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ABSTRACT 

We suggest and describe the use of a binary pseudo-random (BPR) grating as a standard test 

surface for measurement of the modulation transfer function (MTF) of interferometric 

microscopes. Knowledge of the MTF of a microscope is absolutely necessary to convert the 

measured height distribution of a surface undergoing metrology into an accurate power spectral 

density (PSD) distribution. For an ‘ideal’ microscope with an MTF function independent of 

spatial frequency out to the Nyquist frequency of the detector array with zero response at higher 

spatial frequencies, a BPR grating would produce a flat 1D PSD spectrum, independent of spatial 

frequency. For a ‘real’ instrument, the MTF is found as the square root of the ratio of the PSD 

spectrum measured with the BPR grating to the ‘ideal’, spatial frequency independent, PSD 

spectrum. We present the results from a measurement of the MTF of MicromapTM-570 

interferometric microscope demonstrating a high efficiency for the calibration method.  

1. Introduction 

Optical surface profilometers built around interferometric microscopes have become a basic 

metrology tool for the characterization of high quality optical surfaces with sub-Angstrom rms 

roughness. Traditionally, the standard list of output parameters of an interferometric microscope 

measurement has included values of roughness averaged over an area and along a sample line. 

More recently, the roughness characterization was extended to a more rigorous statistical 

description of surface topography based on power spectral density (PSD) distributions of the 

surface height (see e.g., Refs. 1-4 and references therein). The measured PSD distributions 

provide a framework for connecting surface roughness with three-dimensional calculations of 

scattering of light by the optical surfaces.5-7  
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A straightforward transformation of the measured 2D area distribution of the residual surface 

heights into a 2D PSD distribution almost always provides spectra with distortion caused by the 

unknown spatial frequency response of the instrument. The response is characterized by the 

modulation transfer function (MTF), which is defined by the spatial frequency bandwidth of the 

instrument.8 The MTF contains contributions from the instrument’s optical system, detector, 

signal processing, software algorithm, and environmental factors. Generally, these contributions 

are difficult to account for separately. The instrumental MTF can be evaluated by comparing a 

measured PSD distribution of a known test surface with the corresponding ideal numerically 

simulated PSD.9-11 The square root of the ratio of the measured and simulated PSD distributions 

gives the MTF of the instrument. The binary pseudo-random grating (BPRG) described here 

provides an effective test surface to fulfill this calibration need.  

2. Binary pseudo-random grating properties 

The BPRG as we determine it here is a set of rectangular grooves (with a binary height 

distribution) pseudo-randomly distributed over a uniform grid with an elementary pitch equal to 

the width of the smallest groove. The term ‘pseudo-random’ depicts that the distribution is 

specially generated to possess a property of randomness in the mathematically strong sense. As it 

is shown below, the inherent PSD spectrum of such a grating is independent of spatial frequency 

(white-noise-like). Therefore, any deviation of a PSD spectrum measured with a real instrument 

from a white-noise-like spectrum would be a measure of the instrumental MTF. 

The BPR grating based method proposed here is in some sense an extension of the approach 

based on a unit step surface.10 The inherent 1D PSD spectrum of a step artifact has an inverse-

quadratic dependence on spatial frequency. Such behavior of the step surface PSD puts a 

limitation on its use at higher spatial frequencies. The advantage of the proposed BPR grating, 
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coming from the spatial frequency independence of its PSD spectrum, is that it basically 

provides a uniform sensitivity to measurement of the MTF function at all desired frequencies. It 

also provides a measure of the system MTF averaged over the entire extent of the aperture, rather 

than just in a very localized region around the height discontinuity of the single step artifact.12,13  

Particular methods for generation of maximum-length pseudo-random sequences14-16 were 

developed in connection with the use of pseudo-random chopping of a beam in time-of-flight 

experiments.17-19 The sequences are mathematically represented with 1’s, which denote an open 

chopper slot, and 0’s, which denote a closed chopper slot. The chopping associated with a cross-

correlation analysis of the measured time-resolved detector signal is favored over single-shot 

(periodic) chopping with duty-cycle gain factor as high as N 4 (assuming two slits on a periodic 

chopper), where N is the length of the pseudo-random sequence.  

Similar to the requirement for maximum duty cycle of a pseudo-random chopper, the BPR 

grating has to be generated with a maximum filling factor for an improved signal-to-noise ratio 

of the PSD spectra of the test surface. The mathematical term for such a sequence is “maximum-

length pseudo-random sequence” (MLPRS). Note that a MLPRS used for chopping is not 

entirely random, but repeats itself after N  elements.  

The analytical method we used to generate a MLPRS (modulo-two) of odd length 12 −= nN , 

where n  is an integer, is described in Ref. 15. In this article, all base ten values for the recursion 

coefficients (RC) which can be used for the generation of MLPRS are presented and the use of a 

particular RC to generate a pseudo-random sequence is explained.  
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A sequence { }ia  of N  elements ( 1,,1,0 −= Ni Λ ) to be qualified as a MLPRS must obey two 

conditions for its correlation function. First, the autocorrelation of the sequence must sum to 

12 −n
. That means that the sequence correlation function, which is determined as  
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According to Eq. (3) 10 =∆  at 0=j  and 0=∆ j  at 0≠j . 
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3. Properties of BPRG prototype 

Based on the procedure described in Ref. 15, we generate a BPR sequence of 4095=N  

elements obtained (see Ref. 15, Table III) with sequence generator 12=n  and the recursion 

coefficient 83=M (base 10 value). Figure 1 graphically reproduces the first 100 elements of the 

BPR sequence. 

A grating according to the generated BPR sequence was fabricated using a conventional 

lithographical process. The grating was etched into a silicon (110) wafer using the anisotropic 

etching in a KOH solution. The fundamental feature width of the grating is 2.5 µm. The etch 

depth was measured with a calibrated atomic force microscope to be approximately 700 nm. 

However, the effective depth of the grating as it is seen by the MicromapTM-570 interferometric 

microscope is only 174 nm. The discrepancy is due to the expected uncertainty of π2  of the 

phase-retrieval algorithm of the instrument. The uncertainty leads to the effective depth of the 

grating being smaller by the wavelength of the light that is λ ≈ 520 nm. Nevertheless, this 

circumstance does not compromise the possibility to calibrate the instrument with a standard 

with depth larger than λ , if the π2  phase shift due to the retrieval is applied to the entire 

measured surface. Moreover, with such a grating, one can test the capability of the instrument to 

reliably measure surface structures with concavities deeper than the wavelength of light. 

Measurements made near the left (low index number) edge of the grating with the MicromapTM-

570 interferometric microscope using the 50× objective are shown in Fig. 2, along with the 

corresponding points of the ideal BPR grating pattern scaled to the 2.5 µm grid pitch. The field 

of view on the surface at this magnification for the profile measurement is about 125 µm, which 

corresponds to 50 feature elements on the grating. The starting points for the two measured 
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profiles are shifted by about 70 µm, which corresponds to 28 grating elements. The measured 

profiles are inverted to match the polarity of the BPR sequence. One can see that the etching 

process leaves some residual roughness at the bottom of a groove (at the top of the plotted 

features in Fig. 2), since it is not yet optimized to produce the desired height and minimum 

residual roughness. However, since the deviations from the ideal profile are significantly smaller 

than the grating groove height, there should not be a noticeable perturbation of the resulting PSD 

spectrum of the grating. Moreover, a reasonable assumption about the random character of the 

perturbations suggests a white-noise-like spectrum of the perturbation that is the desired property 

of the BPRG test surface. 

Figure 3 compares the 1D PSD spectrum of a unit-height 4095-element theoretical BPR pattern 

with an element grid spacing of 1 µm computed over the entire 4095 point set (dashed straight 

line) with the PSD computed from subsets of the full 4095 element array. The noisy spectrum 

resulting when only the first 480 points are used in the calculation is shown as the red curve.  

The speckle noise is significantly reduced by averaging the spectrum of nine 480-point subsets of 

the main pattern, each shifted successively by 400 pixels. This latter curve corresponds more 

closely to the general observed case when the grating is viewed by a real microscope system. For 

the simulation, we use the same discrete PSD algorithm as the one described in Refs. 2-4. The 

spectrum of the ideal BPRG function is indeed a white-noise-like straight line with no 

fluctuations and with amplitude of 0.5. The amplitude corresponds to an expectation value based 

on the duty cycle of approximately 0.5 of the maximum-length pseudo-random sequence used in 

the construction.  

For real experimental arrangements, when an instrument with finite detector pixel size is used, 

one can not expect the spacing of the grating projected onto the detector to line up exactly with 
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the boundaries of each detector pixel. We simulated such a situation corresponding to a 

measurement with the MicromapTM-570 microscope with a 2.5× objective. The total number of 

detector pixels is 480 and the size of each pixel projected onto the grating is 3.92 µm. In this 

case, the grating pattern is undersampled and the pixel width encompasses more than one grating 

element. The simulation was aligned to have the first grating element at the left edge of the 

profile. The result of the simulation is shown in Fig. 4 together with the BPRG profile measured 

with the instrument over the same profile length. The corresponding PSD spectra are shown in 

Fig. 5. 

4. MTF correction with BPRG 

The high frequency roll-off of the measured spectrum (Fig. 5b and Fig. 6a) is the result of two 

primary MTF effects: the lens aperture and the pixel array size. The transfer function for a 

diffraction-limited objective with incoherent illumination is given by21,22 

 [ ]Ω+Ω−Ω−= ArcCosfMTFO
21

2
)(

π
, (4) 

where Ω= λ f 2NA, λ  is the measuring wavelength (0.52 µm), 22
yx fff += , and NA  is the 

numerical aperture (0.075 for a 2.5× objective). After correction for the lens MTF, the high 

frequency tail of the spectrum is raised (Fig. 6b) but it is still exhibits significant roll off. The 

instrumental MTF associated with sampling with finite pixels (see, e.g., Ref. 21) is given by 2  

 MTFP ( fx, f y ) =
Sinπ Dx fx

π Dx fx
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where xf  and yf  are the components of the spatial frequency, and xD  and yD  are the effective 

pixel sizes projected on to the surface plane. The result of applying this correction with an 

optimal effective pixel size of 5.1 µm to the lens-corrected PSD is shown in Fig. 6c. In this case, 

the corrected PSD flattens out to a noisy horizontal line, becoming a white-noise-like spectrum, 

indicating that the applied MTF corrections are sufficient to account for the observed high-

frequency roll-off.  

Therefore, using the BPRG we are able to experimentally find the instrumental MTF and correct 

the measured PSD spectra for the MTF. The success of the correction is ensured by the 

deterministic character of the pseudo-random sequence used to fabricate the BPRG test surface 

and, therefore, the possibility to precisely simulate the PSD spectrum inherent for a certain part 

of the grating.  

5. Discussion 

The choice of a binary pseudo-random sequence for the test grating has two major advantages 

compared with random 1D surfaces built based on sequences obtained with a random number 

generators or white noise sources, e.g., with a grinding process.23 Both advantages relate to the 

requirement of ease of specification and reproducibility of the test surface when used as a 

certified standard. First, a binary height distribution with two normalized heights, ‘1’ and ‘0’, 

can be easily specified for a number of production processes, e.g., lithography. The absolute 

value of the height would be determined based on requirements for a particular application, such 

as the range of measurable heights of the instruments. Possible perturbations of the shape of the 

rectangular grooves of a BPR grating would just lead to a slight change of overall amplitude of 

the flat PSD spectrum without any noticeable perturbation of its spatial frequency dependence 
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(flat) for frequencies lower than the frequency corresponding to the characteristic size of a unit 

groove. Second, a pseudo-random sequence has spectral characteristics that are mathematically 

rigorous, reproducible and amenable to simulation, allowing one to deterministically construct a 

maximum-length random sequence with an ideal (‘one-bit’ wide) autocorrelation function 

optimal for a particular instrument.  

As mentioned above, a distinguishing property of the BPR grating is that its PSD spectrum is a 

result of the distribution of the grooves, rather than the groove shape. This determines a low 

sensitivity of the BPRG PSD spectrum to the shape perturbation of a groove, which would be 

seen only at frequencies significantly higher than the Nyquist frequency of the instrument. In any 

case, if the perturbation is random, it does not change the inherent random (white-noise-like) 

character of the BPRG PSD spectrum. Moreover, the overall magnitude of the BPRG PSD 

spectrum is determined by the depth of the grooves. Therefore, for a reasonably designed BPRG 

standard, the contribution of the roughness of the grating surface can be easily made to be 

insignificant. 

The deterministic character of the BPR grating allows precise simulation of the theoretical 

(ideal) PSD spectrum of the standard and comparison of it with an experimentally measured 

spectrum. But for some applications, the theoretical spectrum can be approximated with an ideal 

(without variation) white-noise-like spectrum. In this case, the amplitude of fluctuations of the 

measured PSD spectrum can be significantly decreased by averaging the PSD spectra measured 

at random shifts of the BPR grating with respect to the field of view of the instrument (compare 

with Fig. 3). A further reduction in the variance can be obtained if one applies an averaging 

procedure used in Refs. 3 and 4. In this case the measured height profiles are divided into a 

number of shorter length profiles and the PSD spectra of each subset are averaged. 
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 Even though in this work we only discuss in detail the design and properties of a 1D BPR 

grating, the suggested approach can be easily extended to the two-dimensional (2D) case, if a test 

surface with a binary pseudo-random 2D pattern24,25 were designed. Such a test surface would 

have the same advantages (a mathematically deterministic character and ease of specification and 

reproduction), in comparison to a 2D gray random target constructed with a generator of random 

numbers.26 An additional advantage of the 2D pseudo-random PSD standard would be the 

possibility for a direct 2D calibration of the instrumental MTF. We would also like to point out 

that the suggested calibration method using a BPR grating and/or the extended method based on 

a 2D pseudo-random test surface meets the two main requirements for use as a certified standard: 

ease of specification and reproducibility of the test surface.  A patent application covering the 

described technology has been filed. 
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Figure captions: 

 

Figure 1: First 100 elements of the BPR sequence (see text for details). 

 

Figure 2: Measured profiles made near the left edge of a prototype BPR grating with a 

MicromapTM-570 interferometric microscope with a 50× objective. Also shown are the 

corresponding points in the computed BPR function. The measured profiles are inverted to match 

the polarity of the computed function. 

 

Figure 3: 1D PSD spectrum of the ideal unit-height BPR grating function with 4095 total number 

of pixels placed on a 1µm pitch grid: black (dashed) straight line includes all 4095 points in the 

calculation; red (solid) irregular line is from a subset of the first 480 points; black (solid) line is 

average of nine 480-point spectra, each shifted by 400 pixels. 
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Figure 4: Profile of the first 200 µm of the 5095 element BPR grating with 2.5 µm pitch: ideal 

computed function re-sampled to the 3.92 µm grid (red solid curve), and profile measured with 

the MicromapTM-570 microscope with 2.5× objective, (blue dashed curve). 

 

Figure 5: 1D PSD spectrum of the 4095 element, 2.5-µm pitch, BPR grating: a)  (red, upper)  for 

the model simulation re-sampled onto a 3.92 µm grid,  and b) (blue, lower) for the profile 

measured with the MicromapTM-570 microscope with 2.5× objective. The simulation and 

measurement fields of view correspond to the 480 pixel row length in the Micromap. Vertical 

offset of the lower spectrum is made for clarity. 

 

Figure 6: 1D PSD spectrum of the prototype BPRG with 4095 total number of elements with 

2.5-µm pitch measured with the MicromapTM-570 microscope with 2.5× objective: a) (lower, 

red) average uncorrected raw PSD curve; b) (middle, blue) corrected to account for MTF due to 

the objective lens aperture, and c) additionally corrected for the MTF of the finite pixel width. 
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