-

dictions. It trained a Gaussian Process model on these residuals as a second phase to make

a final prediction. This effectively quantified the error associated with simulated models and

included it in the predictions for building response, but for a single building. This study

offers a potential way to improve the implementation of the hybrid data framework in the

dissertation. The loss assessment depends heavily on the resolution of available information.

The component populations were generated based on LFRS-type, occupancy, and number of

stories in the building. The Python package that implements the loss assessment method-

ology was limited in the available component fragility parameters. Moreover, individually

selecting each component for a building, using engineering judgement or external sources

to estimate the parameters was not feasible given the size of the inventory, so not all of

the available components were used. Additionally, the median collapse capacity used in the

loss assessment was based on the estimates provided by SP3, which is based on a simplified

procedure outlined in FEMA P-154. A better alternative would be to obtain the collapse

capacity from explicit simulations. Future work could consider developing an extended com-

ponent fragility database. Additionally, a database such as the one developed in [78], but

with a more diverse set of buildings (i.e. other LFRS types, seismic design characteristics,

etc) would greatly benefit the hybrid data models. Specifically, it would reduce the compu-

tational expense associated with generating the full design and structural responses for the

building set. A search algorithm based on structural attributes could be used to select the
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buildings and responses to be implemented into the model.
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APPENDIX A

Database Tables

Table A.1: Building information table

Attribute Database Variable Data Type Example

LightCyan Building ID ID INT 23285

Height (ft) height INT 804

No. of Stories Above Ground num stories above INT 5

No. of Stories Below Ground num stories below INT 1

No. of Channels num channel INT 10

X Channels X channel VARCHAR(255) 3(-1);5(5);9(2)

Y Channels Y channel VARCHAR(300) 1(-1);4(5);6(5);7(5);8(2);10(2)

Z Channel Z channel VARCHAR(255) 2(-1)

Level Height story height VARCHAR(400) -156;0;180;336;492;648;804

Lateral Force Resisting System LFRS VARCHAR(255) Shear Wall

Instrumentation Year instrumentation date YEAR 1976

Design Year design date YEAR 1968

Base Dimensions base dimensions VARCHAR(255) 261’-7 1/2”x 138’-8”

Green Site ID site ID VARCHAR(255) SITE 23285

Table A.2: Earthquake information table

Attribute Database Variable Data Type Example

LightCyan Earthquake ID ID VARCHAR(255) Ridgecrest

Earthquake Name name VARCHAR(255) Ridgecrest

Earthquake Date date DATE 7/05/2019

Epicenter Longitude epicenter longitude DECIMAL(7,4) -117.5993

Epicenter Latitude epicenter latitude DECIMAL(6,4) 35.7695

Magnitude magnitude DECIMAL(2,1) 7.1

Fault Type fault type VARCHAR(255) strike-slip

Focal Depth focal depth DECIMAL(3,1) 8

No of Recordings num recordings INT 67
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Table A.3: Earthquake-Building junction table

Attribute Database Variable Data Type Example

LightCyan Earthquake-Building Pair ID ID VARCHAR(255) Ridgecrest 23285

Green Building ID building ID INT 23285

Green Earthquake ID earthquake ID VARCHAR(255) Ridgecrest

Table A.4: Site information table

Attribute Database Variable Data Type Example

LightCyan Site ID ID VARCHAR(255) site 23285

Site Geology geology VARCHAR(255) Deep Alluvium

Site Class site class VARCHAR(255) D

Vs30 Vs30 VARCHAR(255) 337 (inferred)

Latitude latitude DECIMAL(6,4) 34.1822

Longitude longitude DECIMAL(7,4) -117.3242

Elevation (m) elevation INT 459

City city VARCHAR(255) San Bernardino

Table A.5: Response history table

Attribute Database Variable Data Type Example

LightCyan Response History ID ID VARCHAR(255) Ridgecrest 23285 Chn3

Sensor Reading Interval (s) sensor interval DECIMAL(5,4) 0.01

Displacement (cm) displacement MEDIUMTEXT -0.0001479,-0.0001462,-0.0001446,-0.0001429...

Velocity (cm/s) velocity MEDIUMTEXT 0.0001636,0.0001648,0.0001661,0.0001674...

Acceleration (cm/s/s) acceleration MEDIUMTEXT 0.000124,0.000123,0.000126,0.000124,...

Green Earthquake-Building Pair ID ID VARCHAR(255) Ridgecrest 23285
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APPENDIX B

MySQL Schema

Figure B.1: Schema implementation in MySQL
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APPENDIX C

Archetype Loading Conditions

Table C.1: Steel Moment Frame Archetype Loading Conditions

Archetype Floor

floor

weight

(lb)

floor

dead load

(psf)

floor

live load

(psf)

beam

dead load

(plf)

beam

live load

(plf)

leaning

column

dead load

(kips)

leaning

column

live load

(kips)

22 Typical 1800 80 50 800 500 900 562.5

279
Typical 1800 80 50 1200 750 900 562.5

Roof 450 20 50 300 300 225 562.5

765
Typical 1800 80 50 1200 750 900 562.5

Roof 450 20 50 300 300 225 562.5

1188
Typical 1125 50 50 500 500 562.5 562.5

Roof 450 20 50 200 200 225 562.5

1566
Typical 1125 50 50 500 500 562.5 562.5

Roof 450 20 50 200 200 225 562.5
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Table C.2: Wood Frame Archetype Loading Conditions

Archetype Floor floor weight (kips) interterio wall weight (psf) live load (psi)

148321 Typical 51 11 0.345

196481 Typical 141 11 0.345

248321
Typical 70 11 0.345

Roof 53 11 0.345

296481
Typical 182 11 0.345

Roof 144 11 0.345

496481
Typical 237 11 0.345

Roof 149 11 0.345

Table C.3: Reinforced Concrete Shear Wall Archetype Loading Conditions

Archetype Floor floor dead load floor live load

1 Typical 125 40

2 Typical 125 40

3 Typical 125 40

5 Typical 125 40

7 Typical 125 40

11 Typical 125 40

12 Typical 125 40

16 Typical 125 40
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