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ABSTRACT

Piezoresponse force microscopy (PFM) is a powerful characterization technique to readily image and manipulate the ferroelectric domains.
PFM gives an insight into the strength of local piezoelectric coupling and polarization direction through PFM amplitude and phase, respec-
tively. Converting measured arbitrary units into units of effective piezoelectric constant remains a challenge, and insufficient methods are
often used. While most quantification efforts have been spent on quantifying the PFM amplitude signal, little attention has been given to
the PFM phase, which is often arbitrarily adjusted to fit expectations. This is problematic when investigating materials with unknown or
negative sign of the probed effective electrostrictive coefficient or strong frequency dispersion of electromechanical responses, because
assumptions about the PFM phase cannot be reliably made. The PFM phase can, however, provide important information on the polariza-
tion orientation and the sign of the effective electrostrictive coefficient probed by PFM. Most notably, the orientation of the PFM hysteresis
loop is determined by the PFM phase. Moreover, when presenting PFM data as a combined signal, the resulting response can be artificially
lowered or asymmetric if the phase data have not been correctly processed. Here, we explain the PFM amplitude quantification process and
demonstrate a path to identify the phase offset required to extract correct meaning from the PFM phase data. We explore different sources
of phase offsets including the experimental setup, instrumental contributions, and data analysis. We discuss the physical working principles
of PFM and develop a strategy to extract physical meaning from the PFM amplitude and phase.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011631

I. INTRODUCTION

Progress in many areas of science is indelibly linked to
advances in techniques to investigate the functional behavior on
the micro- and nanoscale that have become essential in materials
science and device engineering. Among these characterization tech-
niques in areas such as ferroelectricity, energy storage and conver-
sion, and information technologies, some important advancements
are related to the development of piezoresponse force microscopy
(PFM) and PFM switching spectroscopy modes.1–15 These techni-
ques allow for the study of piezoelectric and ferroelectric activities
on the micro- and nanometer scale via detection of mechanical
response to electric fields applied to the sample via a cantilever-
shaped conductive probe. PFM is widely available due to the

commercialization of many atomic force microscopy manufacturers
and has become a popular tool within the materials-science com-
munity. However, not only is the technique inherently prone to
artifacts to be aware of, but correct processing and interpretation of
PFM signals are not always straightforward. This leads to two
important challenges the PFM is facing. The first one is reliable
and consistent measurements of piezoresponse, which are often
displayed in arbitrary units only making it hard to compare results
of different research groups, obtained with different instruments
as well as data across literature on the same material systems.
The second is the quantification of functional material properties
from PFM data, namely, the extraction of piezoelectric tensor
components, which includes complications associated with inho-
mogeneous electric fields around the biased PFM tip and local
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mechanical clamping. While the latter has been partially described
in the literature,16,17 the first challenge still needs to be addressed.
This is important because the extraction of material properties
relies on the correct handling and quantification of PFM data.
Some of the critical considerations to achieve this goal are universal
and do not depend on how PFM is performed, which include the
correlation of the PFM signal and probed functional material prop-
erty. Others apply only to specific implementations, such as the
resonance-enhanced PFM, where the signal-to-noise ratio is
improved by exciting the cantilever probe to vibrate in resonance at
its first flexural eigenmode.18 In this case, single frequency PFM
can be subject to sample topography crosstalk resulting in artificial
PFM contrast, which can be avoided by an application of multi-
frequency PFM, including dual resonance frequency tracking11 and
band excitation.18 Other challenges for resonance-enhanced PFM
involve ruling out the effects of electrostatic forces or other non-
electromechanical phenomena as predominant signal origins19,20

and the convolution of cantilever beam shape and the measured
PFM signal which can be mitigated by employing interferometric
sensing approaches.21,22

In this tutorial, we focus on the PFM configuration that mea-
sures the periodic surface displacement along the normal to the
sample surface as a result of oscillating volume changes induced by
an AC voltage Vac applied to the probe tip in contact with the
sample surface in respect to a bottom electrode. We chose the labo-
ratory reference system so that the z axis is directed outward, or
“upward,” from the sample. Electric fields or polarization directions
pointing in the positive direction of z are defined as positive. If
they are pointing in the direction of negative z, or downward, they
are defined as negative. The sample height change is tracked by a
change in cantilever inclination near the probe tip, which is mea-
sured with the help of a reflected laser beam and a photo-detector,
whose signal D (termed deflection) is represented in volts. The
resulting oscillating deflection Dac, which can be termed “rate of
deflection,” is proportional to the changes in the slope of the canti-
lever23,24 caused by the oscillating height changes of the sample
normal to the sample surface ΔLz= (Lz− L0), where Lz denotes the
bias-induced and L0 denotes the unbiased sample (or effective
probing) thickness. It is standard in microscopes that a positive D
indicates a shift of the sample surface up in the positive z-direction
(that is, ΔLz > 0 if D > 0) and vice versa. With a strain Sz = ΔLz/L0
and an electric field approximation E =−V/L0, where V is the
voltage applied to the probe (and, therefore, has the sign opposite
to the direction of E with respect to the z axis), the PFM signal can
be used to obtain information about the piezoelectric properties
along the normal to the sample,

dz ¼ @Sz
@Ez

� �
¼ � @ΔLz

@Vz

� �
¼ �K � Dac

Vac
: (1)

Here, K is a proportionality factor that relates the measured deflec-
tion rate Dac in volts to the surface displacement ΔLz in pm and
has the unit pm/V. Note that if the voltage is applied to the bottom
electrode, the “minus” sign in Eq. (1) should be replaced with
“plus.” Since the PFM probes the surface expansion and contrac-
tion in the laboratory reference system along the normal of the

sample surface (z-direction), which does not necessarily align with
the sample crystallographic axes, PFM is often described as probing
an “effective piezoelectric constant” that we denote here with dz.
This property contains contributions of multiple components of
the third rank piezoelectric tensor dijk that depend on inhomoge-
neous electric field distribution around the biased PFM tip with
in-plane and out-of-plane field components and on the crystallo-
graphic orientation of the sample with respect to the surface
normal. The detailed discussion of PFM signals in the presence of
vertical and in-plane field components for samples of different
crystallographic orientations can be found elsewhere.25–27 In the
following, the focus is on reliable and correct extraction of dz (the
effective piezoelectric constant); the extraction of the dijk tensor
components from measured values of dz is not discussed here.

There are challenges when it comes to reliably measure and
extract the PFM amplitude A and phase f of the dynamic deflec-
tion rate Dac. The PFM amplitude is proportional to the effective
piezoelectric constant along the normal of the sample surface,
while the phase has directional information on the polarization ori-
entation. The PFM phase is the phase lag between the applied
voltage on the probe and the measured strain response extracted
with lock-in or related methods. Often, the PFM amplitude and
phase are combined to yield a so-called mixed response Dac that is
defined as Dac = A⋅sin(f) or Dac = A⋅cos(f). While there have been
efforts to quantify the PFM response to extract dz from Dac,

28–33

the fact that dz and Dac are opposite in sign if the PFM tip is biased
as shown by Eq. (1) is typically not considered. The sample piezor-
esponse amplitude is often quantified simply by the cantilever
static deflection sensitivity Sc in pm/V, which is only a factor in K
in Eq. (1). At the same time, little attention has been paid to the
correct PFM phase, although this parameter yields valuable infor-
mation on fundamental physical properties such as the sign of the
electrostrictive coefficients and frequency dispersion of electrome-
chanical response. The PFM phase is either used as measured or
sometimes adjusted to maximize the mixed-PFM response so that
sin(f) or cos(f) equals ±1 and/or according to the expected loop
orientation. Some notable exceptions are of Chen et al. who cali-
brated the phase response in electrochemical strain microscopy
against PFM phases measured on ferroelectric samples with known
polarization and electrostriction coefficients34 and Bradler et al.
who proposed a phase calibration and correction method based on
numerical calculations.35

Many factors determine the measured PFM phase and often
include unknown contributions, which can lead to oppositely ori-
ented PFM phase loops in the literature on the same material
system.36–40 Even measurements using the same sample and
microscope can result in oppositely oriented loops, as demon-
strated in Fig. 1. Here, the switching spectroscopy was performed
using resonance-enhanced PFM on a standard ferroelectric
PbZr0.2Ti0.8O3 (PZT) sample using soft (spring constant
k = 4.2 N/m) and stiff (k = 45.6 N/m) cantilevers with free
(out-of-contact) resonance frequencies of 72 kHz and 165 kHz,
respectively, and contact resonance frequencies of about 330 kHz
and 625 kHz, respectively. The PFM amplitude and phase were
extracted using a simple harmonic oscillator (SHO) fit of the
voltage-dependent contact resonance peak (as explained below).
It can be seen that the PFM amplitudes measured in pm/V, after
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multiplication of the detector signal by cantilever sensitivity Sc,
depend on the cantilever [Fig. l(a)], which has also been reported
in Ref. 41. The orientation of the as-measured phase loops is
opposite to one another, which would result in oppositely ori-
ented Dac loops [Fig. 1(b)]. In addition, the uncorrected phase
levels for these two loops vary greatly. These observations are
unexpected since the same material property is probed which
should be independent of the used cantilever if the applied fields
are comparable. If the phase is not correctly processed before cal-
culations of the mixed response, Dac can appear lower (e.g., if cos
(f) < 1 and > − 1) and information provided by the loop orienta-
tion is lost or misleading. Therefore, clear guidelines need to be
established on how to correctly process the PFM phase if no
assumption about the loop orientation can be made. This is
especially important for materials that exhibit negative electro-
striction coefficients as, for example, observed in PVDF42 and
CuInP2S6.

43,44 Similarly, for materials with mobile ions or low-
frequency polarization dynamics, the significant dispersion of
electromechanical responses can be expected in the range of fre-
quencies amenable to PFM, necessitating quantitative absolute
phase measurements.

In the following, we address a big challenge for PFM-reliable
and reproducible measurements of the effective piezoelectric cons-
tant and hysteresis loops. As demonstrated in Fig. 1, this requires
evaluation of common quantification steps, and we explore in
detail more advanced approaches to correctly quantify the PFM
amplitude and identify the PFM loop orientation as determined by
the PFM phase. We discuss the presence of instrumental phase
offsets and their frequency dependence as a main contributor to
the measured PFM phase. We will also discuss some specific
challenges that on-resonance PFM methods face, which includes
considerations of cantilever dynamics, the signal-to-noise ratio, and
fitting procedures before the PFM amplitude and phase are
received. We will demonstrate how the phase offset can be deter-
mined based on the physical meaning of the PFM phase, which
will be demonstrated on a PbZr0.2Ti0.8O3 (PZT) thin film.
The developed procedure will then be applied to CuInP2S6, a ferro-
electric material with a negative electrostrictive tensor component
along the direction of the probed strain,43,44 which yields the loop
orientation opposite to that of traditional ferroelectrics such
as PZT.42,43,45

II. RESULTS AND DISCUSSION

First, we discuss the ideal PFM hysteresis loop and how
the effective piezoelectric response relates to the orientation of the
polarization (with respect to the applied field direction) and
the electrostrictive coefficient. In the laboratory reference system,
the effective piezoelectric response can be described by the follow-
ing equation:

dz ¼ 2QzPzεzε0: (2)

According to Eq. (2),46,47 the effective piezoelectric constant
dz is determined by the effective electrostrictive coefficient Qz and
the polarization vector component along the laboratory coordinate
z, Pz. Therefore, the measured effective piezoelectric response can
be positive or negative depending on the sign of Qz and the orien-
tation of P. Electrostriction, in general, is described by a fourth
rank tensor Qijkl, which describes the relationship between strain
and the square of the polarization, Sij ¼ QijklPkPl . This means that
electrostriction itself does not depend on the sign of polarization.

Figures 2(a) and 2(b) show the ideal PFM amplitude and
phase hysteresis loop depicted for a ferroelectric material like PZT.
The DC voltage is applied to the PFM tip; therefore, a positive
voltage will result in a negative field direction, which orients the
polarization downward (the red arrow in Fig. 2); in turn, a negative
voltage will switch the polarization upward (the blue arrow in
Fig. 2). The PFM amplitude is always positive, has two positive
branches that partially overlap, and contains no information about
the polarization direction [Fig. 2(a)]. This is different for the PFM
phase that probes the direction of the polarization with respect to
the applied field direction [Fig. 2(b)]. When the polarization and
the field vector point are in the same direction, an increase in field
will result in an increase in polarization and material expansion if
the electrostrictive coefficient is positive. In that case, the field and
the strain increase at the same time and are in-phase with each
other and the PFM phase is f = 0. Opposite to that, when the
polarization and the field vector point are in opposite directions,
an increase in field will result in a decrease in polarization and
material contraction if the electrostrictive coefficient is positive. In
that case, a field increase results in a strain decrease, and they are
out-of-phase with each other and the PFM phase is f = 3.14
(π) rad.

FIG. 1. PFM (a) amplitude and (b)
phase loops measured on the same
sample with a soft (4.2 N/m, black) and
stiff (45.6 N/m, red) cantilever using
resonance-enhanced PFM. The
contact resonance frequency for these
cantilevers was ∼325 kHz and
∼625 kHz, respectively. The amplitude
was quantified using cantilever sensitiv-
ity. The phase loops show opposite
orientations.
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If the PFM amplitude and phase are combined according to
Dac = A⋅cos(f), then the corresponding PFM hysteresis loop is ori-
ented counterclockwise as shown in Fig. 2(c). According to Eq. (1),
the loop of the effective piezoelectric coefficient as a function of
voltage is then oriented clockwise [Fig. 2(d)]. Here, domains
switched upward show a positive dz and domains switched down-
ward have a negative dz.

From the piezoelectric response loop, one can determine the
sign of the electrostrictive coefficient if the orientation of the polar-
ization vector is known. For example, applying a negative voltage to
the tip switches the polarization vector upward. Therefore, we can
normalize cos(f), which contains the directional information of
the mixed PFM signal, with the cosine of the polarization direction
representing an upward oriented polarization vector. Consequently,
an upward oriented polarization vector is defined as +1 and a
downward oriented polarization vector is −1 [Fig. 2(e)]. If the pie-
zoelectric constant loop is then divided by the normalization result,
one obtains a signal that has a value proportional to the effective
electrostrictive coefficient reflecting its sign [Fig. 2(f)]. In order to
obtain a value for Qz, knowledge about permittivity and polariza-
tion is required, which cannot be obtained in a PFM experiment.
However, it is important to point out that the sign of the effective
Qz contributing to the measured PFM signal manifests itself in the
orientation of the PFM hysteresis loop.

After establishing what PFM hysteresis loops are expected
based on the sign of the electrostrictive coefficient, we investigate
the extraction of PFM amplitude and PFM phase for the example
of resonance-enhanced PFM, which is often used to enhance the
PFM signal for samples with a weak electromechanical response.
The quantification of PFM amplitude, i.e., the conversion of Dac

from volts to pm, is commonly performed using the cantilever
static deflection sensitivity Sc, which is extracted from static force-
distance curves and allows conversion of the detector signal from
volts into meters. The following example demonstrates that this

approach is not suited for resonance-enhanced PFM if measure-
ments with cantilevers of different stiffnesses are compared. This is
important since it is getting more common to perform measure-
ments with stiff probes to reduce contributions from electrostatic
effects.48 The measurement was performed on-resonance and the
PFM amplitude was extracted after SHO-fitting of the contact reso-
nance peak. Figure 3(a) shows a PFM amplitude image of a ferri-
electric CuInP2S6

49,50 (CIPS) sample, which is interspersed with a
non-ferroelectric In4/3P2S6 (IPS) phase yielding a zero PFM ampli-
tude. When the exact same area is measured with two different
cantilevers with stiffnesses of 2.3 N/m and 35.8 N/m, the measured
PFM amplitudes vary greatly even under comparable contact forces
[Fig. 3(b)]. In this case, the PFM amplitude in Fig. 3(b) was
extracted only for the CIPS domains and multiplied by the cantile-
ver sensitivity Sc, which results in noticeably lower values for the
stiffer cantilever. This means that measurements with different
probes may not be directly compared. The root cause of this
problem is that PFM is using an optical beam deflection to track
the cantilever deflection change, which is sensitive to the local
slope of the cantilever not to the z-shift of the probe tip. If PFM is
performed on resonance, the shape of the cantilever beam during
the vibrations at the first eigenmode frequency is greatly dependent
on cantilever geometry and stiffness and probe-sample contact stiff-
ness. Also, this shape is different from the shape acquired during
calibration of the probe sensitivity with static force-distance curves,
when z-shifts of the probe tip are much larger.51,52 A softer cantile-
ver will “buckle” more in PFM measurements than a stiff cantilever,
which will directly influence the measured piezoelectric response.
This effect can be removed by additional signal processing with the
knowledge of cantilever geometry and stiffness, as well as resonance
frequencies and quality factors of the cantilever flexural vibrations
in contact and out of contact with the sample. These parameters
can be used to calculate the cantilever beam shape and to convert
the cantilever slope at the point where the laser spot is placed into

FIG. 2. Schematic outline of the corre-
lation of the piezoelectric constant,
PFM phase, and PFM amplitude hys-
teresis loop for a material with a posi-
tive electrostrictive coefficient. (a) PFM
amplitude A, (b) phase f, (c) mixed
PFM signal Dac, (d) piezoelectric coeffi-
cient dz, (e) cos(f)/cos(fP↑), and (f )
sign of the electrostrictive coefficient Qz

as a function of Vdc voltage. The blue
and red arrows indicate upward and
downward polarization orientations,
respectively.
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sample surface displacements. The result is a shape correction
factor that can be applied to the experimental data to remove the
influence of the cantilever properties.52,53 Alternatively, PFM techni-
ques using laser Doppler vibrometers or interferometric displace-
ment sensing21,22 have been developed to gain fully quantitative
information on the PFM amplitude but require additional hardware.

After application of a correction factor based on cantilever
dynamics as demonstrated by Balke et al.,52 the measured PFM
amplitudes become comparable [Fig. 3(c)]. In a second example,
interferometric displacement sensing (IDS) was used to measure
the PFM amplitude and compared with a standard measurement
using optical beam deflection (OBD) in the exact same area of a
CIPS-IPS sample. After the cantilever dynamics calibration correc-
tion, both techniques show comparable values for the PFM ampli-
tude, which demonstrate the importance of additional correction
factors beyond cantilever sensitivity. Note that the shape correction
method also applies to off-resonance techniques at low frequencies
where the shape of the cantilever also depends on the properties of
the cantilever and the tip-sample contact.

In the case of the PFM phase, the phase loop is sometimes
shifted along the phase axis in the data processing to maximize the
mixed response. The measured PFM phase of oppositely oriented
polarization domains is rarely 0 and π rad, as schematically shown
in Fig. 2, due to instrumental offsets including phase delays in
cables, analog signal processing (e.g., by amplifiers and filters), can-
tilever dynamics, and experimental effects such as sample, tip-
sample contact, and intrinsic material properties. The instrumental
phase offsets can vary significantly and are investigated

independent of ferroelectric signal contributions. Toward this goal,
we measured the amplitude and phase using internal Vac sources,
where a source output was used as a signal input on the same
atomic force microscope (AFM) controller and discovered a strong
dependency of the amplitude and phase on the ac frequency
without the presence of a probe [Figs. 4(a) and 4(b), respectively].
While the amplitude is a non-linear function of frequency, the
phase changes nearly linearly with frequency. This dependence is a
common property for all commercial AFMs and affects all
frequency-dependent measurements including non-contact and
contact mode cantilever vibrations, as shown in Figs. 4(c) and 4(d).
We studied the response for several different cantilevers of different
stiffnesses by means of cantilever resonances (in non-contact and
contact modes) to cover a large frequency range and analyzed the
phase to the left of the resonance at the lower end of the
10 kHz-wide frequency window fmin [Fig. 4(c)]. The result is
plotted in Fig. 4(d) and demonstrates that the behavior of the
frequency-dependent phase offset is similar for the electrostatically
driven cantilever vibrations for SiO2 or piezoelectrically driven can-
tilever vibrations for PZT. Strong linear dependency is observed in
both the cases, and in the case of PZT, the two parallel lines are
separated by π and correspond to upward and downward oriented
domains on PZT.

The origin of the above discussed instrumental phase offset is
believed to be instrument electronics, sampling delays, and even
the cables. Additional phase offsets can be introduced when canti-
lever dynamics are involved. Therefore, the slope of the linear fre-
quency–phase relationship can vary for different microscopes and

FIG. 3. (a) PFM amplitude map for a
CIPS-IPS phase separated sample
measured with a cantilever of 3.8 N/m
stiffness. (b) PFM amplitude A mea-
sured in the same area with a soft and
a stiff cantilever after quantification with
cantilever sensitivity Sc. (c) PFM ampli-
tude A measured in the same area
with a soft and a stiff cantilever after
correction based on cantilever dynam-
ics.41 (d) PFM amplitude A measured
in the same area with IDS and OBD
approaches including the correction
procedure based on cantilever dynam-
ics in the contact resonance.
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experimental setups. This results in varying slopes in the phase as a
function of frequency. The instrumental phase offsets can become
so large that measurements with different cantilevers can change
the PFM loop orientation. For example, in order to reduce electro-
static signal contributions, it has been suggested to use stiffer tips.29

For the resonance-enhanced PFM, however, this increases the mea-
surement frequency. Based on the cantilever properties, the higher
operating frequency can lead to a complete flip of the PFM phase
loop, which explains the opposite loop orientation as illustrated in
Fig. 1(b).

We would like to emphasize that this frequency dependence
of the phase has to be considered for both on- or off-resonance
techniques. However, further considerations for the PFM phase
need to be taken into account if measurements are performed
at a contact resonance frequency to enhance the signal-to-noise
ratio.11,17 In resonance-enhanced techniques, the PFM amplitude
and phase are captured across the contact resonance of the cantile-
ver probe, which is determined by mechanical properties of the
sample and cantilever as well as its geometry. Often, the contact
resonance peak is fitted with a simple harmonic oscillator (SHO)
equation from which the PFM amplitude A, quality factor Q,
contact resonance frequency fc, and PFM phase f are extracted.
The quality factor and resonance frequency provide further infor-
mation on energy dissipation17 and changes in mechanical proper-
ties.54 The SHO-based analysis of the phase data is centered
around three questions: (i) How accurately were the fit performed
and the phase extracted? (ii) Is the signal-to-noise (S/N) ratio high
enough for a meaningful fitting? and (iii) Does the SHO model
adequately describe the measured data?

There are two approaches that are most often used to extract
the PFM phase from SHO fits, and we have applied them here for
fitting a cantilever resonance peak to illustrate a difference in out-
comes of the methods. First, only the amplitude peak is fitted using
Eq. (3), and the phase is extracted at the contact resonance fre-
quency [Fig. 5(a)], resulting in a PFM phase value of f = 2.67 rad
for the used dataset,

A ¼ A0 � f 2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( f 2 � f 2c )

2 þ f � fc
Q

� �2
s , (3)

Dac ¼ A0 � f 2c � eif=ð f 2 � ði f fc=QÞ � f 2c Þ: (4)

Second, a 3D-SHO fit of the real and imaginary responses as a
function of frequency can be performed, where the PFM phase f is
one of the fitting parameters [Fig. 5(b)] resulting in a PFM phase
value of f = 1.23 rad using Eq. (4). In both equations, fc denotes
the contact resonance frequency, Q is the quality factor, and A0

is the PFM amplitude. Therefore, different data analysis methods
can result in different PFM phase values. This is simply based on
the fact that in the 2D plot, the PFM phase is defined as the phase
at the contact resonance frequency, whereas the 3D model shown
here extracts the phase on the low-frequency side of the contact res-
onance peak. It is important to realize that different methods of
SHO fit result in a different PFM phase, which is important when
different measurements are compared. Another factor that can

FIG. 4. Amplitude- and phase-
frequency characteristics: (a) and (b)
purely instrumental—in the absence of
a cantilever and (c) and (d) measured
in a PFM setup with the piezo-effect or
electrostatic driving. (a) Amplitude and
(b) phase as a function of frequency
using output of an internal Vac source,
which was routed back into the AFM
controller as the input signal. (c)
Cantilever amplitude and phase across
the resonance frequency for an electro-
statically driven cantilever above a
SiO2 sample (in the non-contact
mode). (d) Phase at fmin [as indicated
by the blue circle in (c)] as a function
of frequency for electrostatically driven
cantilever vibrations for SiO2 (non-
contact and contact mode) and piezo-
electrically driven vibrations for the
PZT, collected with many cantilevers of
different stiffnesses. The two bands for
PZT, which are separated by π, are
measured on upward and downward
oriented domains.
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influence the SHO fitting parameters is the S/N ratio. We demon-
strate the importance of the S/N ratio for the PFM amplitude and
phase [Fig. 5(c)] by overlaying the data shown in Fig. 5(b) with
artificial noise of varying magnitude and subsequent SHO fitting.
Both fitted amplitude and phase clearly become unreliable if the
S/N ratio is too small. In addition, the coefficient of determination,
R2, provides a measure for the fitting quality and is shown in
Fig. 5(d) for the same S/N ratios. The R2 coefficient increases with
increasing S/N ratios, and a value close to 1 is desirable. This value
can be used to exclude unreliable data points. In particular, near
coercive voltages, the S/N ratio can significantly decrease due to the
low PFM response. Hence, care must be exercised when imposing
physical interpretation on fitting parameters A, f, fc, and Q in the
vicinity of switching events. The effects of lower S/N ratios can be
mitigated by improving initial guesses in the fitting algorithm or
using a deep neural network approach.62 In addition to the consid-
eration of signal strength and noise levels, it is equally important to
understand how well the SHO equation describes the actual reso-
nance. Asymmetric amplitude peak shapes can arise from mechani-
cal non-linearity, electrical crosstalk between the drive and
response, and non-piezoelectric signal contribution,55 which are

not captured by the SHO fit [Fig. 5(e)]. The same is true for the
PFM phase change across the resonance, which can deviate from π
[Fig. 5(f )]. This type of behavior can be observed when stiff probes
are used to perform PFM experiments on non-ferroelectric samples
where electrostatic forces alone drive the cantilever motion. Both
deviations in amplitude and in phase from the SHO model lead to
systematic errors in the determination of the PFM response.

If the instrumental phase offset and the phase extraction from
the SHO fitting procedure are unknown, a sample with a known
sign of electrostrictive coefficient, Q, can be used as a reference
in combination with systematic rules for PFM phase correction.
Once established, the same phase correction offset can be applied
to materials with unknown sign of the electrostrictive constant if
the measurement setup and cantilever are not changing. This
also applies to off-resonance PFM methods. Since PFM contains
information about the strength of the piezoelectric response and
the direction of polarization, a material with a positive electro-
strictive coefficient can show positive or negative values in PFM
measurements [Eq. (2)]. The same is true for materials with a neg-
ative electrostrictive coefficient. Therefore, additional information is
necessary to uncouple the sign of the electrostrictive coefficient from

FIG. 5. Phase and amplitude across
the contact resonance in (a) 2D and
(b) 3D parameter space. (c) PFM
amplitude and phase extracted from a
3D SHO fit with artificial noise. (d) R2

value for the SHO fits as a function of
the signal to noise ratio. Deviation from
the standard SHO in the form of (e) an
asymmetric amplitude peak and (f )
non-π phase shift across the
resonance.
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the polarization direction since the measured sign of the piezoelectric
material response is a convolution of both. If the polarization orien-
tation is unknown or varies locally, poling experiments can help
to obtain a reference domain. In the following discussion, all mea-
surements were obtained with cantilevers that have a stiffness of
3–4 N/m and a contact resonance frequency of 330–360 kHz. Here,
we performed the resonance-enhanced PFM imaging after local
areas of a 60 nm PbZr0.2Ti0.8O3/20 nm SrRuO3/TbScO3 (110)
thin film heterostructure had been poled with ±3V, as indicated in
Fig. 5(a). Here, “positive” or “up” refers to the positive z-direction
(pointing away from the substrate), whereas “negative” or “down”
refers to the negative z-direction (pointing toward the substrate). A
negative voltage applied to the tip in respect to the bottom electrode
results in an electric field pointing up, which switches the polariza-
tion direction upwards, while a positive voltage switches it down-
ward. Based on this principle, we expect the PFM phase in the area
poled by applying a negative voltage to have an out-of-phase
response with f = π as discussed in Fig. 2. Conversely, in the posi-
tively poled area (polarization orientation down), an in-phase
response with f = 0 [Fig. 6(b)] should be detected. The extracted
PFM amplitude and phase plotted as a 2D histogram [Fig. 6(c)]

shows PFM phase values of approximately −2.4 rad for the positively
poled area and ∼0.7 rad for the negatively poled one after using a 3D
fit model to extract the PFM phase from the SHO fit; neither pro-
vides the expected values of 0 and 3.14, respectively. Therefore, the
phase has to be offset by foffset =− 2.4 rad, and A⋅cos(f-foffset)
should be used to calculate the mixed-PFM response. The impact of
the result without and with the PFM phase correction is shown in
Figs. 6(d) and 6(e), respectively. Besides the lower Dac values for the
case without phase correction, most notable is the contrast inversion.
For example, the central domain is oriented downward based on the
applied poling voltage of 3 V. However, Dac is negative when no
phase offset is applied, which would indicate a domain with an
upward polarization according to the working principle of PFM
[Fig. 2(c)]. Once the correct phase offset is applied, the PFM contrast
is aligned with the expected polarization orientation after poling.
Using this poling procedure as a means to determine the phase
offset does require a ferroelectric sample with stable domains of
polarization which orients according to the applied electric field.

The summary of the proposed steps toward more reliable and
quantified PFM measurements is shown in Fig. 7. The technique is
based on using a reference sample as the calibration method,

FIG. 6. (a) Schematic image of the PFM poling experiment (the bias voltage is applied to the probe) and (b) the expected in- or out-of-phase responses based on the
polarization orientation. (c) Measured PFM amplitude and phase plotted as a 2D histogram. Map of the mixed PFM response in a 5 × 5 μm2 area without (d) and with (e)
phase offset.
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instead of measuring instrumental phase offsets, and highlights
additional steps needed for the resonance-enhanced PFM methods.
It is possible to determine the PFM phase offset also from PFM
hysteresis loop measurements if it is warranted that complete ferro-
electric switching occurs and that the signal of the piezoelectric
origin is the main contributor to the measured PFM signal. The
suggested procedure has been tested on two samples. A 50 nm
thick ferroelectric (001) Pb(Zr0.2Ti0.8)O3 (PZT)/(La,Sr)MnO3 film
grown epitaxially with pulsed laser deposition on an SrTiO3 (001)
substrate with a positive effective electrostrictive coefficient along
the z axis was used as a reference sample. The second sample was

an oriented CuInP2S6 (CIPS) crystal that was aligned so that the
crystallographic c axis is normal to the sample surface, and hence,
the effective electrostrictive coefficient along the z axis is deter-
mined by the Q3333 component of the electrostrictive tensor and
negative.43,44 Resonance-enhanced PFM hysteresis loops were mea-
sured off-field, that is, after the application of dc voltage pulses to
the probe to initiate domain switching. The resulting dz loops after
the application of the phase calibration show the expected loop ori-
entations for the respective sign of the electrostrictive coefficient,
i.e., clockwise for positive [Fig. 8(a)] and counterclockwise for neg-
ative Qz [Fig. 8(b)]. It should be emphasized that the outlined

FIG. 7. Summary of recommended
PFM calibration and quantification
steps for off- and on-resonance PFM.

FIG. 8. Piezoelectric constant loops
extracted from PFM response as a
function of applied Vdc as outlined in
this work for a material with a (a) posi-
tive and (b) negative electrostrictive
constant.
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considerations about the PFM phase are only valid for the specified
frequency at which PFM is measured (330–360 kHz). As previously
discussed, if measurements are performed with a stiffer tip at high
enough frequencies to cause the phase to change sign, the outlined
methodology will need to be adjusted to work in this new fre-
quency range. The same is true if on-field PFM hysteresis loops are
measured where additional signal generating mechanisms (such as
electrostatic forces) can affect and even reverse the measured phase
values. If poling experiments are not feasible, similar approaches
can be applied for bias-dependent PFM hysteresis loops.
Alternative strategies can include measuring internal phase offsets
for mechanically driven cantilever, for example, through the use of
BlueDrive56 before performing PFM.

While the proposed methodology will apply to many PFM
investigations of ferroelectric materials, there are situations where
they do not apply. The existence of field components perpendicular
to the surface normal and the inhomogeneous field distribution
around the biased PFM tip result in multiple piezoelectric tensor
components contributing to the measured dz.

27 These in-plane con-
tributions can be comparable with the out-of-plane contributions
and can result in a negative effective piezoelectric constant even if
the effective electrostrictive coefficient is positive as, for example, was
shown for the case of Bi4Ti3O12 nanorods.

57 Therefore, it is impor-
tant to consider the crystallographic sample orientation and piezo-
electric tensor components when evaluating the measured PFM
signal. In addition, the proposed calibration method will not work
for abnormal polarization switching58,59 or in instances where
mechanical poling plays a significant role.60 Besides the sign of the
effective electrostrictive coefficient, the laser spot of the optical beam
on the cantilever can also determine the orientation of the PFM hys-
teresis loop.61 This has to do with the fact, for example, that the
beam shape for the first eigenmode has comparable slopes on the
front and back halves of the cantilever but with opposite signs.

III. SUMMARY

In summary, we highlighted the importance of correct pro-
cessing of the PFM amplitude and phase signals to achieve a higher
degree of quantification accuracy and reproducibility with respect
to the local piezoelectric strength and polarization orientation. The
quantification of the PFM amplitude based on cantilever sensitivity
is not sufficient, especially for stiffer cantilevers that are often used
to reduce electrostatic signal contribution. The PFM phase deter-
mines the orientation of the PFM loops from which information
on the sign of the measured piezoelectric and, thus, electrostrictive
coefficient can be gained. PFM phase values can appear deviating
from ideal 0 and π, which can lead to wrongfully oriented piezo-
electric hysteresis loops. Accurate processing of the phase signal
requires taking into account instrumental phase offsets that occur
in virtually all PFM measurements for data processing and inter-
pretation. This instrumental phase offset is dependent on frequency
and must be assessed for each experimental setup separately (since
it varies with factors like cantilever stiffness, signal routing, cabling,
etc.). In addition, for the contact resonance-enhanced techniques, it
is important to take into account the quality of the SHO fit and
how the phase data are extracted. Specifically, in the presence of
non-piezoelectric signal contributions, the SHO model may not

describe the measured data well enough, e.g., if the peak shape is
asymmetric or the phase change across the contact resonance is
≠π. Moreover, it should be assessed whether the S/N ratio is high
enough for a proper fit. SHO fitting can be performed in several
ways, e.g., fitting only the amplitude peak and extracting the phase
at resonance vs fitting 3D data in the imaginary-real-frequency
parameter space where the phase value is a fitting parameter and
extracted at frequencies higher than the resonance frequency. Since
the phase varies strongly across a resonance, it is important to
know how/where the phase is extracted and to keep that procedure
consistent. In the case presented here, it was necessary to zero the
PFM phase level measured on domains with downward oriented
polarization vector, so that the phase values are between 0 rad
and 3.14 rad dependent on downward or upward polarization
orientation, respectively. This convention is in accordance with
the working principle of PFM linking periodic in-phase and
out-of-phase mechanical deformations in response to an AC elec-
tric field. The mixed response Dac should then be calculated as
Dac = A cos(f + foffset) and is coupled with the piezoelectric coef-
ficient d by a factor of −1. If these outlined steps are followed,
material parameters such as the amplitude and the sign of the
electrostrictive constant can be inferred from the Dac and d
images as well as the orientation of the measured hysteresis loops
as a function of applied voltage.
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