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ABSTRACT OF THE DISSERTATION 
 

 

Computational Analysis of RNA Editing in Human Cancer 

 

 

by 

 

 

Tracey Chan 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2021 

Professor Xinshu Xiao, Chair 

 

 

Discoveries of several oncogenic and tumor-suppressive RNA editing sites have 

revealed critical roles of editing in cancer and led to the detection of large-scale 

aberrations in tumors depending on cancer type. Yet, how these abnormal editing 

events arise, their contributions to tumor development and spread, and the cancer 

editomes in individual cell types are generally unknown. In this dissertation, we 

investigated the functional consequences of altered editing in tumors from the level of 

bulk tissues to single cells.  
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Expanding upon examples of individual editing sites that promote tumor 

metastasis, we probed the global editing differences between epithelial and 

mesenchymal phenotypes in multiple cancer types. Supported by experimental 

validations, differential editing sites were found to affect mRNA abundance of immune 

response genes. Furthermore, we identified a novel mechanism of editing-dependent 

stabilization involving ILF3.  

 

Next, we analyzed RNA editing profiles of single cells and individual cell types in 

lung cancer. Cancer cells were distinctly hyperedited compared to other cell types in the 

tumor microenvironment. Gene ontology enrichment analyses further suggested cell-

type specificity of differential editing. As we observed that cancer-specific editing 

correlated with features of immune suppression and overall survival, increased editing 

levels in cancer cells may support tumor progression by repressing innate immune 

responses.  

 

Prompted by the apparently diverse contributions of editing to tumor immunity, 

we sought to identify dsRNA editing candidates that may indicate response to immune 

checkpoint blockade treatment in melanoma patients. Notably, this analysis revealed 

the strong candidate dsRNAs that were also correlated with interferon stimulation 

signatures in lung cancer. Underlying the observed dsRNA associations with treatment 

response and survival is likely enhanced innate immune signaling activated by unedited 

dsRNAs.  
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Chapter 1: Introduction 

 

  Post-transcriptional modifications of individual RNA nucleotides broaden the 

proteome and regulate gene expression1,2. The most abundant form of RNA editing in 

the human transcriptome is the deamination of adenosine (A) to inosine (I), which is 

called A-to-I editing. Two members of the adenosine deaminases acting on RNA 

(ADAR) family of proteins, ADAR1 and ADAR2, catalyze this process3. Since ribosomes 

and other RNA processing machinery read inosines as guanosines (Gs), A-to-I editing 

events are interpreted as A-to-G mismatches to the genome2. In protein-coding regions, 

edited sites are RNA mutations that can cause changes in amino acid sequence and 

ultimately protein function. As the majority of editing sites are located in noncoding 

regions, their functions are still largely unknown. Effects of certain noncoding editing 

sites include alternative splicing patterns, altered miRNA sequences or target 

accessibility, and inosine-specific mRNA degradation2–5.  

 

 Besides the functions reported for specific editing sites, modifying endogenous 

dsRNAs to avoid activating innate immune responses is considered an essential role of 

RNA editing2. Due to the high abundance and similarity of Alu repetitive elements in the 

human genome, a pair of inverted Alu repeats may reside in the same RNA transcript 

and form a dsRNA structure similar to the structures of many viral RNAs2,6. As a result, 

cytosolic dsRNA sensors may recognize these Alu-formed dsRNAs similarly as viral 

dsRNAs and erroneously induce production of interferons (IFNs), suspension of 

translation, and inhibition of cell growth7. Since ADARs target dsRNAs, RNA editing 
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events impair base pairing and likely remodel these RNA structures, thus preventing 

recognition by dsRNA sensors and providing a mechanism of tolerance to self RNAs2,7–

10. This role is thought to explain the embryonic lethality and inflammation of both 

ADAR1-null mice and ADAR1-editing-deficient mice7,11,12. Furthermore, loss of editing 

may mediate onset of Aicardi-Goutières syndrome (AGS), a genetic disease with clinical 

presentation similar to infection, caused by ADAR1 loss-of-function mutations13–15.  

 

 Acting as oncogenic drivers or tumor suppressors, RNA editing events in both 

protein-coding and noncoding regions may play important roles in the pathogenesis of 

various cancer types and consequently may serve as clinical targets for therapy16–19.  

Demonstrated in multiple cancer types, an AZIN1 recoding site inhibits degradation of 

oncogenic ODC and cyclin D1, thereby facilitating cell proliferation and 

metastasis16,20,21. Other tumorigenic editing events include miR-200b editing, which 

prevents degradation of transcription activators ZEB1 and ZEB2 in epithelial-

mesenchymal transition (EMT) and enables novel targeting of tumor suppressor LIFR22. 

Inversely, recoding sites in Gabra3 and PODXL were shown to suppress the function of 

the wildtype genes of enhancing cell invasiveness in breast and gastric cancers, 

respectively23,24.  In addition, recoding sites in AZIN1, GRIA2, and COG3 were found to 

affect cancer cell sensitivity to drugs in cell line experiments, suggesting the therapeutic 

potential of editing events25.   

 

On a transcriptome-wide scale, distinct editing patterns were observed in tumors 

across multiple cancer types25–27. For an individual cancer type, tumor editing levels 



 3 

were globally increased or decreased compared to normal samples. The consequences 

of these widespread editing changes have not yet been determined. Also unknown is 

the representation of individual cells and cell types in editing alterations, considering the 

heterogenous nature of tumors and their microenvironment. So far, studies have 

reported functions of ADAR1 and editing in the development of several immune cell 

types7,8,28. However, RNA editing in immune cells within tumors has not been 

characterized in previous studies to our knowledge. Further understanding of the 

functions and regulatory mechanisms of altered editing in cancer will guide development 

of novel editing-based tumor diagnostic and treatment measures. Focusing on the 

relevance of EMT to tumor metastasis, we systematically investigated the potential 

functions of editing differences between epithelial (E) and mesenchymal (M) 

phenotypes in Chapter 2. In Chapters 2 and 3, we examined cell type contributions to 

editing differences between E and M tumors and between tumors and normal samples, 

using single cell RNA sequencing datasets.   

 

Given that the innate immune system is a first line of defense against tumors, 

altered RNA editing may help maintain tumor cell proliferation by regulating the innate 

immune response8. On the other hand, translated recoding events may trigger adaptive 

immune responses specific to these tumor-associated edited peptides29,30. We explored 

the contribution of cancer-specific RNA editing to immunity in non-small cell lung cancer 

(NSCLC) tumors in Chapter 3. 
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 Despite improved clinical outcomes that have been achieved with immune 

checkpoint blockade (ICB) in certain cancer types, only a subset of patients successfully 

respond to treatment31,32. Currently, determining optimal predictors of response is a 

challenge32,33. In a mouse model for melanoma, ADAR1 deficiency was shown to 

promote ICB response through increased innate immune signaling34. Supported by 

other reports of ADAR1 dependency in certain cancer cells35,36 and the association of 

editing with patient survival, RNA editing may be indicative of tumor sensitivity to ICB. 

Chapter 4 reveals dsRNA editing events associated with ICB response and survival in 

melanoma patients.  

 

 

 



* The work appearing in this chapter is published: Chan, T.W., Fu, T., Bahn, J.H. et al. 
RNA editing in cancer impacts mRNA abundance in immune response pathways. 
Genome Biol 21, 268 (2020). https://doi.org/10.1186/s13059-020-02171-4 
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Chapter 2: RNA editing in cancer impacts mRNA abundance 

in immune response pathways 

 

2.1 Abstract 

 

RNA editing generates modifications to the RNA sequences, thereby 

increasing protein diversity and shaping various layers of gene regulation. Recent 

studies have revealed global shifts in editing levels across many cancer types, as well 

as a few specific mechanisms implicating individual sites in tumorigenesis or 

metastasis. However, most tumor-associated sites, predominantly in noncoding 

regions, have unknown functional relevance. Here, we carry out integrative analysis of 

RNA editing profiles between epithelial and mesenchymal tumors, since epithelial-

mesenchymal transition is a key paradigm for metastasis. We identify distinct editing 

patterns between epithelial and mesenchymal tumors in seven cancer types using 

TCGA data, an observation further supported by single-cell RNA sequencing data and 

ADAR perturbation experiments in cell culture. Through computational analyses and 

experimental validations, we show that differential editing sites between epithelial and 

mesenchymal phenotypes function by regulating mRNA abundance of their respective 

genes. Our analysis of RNA-binding proteins reveals ILF3 as a potential regulator of this 

process, supported by experimental validations. Consistent with the known roles*



 6 

of ILF3 in immune response, epithelial-mesenchymal differential editing sites are 

enriched in genes involved in immune and viral processes. The strongest target of 

editing dependent ILF3 regulation is the transcript encoding PKR, a crucial player in 

immune and viral response. Our study reports widespread differences in RNA editing 

between epithelial and mesenchymal tumors and a novel mechanism of editing-

dependent regulation of mRNA abundance. It reveals the broad impact of RNA editing 

in cancer and its relevance to cancer-related immune pathways. 

 

2.2 Introduction 

 

RNA editing, the modification of specific nucleotides in RNA sequences, expands 

diversity in proteins and gene regulatory mechanisms37,38. The most frequent type of 

RNA editing in human cells is A-to-I editing, which refers to the deamination of 

adenosine (A) to inosine (I) and is catalyzed by the Adenosine Deaminases Acting on 

RNA (ADAR) family of enzymes3. Three ADAR genes are encoded in the human 

genome, namely ADAR1, ADAR2 and ADAR3. Catalytically active ADAR1 and ADAR2 

are widely expressed across tissues. In contrast, ADAR3 is exclusively expressed in 

certain brain regions and is catalytically inactive39. As inosine is recognized as 

guanosine (G) in translation and sequencing, A-to-I editing is also referred to as A-to-G 

editing. Though millions of editing events have been revealed across the human 

transcriptome, only a small proportion of editing events have been functionally 

characterized. The effects of most editing sites, primarily within non-coding regions, 

have yet to be discovered5,40. 
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 Increasing evidence has established the importance of RNA editing dysregulation 

in cancer. A number of studies have delineated mechanisms through which individual 

RNA editing sites, mostly causing recoding events (i.e., amino acid changes), promote 

or suppress tumor development16,17,20,41. Besides functioning in tumorigenesis, edited 

RNA transcripts can be translated into edited peptides, which may be recognized as 

cancer antigens and activate an anti-tumor immune response29,30. Furthermore, across 

various cancer types, genome-wide aberrations in RNA editing were observed and 

associated with clinical features25–27. Within each cancer type, editing levels generally 

increased or decreased in tumors, compared to matched normal samples. Editing levels 

of specific sites were correlated with tumor stage, subtype, and patient survival, and for 

a smaller subset of nonsynonymous sites, editing altered cell proliferation and drug 

sensitivity in cell line experiments25. As RNA editing has the potential to inform 

development of improved cancer diagnostics and patient-specific treatments, thorough 

investigation of the precise functions and regulatory mechanisms of the many cancer-

type-specific RNA editing changes is needed17. 

 

In cancer progression, activation of epithelial-mesenchymal transition (EMT) 

facilitates metastasis by enabling tumor cells to gain an invasive phenotype, infiltrate the 

circulatory and lymphatic systems, and reach distant sites for colonization42–44. A few 

RNA editing sites have been associated with this process so far. Specifically, editing 

events in SLC22A3, FAK, COPA, RHOQ, and miR-200b were demonstrated to 

accelerate metastasis22,23,30,45–47. While miR-200b normally targets ZEB1 and ZEB2, 
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which are key EMT-inducing transcription factors, editing alters its targets and enhances 

cell invasiveness and motility22. The SLC22A3 recoding event also promoted EMT, 

causing expression changes in EMT marker genes45. In contrast, a recoding event in 

GABRA3 inhibited metastasis and was present only in non-invasive cell lines and non-

metastatic tumors23. These studies highlight the functional relevance of RNA editing in 

metastasis and the merit of a more comprehensive investigation. 

 

Here, we present a global analysis and comparison of RNA editing profiles 

between epithelial (E) and mesenchymal (M) phenotypes of primary tumors across 

multiple cancer types. Using RNA-seq data derived from bulk tumors and single cells, 

we observed distinct editing patterns between phenotypes, with editing differences often 

enriched among immune response pathway genes. Supported by experimental 

evidence, we show that differential editing sites affect host gene mRNA abundance and 

identify a novel mechanism of editing-dependent stabilization of mRNAs by ILF3. One of 

the target genes of ILF3 is EIF2AK2, coding for Protein Kinase R (PKR), a key player in 

immune and viral response.  

 

2.3 Results 

 

2.3.1 Altered RNA editing profiles between epithelial and mesenchymal tumors 

 

EMT is known to be accompanied by substantial transcriptome remodeling43,74–

78. Given the previously reported functional relevance of RNA editing in EMT22,45,79, we 
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hypothesized that epithelial and mesenchymal tumors possess different transcriptome-

wide RNA editing profiles. Thus, we analyzed RNA-seq datasets of primary tumors from 

The Cancer Genome Atlas (TCGA). We focused on seven cancer types that have been 

previously studied in the context of EMT and have relatively large sample sizes 

available from TCGA (Fig. 1A). To classify tumors into epithelial (E) and mesenchymal 

(M) phenotypes, we utilized a well-established EMT scoring system, where scoring and 

categorization of tumors into these E and M phenotypes enabled systematic 

identification of cancer-specific differences in treatment response between phenotypes, 

as well as associations with survival51. Of all categorized tumors for each cancer type, 

we further refined the subset of tumors such that metadata were matched between the 

two groups (Supplementary Table 1).  

 

Applying our previously published methods 37,53,80, we quantified editing levels at 

over 4 million editing sites recorded in the REDIportal database54. We then identified 

sites that were differentially edited between E and M tumors in each cancer type. To 

control for false discoveries, we filtered out predicted differential editing sites that 

repeatedly exhibited differences in editing when phenotype labels were shuffled 

randomly. Principal components analysis on differential editing levels showed that E 

and M tumors could be well separated by the first two principal components of editing 

(Fig. 1A). These first two principal components did not appear to be confounded by 

sample metadata and suggest that most of the variation in editing is explained by the 

distinction of E and M phenotypes (Supplementary Fig. 1).  
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Based on the differential editing sites, most cancer types, including LUAD, LUSC, 

PRAD, KIRC and HNSC, demonstrated a hyperediting trend in the M phenotype (Fig. 

1B). In contrast, two cancer types, BRCA and OV, had a trend of hypoediting in the M 

samples. The majority of differential editing sites in all cancer types were located in the 

3’ untranslated regions (UTRs) or introns (Fig. 1C). The above results suggest that 

distinct RNA editing profiles exist between E and M phenotypes.  

 

2.3.2 Editing patterns are shared among cancer types and distinct from 

differential expression 

 

Given dominant trends of hyperediting or hypoediting that distinguished E and M 

phenotypes in an individual cancer type, we asked whether genes with differential 

editing patterns were shared or distinct across cancer types. We examined the 

statistical significance of overlap in differentially edited genes between pairs of cancer 

types by Rank-rank Hypergeometric Overlap (RRHO). Extending Gene Set Enrichment 

Analysis (GSEA) to two dimensions, RRHO tests the significance of the intersection of 

gene lists, ranked by a metric of differential expression, across two genome-wide 

datasets65. We applied RRHO to RNA editing here by ranking genes according to the 

significance of tested editing differences between E and M and the direction of editing 

differences (Methods). In addition to shared directionality of global editing trends, we 

found significant overlap in genes with editing changes among multiple cancer types 

(Fig. 2A). Within pairs of cancer types, most significant overlaps were enriched at the 

bottom left or top right corners, where genes were hyperedited or hypoedited in both 
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cancer types, respectively. These significant overlaps in genes based on differential 

editing suggest that editing changes in EMT may affect common pathways across 

cancer types.   

 

It should be noted that differentially edited genes do not overlap with differentially 

expressed genes (Fig. 2B). This observation indicates that gene expression changes in 

EMT did not confound the RNA editing differences observed. Thus, altered editing 

potentially represents a distinct layer of molecular changes in EMT.  

 

2.3.3 Differential editing occurs in genes of immune relevance 

 

Next, we examined the gene ontologies enriched among genes with differential 

editing in EMT. In this analysis, background control genes were chosen randomly from 

those that did not have differential editing sites but had similar gene length and GC 

content as the differentially edited genes (Methods). Across multiple cancer types, 

differentially edited genes were enriched with viral-host interaction features, interferon 

(IFN) and other immune response pathways, metabolic processes, and translational 

regulation (Fig. 2C, Supplementary Fig. 2).  

 

The observation of immune-relevant categories is of particular interest. RNA 

editing has been described as a mechanism to label endogenous double-stranded 

RNAs and consequently prevent IFN induction9,10,12,81,82. However, the roles of editing 

events in genes directly associated with immune response, such as those in the IFN 
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response pathways, have not been well characterized. Our observation indicates that 

RNA editing may directly affect immune response genes in EMT.  

 

2.3.4 Contribution of cell types to differential editing 

 

Given the observed enrichment of differential editing in immune-relevant genes, 

we asked whether our identified differential editing events primarily occur in cancer cells 

or in other cell types in the tumor microenvironment. To address this question, we 

analyzed single cell (sc) RNA-seq data from three non-small cell lung cancer (NSCLC) 

patients, each with three tumor samples from the tumor edge, core, and in-between83. 

Following quality control measures, we clustered the cells in two rounds and labeled cell 

types based on marker genes to obtain T cells, B cells, myeloid cells, endothelial cells 

(EC), fibroblasts (Fibro), epithelial cells (Epi), mast cells, alveolar cells, and cancer cells 

(Supplementary Fig. 3A-C, Methods). Supporting the accuracy of this clustering, 

expression of marker genes was generally highest in their expected cell types when 

RPKM was calculated from pooled cells and when a signature gene expression matrix 

was predicted by CIBERSORTx84 (Supplementary Fig. 3D).  

 

To gauge the contribution of individual cell types to bulk tumor differential editing, 

we examined gene expression and editing profiles of each cell type. Specifically, we 

pooled cells of each type and calculated the percent of differentially edited genes from 

the bulk tumor analysis that were expressed in each cell type. Cancer cells expressed 

the highest proportion of genes that were differentially edited (Fig. 3A). We then 
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measured the extent of editing in each cell type by calculating the percent of bulk tumor 

differential editing sites that were edited. Consistent with the expression analysis, the 

highest proportion of differential sites were edited in cancer cells (Fig. 3B). Therefore, 

the editing differences observed among bulk tumors may be mainly attributable to the 

cancer cells.  

 

We next separated cancer cells to epithelial and mesenchymal cell clusters (Fig. 

3C, Methods). Sampling epithelial cells to match mesenchymal cells in terms of cell 

number (200 cells) and metadata, we pooled cells within each phenotype together and 

detected RNA editing events (Supplementary Fig. 4). Although the scRNA-seq primarily 

sequences the 3’ ends of mRNAs, a relatively small number of RNA editing events were 

still captured. We identified nine editing sites with significant differences between E and 

M (Fig. 3D). All nine differential sites exhibited higher editing levels in the M phenotype, 

which is consistent with the hyperediting trend in M observed in bulk LUAD and LUSC 

tumors (Fig. 1B). Two sites overlapped with differentially edited sites in LUAD or LUSC 

and both had hyperediting in M cells, consistent with the direction in bulk tumors 

(Supplementary Fig. 5). This small overlap likely reflects the low coverage on editing 

sites in the single cell data, and/or the possibility that more differential editing sites, 

which were not identified in our study due to limits in power, exist in the bulk tumors. 

 

Notable differentially edited genes include RHOA, which is active in cell migration 

and is associated with metastasis in multiple cancer types85–87, and ARL16, a reported 

negative regulator of RIG-I activity88, consistent with the observed enrichment of 
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immune-relevant genes that were differentially edited in bulk tumors. Overall, the 

findings from single cell data support the hypothesis that editing differences between 

bulk E and M tumors mainly reflect changes occurring in cancer cells. 

 

2.3.5 ADAR1 or ADAR2 knockdown induced EMT 

 

 Given the differential editing profiles between E and M tumors, an important 

question is whether the editing changes are functionally relevant to EMT. To address 

this question, we first examined if changes in ADAR expression affect EMT. Using cell 

culture systems commonly employed in EMT studies, we carried out knockdown (KD) 

experiments of ADAR1 or ADAR2 in two cell lines, A549 and MCF10A, via siRNAs. 

Upon ADAR1 KD, A549 cells showed elongated spindle-like mesenchymal morphology 

(Fig. 4A). We also confirmed the loss of epithelial markers (E-cadherin and 𝛾-Catenin) 

and gain of mesenchymal marker (Vimentin) in ADAR1 KD A549 cells (Fig. 4B). Similar 

results were observed upon ADAR2 KD in A549 cells (Fig. 4C-D) and reproducible in 

MCF10A cells (Fig. 4E-F). These findings suggest that loss of either catalytically active 

ADAR enabled EMT in the two cell lines. The phenotypic changes following ADAR2 KD 

are consistent with a previous report that ADAR2-deficiency can induce EMT in SW480 

cells79. Together, these results indicate that knockdown of ADARs promotes EMT. 

 

As expected, ADAR KD induced significant editing changes measured by RNA-

seq in A549 cells (Supplementary Fig. 6A-B), with ADAR1 KD affecting a large number 

of editing sites but ADAR2 having fewer targets. A minority of ADAR2-responding sites 
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had increased editing upon ADAR2 KD, reflecting the likely compensation by ADAR1. 

The reverse, compensation of ADAR1 loss by ADAR2, was not observed. Among the 

lung cancer E-M differential editing sites that were testable in the above A549 RNA-seq 

data, the vast majority responded to KD of either ADAR or double KD (Supplementary 

Fig. 6C). These results confirm the impairment of RNA editing at genome scale upon 

the loss of ADARs. 

 

We next examined mRNA expression of ADARs in the bulk E and M tumors 

across cancer types. In several cancer types with a hyperediting trend in M, higher 

mRNA expression of ADAR1 or ADAR2 likely contributed to increased editing levels in 

M tumors (Supplementary Fig. 7). However, ADAR expression was not consistent with 

RNA editing differences for some cancer types. Thus, although ADAR KD caused EMT 

in cell culture models, ADAR expression alone may not sufficiently explain the global 

editing trends observed in bulk tumors.  

 

2.3.6 Impact of RNA editing on mRNA abundance 

 

 Given ADAR’s primary role in RNA editing, we next asked how RNA editing may 

affect genes relevant to EMT, especially those related to immune response (Fig. 2C).  

Since a relatively large fraction of differential editing sites is located in 3’ UTRs, we 

examined the hypothesis that these sites may affect mRNA abundance of their 

respective genes. Thus, we first calculated the correlation between editing levels and 

mRNA abundance for differentially edited sites observed in the E-M comparison. Using 



 16 

a regression model accounting for confounding factors including age, gender and race, 

we observed a total of 127 genes whose editing sites are significantly correlated with 

mRNA abundance (FDR<10%) in at least one type of cancer (Fig. 5A). In addition, 

among these genes, 77% (94 of 122 testable genes) demonstrated a significant 

correlation in at least one human tissue type based on a similar analysis of GTEx data, 

78% (73/94 genes) of which showed the same direction of correlation between cancer 

and at least one GTEx tissue.   

 

To further evaluate the regulatory role of RNA editing on mRNA abundance, we 

next examined the change in mRNA expression levels upon ADAR1 KD.  We used 

ADAR1 KD RNA-Seq data from 5 cell lines: U87, HepG2, K562, HeLa and B cells37,72,89, 

respectively. Out of the 127 edited genes identified above, 126 of them were detectable 

at an expression level of at least 1 FPKM (and edited) in at least one cell line (control or 

ADAR1 KD condition). Among them, 71% (89 genes, red dots, Fig. 5B) showed inverse 

correlation between ADAR1 KD and editing level coefficient in at least one cell line (Fig. 

5B). These genes showed an enrichment of negative expression changes upon ADAR1 

KD, indicating a likely stabilizing effect imposed by RNA editing (p = 2.7e-4, binomial 

test). Among expression-correlated editing sites in the 89 genes, 64% are located in 3’ 

UTRs, a percentage that’s significantly higher than that of E-M differential editing sites 

in general (p = 2.4e-4, Fig. 5C).  We thus refer to the 89 genes as putative target genes 

whose expression is modulated by RNA editing (Supplementary Table 2).  
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Next, we experimentally validated the regulation of mRNA abundance by six 

editing sites within three genes: RNF24, RHOA, and MRPS16. We used a minigene 

reporter with bi-directional promoters for mCherry and eYFP48 and cloned edited and 

unedited versions of each editing site and its surrounding 3’ UTR region into the 3’ UTR 

of mCherry. Using expression of eYFP as an internal control, we compared mCherry 

expression between cells carrying the edited and unedited versions for each editing site. 

All six editing sites induced significant expression differences in the direction consistent 

with the editing-expression correlations observed in primary tumors (Fig. 5D, 

Supplementary Table 3). While positive editing associations were dominant among 

predicted target genes, there also exist negative associations between editing and 

expression levels. We tested one example of the latter category (RHOA).  

 

2.3.7 ILF3 as an editing-dependent regulator of mRNA abundance 

 

Since mRNA stability is closely regulated by RNA-binding proteins (RBPs)90–93, 

we next asked whether RBPs are involved in the modulation of mRNA abundance by 

RNA editing sites. To this end, we analyzed enhanced ultraviolet crosslinking and 

immunoprecipitation (eCLIP) datasets of 126 RBPs in two cell lines (HepG2 and K562) 

from ENCODE71,72. We asked whether RBP binding signals are enriched significantly 

closer to editing sites in the 89 potential target genes than expected by chance. This 

analysis identified ILF3 as a top protein with significantly short distances to the editing 

sites in both cell lines (Supplementary Fig. 8A). To validate this finding and test this 

relationship in a different cell type, we performed eCLIP-seq of ILF3 in A549 cells. The 
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same observation was made via this data set (Fig. 6A). As observed in HepG2 and 

K562 cells, differential editing sites within predicted target genes were significantly 

closer to ILF3 binding regions in A549 cells than random gene-matched control sites. 

Furthermore, 75 (84%) of the 89 genes showed a significant correlation between their 

gene expression and the expression of ILF3 (FDR<10%), 37 of which had an absolute 

correlation coefficient of at least 0.2 (Fig. 6B). Importantly, the majority of the significant 

correlations were positive, consistent with the known roles of ILF3 in stabilizing its target 

mRNAs94–96.  

 

2.3.8 Impact of ILF3 on immune-relevant genes 

 

 ILF3 promotes an antiviral response through its binding to RNAs97–99. Given the 

fact that immune-relevant genes are differentially edited in E-M (Fig. 2C), we next asked 

whether ILF3 regulates the mRNA abundance of these EMT-associated differentially 

edited, immune-relevant genes. Among the 89 genes whose expression was affected 

by RNA editing, 20 genes fall into the immune or viral GO categories. Interestingly, the 

ILF3 binding sites were significantly closer to the differential editing sites of these 20 

genes than differential sites in immune-related genes without editing-expression 

associations (Fig. 6C). Together, these results suggest that ILF3 binds close to the 

editing sites of immune-related genes. 

 

 Since we observed that differential editing between bulk E and M tumors mainly 

reflected changes occurring in cancer cells (Fig. 3A-B), we next asked whether the 
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above regulatory relationship between ILF3 and immune-related genes also occurs in 

cancer cells. To this end, we analyzed gene expression of individual cell types identified 

in the NSCLC scRNA-seq dataset. Within each cell type, we correlated ILF3 expression 

with expression of the 20 immune-related target genes. In cancer cells, all 20 genes had 

expression levels positively correlated with ILF3 expression at 10% FDR (Fig. 6D). 

Though significant correlations were also observed in other cell types, only cancer cells 

showed correlation coefficients of at least 0.2 in magnitude. This result suggests that 

the mRNA stabilizing function of ILF3 is prominent in cancer cells, in line with our 

observation that E-M differential editing primarily occurs in cancer cells.  

 

2.3.9 PKR expression is affected by 3’ UTR editing through ILF3 regulation 

 

 Among the 20 immune-related genes putatively regulated by ILF3, the gene 

EIF2AK2, coding for Protein Kinase R (PKR), had most significant expression-editing 

correlation (Supplemental Table 2) and expression correlation with ILF3 (Fig. 6D). 

Activated by dsRNA, PKR suppresses translation and promotes apoptosis through its 

phosphorylation activity100,101. PKR also regulates various signaling pathways, such as 

NF-kB and p38 MAPK, in response to cellular stress100. Using the editing minigene 

reporter, we examined the individual effects of seven 3’ UTR editing sites on PKR 

mRNA abundance in A549 cells. Five of the seven editing sites showed significantly 

higher normalized mCherry expression compared to their unedited counterparts (Fig. 

6E, Supplementary Fig. 8B). To assess the collective impact of multiple RNA editing 

sites on PKR mRNA abundance, we measured endogenous PKR expression in A549 
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cells upon ADAR1 or ADAR2 KD. We first confirmed that the 3’ UTR editing sites in 

PKR were edited endogenously in A549 cells. Importantly, these editing sites are mainly 

regulated by ADAR1 instead of ADAR2 (Supplementary Fig. 8C). Upon ADAR1 KD, 

PKR expression level was significantly reduced by about 40% (Fig. 6F). In contrast, 

PKR expression did not change upon ADAR2 KD, as expected. These results suggest 

that the editing sites enhanced PKR mRNA abundance, consistent with the positive 

editing-expression correlation in primary tumors. 

 

 Based on the eCLIP data, the five editing sites that individually promoted PKR 

mRNA abundance are located within ILF3 binding sites (Fig. 6G, Supplementary Fig. 

8D-E). To test the hypothesis that ILF3 regulates PKR mRNA abundance in an editing-

dependent manner, we generated ILF3 KD A549 cells (Fig. 7A). The edited and 

unedited reporters, demonstrating differential expression in control cells, no longer 

produced different expression levels upon ILF3 KD (Fig. 7B). Together, our data 

suggest that ILF3 promotes PKR mRNA expression in an editing-dependent manner by 

binding to the PKR mRNA. 

 

2.3.10 ILF3 knockdown induced EMT in A549 cells 

 

Since ILF3 was found to stabilize transcripts that were differentially edited 

between E and M tumors, we next asked if ILF3 regulates the EMT process. We carried 

out ILF3 KD experiments via two different siRNAs in A549 cells. Upon ILF3 KD, cell 

morphology changed from tightly connected, round cells towards more dispersed, 



 21 

spindle-shaped cells (Fig. 7C), consistent with expected EMT phenotypes. Additionally, 

we observed reduced expression of the epithelial marker E-cadherin along with 

increased expression of the mesenchymal marker N-cadherin in the ILF3 KD cells (Fig. 

7D, E for protein and RNA levels, respectively). Thus, these data show that ILF3 

deficiency induces EMT in A549 cells, supporting a significant role of ILF3 in regulating 

EMT. 

 

2.4 Discussion 

 

As most cancer patient deaths are due to metastasis, thorough understanding of 

the molecular mechanisms underlying metastasis is crucial to developing effective 

preventative measures102. EMT plasticity is thought to underlie cell dissemination and 

metastatic formation in many cancer types44. Supported by studies on primary tumors 

and various model systems, features of EMT have been associated with 

metastasis42,44,103,104. For instance, higher expression of mesenchymal markers, with 

preserved epithelial markers in the absence of nearly all canonical EMT transcription 

factors, was detected in cells located at the leading edge of primary human HNSC 

tumors104. Furthermore, this partial EMT program was correlated with multiple 

metastatic characteristics, including abundance of lymph node metastases, 

lymphovascular invasion, and tumor grade104. While mutations are understood to drive 

primary tumorigenesis and are often found in reported oncogenes and tumor 

suppressor genes, the existence of recurrently mutated genes specific to metastasis is 

not clear44. Accordingly, mechanisms regulating cell invasiveness beyond genetic 
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variation need to be more thoroughly investigated. Our study is the first to report a 

systematic characterization of RNA editing in EMT phenotypes across several cancer 

types. Through a combination of experimental and computational analyses, we 

observed many editing differences in EMT-relevant genes, especially those related to 

immune and viral response, with the potential of affecting mRNA abundance of these 

genes. We also show that higher expression levels of these edited transcripts may be 

due to stabilization by ILF3.  

 

Located in noncoding regions, most editing sites have unknown function. To 

assess the contribution of differential editing to altered cell phenotypes in cancer, we 

focused on the capacity of editing to regulate host gene mRNA abundance. To our 

knowledge, very few studies have examined this question on the transcriptome-wide 

scale105,106. Previously, several studies demonstrated this regulatory role for a handful of 

editing sites through alteration of miRNA binding sequences or mRNA secondary 

structure or otherwise unknown mechanisms5,46,107–112. Expanding on these previous 

studies, we incorporated tissue-rich data from GTEx and ADAR KD expression changes 

from five cell lines to computationally support associations of editing with mRNA 

abundance. We also validated the effects of specific editing sites and explored the 

involvement of RBPs in this regulatory mechanism. It should be noted that we were able 

to detect associations between editing and mRNA abundance levels, even though 

differentially expressed genes did not significantly overlap differentially edited genes. 

These findings do not contradict each other because editing levels are relatively low. 
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Consequently, inosine may affect mRNA abundance, but when present at low levels, 

may not necessarily lead to significant expression differences. 

 

Considering tumor heterogeneity and the roles of stromal and immune cells in 

EMT, it is important to examine the contributions of different cell types to differential 

editing observed in the E-M comparisons. Our results using single-cell data supported 

that cancer cells are a main cell type underlying differential editing between E and M 

phenotypes in lung cancer, although contributions by other cell types cannot be 

excluded. Furthermore, cancer cells demonstrated the strongest expression correlation 

between ILF3 and immune-relevant differentially edited genes among all cell types 

considered in lung cancer. These findings suggest that RNA editing is likely an 

important aspect of transcriptome remodeling of cancer cells in EMT, at least in lung 

cancer. Single-cell analysis of RNA editing in other cancer types should be conducted in 

the future.   

 

Our cell line experiments showed EMT induction upon KD of either ADAR1 or 

ADAR2 in lung and breast cell lines. In contrast, we observed hyperediting in M tumors 

of most cancer types. The seemingly opposite trends may reflect the complexity of 

tumor biology that is not effectively recapitulated by cell culture models. Although the 

cell culture models can support the likely importance of RNA editing in EMT, the exact 

mechanisms and related regulation can only be investigated using in vivo models in the 

future. In addition, we did not observe large differences in ADAR expression levels that 

are consistent with observed editing differences between E and M tumors for all cancer 
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types. Other proteins that directly or indirectly affect ADAR function likely contribute to 

the regulation of E-M RNA editing differences, which remains to be investigated. 

 

RNA editing is known to be important to innate immunity by preventing viral 

dsRNA sensors, such as MDA5 and RIG-I, from sensing host dsRNA9,12,113. In this 

study, we provided multiple lines of evidence to support that RNA editing differences in 

EMT may affect immune response genes directly, adding a new dimension to the 

relationships between RNA editing and innate immunity. Interestingly, a major RBP that 

mediates this relationship is ILF3. ILF3 was identified as a PKR substrate and serves as 

a negative regulator of viral replication upon phosphorylation97,114. Upon viral infection 

and sensing of viral dsRNA, PKR activates, suppresses translation, and promotes 

apoptosis of affected cells101. Importantly, this mechanism has been targeted in 

oncolytic virotherapy for cancer. Cancer cells that have low PKR expression are 

sensitive to oncolytic viruses115–117. Our study showed that ILF3 mediates the RNA 

editing-dependent regulation of PKR expression. We also observed that ILF3 KD 

induced EMT in A549 cells. These data reveal novel insights into the reciprocal 

regulation between PKR and ILF3 and their potential contributions to EMT. Additional 

studies on their interaction during viral infection or cancer treatment will also be 

informative for therapeutic development. Previously, ADAR1 loss has been shown to 

render tumor cells sensitive to immunotherapy through enhanced inflammatory 

response34,36. Our findings on the regulation of immune response genes by RNA editing 

may add additional mechanisms in this process that will need further investigation. 
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The functional roles of RNA editing in cancer have been increasingly recognized 

in recent years. Highlighting the extensive editing differences between EMT phenotypes 

and their impact on mRNA abundance, especially for genes involved in the immune 

response, our work extends the basis for future studies on the contribution of editing to 

metastasis and patient outcomes. 

 

2.5 Methods 

 

2.5.1 Plasmid construction 

 

For bi-directional reporters, full length or partial 3’ UTR regions (1~2kb) of 

candidate genes were cloned from the genomic DNA extracted from HMLE or A549 

cells. Edited versions of 3’ UTR inserts were generated using overlap-extension PCR 

(Supplementary table 3). Edited and unedited versions of 3’ UTR regions were then 

cloned into the pTRE-BI-red/yellow vector via ClaI and SalI-HF enzyme sites48. To 

obtain a lentiviral vector expressing ILF3 shRNA, oligos containing the target sequence 

(GGTCTTCCTAGAGCGTATAAA, TRCN0000329788) were ordered from Integrated 

DNA Technologies (IDT) and cloned into pLKO.1 via EcoRI and AgeI enzyme sites. 

 

2.5.2 Cell culture and transfection 

 

A549, Hela and HEK293T cells were maintained in DMEM with 10% FBS and 

Antibiotic-Antimycotic reagent (Gibco). MCF10A cells were maintained in DMEM/F12, 
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supplemented with 5% Horse serum, 20ng/ml human EGF (PeproTech), 0.5mg/ml 

Hydrocortisone (Sigma), 100ng/ml Cholera Toxin (Sigma), 10ug/ml Insulin (Sigma), and 

Antibiotic-Antimycotic reagent (Gibco). For siRNA treatment, A549 or MCF10A cells 

were seeded at 1´105 cells per well in 6-well plates. After 24 hours, siRNAs 

(Supplementary table 3) were introduced at the final concentration of 10nM~100nM 

using lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s protocol. 

Media were changed 24 hours post-transfection, and cells were harvested 72 hours 

post-transfection. For transfection of bi-directional reporters, Hela and HEK293T cells 

were seeded in 12-well plates to reach 90% confluency by the time of transfection. 

A549 cells were seeded at 0.15x105 cells per well in 12-well plates 24 hours before 

transfection. Reporter plasmids were transfected at 200ng per 12-well with 

lipofectamine 3000 (Invitrogen), following the manufacturer’s protocol. Cells were 

harvested 16 hours post-transfection. 

 

2.5.3 Western blot 

 

Cells were lysed with RIPA buffer containing protease inhibitor (EDTA-free, 

Thermo Fisher Scientific) at 4°C for 30 minutes. The whole cell lysates were then 

centrifuged at 12,000g, 4°C for 15 minutes. The supernatants were collected for protein 

concentration measurement using Bradford assay (Pierce™ Detergent Compatible 

Bradford Assay Kit, Thermo Fisher Scientific). Protein samples were prepared by mixing 

protein lysates with 4x SDS protein loading dye at 3:1 ratio. The mixture was boiled for 

5 minutes. 10 ug of each protein samples were loaded on SDS-PAGE gels and 
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transferred to nitrocellulose membranes for antibody incubations. Antibodies used were 

as follows: ADAR1 antibody (Santa Cruz Biotechnology, sc-73408, 1:200), ADAR2 

antibody (Santa Cruz Biotechnology, sc-73409, 1:200), E-cadherin antibody (Cell 

Signaling Technology, #3195, 1:1000), γ-Catenin antibody (BD Transduction 

Laboratories, 610253, 1:8000), N-cadherin antibody (BD Transduction Laboratories, 

610920, 1:500), Vimentin antibody (Cell Signaling Technology, 5741, 1:1000), 

NF90(ILF3) antibody (BETHYL Laboratories, A303-651A, 1:1000), β-actin-HRP 

antibody(Santa Cruz Biotechnology, sc-47778, 1:2000), goat anti-rabbit IgG-HRP(Santa 

Cruz Biotechnology, sc-2004, 1:2000), goat anti-mouse IgG-HRP(Santa Cruz 

Biotechnology, sc-2005, 1:2000). Membrane blots were incubated with SuperSignal 

West Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific) and visualized 

under the imager (Syngene PXi). 

 

2.5.4 RNA isolation and real-time qPCR 

 

Cells were lysed using TRIzol (Thermo Fisher Scientific). Total RNA was isolated 

using Direct-zol RNA Miniprep Plus kit (Zymo Research) following the manufacturer’s 

protocol. 2 ug of total RNA was used for cDNA synthesis with SuperScript IV (Thermo 

Fisher Scientific). The real-time qPCR reaction was assembled using the PowerUp™ 

SYBR® Green Master Mix (Thermo Fisher Scientific). Primers used for qPCR are listed 

in Supplementary Table 3. The reaction was performed in the CFX96 Touch Real-Time 

PCR detection system (Bio-Rad) with the following settings: 50°C for 10 minutes, 95°C 

for 2 minutes, 95°C for 15 seconds, 60°C for 30 seconds, and with the last two steps 
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repeated for 45 cycles. For bi-directional reporter assays, mCherry expression was 

normalized against eYFP expression within the same sample. ILF3 expression was 

normalized against the expression of internal control gene TBP. For qPCR validating 

the eCLIP peaks, the final libraries were diluted to the same concentration at 0.01ng/ul. 

5ul of diluted libraries were used in each qPCR reaction. Around 80 bp upstream each 

EIF2AK2 editing site was amplified. The expression of each EIF2AK2 region was 

normalized against the expression of 18s. 

 

2.5.5 Quantification of RNA editing levels by Sanger sequencing 

 

Regions of interest were amplified from cDNA using Thermo Scientific™ 

DreamTaq™ Green PCR Master Mix (2X). Primers used for PCR are listed in 

Supplementary Table 3. The amplicons were gel extracted and premixed with the 

reverse primer for Sanger sequencing. The peak signals of A and G nucleotides were 

measured by 4Peaks for editing level calculation (G/(A+G)).  

 

2.5.6 Categorization of tumors as epithelial and mesenchymal 

 

We downloaded fragments per kilobase million (FPKM) data of primary tumors 

from patients across seven cancer types in TCGA: BRCA, LUAD, LUSC, PRAD, OV, 

KIRC, and HNSC, from the Genomic Data Commons (GDC) Data Portal49. To assess E 

and M phenotypes of the tumors of each cancer type, we quantified the enrichment of E 

and M gene sets by applying gene set variation analysis (GSVA)50. We obtained pan-
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cancer E and M gene sets from a 2014 publication by Tan and colleagues (Table S1A 

from their publication)51. Tumors with high E scores and low M scores were considered 

to have an E phenotype, while tumors with low E and high M scores were classified as 

M. Subsets of E and M tumors were selected for each cancer type to minimize 

confounding of E and M distinction by patient and sample metadata. 

 

2.5.7 Quantification and comparison of RNA editing levels in TCGA tumors 

 

We downloaded RNA-seq fastq files of categorized tumors from the GDC Legacy 

Archive. We mapped reads to hg19 with HISAT2, using default parameters. Dense 

clusters of editing sites, or hyperedited regions, can lead to many mismatches in reads. 

Consequently, these reads may be left unmapped and hinder accurate detection of 

editing in these regions. To rescue reads that were originally unmapped due to high 

density of editing activity, we applied a hyperediting pipeline and combined the 

recovered reads with uniquely mapped reads for downstream analyses52,53. To analyze 

editing sites of high confidence, we downloaded the REDIportal database, comprising 

over 4 million editing sites identified across 55 tissues of 150 healthy humans from 

GTEx 54,55. We applied methods used in our previous studies to detect editing at 

REDIportal sites in the tumor samples. We filtered out editing sites found in dbSNP 

(version 147) and COSMIC (version 81), except for reported cancer-related editing 

sites25,41,45,56–59, since editing sites have been shown to be mistakenly recorded as 

SNPs60,61. Within each sample, we also filtered out editing events that overlapped with 

sample-specific somatic mutations and copy number variants. Somatic variants were 
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obtained from the publicly released MC3 MAF62, and copy number variants were 

obtained from copy number segment data downloaded from the GDC data portal.  

 

Differential editing sites were defined as editing sites with significantly different 

editing levels between E and M phenotypes. To identify such sites, we used an adaptive 

coverage approach53. For an individual editing site, we determined the highest read 

coverage threshold that was satisfied in at least five samples of both phenotypes, 

among twenty, fifteen, and ten reads. If none of these thresholds was satisfied and 

fewer than ten samples in each phenotype had at least five reads covering the site, we 

did not test the site for differential editing. Using the highest coverage determined, we 

calculated the mean editing levels among samples of each phenotype separately. We 

then consecutively lowered the read coverage threshold by 5 reads and compared the 

new mean editing levels of each phenotype, when including additional samples, to the 

original high-coverage-only editing means. If the differences in mean editing levels were 

less than 0.03, we used the lower read coverage threshold to delineate which samples 

to include for the differential test. Editing levels between E and M samples were 

compared by a Wilcoxon rank-sum test. Editing differences were considered significant 

if the Wilcoxon p-value < 0.05 and the magnitude of the difference ³ 0.05. To account 

for false positives, we shuffled phenotype labels and retested for significant differences 

for each differential editing site, 100 times. If a site showed significant differences for 

shuffled labels over ten times, it was filtered out and no longer considered a differential 

editing site.  
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2.5.8 Identification of differentially expressed genes 

 

HTSeq-Count data were downloaded from the GDC data portal. We identified 

genes with significantly different mRNA expression levels between E and M tumors of 

each cancer type, using limma-voom63. Metadata significantly correlated with the top 

two principal components of expression were included as covariates in the linear 

models. Expression differences were considered significant if log2-fold change was at 

least 1 and adjusted p-value was less than 0.05.  

 

2.5.9 Rank-rank hypergeometric overlap 

 

To measure the similarity in patterns of editing changes across cancer types, we 

ranked genes based on differential editing between E and M phenotypes for each 

cancer type. More specifically, the ranking metric was the statistical significance of the 

differential editing test (-log10(Wilcoxon p-value)), multiplied by the sign of the editing 

difference (mean of M editing levels – mean of E editing levels). Accordingly, genes at 

the top of the ranked list had the highest increases in editing in M, while genes at the 

bottom had the largest decreases in editing in M. For each gene with multiple editing 

sites tested, the site with the most significant change in editing levels was used to 

represent the gene. We used the RRHO package within Bioconductor in R to test for 

significance of overlap between ranked gene lists, with a step size of 30 genes between 

each rank64.  
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We also ran RRHO between gene rankings by differential editing and differential 

gene expression for each cancer type. To order genes based on differential gene 

expression, genes were ranked according to the signed statistical significance of 

differential expression tests (signed by the direction of expression change in M). As a 

result, genes at the top of the list were more highly expressed in M and genes at the 

bottom, more lowly expressed in M.   

 

To make RRHO maps comparable across cancer types and across overlaps 

based on differential editing and differential expression, we scaled the log-transformed 

p-values to account for different lengths of gene lists and then applied the Benjamini-

Yekutieli correction for multiple testing65. 

 

2.5.10 Gene ontology enrichment analysis 

 

To evaluate whether an individual GO term was enriched in differential editing in 

one cancer type, we compared the occurrence of the term among query genes – genes 

containing differential editing sites – to its occurrences within 10,000 sets of control 

genes. In each set, one control gene for each query gene was randomly selected 

among non-differentially edited genes that matched the query gene based on gene 

length and GC content (within 10%). Query genes that did not have at least ten 

matched control genes were excluded. We calculated the p-value of the term’s 

enrichment among query genes from the normal distribution fit to occurrences of the 
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term among control gene sets. We repeated this assessment of GO term enrichment 

separately for lists of differential hyperedited and hypoedited genes in each cancer type.  

 

Likewise, we tested the occurrence of each GO term represented among 

differentially expressed genes to its occurrences among 10,000 sets of non-differentially 

expressed control genes, randomly selected to match the differentially expressed query 

genes for gene length and GC content.  

 

2.5.11 scRNA-seq dataset analysis 

 

 We downloaded fastq files from 15 tumor samples of five NSCLC patients66  and 

ran CellRanger (version 3.0.2) to map reads and obtain count matrices. We excluded 

the tumor samples from three LUSC patients exhibiting low percentages of valid 

barcodes and mapped reads. For the remaining samples, we loaded the filtered feature-

barcode matrices from CellRanger and merged the datasets into a single Seurat object 

with the R package Seurat67 (version 3.0.2). Next, we filtered out cells that did not meet 

the following criteria: 101-6000 expressed genes, over 200 UMIs, and less than 10% 

UMIs corresponding to the mitochondrial genome. Following normalization by 

sctransform68 (version 0.2.0), we performed dimensional reduction with PCA. Based on 

an elbow plot, we decided to consider the first ten PCs for downstream clustering and 

TSNE embedding. To assign cell identity labels to clusters, we matched differentially 

expressed genes of clusters to reported marker genes. One cluster had differentially 

expressed markers of multiple cell types, so we subclustered its cells. To assess the 
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accuracy of our final labeling of nine cell types, we examined expression of marker 

genes across the cell types in two approaches. In one approach, we used 

CIBERSORTx69 to generate a gene expression signature matrix, which is a matrix of 

expression signatures characterizing cell types. To create this matrix from expression 

profiles of single cells labeled by cell type, CIBERSORTx identified differentially 

expressed genes. In the second approach, we pooled reads of each cell type together 

and calculated RPKM. These RPKM values calculated from pooled cells were also used 

to correlate ILF3 expression with expression of editing-correlated genes.  

 

To identify cancer cells with E and M phenotypes, we subclustered the cancer 

cells. To this end, we first ran sctransform and PCA on only the cancer cells. Using the 

first twelve PCs, we clustered the cells and performed non-linear dimension reduction 

by UMAP. As a cluster of 200 M cells was identified, we sampled 200 E cells with 

similar numbers of features, numbers of UMIs, and percentages of reads mapped to the 

mitochondrial genome. For each phenotype, we compiled reads of cells together and 

detected editing levels at REDIportal sites. For each testable editing site, E and M 

editing levels were compared by a Fisher’s Exact test. An editing site was considered 

differential if the difference in editing levels was at least 0.05 and the Fisher’s Exact p-

value < 0.05.   

 

2.5.12 RNA-seq generation for ADAR KD A549 cells 
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A549 cells were seeded at 1´105 cells per well in 6-well plates 24 hours before 

siRNA transfection. siRNAs (Supplementary Table 3) were introduced at the final 

concentration of 22nM using lipofectamine RNAiMAX (Invitrogen), according to the 

manufacturer’s protocol. For individual KD of ADAR1 or ADAR2, 11nM siRNA of 

ADAR1 or ADAR2 were mixed with 11nM control siRNAs. For double KD of ADAR1 and 

ADAR2, 11nM siRNA of ADAR1 and 11nM siRNA of ADAR2 were mixed. Media were 

changed 24 hours post-transfection. The transfected cells were harvested 48 hours 

post-transfection. Total RNA was extracted for RNA-seq library generation for three 

biological replicates of each condition. RNA sequencing libraries were generated using 

NEBNext Ultra II Directional RNA library Prep kit and NEBNext multiplex oligos for 

Illumina according to the manufacturer’s instructions (New England Biolabs, E7760S). 

Library concentrations were measured by Qubit fluorometric assay (Life Technologies), 

and libraries were sequenced on an Illumina HiSeq-4000 with 150-bp paired-end reads.  

 

2.5.13 A549 ADAR KD RNA-seq analysis 

 

 Following mapping of RNA-seq reads with HISAT2 and a hyperediting pipeline53, 

we detected editing events at REDIportal sites as we did for the TCGA tumor samples. 

We then removed dbSNP variants while retaining previously reported cancer editing 

sites. To identify differential editing sites between each ADAR KD condition and control 

or between each individual ADAR KD and double KD, we used REDIT-LLR on sites that 

were edited in the control condition (editing level ³ 0.05)70. A site was considered 
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differentially edited if the difference in mean editing levels between conditions was at 

least 0.05 and REDIT-LLR p-value < 0.05.  

 

2.5.14 Regression analysis 

 

 For each differential editing site, association between editing level and host gene 

mRNA abundance was tested by fitting a linear model of log-transformed gene FPKM 

against editing level and potentially confounding covariates (using the lm function in R). 

For associations in GTEx data, we included age, gender, and race as covariates. For 

associations in TCGA data, we included metadata that were significantly correlated with 

the top two principal components of expression, as in the differential expression 

analysis.  

  

2.5.15 eCLIP-seq generation 

  

Following a published protocol71, we performed an eCLIP experiment 

comprising three libraries from two ILF3-immunoprecipitated biological replicates and 

one control. The antibody used for this experiment is: ILF3/NF90 antibody (Bethyl 

Laboratories, A303-651A). For each sample, 10M A549 cells were ultraviolet (UV) 

crosslinked at 254 nm (800 mJ cm-2). We then performed cell lysis, RNA 

fragmentation, immunoprecipitation, adapter ligation, and other library preparation 

steps on UV crosslinked samples, as described71. For the size-matched input control 

(SMInput), we prepared a library from sampling 2% of one pre-immunoprecipitation 
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UV crosslinked sample. This control is used to normalize binding signal, given biases 

that may be introduced through various experimental steps. 

 

2.5.16 eCLIP-seq peak calling and distance analysis 

 

We obtained eCLIP peak data for 96 RBPs in K562, 83 RBPs in HepG2, and 

ILF3 in A549 cells, as described previously72. Briefly, after demultiplexing and trimming 

adapters, we aligned reads in multiple rounds with STAR. First, reads aligning to rRNA 

sequences were discarded, and then the unmapped reads were aligned to Alu 

sequences, permitting a maximum of 100 alignments for an individual read. In the final 

alignment step, the remaining unmapped reads were uniquely aligned to the hg19 

genome. Then read enrichment within a sliding window, considering both genome and 

Alu-aligned reads, was tested for significance by a Poisson model in order to call eCLIP 

peaks72,73.  

 

To assess the proximity of a single RBP’s binding to differential editing sites 

compared to random controls, we calculated the distance from each differential editing 

site or control to the closest eCLIP peak in the same gene. Control sites consisted of 

adenosines within genes containing differential editing sites53. We then calculated the 

area under the curve (AUC) of the cumulative distribution of distances from differential 

editing sites to the closest eCLIP peaks. Given our interest in close binding, we 

considered distances up to 10,000 bases only for AUC calculation. Similarly, we 

calculated the AUC of the distribution of closest distances between eCLIP peaks and 
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controls, for each of 10,000 sets of random controls. We computed the p-value of the 

AUC for differential editing sites from the normal distribution fit to the AUC values of 

control sets53.  
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2.7 Figures 

 

 

Figure 2.1 Overview of differential editing in cancer EMT 

The following cancer types were studied: breast invasive carcinoma (BRCA), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate 

adenocarcinoma (PRAD), ovarian serous cystadenocarcinoma (OV), kidney renal clear 

cell carcinoma (KIRC), head and neck squamous cell carcinoma (HNSC).  

A First two principal components of differential editing profiles separate tumor samples 

into epithelial (E) and mesenchymal (M) phenotypes across cancer types.  

n = 2586 n = 1900 n = 2073 n = 3074 n = 1020 n = 3185 n = 1421

−0.3

0.0

0.3

0.6

BRCA LUAD LUSC PRAD OV KIRC HNSC

Ed
iti

ng
 L

ev
el

 D
iff

er
en

ce
 (M

 −
 E

)

0

25

50

75

100

BRCA
HNSC

KIRC
LU

AD
LU

SC OV
PRAD

REDIpo
rta

l

Pe
rc

en
t

Region
3'UTR
intron
nc exon
5'UTR
intergenic
nc intron
exon

phenotype
E
M

−25

0

25

−50 0 50
PC1: 28% variance

PC
2:

 7
%

 v
ar

ia
nc

e

PRAD

−40

−20

0

20

−30 −20 −10 0 10 20
PC1: 38% variance

PC
2:

 1
7%

 v
ar

ia
nc

e

OV

−50

−25

0

25

−75 −50 −25 0 25 50
PC1: 33% variance

PC
2:

 1
4%

 v
ar

ia
nc

e

BRCA

−20

0

20

40

60

−40 −20 0 20 40
PC1: 31% variance

PC
2:

 1
6%

 v
ar

ia
nc

e

LUAD

−20

0

20

40

−50 0 50
PC1: 37% variance

PC
2:

 1
6%

 v
ar

ia
nc

e

LUSC

−60

−40

−20

0

20

40

−100 −50 0 50
PC1: 29% variance

PC
2:

 1
2%

 v
ar

ia
nc

e

KIRC

−40

−20

0

20

−60 −30 0 30 60
PC1: 32% variance

PC
2:

 1
5%

 v
ar

ia
nc

e

HNSC

A

B C



 40 

B Distributions of differences in mean editing levels between E and M tumors in each 

cancer type. The number of differential editing sites is listed on top of each distribution. 

C Differential editing sites are mostly found in 3′ UTR and intronic regions in all cancer 

types, with higher proportions of 3′ UTR sites compared to that of all editing sites from 

the REDIportal database 

 

 

Figure 2.2 Differential editing patterns are shared among cancer types yet distinct 

from differential gene expression. 

A Rank-rank hypergeometric overlap (RRHO) map of RNA editing across pairs of 

cancer types. Each heatmap (for two cancer types) represents the matrix of log10-

transformed adjusted p values that indicate the extent of overlap in two gene lists at 

each possible pair of ranks. For an individual cancer type, genes were ranked by the 

signed significance of RNA editing differences (M-E). Genes with higher editing in the M 
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phenotype are at lower ranks, while those with higher editing levels in E tumors are at 

higher ranks. Higher pixel darkness indicates stronger enrichment of overlapping genes 

within the rank thresholds given by the x and y coordinates. The step size between 

ranks was 30 genes. B RRHO map of editing and gene expression within each cancer 

type. Each heatmap contains log10-transformed adjusted p values of 

hypergeometric overlap between genes ranked by editing differences (x-axis) and 

genes ranked by expression differences (y-axis) in a single cancer type. Similar to 

ranking genes by differential editing, genes were ranked by the signed significance of 

expression differences, such that genes at lower ranks have higher expression in M 

tumors, while genes at higher ranks have higher expression in the E phenotype. The 

step size between ranks was 30 genes. C Significance of enrichment of gene ontology 

(GO) terms in differentially edited genes of each cancer type represented by point size 

(log10-transformed adjusted p value). Terms significantly enriched in at least two cancer 

types are shown. Check mark on the right indicates terms that were also significantly 

enriched in differentially expressed genes in at least two cancer 

types. Text color indicates category of biological relevance. 
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Figure 2.3 Contribution of cell types to differential editing. 

A Proportions of differentially edited (DE) genes from bulk tumor analysis that were 

expressed in cell types identified in lung cancer single-cell RNA-seq data. Each point 

represents the proportion of genes from one cancer type. A gene was considered as 

expressed in a cell type if its expression ≥ 1 RPKM. RPKM values were calculated 

within each cell type by pooling reads of the same cell type together. Proportions were 

compared for top cell types by Mann Whitney U test, with significance of p values 
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shown. **p ≤ 0.01. EC stands for endothelial cells. B Proportion of differential editing 

sites from bulk tumor analysis that were edited in individual cell types. A site was 

considered as edited in a cell type if the site was covered by at least 5 reads and editing 

was supported by at least 2 reads. Each point represents the proportion of sites from 

one cancer type. Proportions for top cell types were compared by Mann Whitney U test, 

with p value significance shown. **p ≤ 0.01. C UMAP projection of 6526 tumor cells 

based on expression profiles, colored by cluster assignment (scatterplot, left). By 

differential expression of epithelial or mesenchymal markers (table, right), green and 

purple clusters were labeled as epithelial and mesenchymal, respectively. D Scatterplot 

of editing levels of pooled E and M cells, with y = x line. Editing sites exhibiting 

significant differences between E and M were labeled in red. Differences were 

considered significant if the difference between editing levels ≥ 0.05 and Fisher’s exact 

p value < 0.05. 
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Figure 2.4 ADAR1 or ADAR2 knockdown induced EMT. 

A Images of A549 cells transfected with siRNAs for ADAR1 knockdown (KD) (siADAR1) 

or control siRNAs (siControl). Scale bars, 100 μm. B Loss of epithelial markers (E-

cadherin and γ-Catenin) and induction of mesenchymal marker (Vimentin) in A549 cells 

upon ADAR1 KD. Cells were treated with 100 nM siRNA for 72 h. Three biological 
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replicates were used in each condition. C Images of A549 cells transfected with siRNAs 

for ADAR2 KD (siADAR2) or control siRNAs (siControl). Scale bars, 100 μm. D Loss of 

epithelial markers (E-cadherin and γ-Catenin) and induction of mesenchymal marker 

(Vimentin) in A549 cells upon ADAR2 KD. Cells were treated with 11 nM siRNA for 72 

h. Three biological replicates were used in each condition. E Images of MCF10A cells 

with ADAR1 or ADAR2 KD or control siRNAs. Scale bars, 100 μm. F Loss of epithelial 

markers (E-cadherin and γ-Catenin) and induction of mesenchymal markers (Vimentin) 

in MCF10A cells upon ADAR1 KD or ADAR2 KD. Cells were treated with 11 nM siRNA 

for 72 h. Three biological replicates were used in each condition. 
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Figure 2.5 Effects of editing on mRNA abundance. 

A Scatterplot of coefficient estimate and statistical significance (log10-transformed 

adjusted p value) of editing level as a predictor of host mRNA expression in linear 

regression, accounting for potential confounding variables. For genes with multiple 

editing sites associated with expression, the most significantly associated site was 

used. Dashed line indicates significance threshold based on 10% false discovery rate 

(FDR). B Scatterplot of editing level coefficient estimate from multiple linear regression 

models used in A and log2-transformed fold change of the corresponding gene 

observed in ADAR1 KD cells. Red points indicate expression changes in the direction 

consistent with the sign of the editing association, in contrast to the gray points.  
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C Editing sites associated with host expression (Expression-Correlated) are more often 

found in 3′ UTR regions, compared to all differential editing sites (Diff Edited, not 

including intergenic sites). D Validation of six editing sites affecting host mRNA 

abundance. For each site, a scatterplot of editing level and log2-transformed mRNA 

expression in the TCGA data is shown. On the right of each scatterplot is mCherry 

expression, normalized by eYFP expression, of minigenes with A or G, corresponding to 

nonedited or edited versions of the sites in the 3′UTR of each gene. All minigenes were 

tested in Hela cells with five biological replicates. Normalized expression values (mean 

± SD) were compared between edited and nonedited versions by two-sided t-test. *p < 

0.05, **p < 0.01, ***p < 0.001. Note that RHOA and MRPS16 editing sites were 

identified as differential sites in the single-cell RNA-seq analysis (Fig. 3c). 
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Figure 2.6 ILF3 binds closely to the differential editing sites in editing-expression-

correlated genes. 

A Histogram of distances between differential editing sites in editing-correlated genes 

and the closest ILF3 eCLIP peaks in A549 cells (turquoise), up to 10 kb. Gray curves 

represent distances for 10 sets of randomly picked A’s in the same genes as differential 

editing sites. Number of differential editing sites is given by n. p value was calculated by 

comparing the area under the curve (AUC) of the distance distribution for differential 

editing sites to a normal distribution fit to the AUC values of 10,000 sets of random 

gene-matched A’s. B Scatterplot of Pearson correlation coefficient and significance 

(log10-transformed adjusted p value) of correlation between ILF3 mRNA expression 

and mRNA expression of editing-correlated genes. Genes passing 10% FDR are  
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labeled as significant (sig, turquoise), others as nonsig. C Cumulative distributions of 

distances between ILF3 eCLIP peaks and differential editing sites within editing-

expression-associated genes (sig) or differential editing sites in genes without editing-

expression associations (nonsig), up to 1 kb. Only genes associated with immune and 

viral related GO terms were included. p value calculated by the Kolmogorov-Smirnov 

test. D For each cell type in the lung cancer scRNA-seq dataset, ILF3 mRNA 

expression was correlated with mRNA expression of editing-expression-correlated 

genes (identified in the TCGA data) by Pearson correlation. Genes associated with any 

immune or viral-related GO term are shown. The size of each point indicates 

significance of correlation and color corresponds to values of the correlation coefficient. 

E Normalized mCherry expression (mean ± SD) for nonedited or edited versions of sites 

in the 3′UTR of PKR in A549 cells. Five biological replicates were performed. p value 

calculated by two-sided t-test (same below), *p < 0.05. F Normalized mRNA expression 

(mean ± SD) of endogenous PKR in siControl, siADAR1, and siADAR2 A549 cells. 

Three biological replicates were performed. *p < 0.05. n.s., not significant. G Read 

coverage of ILF3 eCLIP-seq in A549 cells for two biological replicates (ILF3 IP1 and 

ILF3 IP2, turquoise) and size-matched input (SMInput, gray). The five validated 3′ UTR 

editing sites affecting PKR mRNA abundance in A549 cells are labeled in magenta 

(left). Right: Validation of PKR eCLIP signal overlapping two editing sites. PKR 

expression (mean ± SD) was measured by qRT-PCR in the IP or SMInput samples and 

normalized against the expression of 18s rRNA, *p < 0.05. (n = 3) 
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Figure 2.7 ILF3 regulates PKR mRNA abundance and EMT in A549 cells. 

A Western blot confirming shRNAmediated ILF3 KD in A549 cells (left). ILF3 mRNA 

levels (mean ± SD) were quantified in A549 shCtrl and ILF3 KD cells by qRT-PCR 

(right). ILF3 mRNA expression was normalized against gene TBP mRNA expression. 

Three biological replicates were performed. p value calculated via t-test, ****p < 0.0001. 

B Normalized mCherry expression (mean ± SD) for nonedited or edited versions of sites 

in the 3′ UTR of PKR in shCtrl or ILF3 KD A549 cells. Five biological replicates were 
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performed. Normalized expression values were compared between edited and 

nonedited versions by two-sided t-test. *p < 0.05, **p < 0.01, n.s., not significant.  

C Images of A549 cells transfected with siRNAs targeting ILF3 (two different siRNAs 

were used to KD ILF3, siILF3_1, and siILF3_2) or control siRNAs (siControl). Scale 

bars: 100 μm. D Western blot detecting protein levels of ILF3, E-Cadherin, N-Cadherin, 

and internal control β-Actin in the siControl, siILF3_1, and siILF3_2 A549 cells. Three 

biological replicates were carried out for each experiment. E Normalized mRNA 

expression levels (mean ± SD) for ILF3, E-Cadherin, and N-Cadherin in the siControl, 

siILF3_1, and siILF3_2 A549 cells. Three biological replicates were carried out for each 

experiment. The expression values were compared between siILF3 and siControl via t-

test. **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s., not significant 
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2.8 Supplementary Figures 

 

Supplementary Figure 2.1 Differential editing not confounded by metadata. 

Heatmaps of significance (log10-transformed adjusted p-values) of correlations between 

the top two principal components and E/M phenotype among metadata fields in each 

cancer type. Darker color indicates smaller p-value and stronger association. 
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Fig. S1. Differential editing not confounded by metadata. Heatmaps of significance 
(log10-transformed adjusted p-values) of correlations between the top two principal components and
E/M phenotype among metadata fields in each cancer type. Darker color indicates smaller p-value and 
stronger association.
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Supplementary Figure 2.2 Gene ontology enrichment among differentially edited 

genes. 

Significance of enrichment of gene ontology (GO) terms among all differentially edited 

genes (blue), only hyperedited genes (green) or only hypoedited genes (pink) of each 

cancer type. Point size represents the statistical significance of enrichment (log10-

transformed adjusted p-value). Terms significantly enriched in at least two cancer types 

are shown. For cancer types with a global hyperediting trend in M tumors, GO 

enrichment among hyperedited genes is similar to that among all differentially edited 

genes. Likewise, for cancer types with a hypoediting trend (BRCA and OV), enrichment 

among ypoedited genes is similar to that among all differentially edited genes. 
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Fig. S2. Gene ontology enrichment among differentially edited genes. Significance 
of enrichment of gene ontology (GO) terms among all differentially edited genes (blue), only hyperedited 
genes (green) or only hypoedited genes (pink) of each cancer type. Point size represents the statistical 
significance of enrichment (log10-transformed adjusted p-value). Terms significantly enriched in at least 
two cancer types are shown. For cancer types with a global hyperediting trend in M tumors, GO 
enrichment among hyperedited genes is similar to that among all differentially edited genes. Likewise, 
for cancer types with a hypoediting trend (BRCA and OV), enrichment among hypoedited genes is 
similar to that among all differentially edited genes.
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Supplementary Figure 2.3 Clustering of single cells from three lung cancer 

tumors. 

A TSNE projection of cells based on expression profiles, with color indicating cluster 

identity (left). Cell types were assigned to clusters by matching differentially expressed 

genes of clusters to known cell type markers (right). B TSNE projection of only cells 
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Fig. S3. Clustering of single cells from three lung cancer tumors. A. TSNE projection of cells 
based on expression profiles, with color indicating cluster identity (left). Cell types were assigned to clusters by 
matching differentially expressed genes of clusters to known cell type markers (right). B. TSNE projection of only 
cells from cluster 10 to further refine cell type assignment (left). Similar to A, cell types were labeled using 
differentially expressed genes that matched cell type markers (right). C. Counts of cells for each cell type after 
2 rounds of clustering and cell type assignment (A and B). D. Log2-transformed expression values of marker genes 
across cell types. Signature matrix on the left indicates expression values assigned for each cell type by 
CIBERSORTx. On the right, Pooled Cells indicate that expression values were calculated from pooling reads 
from cells of the same type together.  
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from cluster 10 to further refine cell type assignment (left). Similar to A, cell types were 

labeled using differentially expressed genes that matched cell type markers (right). C 

Counts of cells for each cell type after 2 rounds of clustering and cell type assignment 

(A and B). D Log2-transformed expression values of marker genes across cell types. 

Signature matrix on the left indicates expression values assigned for each cell type by 

CIBERSORTx. On the right, Pooled Cells indicate that expression values were 

calculated from pooling reads from cells of the same type together. 

 

Supplementary Figure 2.4 E and M assignment of single cells not confounded by 

metadata. 

Comparison between E and M cells altogether (top) and within each tumor sample 

(bottom) of metadata fields: UMI count (A-B), gene count (C-D), and percent of reads 

mapping to the mitochondrial genome (E-F). Metadata values were compared by Mann 

Whitney U tests, and significance of p-values are shown. ns: p > 0.05, * p ≤ 0.05, ** p ≤ 

0.01. 
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Fig. S4. E and M assignment of single cells not confounded by metadata. 
Comparison between E and M cells altogether (top) and within each tumor sample (bottom) of 
metadata fields: UMI count (A-B), gene count (C-D), and percent of reads mapping to the 
mitochondrial genome (E-F). Metadata values were compared by Mann Whitney U tests, and 
significance of p-values are shown. ns: p > 0.05, * p ≤ 0.05, ** p ≤ 0.01. 
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Supplementary Figure 2.5 LUAD and LUSC tumor editing differences of 

differential 

For each editing site, the difference in mean editing levels between M and E tumors (M - 

E) in each cancer type is listed. Green highlight indicates Wilcoxon p-value < 0.05. 
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Fig. S5. LUAD and LUSC tumor editing differences of differential 
sites identified from single cell RNA-seq analysis. For each editing site, 
the difference in mean editing levels between M and E tumors (M - E) in each 
cancer type is listed. Green highlight indicates Wilcoxon p-value < 0.05.
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Supplementary Figure 2.6 Altered editing upon knockdown of ADAR1, ADAR2, or 

both. 

A Distributions of mRNA expression of ADAR1 and ADAR2 under ADAR KD and 

control conditions. Expression levels were quantified as transcripts per million (TPM).  
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Fig. S6. Altered editing upon knockdown of ADAR1, ADAR2, or both. A. Distributions of mRNA 
expression of ADAR1 and ADAR2 under ADAR KD and control conditions. Expression levels were quantified as 
transcripts per million (TPM). B. Mean editing levels of testable sites in five comparisons between ADAR KD conditions
or control experiment. Sites with significant editing differences between conditions are colored red, while gray represents
nondifferential sites. Y=x line shown in blue. C. Proportions of lung cancer E-M differential sites that were also differential
in ADAR KD conditions (compared to controls). sigADAR1: sites that were differential only in ADAR1 KD. 
sigADAR2: sites that were differential only in ADAR2 KD. sigBoth: sites that were differential in both ADAR1 KD and 
ADAR2 KD, or in double KD. The prefix ‘red’ indicates reduced editing level by at least 0.05 upon KD from control, 
but did not pass the statistical significance requirement. ‘Remain’: editing sites that were not significantly different or 
reduced across any comparison.
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B Mean editing levels of testable sites in five comparisons between ADAR KD 

conditions or control experiment. Sites with significant editing differences between 

conditions are colored red, while gray represents nondifferential sites. Y=x line shown in 

blue. C Proportions of lung cancer E-M differential sites that were also differential in 

ADAR KD conditions (compared to controls). sigADAR1: sites that were differential only 

in ADAR1 KD. sigADAR2: sites that were differential only in ADAR2 KD. sigBoth: sites 

that were differential in both ADAR1 KD and ADAR2 KD, or in double KD. The prefix 

‘red’ indicates reduced editing level by at least 0.05 upon KD from control, but did not 

pass the statistical significance requirement. ‘Remain’: editing sites that were not 

significantly different or reduced across any comparison. 

 

Supplementary Figure 2.7 Expression of ADARs in E and M tumors. 

Distributions of mRNA expression of ADAR1 (left) and ADAR2 (right) in E and M tumors 

across cancer types. Expression values, measured as Fragments Per Kilobase per 

Million mapped reads (FPKM), were compared by Mann Whitney U tests, and 

significance of p-values are shown. ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001. 
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Fig. S7. Expression of ADARs in E and M tumors. Distributions of mRNA expression of ADAR1 (left) 
and ADAR2 (right) in E and M tumors across cancer types. Expression values, measured as Fragments Per Kilobase 
per Million mapped reads (FPKM), were compared by Mann Whitney U tests, and significance of p-values are shown. 
** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001.
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Supplementary Figure 2.8 ILF3 binds closely to the differential editing sites in 

editing-expression correlated genes. 

A Histogram of distances between differential editing sites in editing-correlated genes 

and the closest ILF3 eCLIP peaks in HepG2 and K562 cells (turquoise), up to 10 kb. 

Gray curves represent distances for 10 sets of randomly picked A’s in the same genes 

as differential editing sites. Number of differential editing sites is given by n for each cell 

line. P-value was calculated by comparing the area under the curve (AUC) of the 

distance distribution for differential editing sites to a normal distribution fit to the AUC 
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Fig. S8. ILF3 binds closely to the differential editing sites in editing-expression correlated genes. 
A. Histogram of distances between differential editing sites in editing-correlated genes and the closest ILF3 eCLIP peaks
in HepG2 and K562 cells (turquoise), up to 10 kb. Gray curves represent distances for 10 sets of randomly picked A’s in 
the same genes as differential editing sites. Number of differential editing sites is given by n for each cell line. P-value was 
calculated by comparing the area under the curve (AUC) of the distance distribution for differential editing sites to a normal 
distribution fit to the AUC values of 10,000 sets of random gene-matched A’s. B. Normalized mCherry expression for 
nonedited or edited versions of sites in the 3’UTR of PKR in A549 cells. Five biological replicates were performed. 
Normalized expression values were compared between edited and nonedited versions by two-sided t-test. **p<0.01. 
C. Editing levels of PKR 3’UTR editing sites in siControl, siADAR1 and siADAR2 A549 cells measured by Sanger 
sequencing. The peak signals of A and G nucleotides were measured by 4Peaks for editing level calculation (G/(A+G)). 
The editing level of each editing site (underlined) is shown in the graph. D. Read coverage of ILF3 eCLIP-seq in HepG2 
and K562 cells for two biological replicates (ILF3 IP1 and ILF3 IP2, turquoise) and size-matched input (SMInput, gray) in 
each cell line. The five validated 3’ UTR editing sites affecting PKR mRNA abundance in A549 cells are labeled in magenta.
E. Validation of PKR eCLIP signal overlapping three editing sites. PKR expression was measured by qRT-PCR in the IP or 
SMInput samples and normalized against the expression of 18s rRNA. Three technical replicates were performed (other 
than two replicates for 8034). P-value calculated by t-test. *p<0.05, **p<0.01, ****p<0.0001.
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values of 10,000 sets of random gene-matched A’s. B Normalized mCherry expression 

for nonedited or edited versions of sites in the 3’UTR of PKR in A549 cells. Five 

biological replicates were performed. Normalized expression values were compared 

between edited and nonedited versions by two-sided t-test. **p<0.01. C Editing levels of 

PKR 3’UTR editing sites in siControl, siADAR1 and siADAR2 A549 cells measured by 

Sanger sequencing. The peak signals of A and G nucleotides were measured by 

4Peaks for editing level calculation (G/(A+G)). The editing level of each editing site 

(underlined) is shown in the graph. D Read coverage of ILF3 eCLIP-seq in HepG2 and 

K562 cells for two biological replicates (ILF3 IP1 and ILF3 IP2, turquoise) and size-

matched input (SMInput, gray) in each cell line. The five validated 3’ UTR editing sites 

affecting PKR mRNA abundance in A549 cells are labeled in magenta. 

E Validation of PKR eCLIP signal overlapping three editing sites. PKR expression was 

measured by qRT-PCR in the IP or SMInput samples and normalized against the 

expression of 18s rRNA. Three technical replicates were performed (other 

than two replicates for 8034). P-value calculated by t-test. *p<0.05, **p<0.01, 

****p<0.0001. 
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Supplementary Figure 2.9 Uncropped western blot images for Figure 4A. 
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Supplementary Figure 2.10 Uncropped western blot images for Figure 4B. 
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Fig. S10. Uncropped western blot images for Figure 4B.
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Supplementary Figure 2.11 Uncropped western blot images for Figure 4C. 

 

 

Fig. S11. Uncropped western blot images for Figure 4C.
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Supplementary Figure 2.12 Uncropped western blot images for Figure 7A. 

 

Fig. S12. Uncropped western blot images for Figure 7A.
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Supplementary Figure 2.13 Uncropped western blot images for Figure 7D. 
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Fig. S13. Uncropped western blot images for Figure 7D.
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2.9 Supplementary Tables 

 

 

 

Table S 2.1 Primary tumor samples used in this study. 

Cancer types and the corresponding numbers of categorized E and M tumor samples 

analyzed in this study. 
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Table S 2.2 List of editing sites predicted to regulate host gene mRNA abundance. 

Editing-expression associations (editlevel_est represents editing level regression 

coefficient and adj_edit_pvalue is the adjusted p-value of the coefficient) were 

supported by consistent expression changes upon ADAR KD in at least one cell line. 
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Table S 2.3 List of primers and siRNAs used in this study. 
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Chapter 3: The landscape of RNA editing in single cells of 

lung cancer 

 

 

3.1 Introduction 

 

Among the various types of RNA editing in the human transcriptome, the most 

prevalent is A-to-I editing, i.e., the deamination of adenosine (A) to inosine (I)3. Proteins 

of the adenosine deaminases acting on RNA (ADAR) family, specifically ADAR1 and 

ADAR2, catalyze this conversion. Facilitated by advances in genomic technologies, 

recent studies have highlighted the multi-faceted roles of ADAR activity in 

cancer16,17,118,119.  

 

Specific editing sites have been discovered to transform cancer cell behavior, as 

well as impact the anti-tumor immune response. Edited at higher levels in multiple 

cancer types, a recoding site in AZIN1 increases cell growth and invasion by 

heightening the protein’s affinity to antizyme and consequently preventing antizyme-

dependent degradation of two oncoproteins16,20,21. In other examples, translation of 

mRNAs containing recoding events may generate tumor-associated edited peptides, 

which may prompt anti-tumor T cell responses specific to these editing-derived 

antigens29,30. Besides protein sequence alteration118, editing can affect transcript 

stability of tumorigenic genes16,120. For example, a FAK-stabilizing intronic site enables 

a migratory and invasive phenotype in lung adenocarcinoma (LUAD) cells46. In addition, 
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editing may regulate mRNA degradation by altering miRNA biogenesis, targeting, or 

binding5,16,118,121. 

 

Globally, altered editing profiles were evident in tumors of many cancer types25–

27. The functional implications of most of these editing changes, especially those located 

in noncoding regions, are not clear. One crucial role of editing in normal cells is to 

modify endogenous double-stranded RNAs (dsRNAs), likely altering their secondary 

structures, which consequently prevents self-activation of innate immune response 

pathways7,10,122–124. Considering this editing-mediated regulation of immunity, one 

proposed consequence of increased editing levels in cancer cells may be repressed 

interferon production and sustained cell growth41. However, in certain cancer types, 

global editing levels were lower in tumors than in matched normal samples25. 

Furthermore, these observations were obtained from bulk tumors. As tumors are highly 

heterogeneous with respect to cancer cells and their microenvironment, whether editing 

aberrations occur in different cell types within tumors and how editing varies across 

single cancer cells are unknown.  

 

Demonstrating both oncogenic and tumor-suppressive capacities, RNA editing 

has profound potential for clinical application. In mouse models, combining ADAR 

deficiency with immune checkpoint blockade (ICB) or DNA methyltransferase inhibitor 

(DNMTi) therapy improved treatment efficacy through induced interferon (IFN) 

signaling34,125. For particular cancer cells with pre-existing expression of interferon 

stimulated genes (ISGs), ADAR loss alone caused cell lethality35,36. On the level of site-
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specific editing, recoding events individually affected drug sensitivity of two cell lines25. 

Deeper understanding of the functions and regulation of editing will aid development of 

more effective cancer therapies, management of treatment resistance, and classification 

of treatment-responsive patients. 

 

In this study, we characterized RNA editing in single cells of tumor and normal 

biopsies from lung cancer patients. We also investigated tumor-associated editing 

differences across individual cell types and the relationships between editing in cancer 

cells and features of immune response. These analyses enabled a first global view of 

the RNA editing landscape in distinct cell types of lung cancer and the potential 

association of RNA editing with tumor immunity and patient survival. 

 

3.2 Results 

 

3.2.1 Characterization of RNA editing in single cells  

 

To examine RNA editing profiles of different cell types in lung cancer, we 

analyzed single-cell (sc) RNA-seq data from tumors (n = 46) and tumor adjacent tissues 

(TATs, n = 3) of 30 non-small cell lung cancer (NSCLC) patients126. After filtering by 

quality control metrics, we clustered cells in multiple rounds based on normalized gene 

expression profiles and assigned cell type labels according to their expression of marker 

genes (Fig. S1, Methods). Briefly, we labeled clusters initially as immune or non-

immune and then subclustered these broad types separately. We annotated immune 
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subtypes as B cells, T cells, mast cells, macrophages, neutrophils, and plasmacytoid 

dendritic cells (pDCs). From non-immune clusters, we obtained epithelial cells, 

endothelial cells, fibroblasts, hepatocytes, and melanocytes. Cancer cells were 

distinguished from non-malignant epithelial cells by comparing copy-number variation 

(CNV) estimates to those of reference fibroblasts and endothelial cells130 (Fig. S2A-B). 

After removing PCR duplicates, single cells had about half a million uniquely mapped 

reads on average (Fig. S2C). 

 

 We identified editing sites in each cell using our published methods37,53,80 and 

requiring their presence in the REDIportal v2 database132. On average, an individual 

editing site was found to be edited (with ≥1 edited read and ≥5 reads in total coverage) 

in 14 cells and covered (with ≥5 total reads) in 314 cells (Fig. 1A, Fig. S3A). In an 

individual cell, a mean of 672 sites were edited and 15,037 were covered (Fig. 1B, Fig. 

S3B). Of the total 1,096,361 sites found to be edited in one or more cells, 50,576 sites 

were edited in at least 50 cells and located primarily in introns and 3’UTRs, within Alu 

regions (Fig. 1C-D). To estimate the general editing level of a single cell, we calculated 

the mean of editing levels of all sites in the cell. Parallel to ADAR1 expression levels, 

overall editing levels were highest in cancer cells (Fig. S3C-D).   

 

Next, we examined the editing levels of two recoding sites (in AZIN1 and CCNI 

respectively) known to have higher editing levels in LUAD than normal controls136. Both 

sites have been shown to have cancer-specific functions16,20,21,29. Consistent with these 

reported findings, we observed highest recoding rates in cancer cells at both sites (Fig. 
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1E). These results support the validity of the single cell RNA editing profiles derived 

here. 

 

The discovery of targetable oncogenic driver mutations and development of 

corresponding inhibitors have helped improve survival of lung cancer patients following 

treatment137. Interestingly, we found that editing profiles were distinct among cancer 

cells grouped by oncogenic driver mutation (Fig. 1F). Furthermore, editing levels across 

driver mutations were not well correlated with ADAR expression, suggesting the 

presence of other regulatory mechanisms that may be linked to individual driver 

mutations (Fig. S3E).  

 

3.2.2 Tumor-associated editing is distinct among cell types 

 

Previous studies detected numerous editing changes in bulk LUAD tumors 

compared to matched tumor-adjacent normal samples25,26, a finding we reproduced by 

analyzing the LUAD and control samples in the TCGA project (Fig. S4, Methods). 

Considering the heterogeneity of the tumor microenvironment observed across 

patients83,138, we asked whether tumor-associated editing aberrations were cell-type-

specific. To address this question, we first compared editing frequencies of tumor-

increased sites from our bulk LUAD analysis across cell types in the scRNA-seq data. 

We found that these sites were most frequently edited in cancer cells compared to other 

cell types (Fig. 2A). This observation suggests that heightened editing in bulk tumors 
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likely reflect altered editing in cancer cells more often than in other cell types present in 

tumors. 

 

To further investigate the specificity of tumor-associated editing in individual cell 

types, we applied REDIT LLR70 to test for editing differences between tumor and normal 

conditions of each cell type. Using the eight samples from the three patients with TATs, 

we pooled cells of the same cell type within a sample together. For non-epithelial cell 

types, we compared editing levels of pooled cells from tumor samples to those from 

normal samples. Considering cancer cells as the tumor condition of epithelial cells in 

LUAD, we compared editing levels of pooled cancer cells to pooled non-malignant 

epithelial cells. Strikingly, cancer cells alone displayed a dominant trend of increased 

editing compared to non-malignant epithelial cells (Fig. 2B). In contrast, editing levels 

were generally reduced in the other cell types in tumors (Fig. 2C).  

 

We next sought to determine whether the types of genes harboring tumor-

associated editing differ by cell type. To this end, we performed a gene ontology (GO) 

enrichment analysis on differentially edited genes in each cell type. Enrichment was 

assessed against background genes with gene length and expression levels 

comparable to differentially edited genes, as described previously53,120. While several 

categories, such as cell proliferation and apoptotic process, were identified across 

multiple cell types, certain pathways appeared to be enriched in only specific cell types 

(Fig. 2D-E). For instance, enrichment of regulation of transforming growth factor beta 

receptor signaling pathway and cytoskeleton organization were exclusive to cancer 
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cells. Moreover, the inflammatory pathways of tumor necrosis factor-mediated signaling 

pathway and interleukin-1-mediated signaling pathway were significantly enriched in 

differential editing of T cells only. Considering these findings together, tumor-associated 

editing changes appear distinct across cell types not only in direction but also in gene 

categories.  

 

3.2.3 Cancer editing associated with immune suppression 

 

Helping to prevent autoimmunity, ADAR marks endogenous dsRNAs by RNA 

editing so that these dsRNAs do not unnecessarily activate cytosolic sensors, such as 

MDA5 and PKR, and their signaling pathways, which would lead to IFN production, 

translational repression, and growth arrest10,40,139. Consistent with this role of ADAR in 

normal tissues, certain cancer cells were found to be vulnerable to ADAR loss through 

stimulation of ISGs and growth inhibition in both in vitro and in vivo models34–36. Cancer 

cells may upregulate RNA editing to exploit this mechanism of innate immune 

suppression.  

 

To explore this model in human tumors, we examined the contribution of RNA 

editing to ISG expression in cancer cells. For multiple sets of ISGs, we quantified their 

overall expression as the mean expression of genes in the set. The following sets of 

ISGs were included, the Hallmark IFN-alpha and IFN-gamma response gene sets, 60 

genes suppressed by IU-dsRNA during poly(IC) transfection140 (ISGdsRNA), 38 cancer-

specific genes associated with resistance to ICB141 (ISG RS), 38 genes associated with 
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ADAR dependence36 (ISGliu), and 30 genes with prolonged IFN-induced 

expression142,143 (ISGchronic). We observed that overall editing levels were negatively 

associated with ISG expression across single cancer cells for several ISG sets, 

consistent with the model of editing-mediated suppression of IFNs in cancer cells (Fig. 

3A). Furthermore, this relationship seemed dependent on the clinically identified 

oncogenic driver mutation, as cancer cells with the BRAF V600E driver mutation 

exhibited the strongest negative correlations (Fig. 3B). Grouping cancer cells by 

treatment timepoint, we also observed most evident negative associations in the 

progressive disease state (Fig. S5). 

 

As ISGs regulate activation and recruitment of different immune cells144, we 

asked whether editing levels in cancer cells are also linked to the infiltration of immune 

cell types in tumors. For this analysis, we subclustered T cells and macrophages of lung 

tumors separately (Fig. S6A-B) and calculated the proportions of cell types within each 

tumor, using our annotations of single cells. To measure a cancer-specific editing index 

in each tumor, we calculated the mean of editing levels over pooled cancer cells in the 

tumor. While a negative association between cancer editing and cell proportion was 

statistically significant only for natural killer (NK) cells, most of the other immune 

subpopulations also exhibited the same trend (Fig. 3C). The association of reduced 

immune infiltration and higher editing levels in cancer cells may be partly explained by 

suppressed interferon signaling that we observed (Fig. 3A-B).  
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In bulk LUAD tumors from TCGA, we also observed a significant negative 

correlation between mean editing levels over tumor-increased sites and NK infiltration, 

as estimated by quanTIseq134 (Fig. 3D). In contrast, tumor-increased editing levels were 

positively associated with proportions of CD8+ T cells and M1 macrophages. In 

agreement with this observation, overall editing levels were highest in tumors of the C2 

immune subtype145, characterized by the highest M1 and CD8+ T cell signatures among 

all immune subtypes identified across TCGA cancer types (Fig. S7).   

 

3.2.4 Potential dsRNAs edited to avoid IFN induction 

 

We next asked which editing substrates are most relevant to ISG signatures in 

lung cancer. To this end, we searched for pertinent candidates among our in-house set 

of dsRNAs predicted from editing-enriched regions146,147. First, we calculated an editing 

index for each dsRNA in each cancer cell. We then correlated individual dsRNA editing 

index levels with mean expression of the ISGdsrna set in cancer cells. This analysis 

uncovered a number of dsRNAs whose editing levels strongly correlate with ISG 

expression negatively (Fig. 4A-B). Interestingly, among these top associations were 

dsRNAs from genes with previously reported oncogenic functions. For example, CTSB 

was found to promote cancer cell invasiveness, and higher expression of CTSB was 

correlated with worse survival in multiple cancer types148–150.  Similarly, AHR and 

MACC1 were associated with metastasis through enhanced cell motility151,152.  
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To further investigate the impact of top dsRNAs, we examined their clinical 

relevance. For several dsRNAs with the strongest negative ISG correlations, higher 

editing levels were associated with worse overall survival in TCGA LUAD patients (Fig. 

4C). These associations are consistent with the role of RNA editing to suppress dsRNA 

recognition, avoid innate immune activation, and in effect support tumor growth. Though 

previously reported in certain cancer types, we did not observe a significant survival 

association for CTSB gene expression (Fig. S8), highlighting the significant association 

of RNA editing and survival, unconfounded by gene expression of CTSB.  

 

 As associations between overall editing and ISG expression varied by driver 

mutation, we tested whether CTSB dsRNA editing correlates with the ISGdsrna 

signature for individual driver mutations separately. While all driver mutations exhibited 

a trend of negative association, editing levels of the CTSB dsRNA were most strongly 

associated with ISG expression for cancer cells with EGFR del19 (Fig. S9).  

 

3.2.5 Interplay between RNA editing and tumor mutation burden 

 

Another factor linked to cancer immunity is tumor mutation burden (TMB), which 

has shown potential for predicting response to immune checkpoint blockade (ICB) in 

certain cancer types, including NSCLC153–156. Though higher TMB is thought to help 

elicit a greater anti-tumor immune response and is associated with better clinical 

outcomes during ICB treatment, TMB is negatively correlated with survival following 

targeted EGFR therapy157,158. We investigated how RNA editing in individual cell types 
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relates to somatic mutation burden in cancer cells. We found that overall editing levels 

in cancer cells were strongly associated with estimated nonsynonymous TMB (Fig. 5A). 

Assessing this apparent relationship in bulk tumors, we correlated mean tumor-

increased editing levels and TMB in the LUAD data from TCGA. Consistent with the 

observation in the scRNA-seq data, higher cancer-specific editing levels corresponded 

to higher mutation burden (Fig. 5B).  

 

To further examine the relationship between editing and DNA mutations, we 

tested the correlations between editing of individual genes and TMB in bulk tumors. 

Nearly all significant associations between gene editing levels and TMB were positive 

(Fig. 5C). Additionally, significantly correlated genes were enriched for certain cancer-

relevant GO categories: apoptotic process and cellular response to DNA damage 

stimulus (Fig. 5D). These observations suggest that global editing is correlated with 

TMB in lung cancer, and gene-specific editing may contribute to the load of RNA 

mutations of tumors.   

 

Since TMB is associated with cytolytic activity in certain cancer types like 

LUAD159, higher TMB may prompt IFN-g secretion by cytotoxic T cells160,161 through 

increased neoantigen load. As a result, IFN-g may induce ADAR p150 expression162 in 

cancer cells. Exploring this possible mechanism to explain the observed association 

between RNA editing and TMB, we tested whether ADAR expression levels are 

correlated with TMB in both bulk tumors and pooled cancer cells from the scRNA-seq 

data. We found that ADAR expression was weakly associated with TMB (Fig. S10). 
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Thus, IFN-stimulated ADAR expression does not clearly mediate the relationship 

between RNA editing and TMB.  

 

 We next considered the effects of both RNA editing and TMB on survival of 

LUAD patients from TCGA. To do so, we fit a Cox proportional hazards model with 

TMB, tumor-increased mean editing level, age, and gender. Of all the covariates 

included in the model, only mean editing was significantly associated with overall 

survival (Fig. 5E), suggesting that increased RNA editing is an important factor in LUAD 

prognosis. 

 

 

3.3 Discussion 

 

We conducted the first global study of RNA editing in single cells from cancer. 

Single cell analysis enabled us to examine the variability of RNA editing due to tumor 

heterogeneity and dissect tumor-associated editing changes by cell type in lung cancer 

patients. We report distinct shifts in editing according to cell type, with regards to both 

direction and enriched biological processes. We have also shown that editing levels in 

cancer cells correlate with interferon stimulation signatures, tumor infiltration, tumor 

mutation load and patient survival.  

 

As a mechanism to avoid mistakenly inducing an innate immune response and 

halting cell growth, ADAR-catalyzed inosines mark endogenous dsRNAs as self 
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RNAs7,10,123,124. The resulting ADAR dependence in certain cancer cell lines, patient-

derived xenografts, and mouse models indicates that ADAR acts as an immune 

checkpoint in cancer with important clinical implications34–36,125. However, beyond 

previous negative associations between hyperediting and general tumor inflammation 

based on combined TCGA cancer types34, this regulatory mechanism has not been 

demonstrated extensively yet in human tumors. Furthermore, the most critical dsRNAs 

in these cancer types have not been previously characterized. Our findings provide 

additional support for the hypothesis that RNA editing suppresses the innate immune 

response in NSCLC. We also identified potential dsRNAs whose editing levels likely 

affect interferon stimulation in lung cancer cells and are associated with survival. 

Notably, the most highly associated dsRNAs overlapped genes with functions in 

tumorigenesis and metastasis, such as CTSB, MACC1 and AHR148,151,152. In addition, 

MACC1 and AHR were reported to play a role in the expression of PD-L1, an immune 

checkpoint163,164, in gastric and lung cancers, respectively165,166. Thus, these genes may 

suppress anti-tumor immune response via multiple mechanisms, which will need to be 

validated in future studies. 

 

For certain lung cancer patients whose tumors develop resistance to targeted 

therapy, immunotherapy may be a suitable option as the next line of treatment. Despite 

limited clinical data, patients with BRAF V600E alteration appear to have a higher 

response rate to ICB than patients with other driver mutations in EGFR or ALK167. 

Consistently, we observed strongest negative correlations between editing and ISG 

signatures in cancer cells with BRAF V600E, suggesting that ADAR loss could cause 
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IFN production, growth arrest, and possibly improved response to immunotherapy. 

Consequently, patients with this particular driver mutation may be potential candidates 

for a combination therapy of ICB and ADAR inhibition. Further investigation of how 

driver mutations and RNA editing affect innate and adaptive immunity will inform 

biomarker identification and patient selection for ICB combined with ADAR silencing.  

 

 Our results suggest that NK cells may have close relevance to RNA editing-

mediated immune response in tumors. NK cells are cytotoxic innate immune cells that 

can prevent tumor progression. Their antitumor activity can be activated inherently 

without requiring specific antigen presentation. Thus, NK cells are increasingly 

recognized as potential candidates to facilitate cancer immunotherapy168. We observed 

that the editing levels of cancer cells negatively correlated with the number of NK cells 

in the tumor. This negative correlation, together with the observation of heightened 

editing in cancer cells, points to the possibility that hyperediting in cancer cells 

contributes to their evasion from NK cell destruction. Future studies need to be carried 

out to substantiate such a causal relationship. In addition, whether RNA editing may 

affect the cytotoxicity or IFN production of NK cells needs to be investigated. 

 

 Although TMB is a biomarker for ICB response in NSCLC 156,169, higher TMB was 

previously associated with poor survival following targeted therapy and 

chemotherapy157,158. We, along with others136, have observed an association between 

TMB and RNA editing in bulk tumors of LUAD. Why these features are positively 

correlated is not yet clear. Importantly, we show that this relationship is specific to 
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cancer cells of tumors and may involve editing of specific genes in DNA damage 

response. In addition, we found that tumor-increased RNA editing was strongly 

associated with survival while TMB was not. In summary, these data highlight the 

prognostic value of RNA editing and motivate further evaluation of editing metrics as 

predictors for response to cancer therapies. 

 

3.4 Methods 

 

3.4.1 Single cell RNA-seq data processing and cell type assignment 

 

We downloaded scRNA-seq fastq files from BioProject PRJNA591860126. After 

checking data quality with FastQC and aligning reads to hg19 with STAR127, we ran 

HTSeq count to obtain gene-level expression counts with --mode=intersection-

nonempty. Using the R package Seurat128, we combined these count data into a Seurat 

object and retained cells based on the following quality control metrics: sequencing 

depth (>	50,000 reads), features (> 500 genes), and mitochondrial read content (< 

50%). For these remaining cells, expression profiles were normalized by sctransform68 

before linear dimensional reduction with principal components analysis (PCA). We used 

the top 20 PCs to cluster cells (with cluster resolution = 0.09) and run non-linear 

dimensional reduction by UMAP. Based on expression of broad compartment marker 

genes for epithelial (EPCAM), endothelial (CLDN5), immune (PTPRC), and stromal 

(COL1A2) cells129, we labeled clusters initially as immune and non-immune cells.  
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Next, we subclustered non-immune cells after running sctransform and PCA on 

only non-immune cells (20 PCs, cluster resolution = 0.12). Each cluster was assigned a 

cell type based on its expression of known cell type marker genes126. Alveolar cells 

were grouped with epithelial cells for downstream analyses. To classify cancer cells 

apart from non-malignant epithelial cells, we applied inferCNV130 to estimate large-scale 

CNVs in epithelial cells with fibroblasts and endothelial cells as reference and spike-in 

controls. Specifically, amplification and deletion regions were approximated from 

comparing gene expression profiles of input cells to those of labeled reference cells 

(1000 fibroblasts and 500 endothelial cells). Input cells included all epithelial cells, as 

well as the spike-ins: 1000 fibroblasts and 500 endothelial cells.  

 

Immune cells were subclustered with the same procedure, using 24 PCs and 

cluster resolution = 0.07. Including only lung biopsies, we also further subclustered T 

cells (20 PCs, resolution = 0.18) and macrophages (11 PCs and resolution = 0.2) 

separately in the same manner. 

 

3.4.2 Bulk RNA-seq data processing 

 

We downloaded RNA-seq fastq files for tumor and normal samples of the TCGA 

Lung Adenocarcinoma (LUAD) project from the Genomic Data Commons (GDC) 

Legacy Archive49. Reads were first mapped to hg19 with HISAT2131. To account for 

hyperedited regions that could cause many mismatches to the reference genome in 

reads, we ran a hyperediting pipeline52,53 on initially unmapped reads. Reads rescued 
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from this pipeline were combined with uniquely mapped reads from the first round of 

alignment.     

 

3.4.3 Identification of RNA editing sites 

 

Using our previously published methods37,53,80,120, we detected editing events 

within each single cell at sites recorded in the REDIportal v2132 database. If an editing 

site overlapped a variant listed in dbSNP (version 147) or COSMIC (version 81) and 

was not previously reported as a cancer-associated editing site, we excluded the site 

from downstream analyses. 

 

 Similarly, we quantified editing levels at REDIportal sites in bulk tumor and 

matched normal tissue samples from TCGA LUAD. In addition to removing sites within 

dbSNP and COSMIC databases, we filtered out editing events overlapping sample-

specific somatic mutations from the MC3 MAF133 and CNV data from the GDC data 

portal.  

 

3.4.4 Differential editing by cell type 

 

To compare editing levels between tumor and normal conditions in a single cell 

type, we first pooled counts of edited and unedited reads of single cells of that cell type 

within each sample. We used only tumor samples from the three patients with matched 

normal samples. Treating pooled cells of each sample as a replicate (5 tumors and 3 
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normals) for each cell type, we ran REDIT-LLR70 to test for tumor versus normal editing 

differences. A site was considered testable if it was covered by at least 5 reads in at 

least one pooled sample in each condition. Significance of editing differences was 

determined by REDIT FDR-adjusted p-value < 0.05 and difference in mean editing 

levels ≥ 0.05. 

 

3.4.5 Differential editing in bulk tumors 

 

We used REDIT-regression70 to identify sites that were differentially edited 

between bulk tumors and normal samples from TCGA LUAD. For each testable editing 

site, the following covariates were considered in the regression model: gender, race, 

age, and sample type (tumor or normal). An editing site was defined as differential if the 

sample type FDR-adjusted p-value < 0.05 and the difference in mean editing levels ≥ 

0.05. 

 

3.4.6 Quantification of tumor mutation burden 

 

We downloaded the list of prioritized somatic mutations provided for individual 

cancer cells (Table S3)126. For each tumor sample, tumor mutation burden was 

estimated as the number of unique nonsynonymous mutations from this list across 

cancer cells in that sample. This mutation list was also used to filter editing events in 

cancer cells before correlating TMB and editing levels.  
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For each bulk TCGA LUAD tumor, we calculated tumor mutation burden as the 

number of unique somatic nonsynonymous mutations from the MC3 MAF. 

 

3.4.7 Immune cell infiltration estimates 

 

 We downloaded quanTIseq134 estimates of immune cell proportions in TCGA 

tumors from TIMER2.0 (http://timer.cistrome.org)135. The quanTIseq method was 

chosen due to the interpretability of its output as cell fractions and the inclusion of more 

immune subtypes. 
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3.5 Figures 

 

 

Figure 3.1 Overview of editing events detected in single cells. 

A Histogram of the number of single cells edited per editing site, on a base 10 

logarithm-transformed scale. A site was considered edited in a cell if the site was 

covered by at least five reads and editing was supported by at least one read.  

B Histogram of the number of sites edited per cell, on a base 10 logarithm-transformed 

scale. Editing criteria were the same as in A. C Percentages of where common editing 

sites were located show that sites were found mainly in intronic and 3’UTR regions of 

genes. Common editing sites comprised sites edited in at least 50 cells. D Most 

common editing sites were in Alus. E Distributions of single cell editing levels at each of 

two cancer-associated recoding sites across cell types. For the AZIN1 recoding site, p < 

0.05 for pairwise comparisons of cancer vs the following cell types: T cells, 

macrophages, B cells, fibroblasts, mast cells. For the CCNI recoding site, p < 0.001 for 

pairwise comparisons of cancer vs the following cell types: pDCs, T cells, macrophages, 

0

25

50

75

100

Maynard

Pe
rc

en
t Region

Alu
nonAlu

50+ Edited Cells

0

25

50

75

100

Maynard

Pe
rc

en
t

Region
exon
5'UTR
nc exon
nc intron
intergenic
intron
3'UTR

50+ Edited CellsA B C D

E F

0.00

0.25

0.50

0.75

1.00

Bce
ll

Can
ce

r

End
oth

elia
l

Epit
he

lial

Fibr
ob

las
t

Hep
ato

cyt
e

Mac
rop

ha
ge

Mas
t

Mela
no

cyt
e

Neu
tro

ph
il

pD
C

Tce
ll

Ed
it 

Le
ve

l

cell type
Bcell
Cancer
Endothelial
Epithelial
Fibroblast
Hepatocyte
Macrophage
Mast
Melanocyte
Neutrophil
pDC
Tcell

AZIN1 chr8:103841636

0.00

0.25

0.50

0.75

1.00

Bce
ll

Can
ce

r

End
oth

elia
l

Epit
he

lial

Fibr
ob

las
t

Hep
ato

cyt
e

Mac
rop

ha
ge

Mas
t

Mela
no

cyt
e

Neu
tro

ph
il

pD
C

Tce
ll

Ed
it 

Le
ve

l
cell type

Bcell
Cancer
Endothelial
Epithelial
Fibroblast
Hepatocyte
Macrophage
Mast
Melanocyte
Neutrophil
pDC
Tcell

CCNI chr4:77979680

***

****

*

*

0.000

0.025

0.050

0.075

0.100

ALK
 fu

sio
n

BRAF V
60

0E

EGFR de
l19

EGFR L8
58

R

KRAS G
12

C

ROS1 f
us

ion

 E
di

tin
g 

m
ea

n

Oncogenic Driver Mutation

0

1000

2000

1 10 100 1000 10000
Site count

N
um

be
r o

f c
el

ls

# Edited Sites/Cell

0

50000

100000

150000

1 10 100 1000 10000
Cell count

N
um

be
r o

f s
ite

s

# Edited Cells/Site



 89 

B cells, epithelial cells, endothelial cells, fibroblasts, mast cells. Editing levels were 

compared for each pair of cell types by Mann Whitney U test, when sufficient 

observations were present. F Overall editing levels of cancer cells grouped by 

oncogenic driver mutation. Overall editing level was calculated as the mean over editing 

levels of all sites for each cell. Editing levels were compared among driver mutation 

groups by Mann Whitney U test, with p value significance shown. *p <= 0.05. ***p <= 

0.001. ****p <= 0.0001. 

 

 

 

Figure 3.2 Tumor-increased editing is specific to cancer cells. 

A Counts of edited sites in single cells, considering only the significantly tumor-

increased editing sites from bulk tumors. A site was considered edited in a single cell if 

the site was covered by at least five reads and editing was supported by at least one 

read. p <= 0.0001 when comparing cancer to any other cell type by Mann Whitney U 
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test. B Distribution of differences in mean editing levels between pooled cancer cells 

and pooled non-malignant epithelial cells. Only sites with significant differences (mean 

difference >= 0.05, REDIT LLR adjusted p-value < 0.05) are included. The number of 

significantly different editing sites is labeled on top. C Similar to B but for differential 

editing sites between pooled cells of tumor samples and pooled cells of normal samples 

for each non-epithelial cell type. D Top gene ontology (GO) enrichment in genes 

containing differential editing sites between cancer cells and non-cancerous epithelial 

cells, compared to background genes without differential sites but matched according to 

gene length and expression. Only the 20 most significantly enriched terms, each with a 

minimum of 10 corresponding genes, are shown. E Top GO enrichment among tumor 

vs normal differential edited genes in non-epithelial cell types. As in D, only the top 20 

terms are included for each cell type, and background genes were chosen in the same 

manner. Larger circle size represents  higher statistical significance of enrichment. 

Color of circle fill corresponds to cell type. Terms are grouped by broader categories 

labeled on the right.  
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Figure 3.3 Editing in cancer cells associated with immune suppression. 

A Hexagonal 2-dimensional histograms of mean editing level and mean normalized ISG 

expression in single cancer cells for multiple ISG signatures. Mean editing level was 

calculated over editing levels of all sites for each cell. Red asterisk indicates a 

significant negative spearman correlation, with FDR-adjusted p-value < 0.05.  

B Spearman correlations between mean editing levels and mean expression of multiple 

ISG signatures across single cancer cells, grouped by oncogenic driver mutation. The 

number of cancer cells with each driver mutation is listed under each mutation label. 

The size of each circle indicates the magnitude of the Spearman correlation coefficient, 

and the color intensity corresponds to significance of the adjusted p-value. Blue 

represents positive correlations and red, negative ones. C Bar plot on the left shows 

Spearman correlations between cancer editing levels and infiltration of different immune 

cell types. For each tumor, single cancer cells were pooled, and overall cancer editing 
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level was calculated as the mean editing level over all sites in the pooled cancer cells. 

Red color (sig) indicates significant correlation with p < 0.05. Nonsignificant correlations 

are shown in white (ns). For each cell type, in parentheses, lung signifies that only lung 

biopsies were included. In contrast, ”all” signifies all samples were included. On the right 

is the scatterplot of cancer editing and infiltration of Natural Killer cells, with Spearman 

correlation coefficient and p-value listed. D Bar plot of Spearman correlations between 

tumor-increased editing and estimated infiltration of different immune cell types in bulk 

TCGA LUAD tumors. Tumor-increased editing was calculated as the mean editing level 

over sites with significantly higher editing levels in tumors than in matched normal 

samples. Colored bars indicate significance by FDR-adjusted p < 0.05, with positive 

correlations in blue (1) and negative ones in red (-1). Nonsignificant correlations are 

shown in white (0). Scatterplot of tumor-increased editing and quanTIseq-estimated 

proportion of Natural Killer cells with listed Spearman correlation coefficient and p-value 

on the right.  
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Figure 3.4 Candidate editing substrates contributing to ISG signatures in cancer 

cells.  

A Scatterplot of Spearman correlation coefficient and its statistical significance (-

log10(FDR-adjusted p-value)) for associations between editing levels of individual 

dsRNAs and mean ISG expression levels across single cancer cells. Only dsRNAs 

passing FDR of 5% are included in the plot. Black-filled points correspond to dsRNAs 

with correlation coefficients of at least 0.15 in magnitude (sig), and dsRNAs that have 

correlation coefficients lower than 0.15 have gray-filled points (ns). The top 15 dsRNAs 

are labeled by the names of their overlapping genes, which are colored by the specific 

regions the dsRNAs overlap. If a dsRNA overlapped multiple regions of a gene, we 

used the following prioritization to assign a single region to the dsRNA: 3’ UTR > exonic 
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> 5’ UTR > intronic. B Example of editing-ISG association for a dsRNA in CTSB. 

Distributions of mean ISG expression are shown for cancer cells grouped by tertile 

editing levels of the labeled CTSB dsRNA. ISG expression was compared across 

dsRNA editing groups by Mann Whitney U test, with p value significance labeled. ****p 

<= 0.0001. C Kaplan Meier plots showing worse survival for patients with higher editing 

levels of 3 dsRNAs (labeled on top). For one dsRNA, patients in the high group (red 

curve) had editing levels among the top third across all patients with a mean editing 

level for that dsRNA. Patients in the low group (blue curve) had editing levels among the 

lowest third.  

 

 

Figure 3.5 Relationship between RNA editing and tumor mutation burden specific 

to cancer cells. 

A Left bar plot shows statistical significance of Spearman correlation between mean 

editing levels of each cell type and estimated TMB across tumors. For each tumor, 

single cells were pooled for each cell type, and mean editing level was calculated over 
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all sites in the pooled cells. Blue-filled bar indicates significant correlation by FDR 5% 

(sig). Correlations that were not significant are shown as white bars (ns). Scatterplot 

shows positive correlation between TMB and mean editing of pooled cancer cells, with 

labeled Spearman correlation coefficient and adjusted p-value. B Scatterplot of TMB 

and mean editing in bulk TCGA LUAD tumors. On the right, distributions of TMB across 

tumors grouped by mean editing level tertiles. Editing mean was calculated as the mean 

editing level of tumor-increased sites (with significantly higher editing levels in tumors 

than in matched normal samples). C Scatterplot of Pearson correlation coefficient and 

statistical significance of associations between gene editing levels and TMB in TCGA 

LUAD. Purple indicates significance by passing FDR 10% and minimum correlation 

coefficient of 0.15 (sig). Nonsignificant correlations are shown in gray (ns).  

D Gene ontology terms enriched among genes with editing levels significantly 

correlated with TMB (from C), compared to background non-correlated genes with 

similar gene length and expression levels. Bar length represents statistical significance 

of enrichment, and vertical gray line indicates threshold of FDR 10%. 

E Forest plot showing hazard ratio estimates and p-values from fitting a Cox regression 

model with TMB, editing mean, age, and gender as covariates. Editing mean was 

calculated as the mean editing level of tumor-increased sites (with significantly higher 

editing levels in tumors than in matched normal samples). 
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3.6 Supplementary Figures 

 

 

 

Supplementary Figure 3.1 Clustering of single cells. 

A UMAP projection of cells based on normalized gene expression, with cells colored by 

cluster identity (left). Right bubble plot shows cluster expression of broad compartment 

markers (epithelial, endothelial, immune, stromal), with darker blue indicating higher 

expression and point size representing percent of cells in a cluster that express a 

marker. B Sub-clustering of non-immune cells based on normalized gene expression. 

Similar to A, UMAP projection of non-immune cells is shown next to marker gene 

expression profiles of specific non-immune cell types. H and M stand for hepatocyte and 
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melanocyte, respectively. C Sub-clustering of immune cells based on normalized gene 

expression. Similar to B, UMAP projection of immune cells is shown next to marker 

gene expression profiles of specific immune cell types, as well as immune house-

keeping genes (H). 

 

  

  

Supplementary Figure 3.2 Labeling cancer cells. 

A Heatmaps of genome-wide CNV signals of epithelial cells and reference controls, 

fibroblasts and endothelial cells, estimated by inferCNV. Red regions indicate relative 



 98 

amplifications, while blue regions represent deletions. The top heatmap includes only 

reference endothelial cells and fibroblasts. The heatmap below includes epithelial cells, 

as well as spike-in fibroblasts and endothelial cells. This heatmap Is labeled with cell 

type, biopsy type, and patient information for individual cells. Control spike-ins of 

fibroblasts and endothelial cells show low CNV estimates, as expected. B Final cell type 

assignment of single cells following cancer cell annotation based on inferCNV results.  

C Histogram of the number of uniquely mapped reads in single cells after removing 

PCR duplicates.  
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Supplementary Figure 3.3 Coverage, mean editing, and ADAR expression in 

single cells. 

A Histogram of the number of single cells covered for each editing site, on a base 10 

logarithm-transformed scale. A site was defined as covered if total coverage was at 

least five reads. B Histogram of the number of sites covered (with at least five reads) in 

each cell, on a base 10 logarithm-transformed scale. C Distributions of overall editing 

levels in single cells across cell types. Overall editing level was calculated as the mean 

over editing levels of all sites for each cell. By Mann Whitney U test, p <= 0.0001 for all 

pairwise comparisons of cancer vs another cell type. D Distributions of sctransform-

normalized ADAR expression in single cells across cell types. By Mann Whitney U test, 

p <= 0.0001 for all pairwise comparisons of cancer vs another cell type. E Normalized 

ADAR expression levels were compared among driver mutation groups by Mann 

Whitney U test, with p value significance shown. *p <= 0.05. ****p <= 0.0001. ns p>0.05. 
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Supplementary Figure 3.4 Hyperediting in bulk LUAD tumors. 

2-dimensional histogram of mean editing level over tumors and mean editing level over 

normal samples for 4380 differential editing sites. Significance of differential editing was 

determined by REDIT regression with FDR 5% and a minimum difference in mean 

editing levels of 5%.  
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Supplementary Figure 3.5 Editing association with ISG signatures by treatment 

timepoint. 

Spearman correlations between mean editing levels and mean expression of ISG 

signatures across single cancer cells grouped by treatment timepoint. The number of 

cancer cells within each category is labeled. The size of each circle indicates the 

magnitude of the Spearman correlation coefficient, and the color intensity corresponds 

to significance of the adjusted p-value. Blue represents positive correlations and red, 

negative ones. TN stands for treatment naïve, RD stands for residual disease, and PD 

stands for progression.  
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Supplementary Figure 3.6 Clustering of T cells and Macrophages. 

A UMAP projection of T cells cells based on normalized gene expression profiles. Cells 

are colored by subtype of T cells determined by marker gene expression. B UMAP 

projection of macrophages, similar to A. Color indicates subtype of Macrophages based 

on marker gene expression. 

 

 

Supplementary Figure 3.7 Association of editing with immune subtype in TCGA 

LUAD tumors. 

Alu editing index was compared between pairs of immune subtypes by Mann Whitney U 

test, with p-values labeled.  

ImmSuppressMac
Mdsuppressor
proinflammMac
protolerogenicMac

A B

0.078
7.8e−06

0.74
0.69

0.02

0.04

0.06

C1 C2 C3 C4 C6
Immune Subtype

Al
u 

Ed
iti

ng
 In

de
x ImmuneSubtype

C1
C2
C3
C4
C6



 103 

 

Supplementary Figure 3.8 CTSB expression not associated with survival. 

Kaplan Meier plot showing similar survival for patients with relatively high and low CTSB 

expression. Patients in the high group (red curve) had CTSB FPKM among the top third 

across all patients, and patients in the low group (blue curve) had CTSB FPKM levels 

among the lowest third of all patients.  
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Supplementary Figure 3.9 Association of CTSB dsRNA editing and ISG 

expression is dependent on driver mutation in cancer cells. 

A Barplot of Spearman correlation coefficient for associations between CTSB dsRNA 

editing levels and mean ISG expression levels across single cancer cells grouped by 

driver mutation. Color intensity represents statistical significance (-log10(FDR-adjusted 

p-value)) and red color indicates negative correlation. B Distributions of mean ISG 

expression are shown for cancer cells with EGFR del19 driver mutation. Cells were 

grouped by tertile editing levels of the CTSB dsRNA. ISG expression was compared 

across dsRNA editing groups by Mann Whitney U test, with p value significance labeled. 

**p <= 0.01. ns p > 0.05. 
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Supplementary Figure 3.10 ADAR Expression and TMB not strongly associated 

A Distributions of ADAR and ADAR p150 expression in TCGA LUAD tumors, grouped 

by TMB tertiles. ADAR p150 expression was estimated based on the single exon unique 

to the ADAR p150 (not included in the ADAR p110 isoform). Expression was compared 

between groups by Mann Whitney U test, with significance of p-values labeled. **p <= 

0.01. *p<=0.05. ns p > 0.05. B Distributions of ADAR expression in pooled cancer cells, 

grouped by TMB tertiles. For each tumor, single cancer cells were pooled, and ADAR 

TPM was calculated. Expression was compared between groups by Mann Whitney U 

test, with significance of p-values labeled. *p<=0.05. ns p > 0.05. 
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Chapter 4: Candidate RNA editing events relevant to 

immunotherapy response in melanoma 

 

 

4.1 Introduction 

 

In Chapter 3, our study of RNA editing in single cells of lung cancer 

demonstrated the significance of editing to tumor immunity and overall survival, with 

potential application to immune checkpoint blockade (ICB) treatment. Implying an 

immunosuppressive role in tumors, editing in cancer cells was negatively associated 

with cancer interferon-stimulated gene (ISG) expression and natural killer cell infiltration. 

Furthermore, the strongest negative correlation between editing and ISGs was 

observed in cancer cells with the driver mutation BRAF V600E, which was associated 

with higher rates of ICB response than several other driver mutations in NSCLC167. The 

BRAF V600E mutation was also previously observed to correlate with PD-1 treatment 

response in melanoma patients170. Thus, determining specific editing signatures that are 

most relevant to ICB response is warranted.  

 

 Various biomarkers have been considered so far in attempts to identify patients 

who would respond to ICB therapies32,33. For treatments inhibiting the interaction 

between PD-L1 and its receptor PD-1, the predictive value of PD-L1 expression has 

been assessed. Despite the direct role of PD-L1 as a target, certain patients with tumors 

considered to be PD-L1-negative may still respond to treatment32. Another biomarker is 
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tumor mutation burden (TMB), which is thought to correlate with immunogenic 

neoantigen load. Still, TMB does not appear to robustly predict ICB response either, 

especially for cancer types with generally low mutation loads33,155. Other proposed 

biomarkers that have not yet been FDA-approved include quantification of tumor 

lymphocyte infiltration or expression of gene signatures, such as IFN-g signaling and T 

cell exhaustion33,169,171,172. Given variable performance of current biomarkers and the 

lack of standardized thresholds, discovery and integration of novel biomarkers are 

needed to realize effective stratification of responsive and treatment-resistant patients.  

 

 Labeling endogenous dsRNAs, RNA editing mediates the role of ADAR as an 

immune checkpoint in cancer. Upon loss of ADAR and depletion of most RNA editing 

events, unmodified dsRNAs likely activate cytosolic dsRNA sensors, resulting in 

excessive IFN production and translational inhibition in certain cancer cells10,35,36. These 

ADAR-dependent innate immune signaling pathways were shown to promote response 

to ICB and DNA methyltransferase inhibitor (DNMTi) therapies in mouse models34,125. 

However, since loss of ADAR1 is poorly tolerated in vivo, ADAR1 inhibition therapy 

faces significant challenges in toxicity and side effects173. Thus, deciphering the specific 

dsRNA targets of ADAR1 in cancer could provide critical insights in both therapeutic 

design and the mechanistic basis of this pathway.  

 

In this Chapter, we present the first effort, to our knowledge, in search of dsRNA 

editing events relevant to ICB response in cancer.  Specifically, we leverage the 

existence of multiple RNA-seq data sets derived from melanoma patients undergoing 
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ICB treatment. In the future, a similar approach could be applied once more data sets 

become available, followed by experimental characterizations of the predicted dsRNA 

substrates.  

 

 

4.2 Results 

 

4.2.1 Unedited dsRNA level is associated with ICB outcomes 

 

ADAR loss caused cell lethality and promoted response to ICB in tumor 

models34–36. As dsRNA sensor activation and IFN upregulation mediated this ADAR 

dependency, we hypothesized that a metric of RNA editing or its absence on dsRNAs 

could be a biomarker for ICB response. To test this hypothesis, we used four datasets 

of melanoma patients with recorded response to ICB and pre-treatment RNA-seq data 

(Table S1). For each RNA-seq sample, we counted the number of dsRNAs with a 

minimum unedited expression level (Methods). We found that higher abundance of 

unedited dsRNAs was correlated with longer overall survival in the MGSP and TCGA 

SKCM patients (Fig. 1A). Furthermore, ICB responders in the MGSP dataset had larger 

numbers of unedited dsRNAs (Fig. 1B). Consistent with the model that higher levels of 

unedited dsRNAs induce IFNs and cancer cell growth arrest, these findings support the 

potential use of unedited dsRNA level as a biomarker for patient response to ICB.  
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4.2.2 Clinical relevance of CTSB dsRNA 

 

Next, we investigated which dsRNAs are the most relevant to survival and 

response to ICB. To do so, we examined dsRNAs that are most often represented in the 

unedited dsRNA count. A dsRNA in the 3’UTR of CTSB was most frequently counted as 

unedited in MGSP patients and was also among the top dsRNAs in TCGA SKCM. 

Based on the secondary structure predicted by RNAfold177, this region likely forms long 

stem structures, which are the preferred targets of MDA59,178 (Fig. S1A). In addition, the 

CTSB dsRNA contains multiple MDA5 eCLIP-peaks identified in HeLa cells, suggesting 

MDA5 binds to this dsRNA (Fig. S1B). Editing events in the CTSB 3’UTR may disrupt 

the dsRNA structure and prevent MDA5 activation. 

 

Given the prevalence and potential MDA5 recognition of the CTSB dsRNA, we 

tested its prognostic value in the context of ICB treatment. In patients from both MGSP 

and TCGA SKCM datasets, higher unedited expression of the CTSB dsRNA was 

associated with longer survival (Fig. 2A). Higher gene expression of CTSB was also 

correlated with improved survival in these two datasets (Fig. 2B). Interestingly, the gene 

expression association appeared limited to patients treated with immunotherapy, as no 

significance was seen in SKCM patients who received other types of treatment (Fig. 

2C). Indeed, in a previous study where all TCGA cancer types, including SKCM, were 

analyzed collectively, higher CTSB expression was reported to correlate with worse 

survival149, which is opposite to the survival correlation observed here for ICB-treated 

melanoma patients. These data indicate that the involvement of CTSB in cancer 
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processes may be multifaceted: while the function of CTSB as a cysteine cathepsin may 

be oncogenic179, the presence of unedited dsRNAs from the CTSB 3’UTR may activate 

innate immune signaling and improve clinical outcomes following ICB treatment in 

melanoma patients.  

 

4.2.3 Differentially edited Alus in response to ICB 

 

As Alus are prominent editing substrates in humans, we next considered Alus in 

our search of editing events associated with response to ICB. For this analysis, we first 

calculated the editing index for each individual Alu in each tumor sample. We then 

identified Alus with significantly different mean editing levels between responders (R) 

and non-responders (NR) to ICB in each dataset separately. We used two criteria to 

define significance: difference in mean editing index ≥ 0.05 and Mann Whitney U test p-

value < 0.05. We found four differentially edited Alus that were shared by at least two 

datasets, with the same direction of editing difference. For most of these shared Alus, 

lower editing levels were observed in patients who responded to ICB (Fig. 3), which is 

consistent with the hypothesis that RNA editing deficiency induces IFNs and promotes 

ICB response.  

 

Examining the neighboring region of these differential Alus revealed close 

proximity of inverted Alus in the same transcripts (Fig. S2A). These pairs of inverted Alu 

repeats likely form dsRNA structures that when unmodified may potentially activate an 

innate immune response6. Accordingly, regions containing these inverted Alu pairs were 
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predicted to form dsRNAs by RNAfold (Fig. S2B). Furthermore, for three differentially 

edited Alus, MDA5 eCLIP peaks overlapped the surrounding regions containing the 

inverted repeats (Fig. S2A). Thus, these Alu pairs may form dsRNAs that are substrates 

for MDA5 binding and activation. 

 

Interestingly, shared differentially edited Alus were within genes involved in 

immune response. For example, the gene IFNGR2 encodes a component of the 

receptor for IFN-g, which has multifaceted roles in tumor response to ICB141,180. In 

addition, PILRB is expressed on the surface of various immune cell types and was 

found to affect cytokine production in macrophages181,182. Altered editing levels within 

the dsRNA-forming transcripts of these genes may add another layer of regulation to 

anti-tumor immunity during ICB treatment. 

 

 

4.3 Discussion 

 

We described the first pre-treatment collection of editing events in dsRNAs 

associated with clinical outcomes of melanoma patients treated with ICB. In addition, we 

provided evidence that MDA5, a key sensor of long dsRNAs in innate immunity9 and 

mediator of ADAR dependence in a mouse model for melanoma34, likely targets these 

dsRNAs. As additional clinical and genomic data become available, the predictive 

power of these potential dsRNA biomarkers in ICB response may be further assessed.  
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 Recent studies have reported that ADAR gene expression and general measures 

of RNA editing, namely the number of total editing events or Alu editing index, were not 

different between ICB responders183 and non-responders or between samples before 

treatment and after progression184. These findings highlight the need to determine a 

refined set of editing events most relevant to ICB response. Comparing cell lines from 

patients before treatment to those after relapse, a previous study identified an Alu 

editing signature specific to relapsed tumors184, but the possibility that editing 

differences were a consequence of treatment was not addressed. Here, we focused on 

editing features in pre-treatment tumors with the potential of future biomarkers for ICB 

response.   

 

 One of the most prominent unedited dsRNAs that we found in multiple melanoma 

datasets was the dsRNA in the CTSB 3’UTR, which was also the top dsRNA with 

editing levels negatively correlated with ISG expression in NSCLC from Chapter 3. The 

association of higher unedited expression level of this CTSB dsRNA with longer survival 

supports the hypothesized function of unedited dsRNAs to induce innate immune 

signaling pathways that would enhance tumor sensitivity to ICB treatment. Consistently, 

we had observed that lower editing levels of this dsRNA were correlated with improved 

survival in lung cancer patients. Together, these data suggest that editing of the CTSB 

dsRNA is an important factor contributing to ISG signatures and tumor growth. Though 

CTSB has been reported to enhance the metastatic potential of cancer cells148,179, the 

activity of unedited dsRNAs from CTSB transcripts may establish a dominant anti-tumor 

role for CTSB during ICB treatment. This mechanism of CTSB dsRNA editing in 
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promoting patient survival and response to ICB will need to be further investigated in 

future studies. 

 

 Dependent on the source cell type, IFN-g signaling has been associated with 

both response and resistance to ICB141,172,185. While IFNs trigger MHC-1 expression and 

function in the maturation of dendritic cells and T cells180, IFN-g signaling in cancer cells 

induces PD-L1 expression and inhibits cytotoxicity of T cells and Natural Killer cells141. 

Among the four Alus that were differentially edited between ICB responders and non-

responders in multiple datasets, only the Alu in the IFNGR2 gene, a critical receptor of 

the IFN-g pathway, had higher editing levels in responders. This association may 

suggest the existence of other roles of altered editing in IFNGR2 to support ICB 

response, which needs future exploration. For the remaining Alus, editing levels were 

significantly decreased in responders, indicating that they likely influence IFN activation 

and ICB response in a similar manner to the CTSB dsRNA.  

 

 In summary, this study demonstrates the potential value of dsRNA- and editing-

based biomarkers to predict patient response to immunotherapy in melanoma. In the 

future, additional patient cohorts need to be analyzed to validate and extend these 

findings. This type of analysis may also lead to improved understanding of the 

fundamental pathways underlying cancer immunity and immunotherapy response. 
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4.4 Methods 

 

4.4.1 RNA-seq data preprocessing and identification of RNA editing sites 

 

 We downloaded RNA-seq fastq files from four sources: 1) Gene Expression 

Omnibus (GEO) accession GSE78220174, 2) GEO accession GSE91061175, 3) dbGaP 

accession phs000452.v3.p1176, and 4) GDC Legacy Archive for TCGA Skin Cutaneous 

Melanoma (SKCM) tumors49. We aligned reads to hg19 using HISAT2131 with default 

parameters except that soft-clipping was disabled (--no-softclip). To obtain gene 

expression counts for calculation of Fragments Per Kilobase Million (FPKM), we ran 

HTSeq count.  

 

To consider regions of hyperediting, we input unmapped reads into a 

hyperediting pipeline52,53. For each sample, the resulting rescued reads were combined 

with the original uniquely mapped reads. We next used our published methods to detect 

editing events at sites documented in the REDIportal database54,55. As carried out in a 

previous study, we then filtered out variants listed in dbSNP version 147 and COSMIC 

version 81, except for editing sites relevant to cancer120.  

 

4.4.2 Differential editing of Alus 

 

We used the UCSC RepeatMasker to determine which editing sites overlapped 

individual Alu repeats. An editing index was then calculated for each Alu in each tumor 
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as the sum of edited reads across all sites within the Alu divided by the sum of all reads 

covering sites in the Alu. The difference in editing index between responders and non-

responders for each Alu in one melanoma dataset was tested by Mann Whitney U test. 

Alu elements with p-value < 0.05 and a difference in mean editing levels ≥ 0.05 were 

considered significantly different in ICB response.  

 

4.4.3 Measuring the level of unedited dsRNAs 

 

We predicted dsRNA structures based on editing-enriched regions, as previously 

described147. For an individual dsRNA located in a 3’UTR, we quantified expression 

level (as FPKM) and mean editing level. Mean editing level of a dsRNA was calculated 

as the mean of editing levels of all sites within the dsRNA. We next obtained the 

unedited level of the dsRNA by subtracting mean editing level from 1. Then, we 

calculated unedited expression level of the dsRNA as the product of the dsRNA FPKM 

and unedited level. We considered a dsRNA as unedited if its unedited expression level 

was at least 20. The number of unedited dsRNAs was counted for each tumor sample. 

 

4.4.4 MDA5 eCLIP data 

 

 eCLIP experiments of MDA5 in HeLa cells were carried out in-house (Bahn JH, 

unpublished data) using a similar protocol as reported for ADAR1 in our previous 

work73. Two biological replicates and a size-matched control were obtained, with about 
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20M pairs of reads obtained for each replicate. Read mapping and eCLIP peak calling 

were carried out in the same way as previously described73. 

 

4.4.5 Analysis of the relevance of RNA editing to survival and immunotherapy 

response 

 

 We first used the survfit function of the R package survival to obtain Kaplan-

Meier survival curves for high and low groups of unedited dsRNA level. To define high 

and low groups, the tertiles of unedited dsRNA level were first calculated for each 

melanoma dataset. In one dataset, patients with unedited dsRNA counts within the top 

third across all patients were assigned to the high group, while patients in the low group 

had unedited dsRNA counts among the bottom third of all patients. The survdiff function 

was then used to compare high and low group survival curves by the log rank test. 

Survival curves were visualized by the ggsurvplot function of the R package survminer. 

Similarly, the same functions in R were used to test the association between survival 

and CTSB dsRNA unedited expression level or CTSB expression.  

 

To test the association between ICB response and the number of unedited 

dsRNAs in one melanoma cohort, we fit a linear regression model of unedited dsRNA 

count on patient response (responder or non-responder) using the function lm in R.  

 

We used bedtools closest to find inverted Alu repeats or MDA5 eCLIP peaks 

near differentially edited Alus and the CTSB dsRNA.   
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4.5 Figures 

 

 

Figure 4.1 Number of unedited dsRNAs is associated with survival after 

immunotherapy 

A Kaplan-Meier plots showing better survival for patients with higher numbers of 

unedited dsRNAs present in two datasets (labeled on top). The number of unedited 

dsRNAs in a sample was counted as the number of 3’UTR-overlapping dsRNAs that 

each had an unedited expression level above a cutoff of 20.  For each dataset, patients 

of high (red curve) and low (blue curve) groups were determined by the tertiles of 

counts of unedited dsRNAs across all patients in the dataset. Log-rank p-value between 

high and low groups is labeled on each plot. B Distributions of unedited dsRNA counts 

for responders (R, orange) and non-responders (NR, green) from the MGSP dataset. 

Unedited dsRNAs were counted in the same way as in A. Association between 

response and unedited dsRNA count was tested by linear association. *p<0.05. 
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Figure 4.2 Survival association of CTSB dsRNA. 

A Kaplan-Meier plots showing better survival for patients with higher unedited 

expression level of the CTSB dsRNA in two datasets (labeled on top). Patients in the 

high group (red curve) had unedited expression levels among the top third across all 

testable patients. Patients in the low group (blue curve) had unedited expression levels 

among the lowest third. Patients with recorded response to immunotherapy were 

included for each dataset. Log-rank p-value between high and low groups is labeled on 

each plot. B Similar to A except patients are grouped here by CTSB expression (FPKM) 

tertile levels. Patients with high CTSB expression (red) have longer survival than those 

with low expression (blue). C Kaplan-Meier plot showing CTSB expression is not 

associated with overall survival in patients not treated with immunotherapy in TCGA 

SKCM. Patients were spilt by tertiles of CTSB FPKM levels, with high group (red) 

indicating top third of all patients by CTSB expression and low group (blue) indicating 

bottom third. 
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Figure 4.3 Differentially edited Alus in immunotherapy response. 

Four Alus with significantly different mean editing levels between responders (R, 

orange) and non-responders (NR, green) to immune checkpoint blockade. Each Alu 

shown was differentially edited in two datasets, with the same direction of editing 

difference between datasets. Editing levels were compared between responders and 

non-responders by Mann Whitney U test, with p-value significance shown. *p <= 0.05. 

**p <= 0.01. 
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4.6 Supplementary Figures 

 

 

Supplementary Figure 4.1 CTSB dsRNA is a potential MDA5 target. 

A Predicted secondary structure of CTSB dsRNA by RNAfold. B CTSB dsRNA region in 

UCSC genome browser, in which blue highlighted regions correspond to MDA5 eCLIP 

peaks. Bottom track shows Alu (SINE) repeats present.   

 

 

 

 

 

 

 

 

 

Fig. S1 CTSB dsRNA is a potential MDA5 target
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Supplementary Figure 4.2 Potential dsRNAs containing differentially edited Alus 

A Regions containing Alus differentially edited in ICB response shown in UCSC 

browser. Blue highlighted regions correspond to MDA5 eCLIP peaks or differentially 

edited Alus (DE Alu), as labeled on top. Bottom SINE track shows inverted pairs of Alus 

present in these regions. B Predicted secondary structure of extended regions 

containing differentially edited Alus and their inverted repeats by RNAfold. 
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4.7 Supplementary Tables 

 

Table S 4.1 Melanoma datasets analyzed in this study. 

RNA-seq samples from pre-treatment tumors only were analyzed.   

 

 

 

 

 

Table S1. Melanoma datasets analyzed in this study 

Dataset source Treatment # Patients with 
measured response

# RNA-seq samples 
analyzed

Hugo et al, Cell, 2016 anti-PD1 38 26
Liu et al, Nat Med, 2019 

(MGSP) anti-PD1 144 110

Riaz et al, Cell, 2017 anti-PD1 73 51
TCGA SKCM anti-CTL4 and other 43 43
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Chapter 5: Concluding Remarks 

 

Similar to somatic mutations, RNA editing events can drive the uncontrolled 

growth and invasion of cancer cells. This transformative potential has been 

demonstrated for a small number of editing sites. Functions of the majority of tumor-

associated editing sites, primarily in noncoding regions, are not well understood. In this 

work, we carried out the first global investigations of RNA editing in EMT phenotypes 

and in single cells of cancer. We also demonstrated the role of editing to suppress 

innate immunity in lung tumors and highlighted the first compilation of candidate dsRNA 

editing events with potential predictive value in ICB response of melanoma patients.  

 

 In Chapter 2, we identified RNA editing differences between epithelial and 

mesenchymal tumors of various cancer types in TCGA. We found a consistent pattern 

of altered editing in lung cancer scRNA-seq data. Furthermore, we showed that EMT 

was induced upon knockdown of either ADAR1 or ADAR2. Enriched in immune 

response pathways, differential editing may regulate the mRNA abundance of these 

genes. Following a systematic assessment of RBP binding with ENCODE eCLIP data, 

we described a novel mechanism in which ILF3 mediates the effects of differential 

editing on mRNA expression of immune genes, such as PKR.  

 

 In Chapter 3, we examined RNA editing events detectable in single cells of lung 

cancer biopsies and compared editing profiles of tumors to those of normal samples in a 

cell-type-specific manner. These analyses indicated that tumor-increased editing was 
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unique to cancer cells and that certain pathways are differentially edited in specific cell 

types only. Additionally, we found that cancer-specific editing was negatively associated 

with cancer ISG expression and Natural Killer cell infiltration, extending previous 

findings of immunosuppressive editing to NSCLC tumors. This role of editing may partly 

explain the association we observed between higher editing levels and worse survival in 

NSCLC.  

 

 In Chapter 4, we reported dsRNA editing events associated with survival and 

response of melanoma patients treated with ICB. We showed that these dsRNAs of 

interest are likely MDA5 substrates, suggesting potential for MDA5 activation by their 

unedited forms.  

 

Our analyses provided deeper insights into the various functions of RNA editing 

in cancer, especially regarding tumor immunity. From altered mRNA abundance of 

immune response genes to suppressed IFN signaling, editing facilitates multiple 

feedback mechanisms to promote or resist anti-tumor immune responses. A more 

complete understanding of these roles of editing will support development of novel 

avenues for cancer treatments, as well as the refinement of existing ones, like ICB 

combination therapies. During ICB response, higher abundance of unedited dsRNAs 

may induce IFNs and in effect, increase recruitment of immune cells to tumors and 

support tumor cell killing. Future studies should validate their clinical relevance and 

determine the precise functional mechanisms of dsRNA editing in ICB response. It is 

not yet clear how MDA5, PKR, and other dsRNA sensors distinguish edited dsRNAs 
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from unedited dsRNAs, though altered dsRNA structures are hypothesized. In the 

future, RNA editing may also be integrated with other biomarkers to more accurately 

predict ICB response and avoid unwarranted risk of immune-related adverse events for 

likely non-responsive patients.  

 

 Our findings also motivate further investigations of tumor-associated editing 

changes in single cells and in individual cell types. We used a pseudo-bulk approach to 

determine editing differences between tumor and normal within each cell type in 

Chapter 3. For more precise identification of differential editing across single cells, novel 

methods should be developed to account for variation among single cells and 

hierarchical structure. In Chapter 3, we also observed that certain immune pathways 

were uniquely enriched in T cell differentially edited genes. Previous literature has 

reported involvement of ADAR and RNA editing in T cell development8,28, but cancer-

specific functions of editing in T cells are unknown. Whether these differential editing 

events affect T cell phenotypes of exhaustion or cytotoxicity should be assessed in 

future studies.  
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