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Abstract

Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The new 

methods are based on the two-grid methodology recently proposed by Xu and Zhou [Math. Comp., 

70 (2001), pp. 17–25] and further developed by Hu and Cheng [Math. Comp., 80 (2011), pp. 

1287–1301] for elliptic eigenvalue problems. The new two-grid schemes reduce the solution of the 

Maxwell eigenvalue problem on a fine grid to one linear indefinite Maxwell equation on the same 

fine grid and an original eigenvalue problem on a much coarser grid. The new schemes, therefore, 

save total computational cost. The error estimates reveals that the two-grid methods maintain 

asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical 

results.
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1. Introduction

In this paper, we develop efficient algorithms for computing the Maxwell eigenvalue 

problem, which is a basic and important computational model in computational 

electromagnetism, e.g., in regard to electromagnetic waveguides and resonances in cavities 

(see, e.g., [7, 12, 33, 39]). The governing equations are

(1.1)

(1.2)
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(1.3)

where  is a bounded Lipschitz polyhedron domain and γt u is the tangential 

trace of u. The coefficients μr and εr are the real relative magnetic permeability and electric 

permittivity, respectively, that satisfy the Lipschitz continuous condition, whereas ω is the 

resonant angular frequency of the electromagnetic wave for cavity Ω. In the following 

sections, we will use the conventional notation λ to replace ω2.

Edge finite element methods for solving the Maxwell eigenvalue problem are widely used 

and their convergences have been studied extensively (see [8, 11, 20] and references 

therein). Imposing the divergence-free constraint in the discretization is a challenging task. 

The divergence-free constraint (1.2) can be dropped from the weak formulation and imposed 

implicitly. Though dropping the constraint may introduce spurious eigenvalues, doing so 

will not affect the nonzero eigenvalues (see, e.g., [20, 36, 31, 30, 48]). An alternative is the 

so-called mixed formation. In a mixed formulation, a Lagrange multiplier is introduced to 

impose the divergence-free constraint (1.2) in a weak sense. Using the mixed discretization, 

no spurious eigenvalue will be introduced. However, the resulting linear algebraic system is 

larger and of the saddle point type such that it is difficult to solve (see, e.g., [1, 2, 36]). 

Another approach is the penalty method which relies on explicitly imposing the divergence-

free condition by introducing a penalty term (see, e.g., [9, 17, 31]). Compared with the 

discretized linear system that arises from the mixed method, the system from the penalty 

method is considerably smaller. However, the penalty method also introduces spurious 

eigenvalues.

For all the methods referring to Maxwell eigenvalue problems above, a large-scale discrete 

eigenvalue problem has to be solved, which is very challenging and time-consuming. 

Multigrid methods for computing eigenvalues of symmetric and positive definite cases, e.g., 

[5, 21, 28, 29, 38], are not applicable directly for the Maxwell eigenvalue problems due to 

the large kernel of the differential operator curl. To steer the inverse iterations away from 

the kernel of curl, Hiptmair and Neymeyr [30] proposed the so-called projected 

preconditioned inverse iteration method; see also [13] for the extension to adaptivity. In 

each inverse iteration, multigrid methods are applied in order to solve a shifted Maxwell 

equation and an additional Poisson equation with the purpose of imposing the weak 

divergence-free constraint. It takes 10 to 20 iterations to converge to an acceptable tolerance 

[30].

Here, we focus on speeding up the iterations by using a two-grid approach. The two-grid 

method, first introduced by Xu [43, 44], has been applied to many problems, such as 

nonlinear elliptic problems [45], nonlinear parabolic equations [18, 19], Navier–Stokes 

problems [25, 35], and Maxwell equations [50, 51]. In regard to the presented study, most 

relevant work is the two-grid method for elliptic eigenvalue problems developed by Xu and 

Zhou [46]. The main idea proposed by Xu and Zhou [46] is to reduce the solution of an 

eigenvalue problem on a given fine grid with mesh size h to the solution of the same 

eigenvalue problem on a much coarser grid with mesh size H ≫ h, which can be easily 

solved as the size of the discrete eigenvalue problem is significantly smaller than the 
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original eigenvalue problem on the fine grid, and the solution of a linear problem on the 

same fine grid, which can be solved by mature and efficient numerical algorithms.

In this paper, we adopt this idea and develop efficient two-grid methods for solving the 

Maxwell eigenvalue problems. That is, we first solve a Maxwell eigenvalue problem on a 

coarse grid and then solve a linear Maxwell equation on a fine grid. Essentially, the 

procedure is similar to performing only one step of the Rayleigh quotient iteration using a 

good initial guess from the coarse grid. It provides a competitive approach for computing the 

Maxwell eigenvalue problems. Although generalizing the two-grid approach to the Maxwell 

eigenvalue problems seems straightforward, several nontrivial theoretical and practical 

issues must be addressed.

First, it is important to note that the standard two-grid method (Xu and Zhou [46]) for 

elliptic eigenvalue problems works when the order of error in the L2 norm is one order 

higher than the error in the energy norm. Therefore, on the fine grid, a simple linear 

equation, which comes from the inverse iteration (or the fixed point iteration in general), can 

be used to maintain the asymptotically optimal accuracy for H2 = h. In terms of 

approximation of the Maxwell equations, it is well-known that establishing an L2 norm error 

estimate is a very challenging task [52]. For example, for the first family edge element, we 

cannot expect the error in the L2 norm has higher convergence rate than the error in the 

energy norm. As a result, in order to make the two-grid algorithm work, on the fine grid, we 

must solve linear Maxwell equations derived from the shifted inverse iteration. This idea is 

proposed in [34, 47] as an acceleration scheme for the standard two-grid method of elliptic 

eigenvalue problems.

For the shifted inverse iteration, we need to solve an indefinite and nearly singular Maxwell 

equation on the fine grid. However, it is difficult to solve this equation such that very 

efficient solvers are required. Because we are interested in small eigenvalues, the wave 

number of this indefinite Maxwell problem is relatively small. We will use the 

preconditioned minimal residual (P-MINRES) including the shift Laplacian technique [23, 

22] and the HX preconditioner [32] for the corresponding definite linear equation. Again 

since we are interested in the approximation of eigenvalues, we discard the standard relative 

residual norm but use the approximation of eigenvalues as the stopping tolerance of P-

MINRES. Our numerical computation shows that the solver with the modified stopping 

tolerance converges in a few steps, which is almost uniform with respect to the size of the 

problem. In summary, we reduce solving the Maxwell eigenvalue problem to solving a 

Maxwell equation for which efficient solvers/preconditioners are available.

Another problem introduced by the shifted inverse iteration is the divergence-free constraint 

which only holds weakly on the coarse grid. It is possible to explicitly impose this constraint 

on the fine grid by projecting the obtained approximated eigenfunction on the coarse grid to 

the discrete divergence-free space on the fine grid by solving an extra Poisson equation. 

However, our analysis, which is based on the Helmholtz decomposition and an estimate of 

the differences between the weakly divergence-free functions on coarse and fine grids, 

shows that even without the projection step, our two-grid method produces an 
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approximation λh to λ and remains asymptotically convergence rate for H3 = h. When the 

domain is smooth and convex, the rate of convergence is

Note that H3 = h implies that a very coarse mesh can be used—which saves considerably 

computational cost and time, especially in three dimensions. For example, for a three-

dimensional unit cube, h = 1/64, the number of unknowns is 1, 872, 064, whereas for H = 

h1/3 = 1/4 there are only 604 unknowns.

On the other hand, we require the coarse grid to be fine enough to be able to capture the 

information we are interested in. This fact somehow limits us to choosing too-coarse grids in 

our two-grid algorithms, but it is a standard requirement for solving eigenvalue problems.

The rest of this paper is organized as follows. In section 2, we introduce the Maxwell 

eigenvalue problem. Section 3 presents new algorithms proposed in this paper, as well as 

some notes about the algorithms. In section 4, we show the error estimates of our two-grid 

methods for the Maxwell eigenvalue problem. And, in section 5, we give some numerical 

examples in two and three dimensions to demonstrate the efficiency of our new methods.

2. Preliminary

Denote by

equipped with the norm  The tangential trace is γt u = u × n in 

three dimensions, whereas the tangential trace is γt u = u t in two dimensions with n 
denoting the outer unit normal vector and t the unit tangential vector on boundary Γ = ∂Ω. 

Define X:= {u ∈ H0(curl; Ω), div(εr u) = 0 in Ω}.

The variational form of the Maxwell eigenvalue problem (1.1)–(1.3) is as follows: find 

 and u ≢ 0 satisfying

(2.1)

where

We use (·,·) for the standard L2-inner product and define a weight L2-inner product (·,·)B = 

b(·,·).
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It is easy to check that the bilinear form a(u, v) satisfies the following conditions (see 

Corollary 4.4 in [31]):

Define an operator A : X →X′ ≅ X such that 〈Au,v〉 = a(u, v); therefore, A is compact and 

self-adjoint on X. By virtue of the Hilbert–Schmidt theory (see [31, 40]), there exists an 

infinite discrete set of eigenvalues {λk} and the corresponding eigenfunctions uk ∈ X, k = 1, 

2, 3, …, satisfy (2.1).

As the divergence-free constraint (1.2) is difficult to impose in the discretization, we will 

consider a modified variational problem: find  and u ≢ 0 

satisfying

(2.2)

That is, we solve the eigenvalue problem in a space larger than X. The eigenfunction 

corresponding to λ ≠ 0 remains unchanged [8]. Because for λ ≠ 0, by taking v = ∇p in (2.2), 

, we have

which implies a divergence-free constraint (1.2) in the weak sense. However, now zero is an 

eigenvalue of (2.2) and the corresponding eigenspace is the infinite dimensional space 

 when the domain Ω is simple.

We will consider the finite element approximation based on the modified variational form 

(2.2). Let  be a conforming triangulation of the domain Ω. The lowest-order edge element 

defined on  is

(2.3)

and the discrete divergence-free space is

(2.4)

where is the standard linear Lagrangian finite element space with zero trace such that 

.

The finite element discretization of (2.2) is as follows: find  and uh ≢ 0 

satisfying

(2.5)
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Based on the same argument, for λh ≠ 0, the corresponding finite element approximation uh 

implicitly satisfies the discrete divergence-free constraint, i.e., uh ∈ Xh. Therefore, nonzero 

eigenvalues λh and the corresponding eigenfuctions uh satisfy

(2.6)

We use (ui, λi) to denote the continuous eigen-pairs and (uh,i, λh,i) to denote the discrete 

eigen-pairs and order them as follows:

The following error estimate, which can be found in [8, Theorem 5.4], is useful in our 

analysis.

Theorem 2.1

Let λi be an eigenvalue of problem (2.1) with multiplicity mi, and denote by M(λi) the 

corresponding eigenspace. Then, exactly mi eigenvalues of problems (2.6) 

converge to λi. By denoting Mh(λi) as the direct sum of the eigenspaces corresponding to 

, we have that there exists h0 such that for 0 < h < h0, the following 

inequalities hold:

(2.7)

where C is a constant independent of h and σ(M(λi), Mh(λi)) denote the gap between M(λi) 

and M(λi), which is defined as

Remark 2.1

Due to the space restriction, we refer to [8] for the definitions of ρ1, ρ2. Here we only list 

examples of ρ1, ρ2 related to our work. When Ω is a Lipschitz polyhedron, X ⊂ (H1/2+δ(Ω))3 

[26, 6, 40], and consequently  for some . And, when Ω is 

smooth or convex, δ = 1/2 and . The details can be found in [8].

At the end of this section, we give an important identity that relates the error in the 

eigenvalue to the eigenfunction approximation. The proof is standard and can be found, for 

example, in Lemma 3.1 of [4].

Proposition 2.2

Let (λ, u) be an eigen-pair of (2.1) or (2.2) with λ ≠ 0. For any w ∈ H0(curl; Ω)\{0}, we have
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3. Two-grid methods

In this section, we present our two-grid methods for the Maxwell eigenvalue problems. We 

will prove the error estimates in the next section.

3.1. Main algorithms

Let  and  each be triangulations of the domain Ω with different mesh size H and h, 

where H > h. Usually,  is a refinement of . The finite element spaces associated with 

 and  are denoted by VH and Vh, respectively. Based on these two grids, we present the 

following two-grid methods for Maxwell eigenvalue problems.

Algorithm 1.

1 Solve a Maxwell eigenvalue problem on the coarse grid  find (λH, uH) ∈ ℝ+ × VH and uH ≢ 0 satisfying

a(uH , vH ) = λH b(uH , vH ) for all vH ∈ VH . (3.1)

2 Solve a Poisson equation on the fine grid: find ph ∈ Sh such that

(εr∇ ph , ∇qh ) = b(uH , ∇qh ) for all qh ∈ Sh
0. (3.2)

Then update  by .

3 Solve an indefinite Maxwell equation on the fine grid : find uh ∈ Vh such that

a(u h , vh ) − λH b(u h , vh ) = b(uH
h , vh ) for all vh ∈ Vh . (3.3)

4 Use the Rayleigh quotient to compute the approximate eigenvalue on the fine grid:

λh =
a(u h , u h )

b(u h , u h )
. (3.4)

Algorithm 2.

1 Solve a Maxwell eigenvalue problem on the coarse grid : find (λH, uH) ∈ ℝ+ × VH and uH ≢ 0 
satisfying

a(uH , vH ) = λH b(uH , vH ) for all vH ∈ VH . (3.5)

2 Solve an indefinite Maxwell equation on the fine grid : find uh ∈ Vh such that

a(u h , vh ) − λH b(u h , vh ) = b(uH , vh ) for all vh ∈ Vh . (3.6)

3 Use the Rayleigh quotient to compute the approximate eigenvalue on the fine grid:
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λh =
a(u h , u h )

b(u h , u h )
. (3.7)

We present two algorithms here. They differ in regard to the ways in which they handle the 

divergence-free condition. In Algorithm 1, we project uH to Xh by solving one Poisson 

equation. However, in Algorithm 2, we skip this step. Our error estimates in the next section 

prove that both algorithms are effective. Algorithm 2 is cheaper in terms of computational 

cost and, consequently, more efficient. Therefore, we recommend using it in preference to 

Algorithm 1. On the coarse grid, we solve a Maxwell eigenvalue problem based on the 

variational form (2.5). As the coarse grid problem is small, any robust method can be used in 

this step. We assume that solving the Maxwell eigenvalue problem on the coarse grid is 

inexpensive and that the total computational work is negligible compared with the work 

associated to the linear system on the fine grid.

Remark 3.1—Algorithms 1 and 2 can be naturally used to compute multiple eigenvalues as 

long as the coarse grid is fine enough. Assume that an eigenvalue λ has multiplicity q and its 

corresponding eigenfunctions are u1, u2, …, uq. In our two-grid algorithms, we first need to 

compute q approximated eigenfunctions , on the coarse grid. Then we use 

each , to proceed with the two-grid algorithms. For example, in Algorithm 

2, we use , in (3.6) to compute uh,m, m = 1, 2, …, q. Finally, we compute 

the Rayleigh quotient of uh,m, m = 1, 2, …, q, to get q approximate eigenvalues λh,m, m = 1, 

2, …, q, on the fine level. These eigenvalues are approximations of the eigenvalue λ with 

multiplicity q and the space spanned by uh,m, m = 1, 2, …, q, is an approximation of the 

eigenspace spanned by um, m = 1, 2, …, q, of the eigenvalue λ. Note that the computed 

eigenfunctions uh,m, m = 1, 2, …, q, may not be orthogonal, but an orthogonal basis of the 

space spanned by uh,m, m = 1, 2, …., q, can be easily obtained by an orthogonalization 

procedure, for example, the Gram–Schmidt algorithm.

Remark 3.2—Similar to the multiple eigenvalues case discussed in Remark 3.1, 

Algorithms 1 and 2 can be naturally used to compute clustered eigenvalues as long as the 

coarse grid is fine enough. For the sake of simplicity, assume two eigenvalues λ1 and λ2 are 

close but not equal to each other. We require that the coarse level is fine enough to capture 

the gap between two different eigenvalues, i.e., we should be able to get two approximations 

λH,1 and λH,2, which approximate λ1 and λ2, respectively. Then we can proceed with the 

two-grid algorithms as discussed in Remark 3.1 and get two approximate eigen-pairs 

 and  on the fine level. The error estimate we presented later will be 

amplified by the factor 1/|λ1 − λ2|.

On the fine grid, it is necessary to solve an indefinite Maxwell equation, which is based on 

the idea of using the approximation on the coarse grid as an initial guess in the Newton’s 

iteration. As we shall explain next, this is different from the classical two-grid method for 

eigenvalue problems.
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Consider the abstract eigenvalue problem  with a compact operator . If we use the 

approximation on the coarse grid uH and λH as an initial guess, and apply one step of the 

fixed-point iteration, we obtain . Roughly speaking, this describes the two-grid 

method proposed by Xu and Zhou [46]. Due to the linear convergence rate of the fixed-point 

iteration, if

(3.8)

then we can expect the resulting two-grid method has asymptotical convergence rate 

. However, for the first family edge element, an optimal L2 error estimate such 

as (3.8) is not available as the polynomial space is incomplete. Consequently, two-grid 

methods based on the fixed-point iteration may not work.

The two-grid algorithms we propose are based on the generalization of the accelerated two-

grid scheme proposed by Hu and Cheng [34], which can also be viewed as a variant of the 

Newton’s method for the eigenvalue problems. Let us reformulate the eigenvalue problem as 

the following nonlinear problem:

By applying the Newton’s method with uH and λH from the coarse grid as the initial guess, 

we have

and more specifically

which can be reformulated as

(3.9)

We cannot solve one equation (3.9) for two unknowns δu and δλ. However, a crucial 

observation is that δλ on the right-hand side can be treated as a scaling which will not affect 

the Rayleigh quotient of the eigenfunction. More precisely, consider the problem without the 

scaling δλ on the right-hand side:

(3.10)

It is, therefore, easy to show that δλ uh = ũh := uH + δu. Moreover, an important fact is that
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This means that solving the problem (3.10) could lead to the same approximation of the 

eigenvalue as can be achieved with the Newton’s iteration, which suggests the second step 

in our two-grid algorithms.

3.2. Efficiency and solver

Our main reason for proposing the two-grid methods is to address the high computational 

cost of solving a large-size eigenvalue problem. Among the existing methods for the 

Maxwell eigenvalue problem, the standard inverse iteration is one of the most popular 

methods, although it is difficult to find a good initial vector and it is necessary to solve a 

large positive semidefinite Maxwell equation. Furthermore, the solution must be projected 

onto the orthogonal complements of the kernels in every iteration.

A two-grid scheme can reduce the discrete eigenvalue problem on a fine grid  to the same 

problem on a much coarser grid  and only one shifted inverse iteration on the fine grid 

. The accuracy of  (assume the domain is smooth and convex) as shown in the 

next section allows us to use a very coarse grid, which makes the computational cost on the 

coarse grid negligible. Therefore, the dominate cost of the two-grid methods is solving an 

indefinite and nearly singular Maxwell problem on the fine grid.

For the coarse grid eigenvalue problem (3.5), it is a generalized algebraic eigenvalue 

problem which is small in size. We can solve the problem directly, for example, using the 

eigs function in MATLAB. For (3.6) on the fine grid, we need to solve an indefinite 

Maxwell equation. As we are usually interested in several small eigenvalues, we combine 

the shift Laplacian technique [15, 22] with the HX preconditioner [32] in order to design an 

efficient solver.

Write (3.6) in the following matrix form:

(3.11)

In this notation,  is the stiffness matrix,  is the mass 

matrix, and b is the load vector. This is a symmetric indefinite system. We choose the 

MINRES method with the shifted Laplacian preconditioner , which is further 

approximated by the well-known HX preconditioner [32]. In our numerical experiments, one 

step of the HX preconditioner is used in every MINRES iteration and the numerical results 

show that such a solver is effective and robust.

For the stopping criterion of the MINRES method, we choose the accuracy of 

, where i means the iteration step, rather than the standard relative 

residual . We made this choice for the following two reasons: 

(1) the final goal is to solve an eigenvalue problem and approximate the eigenvalues, and (2) 
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the iteration error is almost entirely within the space spanned by the eigenvectors (see, e.g., 

[34]), such that the error will not affect the Rayleigh quotient. An alternative stopping 

criterion is ε = ‖ri+1 − ri‖ / ‖ri‖, where . Note that in the definition of ri, 

 instead of λH is used since the eigen-pair we are computing is . We can also use 

the stopping criterion  which includes both 

eigenvalues and eigenfunctions. These choice of accuracy reduces the number of iteration 

steps dramatically comparing with the standard choice of the relative residual.

Remark 3.3—When λH is close to the close eigenvalue λh on the fine level, the indefinite 

problems on the fine level in our two-grid algorithms become nearly singular and seem to be 

more challenging to solve. This problem has been much discussed in the literature in the 

context of general inverse power method. As shown in, e.g., [27, 42, 41], the near-

singularity of this system hardly presents a problem due to the fact that, for eigenvalue 

problem, the near null space of this system is exactly spanned by the eigenfunctions that we 

are interested in. A detailed discussion can be found, for example, in Remark 3.2 in [34].

4. Error estimate

In this section, we will give an error estimate of both our two-grid methods, Algorithms 1 

and 2, for the Maxwell eigenvalue problems.

4.1. Error estimate of Algorithm 1

Assuming that the eigenvalue λ has multiplicity q, let

be the eigenspace corresponding to the eigenvalue λ. Let Λ = {λh,i, i = 1, …, q} be 

approximated eigenvalues of eigenvalue λ by solving the variational problem (2.5). Let uh,i 

denote the eigenvectors corresponding to λh,i for i = 1, …, q. Similarly, let

be the approximate eigenspace corresponding to the eigenvalue λ.

Given a positive constant μ, define the following bilinear form:

(4.1)

It is well-known that (see Lemma 4.10 in [40])
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where the constant C depends on μr, εr, and μ but is independent of u and v. A similar 

statement is also true for space Xh, i.e.,

where the constant C also depends on μr, εr, and μ but is independent of uh, vh, and the mesh 

size h. Moreover, we can define the operators K: (L2(Ω))n → (L2(Ω))n and Kh: (L2(Ω))n → 

(L2(Ω))n such that

(4.2)

(4.3)

The following lemma has been shown in [40].

Lemma 4.1 (Theorem 4.11 in [40])—The operators K and Kh are bounded and compact 

from L2(Ω) into L2(Ω). In addition,

(4.4)

(4.5)

where the constants C only depend on μr, εr, and μ.

Both K and Kh are compact and their eigenvalues are −2μ/(λ+μ) and −2μ/(λh+ μ), 

respectively, where λ and λh are eigenvalues of the Maxwell eigenvalue problem (2.1) and 

(2.6). Therefore, we have the following estimate for the operator (I +Kh)−1 restricted to the 

orthogonal complement of Mh(λ) in Xh, which will play an important role in the error 

analysis for our two-grid methods.

Lemma 4.2—Let  denote the orthogonal complement of Mh(λ) in Xh with respect to 

b(·,·). Then we have

(4.6)

Let . Assume that h is small enough such that  for λj ≠ λ 

and assume that . Then we have
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Proof: The identity (4.6) directly follows from the fact that

and the operator (I + Kh)−1 is self-adjoint with respect to the inner product b(·,·).

Note that ; then we have 

 ≥ ‖ or . Therefore,

(4.7)

    □

The following lemma shows that the discrete divergence-free function can be approximated 

by a continuous divergence-free function. Such a construction for the case εr = 1 is used, for 

example, in Girault [24] and [3], and a detailed proof can be found in [31, 40].

Lemma 4.3 (Lemma 4.5 in [31])—Let uh ∈ Xh and Ω be a bounded Lipschitz 

polyhedron. There exists a u ∈ H0 (curl; Ω) satisfying

(4.8)

and

(4.9)

where the constants C and 0 < δ ≤ 1/2 are independent of h, u, and uh.

The following lemma, which can be found in [3], provides an error estimate for the solution 

of the Poisson problem (3.2) on the fine grid in the two-grid algorithm.

Lemma 4.4 (Proposition 4.4 in [3])—Under the assumptions of Lemma 4.3, let ph, , 

uH be defined as in Algorithm 1. Then we have

(4.10)

where the constant C and 0 < δ ≤ 1/2 are independent of h and uH.

Proof: Note that ,
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which implies  is discrete divergence-free in . Then, by Lemma 4.3, there exists a w ∈ 

H0 (curl; Ω) satisfying

(4.11)

(4.12)

Furthermore, (3.1) implies that uH is discrete divergence-free in . Based on Lemma 4.3 

again, there exists a  ∈ H0 (curl; Ω) that satisfies

(4.13)

(4.14)

In view of (4.11) and (4.13), we know that

which implies .

Finally, as  and , by the inequalities (4.12) and (4.14),

This completes the proof. □

Now we are ready to provide an error estimate of Algorithm 1.

Theorem 4.5—Let λH and (λh, uh) be computed by Algorithm 1 and λH is an 

approximation of the eigenvalue λ. Under the assumptions of Lemmas 4.2 and 4.4, there 

exists an eigenfunction u ∈ M (λ) such that

(4.15)

(4.16)

And for the eigenvalue, we have
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(4.17)

where the constants C depend only on μr, εr, ρ, λ, and u, and δ ∈ (0, 1/2] depends only on 

the domain.

Proof: Let us define the operator Ah: Xh → Xh as

Suppose eigenvalue λ is a multiple eigenvalue with multiplicity q. Let the eigen-pair (λh,i, 

uh,i), for some i ∈ {1, …, q}, be one approximation of (λ, u) by solving (2.5) which satisfies 

the relation (2.6)

(4.18)

If λH = λh,j for some j ∈ {1, …, q}. Then the estimate is obtained by Theorem 2.1. We thus 

assume λH ≠ λh,j for all j ∈ {1, …, q}. Since λH approximates λ, we also assume the coarse 

grid size H is fine enough such that λH is not equal to eigenvalues of Ah other than λh,j. 

Therefore Ah − λH I is invertible. Let ũh ∈ Xh be the solution of the operator equation:

(4.19)

Here (Xh, (·,·)B) means the Hilbert space Xh endowed with inner product (·,·)B.

From (4.18) and (4.19), we have the error equation

(4.20)

We decompose  on the right-hand side as

where Eh is the orthogonal projection of Xh, w.r.t. to (·,·)B, onto Mh (λ). We can thus rewrite 

the error equation (4.20) as

(4.21)

where .

Now it is crucial to observe that Ah − λHI: Mh(λ) → Mh(λ) and 

 are an isomorphism since Mh(λ) is an eigenspace of operator 

and λH is not an eigenvalue of Ah.
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Then since  ∈ Mh (λ) and uh,i ∈ Mh (λ), we conclude ûh,i ∈ Mh (λ). Similarly 

 ∈  implies (ûh,i − ũh) ∈ .

Following an argument similar to that in [40], we can define a vector ℱh,i ∈ Xh such that

Therefore, we have ℱh,i ∈  and

By the definition of Kh with μ = λH, problem (4.21) is equivalent to

Therefore, we have

According to to the standard error estimate of uH (see [8, 31]), there exists  ∈ M0 (λ) such 

that . Therefore, we have

where we use Lemma 4.4 in the last inequality. Then due to the standard estimate |λh,i − λH| 

≤ |λ − λh,i| + |λ − λH| ≤ CH1+2δ, we have

(4.22)

In view of the above procedure, we also have

(4.23)

On the other hand,  such that
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where (4.23), Lemma 4.1, and inequality (4.22) are used.

Moreover, since σ(M(λ), Mh (λ)) ≤ Ch1/2+δ, there exists u ∈ M(λ) such that ‖ u − ûh,i‖curl ≤ 

Ch1/2+δ and consequently

(4.24)

(4.25)

Note that ũh = (λh,i − λH)uh. Then the estimates (4.15) and (4.16) follow directly.

Using the triangle inequality and , we have

(4.26)

Hence, we obtain a lower bound of  under the assumption H is small enough.

To get the estimate of the eigenvalue, by Proposition 2.2, the boundedness of μr and εr, 

(4.26), and the boundedness of λ, we have

which gives the error estimate for the eigenvalue (4.17).    □

Remark 4.1—For the case in which domain Ω is smooth or convex, we have δ = 1/2 and

4.2. Error estimate of Algorithm 2

Working in the divergence-free space Xh requires solving an extra Poisson problem on the 

fine grid. In this section, we discuss the convergence of Algorithm 2 based on the standard 

edge element spaces VH and Vh and our analysis proves that this extra step can be skipped. 

Note that VH ⊂ Vh.

In order to analyze Algorithm 2, again, we introduce the following auxiliary problem on the 

fine grid:

And we recall that the eigen-pair (λh,i, uh,i) +∈ ℝ+ × Xh satisfies
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and thus obtain the following equation, which is similar to (4.20) but imposed on Vh instead 

of Xh:

(4.27)

Note that  for some eh,i ∈ Xh and , where  can be determined 

by solving

(4.28)

Following [40], we can easily estimate  as following.

Lemma 4.6

Under the assumptions of Lemma 4.4, we have

(4.29)

where ph is defined by (3.2) and the constant C and δ ∈ (0, 1/2] are independent of H.

Proof—Using (4.28), uh,i ∈ Xh, and (3.2), we have

Then the result follows from Lemma 4.4 directly.    □

Theorem 4.7

Let λH and (λh, uh) be computed by Algorithm 2, and λH is an approximation of the 

eigenvalue λ. Under the assumptions of Lemmas 4.2 and 4.4 there then exists an 

eigenfunction u ∈ M(λ) such that

(4.30)

(4.31)

And for the eigenvalue, we have

(4.32)

where the constant C and 0 < δ ≤ 1/2 depend only on μr, εr, ρ, λi, and u.
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Proof—Substituting  into (4.27), and using , then for 

any vh ∈ Xh we have

where we use  in the first identity and b(∇ph, vh) = 0 in the second identity, 

for all vh ∈ Xh. Now, we can rewrite the above identity in the operator equation:

(4.33)

Comparing (4.33) with (4.20), we have eh,i = uh,i − ũh, where ũh is defined in (4.19). Hence, 

we have .

Therefore, based on (4.24) and (4.25), there exists a u ∈ M (λ) such that

(4.34)

and similarly

(4.35)

This leads to (4.30) and (4.31). For the eigenvalue, using the triangle inequality and 

, we have

(4.36)

Equation (4.32) follows from Proposition 2.2.    □

Remark 4.2

When Ω is smooth or convex, we have δ = 1/2 and

5. Numerical experiments

In this section, we will report several numerical experiments in two and three dimensions to 

verify the effectiveness and robustness of Algorithm 2. We implemented these experiments 

using the iFEM package [16]. We did the computation in double decision but only display 

six digits after the decimal in tables, which are accurate enough for quantity bigger than 

10−6.

ZHOU et al. Page 19

SIAM J Numer Anal. Author manuscript; available in PMC 2015 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Example 5.1

Consider the Maxwell eigenvalue problem (1.1)–(1.3) on the two-dimensional domain Ω = 

(0, 1) × (0, 1) and μr = εr = 1 in Ω. It is easy to show that λ1 = λ2 = π2 and λ3 = 2π2.

The results shown in Tables 1–3 verify the theoretical expectations. Let λk,H and λk,h denote 

the eigenvalues computed by solving the eigenvalue problem (3.5) on the coarse grid  and 

the refined grid , respectively, and let  denote the eigenvalue obtained by Algorithm 2, 

here k = 1, 2, 3. The coarse mesh  is the uniform triangular mesh. The fine grid  is 

obtained by applying several uniform refinements (every triangle is divided into four 

congruent triangles) from .

We design several tests to verify our error estimate. First, we fix a coarse mesh and vary the 

fine mesh. The mesh sizes satisfy the relation h2 ≥ H6, and thus  is smaller than 

. From Table 1, it is evident that the approximation rate is indeed . Second, we 

fix a fine mesh and vary the coarse mesh subject to the constraint h2 ≥ H6. Table 2 shows 

that we can obtain the same level of accuracy by using different coarse meshes. In Table 2, a 

dash means that the computer we use does not have enough memory to solve the eigenvalue 

problem with direct solvers when the mesh size is too small. Third, in Table 3, we vary both 

the coarse and the fine meshes at the same time, subjected to h2 = H6, i.e., 

. Similarly, we only need pay attention to whether the numerical results 

satisfy . In fact, it is easy to find that the convergence rate is , as 

shown in Table 3.

To sum up, we have used three different approaches to show that the numerical results are 

consistent with our theory. Tables 1–3 verify that . Further, the solver 

introduced before is efficient. The most time-consuming part of the solver is the HX 

preconditioner. Therefore, we report the number of calls of the HX preconditioner. We 

compare our method with the inverse iteration method for computing eigenvalues. For the 

first eigenvalue, at each inverse iteration step, PCG using the HX preconditioner typically 

needs five or six iterations and typically 10 steps of inverse iteration are needed. For other 

eigenvalues, a shifted indefinite and near singular Maxwell equation should also be solved, 

and again around 10 steps of inverse iteration are needed to converge. Our method behaves 

essentially like one inverse iteration and thus reduces the total computational cost. We 

choose HX preconditioner as the computational cost unit because other measurements, such 

as CPU time, depends on the programming language, computational environment, and many 

other facts.

Example 5.2

Consider the Maxwell eigenvalue problem on a two-dimensional L-shaped domain Ω = (−1, 

1)2/(0, 1) × (−1, 0) and μr = εr = 1. λ1 = 1.47562182 (see [10]).

We consider an L-shaped domain problem. The solution has a singularity at the origin and δ 

≠ 1/2 in the analysis. We use a simple adaptive method for the twogrid method. The coarse 

grid  used in this numerical experiment is an adaptively refined grid.  is obtained by 
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uniform refinement (every triangle is divided into four) of  for i = 1, 2, 3; see Figure 1. 

From Table 4, we know that this simple adaptive two-grid method is also efficient for the L-

shaped domain. Due to the singularity of the solution and the refinement strategy we use, the 

rate is not close to the second order. Here for adaptive grids, the second order h2 is replaced 

by N−1, where N is the number of unknowns. We would expect an optimal rate of 

convergence with more sophisticated adaptive edge finite element methods, e.g., [49].

Example 5.3

Consider the Maxwell eigenvalue problem on a three-dimensional domain Ω = (0, 1)3, μr = 

εr = 1 in Ω. According to [17], we have λ1 = λ2 = λ3 = 2π2. We use the first family linear 

edge finite element to approximate H0 (curl; Ω). In the same way as before, we retain the 

size of the coarse grid and of the fine mesh satisfying H = h3, and the convergence rate of 

the two-grid scheme is nearly . Table 5 supports our error estimate.

Example 5.4

Consider the Maxwell eigenvalue problem on a three-dimensional domain Ω, where Ω is a 

closed metallic cavity with a ridge along one of its faces. The coefficients μr = 1 and εr = 1 

in Ω. We consider a practical problem from engineering [12]. This domain is a rectangular 

cavity, air-filled, and has a metallic cavity with dimensions 1 × 0.5 × 0.75 cm. For more 

information about the domain, see Figure 2 in [12]. A mesh of Ω is shown in our Figure 2. 

We do not know the exact solution to this problem; however, we did compare our results to 

those reported in [12]. Generally speaking, the smaller the mesh size, the better the 

accuracy. In this test, the two smallest eigenvalues are computed in the fine mesh, which has 

about 1 million unknowns. In Table 6, data1 and data2 come from [12]. We compared our 

results to those in [12], and found that our results are compatible with the results reported in 

[12]. The number of calls of the HX preconditioner is also stable to the mesh size but 

depends on the eigenvalue. As shown in [37], the major component of our algorithm, i.e., 

the HX preconditioner, is highly scalable. Based on the parallel implementation in the hypre 

library,1 the HX preconditioner works nicely for a problem of size 78 million on 1024 

processors. Therefore, we expect that our two-grid algorithms, which are mainly based on 

the HX preconditioner, will be effective and efficient for large-scale Maxwell eigenvalue 

problems based on similar parallel implementation.

6. Conclusion

In this paper, we have proposed two two-grid methods for the Maxwell eigenvalue problem. 

These methods only need to solve a general eigenvalue problem on the coarse grid and then 

solve one linear equation on the fine mesh using an efficient iterative method. We also have 

shown the asymptotic error estimate of the two-grid methods. Finally, we have presented 

several numerical experiments including two- and three-dimensional cases in order to 

confirm our theories.

1hypre: high-performance preconditioner, http://www.llnl.gov/CASC/hypre/.
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Fig. 1. 
Coarse and fine meshes with the adaptive method.
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Fig. 2. 
A coarse mesh used for Example 5.4.
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