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Chapter 1

Introduction

1.1 Motivation

In this work we demonstrate how a self-consistent treatment of the physics of

the early universe (from temperature T ∼ 10 MeV down to T ∼ 0.1 eV) enables cosmic

microwave background (CMB) observations, in concert with light-element abundances,

to be used as new probes of beyond-standard-model (BSM) physics in the neutrino

sector. In a sense, these probes are tantamount to probes of the CνB (relic Cosmic

Neutrino Background). Recent observations [4, 5, 6, 7] of the CMB and observationally-

inferred primordial abundances of deuterium and helium [8, 9, 1, 3] formed in big bang

nucleosynthesis (BBN) already place tight constraints on both the cosmological standard

model (CSM) and BSM physics. However, future observations will usher in a higher

level of precision with even better prospects for BSM probes, see for example Ref. [10].

We anticipate that observations will bring about an overdetermined situation

where BSM physics may manifest itself if it is present. The existing or anticipated

observations and measurements of greatest utility for the present purposes are: (1) high-

precision measurements of the baryon-to-photon ratio, or the equivalent baryon density

1
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(ωb ≡Ωbh2); (2) high-precision measurements of the “effective number of relativistic

degrees of freedom” (Neff); (3) high-precision measurements of the primordial deuterium

abundance (D/H) from quasar absorption lines; (4) measurements of the primordial

helium abundance (YP) directly from CMB polarization data; and (5) measurements of

the sum of the light neutrino masses (∑mν), i.e. the collisionless damping scale associated

with neutrinos.

The physics that determines the relic neutrino energy spectra in weak decoupling

and that of primordial nucleosynthesis affects observables of the CMB. These distinct,

disparate epochs, however, depend not only on the values of parameters describing the

cosmology (such as ωb, Neff, relevant cosmic constituents, etc.) but also on the parameters

derived from these base, input parameters (such as primordial abundances, recombination

history, etc.). This is the basis for what we will term “self-consistency.” The requirement

for self-consistency between the BBN and CMB epochs, for example, in current data

analyses depends on the parametrization of the energy density in terms of Neff and upon

the baryon-to-photon ratio. These two parameters, as measured at photon decoupling, are

the sole determinants of the primordial helium abundance at the epoch of alpha particle

formation (T ∼ 0.1 MeV) in “standard” (i.e. zero lepton numbers, no BSM physics)

BBN calculations. Though this procedure is adequate for the CSM and standard model

physics, here we argue that it can be insufficient to probe varieties of BSM physics when

confronting model cosmologies with next-generation, high-precision CMB and light

element abundance data. In the case of the helium and Neff self-consistency mentioned

above, the relationship between the helium yield in BBN and Neff is a non-trivial function

of the interplay of expansion rate and neutron-to-proton ratio, as is well known [11]. The

latter ratio is, in turn, a sensitive function of the νe and ν̄e energy distribution functions,

and these can be affected by BSM issues like lepton numbers, flavor mixing, sterile

neutrino states, heavy particle decay, etc.
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Handling and analyzing the observed data while imposing self-consistency over

multiple epochs in the early universe can require new procedures. The approach devel-

oped in Ref. [11] and employed in Planck XVI [2] has been highly successful. There,

self-consistency is imposed approximately by the addition of a term in the log-likelihood

function. A very small theoretical uncertainty ensures the posterior distributions are

close to the corresponding theoretical values. However, when we impose self-consistency

among the different epochs the need may arise to solve for the various derived parameters

iteratively. Returning to the helium/Neff example discussed above, YP and the recom-

bination history of the universe both depend on the radiation energy density, usually

parametrized by Neff. Subsequently, the recombination history is affected by the the

primordial abundance of helium. The values of these two derived parameters, in turn,

affect CMB observables, which recommends an iterative and therefore self-consistent

approach.

Ideally, we would want a procedure to self-consistently treat neutrino and BSM

physics from the post-QCD epoch to the onset of non-linearities in large scale struc-

ture (LSS). Recently, the quantum-kinetic equations (QKEs) governing neutrino flavor

evolution in dense environments have been derived from first principles [12, 13, 14].

Such a program to treat neutrino physics in the early universe would incorporate a QKE

treatment through weak decoupling at the very least. Weak freeze-out and BBN ne-

cessitate a neutrino-energy Boltzmann-equation or QKE treatment fully coupled to a

nuclear reaction network. The recombination, photon decoupling, and advent of LSS

epochs require a Boltzmann-equation treatment of neutrino clustering. Verification of

any models related to neutrinos and BSM physics would then rely on agreement with

direct cosmological observables, including but not limited to: primordial abundances;

CMB power spectra; and the total matter power spectrum.

As outlined, this is a challenging undertaking. We therefore employ a limited
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approach to show why self-consistency is required and how such a treatment can be

efficacious in probing some issues in neutrino sector physics. To that end, we calculate

the ratio of sound horizon to photon diffusion length, rs/rd , as a simple parametrization of

the CMB, as described in detail in Sec. 4.5. It would, of course, be preferable to compute

the full CMB power spectra in the self-consistent manner described above. There are

two limiting factors that temper this ambitious proposal, however. The first is that the

observable rs/rd is largely insensitive to the poorly constrained equation of state of the

dark, vacuum energy component while the CMB power spectra are not. Additionally,

current computations of the CMB power spectra [15] would need to be generalized to the

BSM scenarios we contemplate here.

Our procedure for calculating derived cosmological quantities utilizes the neutrino

occupation probabilities. Since we are developing the capacity to compute the effects

of BSM physics that couples to the active neutrino sector, we do not restrict the form

of the neutrino distribution functions to that of equilibrium Fermi-Dirac distributions.

General forms are permitted and may be handled analytically or numerically. Neutrino

occupation probabilities are taken in the present work in the flavor eigenbasis during

weak decoupling, weak freeze-out and BBN.1 During recombination and last scattering,

we transform the occupation probabilities to the mass eigenbasis. When we consider the

case of massive neutrinos, the statistic for the sum of the light neutrino masses, ∑mν, is

simply the sum of the three lightest mass eigenstates.

We might further clarify the fact that this limited approach does not rely on the

assumption that the radiation energy density can be described in terms of the single

parameter Neff. Indeed, an original motivation for using rs/rd as a proxy for Neff (see Sec.

4.5) is the fact that the usual definition for Neff does not apply to non-equilibrium neutrino

distributions. A corollary of this observation is the possibility that Neff may depend on the

1This is a matter that is properly resolved by utilizing a QKE approach [12], the subject of a future
study.
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scale factor a(t); that is, we do not assume that Neff is independent of scale factor. When

extended, our approach is able to handle BSM scenarios such as the decay of massive

sterile neutrinos and other weakly interacting massive particles, which result in neutrino

distributions that may differ substantially from a Fermi-Dirac distribution [16].

Our approach aims to be general; it does not rely on particular cosmological

models but is appropriate to the class of Λ cold-dark matter (ΛCDM) models. It extends

and explicates recent work [11, 10, 17, 18] on the consistent incorporation of precision

observations of the CMB [2] and observations of the light element abundances of helium

and deuterium (mass fraction YP and relative abundance D/H). The deuterium abundance

[9, 3] is now more precisely measured by a significant factor (4 or 5) in relative preci-

sion than YP. Our results indicate that deuterium is sufficiently well determined to be

incorporated into CSM analyses as a fixed prior.

The present work is the first result in an ongoing campaign to incorporate neutrino

energy transport into a self-consistent treatment of BBN and recombination. Our approach

is being implemented in FORTRAN90/95 as a suite of codes under the working title of

“BBN Unitary Recombination Self-consistent Transport” (BURST), which will be made

publicly available for use on parallel computing platforms using OPENMPI. The current

work is a prerequisite in an ongoing collaboration to develop codes that consistently

handle BBN and neutrino energy transport from weak decoupling to the advent of LSS.

The chapter is outlined as follows. We briefly review the pertinent equations from

general relativity needed to describe the physics of the comoving frame in Sec.1.2. For all

of the physics in this work, entropy plays a dominant role, as detailed in Sec.1.3. We will

use entropy and energy conservation to investigate how the plasma temperature changes

in Sec.1.4. Our differential equations are derived in conditions close to equilibrium, and

so we give a derivation of the covariant form of the Boltzmann equation in Sec.1.5. We

end this chapter in Sec.1.6 by transitioning to topics we can study with the techniques
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developed in this chapter.

1.2 General Relativity Summary

1.2.1 FLRW

We need general relativity to properly describe the kinematics of the universe. To

begin, we make the assumption that the universe is homogeneous and isotropic. This is

strictly not true, but the CMBR provides ample evidence that the universe is close (smaller

than one part in 104) to this geometry[19]. The metric for homogeneous and isotropic

conditions, which we write in spherical coordinates for the square of the differential line

element ds, is the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric:

ds2 = dt2−a(t)2
(

dr2

1− kr2 + r2dθ
2 + r2 sin2

θdφ
2
)
, (1.1)

where t,r,θ,φ are spacetime coordinates, k is the curvature parameter, and a(t) is the

scale factor. Homogeneity and isotropy imply that a is only a function of time t. We will

only consider “flat” cosmologies in this work, i.e. when k = 0:

ds2 = dt2−a(t)2 (dr2 + r2dθ
2 + r2 sin2

θdφ
2) . (1.2)

It will prove useful at this point to switch to rectangular coordinates:

ds2 = dt2−a(t)2 (dx2 +dy2 +dz2) , (1.3)
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and write the metric in matrix-form as:

gµν =




1 0 0 0

0 −a2 0 0

0 0 −a2 0

0 0 0 −a2



. (1.4)

We would like to determine the evolution of the scale factor. We need the Einstein

field equations to accomplish this task[19]:

Gµν =
8π

m2
pl

Tµν +Λgµν, (1.5)

where Gµν is the Einstein tensor, Tµν is the stress–energy tensor, and Λ is the cosmological

constant. The Planck mass, mpl, is related to Newton’s gravitational constant by G =

1/m2
pl. The stress–energy tensor is diagonal in homogeneous and isotropic conditions.

Therefore, we can write the stress-energy tensor in matrix form as[19]:

T µ
ν =




ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p



, (1.6)

where ρ is the total energy density and p is the total pressure. Both the energy density

and pressure are functions of time. The Einstein tensor is defined by[20]

Gµν = Rµν−
1
2

Rgµν, (1.7)
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where Rµν and R are the Ricci tensor and Ricci scalar, respectively:

Rµν = Rλ
µλν, (1.8)

R = gµνRµν. (1.9)

The Ricci tensor uses the Riemann curvature tensor, which in turn we write using the

Christoffel symbols:

Γ
λ
µν =

1
2

gλρ
(
gρµ,ν +gρν,µ−gµν,ρ

)
(1.10)

Rρ
µσν = Γ

ρ

µν,σ−Γ
ρ

µσ,ν +Γ
ρ

σλ
Γ

λ
µν−Γ

ρ

νλ
Γ

λ
µσ, (1.11)

where we have used the notation of the ordinary partial derivative:

Q,µ ≡
∂Q
∂xµ , (1.12)

for quantity Q as a function of coordinate xµ. The Christoffel symbols are symmetric in

the two lower indicies. In addition, the metric is diagonal and each spatial component

of the metric is identical (in cartesian coordinates). Therefore, there are only six unique

Christoffel symbols. Of those six, four of the symbols vanish:

Γ
0
00 =

1
2

g0ρ
(
gρ0,0 +gρ0,0−g00,ρ

)
= 0, (1.13)

Γ
i
00 =

1
2

giρ (gρ0,0 +gρ0,0−g00,ρ
)
= 0, (1.14)

Γ
0
0i =

1
2

g0ρ
(
gρ0,i +gρi,0−gi0,ρ

)
= 0, (1.15)

Γ
k
i j =

1
2

gkρ
(
gρi, j +gρ j,i−gi j,ρ

)
= 0. (1.16)

The only non–zero symbols are the one with one time component, and two spatial
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components:

Γ
0
i j =

1
2

g0ρ
(
gρi, j +gρ j,i−gi j,ρ

)
=

1
2

g00(−gi j,0) =−
1
2

2ȧ
a

gi j =−
ȧ
a

gi j = aȧδi j,

(1.17)

Γ
i
0 j =

1
2

giρ (gρ0, j +gρ j,0−gi j,ρ
)
=

1
2

giigi j,0 =
1
2

gii
δ

j
i
2ȧ
a

g j j =
ȧ
a

δ
i
j. (1.18)

The notation Q̇ indicates differentiation with respect to time.

Tµν is diagonal, so we only need to compute the diagonal components of Gµν.

First, the time–time component:

R00 = Rρ
0ρ0 = Γ

ρ

00,ρ−Γ
ρ

0ρ,0 +Γ
ρ

ρλ
Γ

λ
00−Γ

ρ

0λ
Γ

λ
0ρ (1.19)

= 0−3∂t

(
ȧ
a

)
+3

ȧ
a

0−3
(

ȧ
a

)2

(1.20)

=−3
ä
a
. (1.21)

Next, the spatial components:

Rii = Rρ
iρi = Γ

ρ

ii,ρ−Γ
ρ

iρ,i +Γ
ρ

ρλ
Γ

λ
ii−Γ

ρ

iλΓ
λ
iρ (1.22)

= ∂t(aȧ)−0+3
(

ȧ
a

)
(aȧ)−2

(
ȧ
a

)
(aȧ) (1.23)

= ȧ2 +aä+ ȧ2 (1.24)

= 2ȧ2 +aä. (1.25)
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The Ricci Scalar is:

R = gµνRµν (1.26)

=−3
ä
a
− 3

a2 (2ȧ2 +aä) (1.27)

=−6

[
ä
a
+

(
ȧ
a

)2
]
, (1.28)

and the Einstein tensor components are:

G00 = R00−
1
2

g00R (1.29)

=−3
ä
a
+3

[
ä
a
+

(
ȧ
a

)2
]

(1.30)

= 3
(

ȧ
a

)2

, (1.31)

Gii = Rii−
1
2

giiR (1.32)

= 2ȧ2 +aä−3a2

[
ä
a
+

(
ȧ
a

)2
]

(1.33)

=−ȧ2−2aä. (1.34)

We will take the cosmological constant to be zero. For cosmologies with a non-zero

constant, we will simply add an energy density term to model the presence of dark energy
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(see Sec.1.4.4). For the time–time component, Eq.(1.5) yields:

G00 =
8π

m2
pl

T00 (1.35)

=⇒ 3
(

ȧ
a

)2

=
8π

m2
pl

g0µT µ
0 (1.36)

=⇒
(

ȧ
a

)2

=
8π

3m2
pl

ρ (1.37)

=⇒ H ≡ ȧ
a
=

√
8π

3m2
pl

ρ. (1.38)

Eq.(1.38) is the Friedmann equation and serves to define the Hubble expansion rate H.

To simplify, Eq.(1.38) states that the expansion of the universe is proportional to the

contents of the universe.

The spatial components of the Einstein field equations give:

Gii =
8π

m2
pl

Tii, (1.39)

=⇒ −ȧ2−2aä =
8π

m2
pl

giµT µ
i (1.40)

=
8π

m2
pl

(−a2)(−p), (1.41)

=⇒ ä
a
=−1

2

[(
ȧ
a

)2

+
8π

m2
pl

p

]
(1.42)

=−1
2

[
8π

3m2
pl

ρ+
8π

m2
pl

p

]
(1.43)

=− 4π

3m2
pl

(ρ+3p). (1.44)

1.2.2 Redshift

We consider a reference frame with an observer at rest at the origin (r = θ= φ= 0,

or equivalently x = y = z = 0) at some early time in an FLRW geometry. At a later time,
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after the medium has expanded (or contracted), the observer remains at rest (i.e. no change

in spatial coordinates)[19]. Now consider another observer which has a four–velocity, uµ,

with non–zero spatial components:

uµ ≡ dxµ

ds
, (1.45)

where ds is the differential line element used in Eq.(1.3). To describe uµ, we use the

geodesic equation for a freely–streaming observer[19]:

duµ

dλ
+Γ

µ
αβ

uα dxβ

dλ
= 0, (1.46)

where λ is an affine parameter characterizing the evolution of uµ on the world line of the

second observer. The equivalence principle[20] guarantees there exists a local inertial

reference frame where the four–velocity of the second observer satisfies:

gµνuµuν = 1. (1.47)

In the reference frame of the first observer:

gµνuµuν = (u0)2−a2|~u|2 = 1 (1.48)

=⇒ du0 = a2 |~u|
u0 d|~u|, (1.49)
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where u0 is the time component of the four–velocity, and~u is the magnitude of the spatial

components. If we set dλ = ds, then the time component of Eq.1.46 becomes:

0 =
du0

ds
+Γ

0
αβ

uα dxβ

ds
(1.50)

=
du0

ds
+aȧδi jui dx j

ds
(1.51)

=
du0

ds
+aȧδi juiu j (1.52)

=
du0

ds
+aȧ|~u|2. (1.53)

If we substitute Eq.(1.49) into Eq.(1.53), we have:

0 =
du0

ds
+aȧ|~u|2 (1.54)

= a2 |~u|
u0

d|~u|
ds

+aȧ|~u|2 (1.55)

=⇒ 0 =
1
u0

d|~u|
ds

+
ȧ
a
|~u|. (1.56)

Recall that u0 ≡ dt/ds, implying:

0 =
d|~u|
dt

+
ȧ
a
|~u|, (1.57)

=⇒ d|~u|=−|~u|
a

da, (1.58)

=⇒ |~u| ∝ 1
a
. (1.59)

Eq.(1.59) is the redshift (or alternatively the blueshift) in an expanding (contracting)

universe. The four–momentum is proportional to the four–velocity: pµ ∼ uµ, implying

the three-momentum redshifts with increasing a, regardless of whether the particle is

massive or not. If the second observer is a particle on a timelike trajectory (e.g. a massive

particle), then the particle will asymptotically come to rest in the reference frame of the
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first observer in a continuously expanding universe[19]. We call the reference frame of

the first observer the comoving frame. This choice of reference frame allows us to define

thermodynamic quantities like temperature, pressure, chemical potential, and energy

distributions, which we already implicitly assumed when writing Eq.(1.6).

In that vein, we take the covariant derivative (notated as Qν
;µ = Qν

,µ +Γν
µσQσ) of

the zero-component of the stress-energy tensor to find[19]:

T 0µ
;µ ≡ T 0µ

,µ +Γ
0
µνT µν +Γ

µ
µνT 0ν = 0 (1.60)

= ∂tρ+Γ
0
µνgλνT µ

λ
+Γ

µ
µνgλνT 0

λ
(1.61)

= ∂tρ+3aȧ
(
− 1

a2

)
(−p)+3

ȧ
a

ρ (1.62)

=
1
a3

(
a3

∂tρ+3a2ȧρ+3pa2ȧ
)
, (1.63)

where ∂µQ = ∂Q/∂xµ. A comoving volume V element scales as ∼ a3, implying:

a3
∂tρ+3a2ȧρ =−3pa2ȧ (1.64)

=⇒ V ∂tρ+ρ∂tV =−p∂tV (1.65)

=⇒ d(ρV ) =−pdV, (1.66)

recovering the first law of thermodynamics at constant entropy. For a simple equation of

state, p = wρ, for constant w [19]:

d(ρV ) =−pdV (1.67)

=⇒ V dρ+ρdV =−wρdV (1.68)

=⇒ V dρ =−(1+w)ρdV (1.69)

=⇒ ρ ∝ V−(1+w)
∝ a−3(1+w) (1.70)
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In radiation-dominated conditions, w = 1/3 =⇒ ρ ∝ a−4. In equilibrium, the energy

density of an ultra-relativistic boson species is:

ρ = g
π2

30
T 4

∝ a−4 =⇒ T ∝
1
a
, (1.71)

where g is the single–particle internal degrees of freedom. Eqs.(1.59) and (1.71) show the

three-momentum and the temperature redshift with increasing scale factor, in equilibrium.

Therefore, the quantity:

ε≡ p
T
∼ const. (1.72)

is a comoving invariant, where we have called the magnitude of the three–momentum

p. We will use ε when we discretize energy spectra. For example, in homogeneous

and isotropic conditions, the phase-space occupation probability for an ultra–relativistic

(E = p) fermion in equilibrium is:

f (~x,~p) = f (p) =
1

ep/T +1
(1.73)

=⇒ f (ε) =
1

eε +1
. (1.74)

We have placed many conditions on f (ε) when writing Eq.(1.74), chief among them

being the condition of thermal equilibrium. We will discuss the choice of T in Sec.1.5.

1.3 Entropy considerations

The entropy will play an important role in the description of the early universe.

We can describe the entropy, S, of an ideal gas using its extensive property[21]:

S =
E + pV −∑µiNi

T
. (1.75)



16

For the purposes of this work, we will assume the chemical potentials, µi, are small

for the plasma constituents which carry the bulk of the entropy. If we write the total

internal energy in terms of the energy density, E = ρV , we can rearrange terms to find

the entropic density:

sV ≡
S
V

=
ρ+ p

T
, (1.76)

in terms of the energy density, pressure, and temperature.

We are interested in epochs of the early universe where the energy density (and by

extension entropic density) is dominated by radiation. The equation of state for radiation

is p = ρ/3, and the energy density is:

ρ =





g
π2

30
T 4 BE

g
7
8

π2

30
T 4 FD

, (1.77)

for Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. The quantity g is the spin degrees

of freedom, and we have assumed zero chemical potentials in both cases for the energy

density. Our expression for the entropic density is:

sV =
ρ+ p

T
(1.78)

=
4

3T

[
∑

i
g(b)i

π2

30
T 4

i +∑
j

g( f )
j

7
8

π2

30
T 4

j

]
(1.79)

=
4

3T
π2

30
T 4

[
∑

i
g(b)i

(
Ti

T

)4

+
7
8 ∑

j
g( f )

j

(
Tj

T

)4
]

(1.80)

≡ 2π2

45
g?ST 3, (1.81)

where g?S is an effective–entropic–spin statistic[19]. In the definition of g?S, we allow

for the plasma constituents to have different temperatures, although in practice this is

unnecessary.
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Assuming no heat flow into or out of the plasma, the total entropy remains

constant. This fact allows us to determine how the temperature changes between an

initial epoch (i) and a final epoch ( f ):

Si = S f =⇒ 2π2

45
g?S,iT 3

i Vi =
2π2

45
g?S, f T 3

f Vf (1.82)

=⇒ Ti

Tf
=

(
g?S, fVf

g?S,iVi

)1/3

=
a f

ai

(
g?S, f

g?S,i

)1/3

. (1.83)

We define the comoving temperature Tcm as:

Tcm, f ≡ Tcm,i
ai

a f
= T

ai

a f
, (1.84)

where we have taken the initial comoving temperature equal to the plasma temperature.

Therefore:
Ti

Tf

ai

a f
=

Tcm, f

Tf
=

(
g?S, f

g?S,i

)1/3

. (1.85)

An important example is the epoch of electron–positron annihilation. At a temperature

of ∼ 1 MeV, the plasma contains photons, electrons, and positrons all in thermal and

chemical equilibrium with one another. If we make the following assumptions:

1. the neutrinos are completely decoupled at this temperature,

2. the positrons and electrons have a negligible chemical potential,

3. the mass of the electron me is also negligible;

then we find the entropic degrees of freedom to be:

g?S,i = 2+
7
8
(2+2) =

11
2
. (1.86)

The positrons and electrons annihilate with one another at a temperature of T ∼ 100 keV,
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and the positrons are effectively gone at T ∼ 10 keV, implying g?S, f = 2. Therefore:

Tcm

T
=

(
2

11/2

)1/3

=

(
4

11

)1/3

, (1.87)

where we have dropped the f subscripts for convenience.

At this point, we diverge and discuss particles which have relativistic dispersion

relations but non-negligible mass terms. In the case of a non-degenerate (µ = 0) fermionic

species, the energy density is:

ρ =
g

(2π)3

∫
d3 p

E
eE/T +1

(1.88)

=
g

2π2

∞∫
0

d p p2Ee−E/T 1
1+ e−E/T

(1.89)

=
g

2π2

∞∫
0

d p p2Ee−E/T
∞

∑
n=0

(−1)ne−nE/T (1.90)

=
g

2π2

∞

∑
n=0

(−1)n
∞∫

0

d p p2Ee−(n+1)E/T (1.91)

=
g

2π2

∞

∑
n=1

(−1)n+1
∞∫

0

d p p2Ee−nE/T . (1.92)

The dispersion relation for relativistic particles with small masses is:

E =
√

p2 +m2 (1.93)

' p+
m2

2p
, (1.94)
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to second order in m. Substituting Eq.(1.94) into Eq.(1.92), we find:

ρ =
g

2π2

∞

∑
n=1

(−1)n+1
∞∫

0

d p p2Ee−nE/T (1.95)

' g
2π2

∞

∑
n=1

(−1)n+1
∞∫

0

d p p2
(

p+
m2

2p

)
exp
[
− n

T

(
p+

m2

2p

)]
(1.96)

=
g

2π2

∞

∑
n=1

(−1)n+1
∞∫

0

d p p3
(

1+
m2

2p2

)
exp
(
−np

T

)
exp
(
− nm2

2pT

)
(1.97)

' g
2π2

∞

∑
n=1

(−1)n+1
∞∫

0

d p p3e−np/T
(

1+
m2

2p2

)(
1− nm2

2pT

)
(1.98)

≡ gT 4

2π2

∞

∑
n=1

(−1)n+1
∞∫

0

dεε
3e−nε

(
1+

z2

2ε2

)(
1− nz2

2ε

)
. (1.99)

Eq.(1.99) serves to define the dimensionless mass z≡ m/T . We are only keeping terms

to order z2. Therefore, Eq.(1.99) reduces to:

ρ =
gT 4

2π2

∞

∑
n=1

(−1)n+1
∞∫

0

dεε
3e−nε

(
1+

z2

2ε2 −
nz2

2ε

)
(1.100)

=
gT 4

2π2

∞

∑
n=1

(−1)n+1




∞∫
0

dεε
3e−nε +

z2

2

∞∫
0

dεεe−nε− nz2

2

∞∫
0

dεε
2e−nε


 (1.101)

=
gT 4

2π2

∞

∑
n=1

(−1)n+1
(

3!
n3 +

z2

2
1!
n2 −

nz2

2
2!
n3

)
(1.102)

=
gT 4

2π2

(
6

7
8

π4

90
− z2

2
1
2

π2

6

)
(1.103)

=
7
8

gπ2T 4

30

(
1− 5

7π2 z2
)

(1.104)

= ρ
(m=0)

(
1− 5

7π2 z2
)

(1.105)
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Similarily, for the pressure:

p = g
∫ d3 p

(2π)3
p2

3E
1

eE/T +1
(1.106)

= p(m=0)
(

1− 15
7π2 z2

)
, (1.107)

and the entropy:

sV =
7
8

gπ2T 3

30

[
1− 5

7π2 z2 +
1
3

(
1− 15

7π2 z2
)]

(1.108)

=
7
8

gπ2T 3

30
4
3

(
1− 15

14π2 z2
)

(1.109)

= s(m=0)
V

(
1− 15

14π2 z2
)

(1.110)

If we re-examine the example of electron–positron annihilation, but drop the assumption

that me = 0:

Si = S f =⇒ 2π2

45
T 3

i a3
i

[
2+

7
8
(2+2)

(
1− 15

14π2 z2
)]

=
2π2

45
T 3

f a3
f [2], (1.111)

where z = me/Ti. Solving for the ratio of temperatures:

(
Tcm

T

)3

=
2

11
2
− 15

4π2 z2
(1.112)

=⇒ Tcm

T
=

(
4

11

)1/3(
1− 15

22π2 z2
)−1/3

(1.113)

=

(
4

11

)1/3(
1+

5
22π2 z2

)
(1.114)

≡
(

4
11

)1/3

(1+δest.), (1.115)

yields the second–order correction to the factor (4/11)1/3, where we have defined the
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Table 1.1: Table of Ti, δest., and δcalc.. The differences between δest. and δcalc. are due to
the inclusion of nucleosynthesis terms in the actual calculations.

Ti (MeV) δest δcalc

1.0 6.013×10−3 5.911×10−3

2.0 1.503×10−3 1.404×10−3

3.0 6.681×10−4 5.593×10−4

5.0 2.405×10−4 1.250×10−4

6.0 1.670×10−4 5.013×10−5

7.0 1.227×10−4 5.012×10−6

8.0 9.395×10−5 −2.427×10−5

9.0 7.423×10−5 −4.438×10−5

10.0 6.013×10−5 −5.874×10−5

20.0 1.503×10−5 −1.047×10−4

30.0 6.681×10−6 −1.132×10−4

relative change from (4/11)1/3 as δest..

Table 1.1 gives various values of the initial temperature (same as the initial

comoving temperature), estimated relative changes using δest., and calculated relative

changes using BURST, encoded in the value δcalc.. The calculated values include changes

from nucleosynthesis. The predictions get worse as the initial temperature increases as the

nucleosynthesis corrections dominate the change by increasing the plasma temperature,

yet are not included in the δest. correction.

Figure 1.1 shows the evolution of the temperature ratio Tcm/T as a function of

the comoving temperature for a calculation where Ti = 3 MeV. The epoch of electron–

positron annihilation occurs mostly in the temperature range of 100’s keV to 10’s keV. The

quantity g?S is dynamic and not analytically calculable. In a universe with no asymmetry

between electrons and positrons, the curve of Fig.1.1 would require an evolution of only

the plasma temperature, the subject of the next section, with respect to either time or

scale factor. In the case of non-zero baryon content as in Fig.1.1, the plasma temperature,

electron chemical potential, and nuclear abundances all need to be evolved. This is the
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subject of chapter 2.

10−210−1100

Tcm (MeV)

0.70

0.75

0.80
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T

cm
/T

(
4
11

)1/3

Figure 1.1: The evolution of Tcm/T as a function of Tcm. The vertical shaded bar is
located at Ti = 3 MeV.

1.4 Plasma temperature derivative

The constituents of the plasma are in thermal equilibrium and may or may not be

in chemical equilibrium. The temperature follows a non-trivial evolution. The first law

of thermodynamics in comoving coordinates states[22]:

d(ρV )+ pdV −dQ|(a,T ) = 0 (1.116)

=⇒V dρ+(ρ+ p)dV −dQ|(a,T ) = 0, (1.117)
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where the heat added dQ is at fixed scale factor and temperature. Eq.(1.116) is Eq.(1.66)

with a non-zero heat term. Dividing Eq.(1.116) by dt:

V
dρ

dt
+(ρ+ p)

dV
dt
−
(

∂Q
∂t

)

a,T
= 0. (1.118)

If we use the chain rule on dρ/dt, we find:

V
dρ

dT
dT
dt

+(ρ+ p)
dV
dt
−
(

∂Q
∂t

)

a,T
= 0 (1.119)

=⇒ dT
dt

=−
(ρ+ p)dV

dt −
(

∂Q
∂t

)
a,T

V dρ

dT

. (1.120)

V ∼ a3 =⇒ dV/dt = (3V/a)(da/dt) = 3V H where H is the Hubble rate. Thus:

dT
dt

=−3H
ρ+ p− 1

3H

(
∂ρ

∂t

)
a,T

dρ

dT

, (1.121)

is our conditional expression for the temperature derivative. We will evaluate this

expression in certain limits to fully understand each term. The inclusion of the heat

density term: (
∂ρ

∂t

)

a,T
, (1.122)

allows for out-of-equilibrium processes. Examples of microphysical processes which

produce non-zero heat density include: binding energy release from nucleosynthesis;

cooling from partial heating of decoupled species; and entropy injection by heavy-

particle decay. We will ignore the heat density and consider some limiting situations in

the following subsections.
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1.4.1 Radiation energy density

The equation of state for radiation is p = ρ/3∼ T 4. The derivative of the energy

density with respect to temperature is dρ/dT = 4ρ/T , giving the temperature derivative

as:
dT
dt

=−3H
ρ+ p

dρ

dT

=−3H
4
3ρ

4ρ

T

=−HT. (1.123)

1.4.2 Matter energy density

The equation of state is normally written as p = 0. However, we will use the

ideal gas law from kinetic theory for point particles to write the pressure as p = nT

and the energy density as ρ = mn+3nT/2 since interacting matter has a well-defined

temperature. The quantity n is the number density, and m is the mass of the matter

particles. Observe:

dρ

dT
=

3
2

n+
(

m+
3
2

T
)

dn
dT

(1.124)

=
3
2

n+
(

m+
3
2

T
)

dn
da

da
dt

dt
dT

. (1.125)

n∼ a−3 =⇒ dn/da =−3n/a. Thus:

dρ

dT
=

3
2

n−
(

m+
3
2

T
)

3nH
dt
dT

=
3
2

n−3Hρ
dt
dT

. (1.126)

Multiplying Eq.(1.121) by dρ/dT gives:

dT
dt

[
3
2

n−3Hρ
dt
dT

]
=−3H(ρ+ p) (1.127)

=⇒ dT
dt

=−3H
p

3
2n

(1.128)

=⇒ dT
dt

=−2HT. (1.129)
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1.4.3 Mixed radiation and matter densities

We will define η to be the ratio of matter and radiation number densities: η ≡

nm/nr. When both radiation and matter are present, and in thermal equilibrium with one

another, we arrive at the following expression for the temperature derivative:

dT
dt

=−3H

4
3

ρr +nmT

4ρr

T
+

3
2

nm

(1.130)

=−HT
ρr +

3
4

nmT

ρr +
3
8

nmT
, (1.131)

where Eq.(1.130) used Eq.(1.128) for the matter terms in the numerator and denominator.

For radiation, the energy density and product of number density and temperature are

related by a constant: ρr =C1nrT , leaving us with:

dT
dt

=−HT
1+3C2η

1+ 3
2C2η

→





−HT as η→ 0

−2HT as η→ ∞

, (1.132)

where C2 = 1/4C1. We recover the expressions for dT/dt in pure radiation or pure

matter conditions when we take the appropriate limit. Note that even in a matter–energy–

dominated environment, a high entropy condition (correspondingly small η) gives a

temperature derivative typical to a radiation–dominated environment – assuming the

matter and radiation are still thermally coupled.
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1.4.4 Dark energy density

To calculate the time derivative of the temperature in a dark–energy–dominated

universe, we refer back to Eq.(1.5) with a non-zero Λ:

Gµν =
8π

m2
pl

Tµν +Λgµν (1.133)

≡ 8π

m2
pl

Tµν +
8π

m2
pl

ρΛgµν, (1.134)

where we have defined the cosmological constant Λ in terms of an energy–density–like

quantity ρΛ. The rhs of Eq.(1.134) is:

8π

m2
pl

(Tµν +ρΛgµν) =
8π

m2
pl

(gµσT σ
ν +ρΛgµν) (1.135)

=
8π

m2
pl




ρT +ρΛ 0 0 0

0 a2 pT −a2ρΛ 0 0

0 0 a2 pT −a2ρΛ 0

0 0 0 a2 pT −a2ρΛ



,

(1.136)

where we have adorned a subscript T to the quantities in the stress–energy tensor that

do not involve the dark energy (i.e. the radiation and matter components). We take the

matrix in Eq.(1.136) (call it T̃ ) and write it like the stress–energy tensor:

T̃ µ
ν = gµσT̃σν =




ρT +ρΛ 0 0 0

0 −(pT −ρΛ) 0 0

0 0 −(pT −ρΛ) 0

0 0 0 −(pT −ρΛ)



. (1.137)
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We define the time–time component to be ρtot, and the space–space components to be

ptot: 



ρtot = ρT +ρΛ

ptot = pT −ρΛ

. (1.138)

In the dark–energy–dominated limit, ρT , pT → 0. ρtot is simply ρΛ and ptot = −ρΛ.

Therefore, the equation of state for dark energy is p =−ρ = const. In this case, dρ/dT =

0 and p+ ρ = 0, thereby affecting no change in the denominator and numerator of

Eq.(1.121). If there are small amounts of coupled radiation and matter in the dark–

energy–dominated universe, the presence of dark energy does not explicitly affect the

temperature derivative.

1.4.5 Final expression for the temperature derivative

In the case where the universe is dominated by a paticle species which is neither

ultra-relativistic nor ultra-massive, the temperature derivative is the same as Eq.(1.121).

We cannot obtain a simple expression in this case, and would have to integrate the differ-

ential equation to determine the temperature evolution. To summarize, the expression for

the temperature derivative is:

dT
dt

=−3H
ρ̃+ p− 1

3H

(
∂ρ

∂t

)
a,T

dρ

dT

, (1.139)

where ρ̃ is the total energy density less the energy density of an ultra-massive species,

and dρ

dT is the total derivative of the energy density with respect to temperature, where

scale factor is held constant for the case of an ultra-massive particle species. Sec.2.2.3

explains the integration of Eq.(1.139).
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1.5 Boltzmann equation

Neutrino energy transport requires the examination of the occupation probabilities,

denoted f . To study this evolution, we use the Boltzmann equation[23]:

d f
dλ

= Ĉ
′
[ f ], (1.140)

where Ĉ
′
is a collision operator, and λ is an affine parameter implicitly defined using the

four–momentum as [23]:

pµ =
dxµ

dλ
. (1.141)

Using the chain rule, we can write the lhs of the Boltzmann equation as:

d f
dλ

=
d f
dxµ

dxµ

dλ
= pµ d f

dxµ . (1.142)

We will assume that the occupation probabilities are functions of time t = x0, position

xi, energy E = p0, and momentum direction pi. We write the spatial components of the

four-momentum such that:

gµν pµ pν = E2−a2 p2 = m2. (1.143)

It will elucidate the present task if we define a “local momentum” p such that[24]:

E2− p2 = m2 =⇒ pi = api. (1.144)
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Returning to Eq.(1.142), we write the full derivative of f in terms of its components:

d f
dxµ =

∂ f
∂xµ +

∂ f
∂pν

d pν

dxµ (1.145)

=
∂ f
∂xµ +

∂ f
∂pν

d pν

dλ

dλ

dxµ . (1.146)

The only term in Eq.(1.146) which we need to deduce is d pν/dλ. To decipher this term,

we use the geodesic equation with our choice of affine parameter:

d pµ

dλ
+Γ

ν

αβ
pα pβ = 0 (1.147)

=⇒ d pµ

dλ
=−Γ

ν

αβ
pα pβ (1.148)

=⇒ L̂
′
[ f ]≡ d f

dλ
= pµ ∂ f

∂xµ −Γ
ν

αβ
pα pβ ∂ f

∂pν
, (1.149)

where Eq.(1.149) serves to define a form of the Liouville operator, L̂
′
. We can apply the

FLRW symmetries to simplify Eq.(1.149):

Homogeneity : pµ ∂ f
∂xµ = E

∂ f
∂t

, (1.150)

Isotropy : Γ
ν

αβ
pα pβ ∂ f

∂pν
= Γ

0
αβ

pα pβ ∂ f
∂E

. (1.151)
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The only non-zero Chistoffel symbols in the isotropy condition are Γ0
i j = aȧδi j, leaving

the Boltzmann equation as:

L̂
′
[ f ] = E

∂ f
∂t
−Γ

0
αβ

pα pβ ∂ f
∂E

(1.152)

= E
∂ f
∂t
−aȧδi j pi p j ∂ f

∂E
(1.153)

= E
∂ f
∂t
−aȧp2 ∂ f

∂E
(1.154)

= E
∂ f
∂t
− ȧ

a
p2 ∂ f

∂E
(1.155)

= E
∂ f
∂t
−H p2 ∂ f

∂E
= Ĉ

′
[ f ]. (1.156)

At this point, for convenience, we will drop the bar notation on the local momentum and

simply set pi→ pi. For particles with ultra-relativistic kinematics, the Liouville operator

and Boltzmann equation can be written as:

L̂[ f ] =
∂ f
∂t
−H p

∂ f
∂p

, (1.157)

L̂[ f ] = Ĉ[ f ], (1.158)

where Ĉ[ f ] is a different form of the collision operator than the one defined in Eq.(1.140).

If we assume ultra-relativistic kinematics, Eq.(1.156) becomes:

L̂
′
[ f ] = p

(
∂ f
∂t
−H p

∂ f
∂p

)
= Ĉ

′
[ f ] (1.159)

=⇒ L̂[ f ] =
(

∂ f
∂t
−H p

∂ f
∂p

)
=

1
p

Ĉ
′
[ f ] = Ĉ[ f ], (1.160)
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relating the two forms of the collision operators. Per Sec.1.2.2, we choose to use ε over

p as the independent variable in our occupation probabilities. With this choice:

∂ f
∂p

=
∂ f
∂ε

dε

d p
(1.161)

=
∂ f
∂ε

(
1
T
− p

T 2
dT
dt

dt
d p

)
. (1.162)

Using the geodesic equation:

d p
dt

=
d p
dλ

dλ

dt
(1.163)

=
1
p

d p0

dt
(1.164)

=
1
p

(
−Γ

0
αβ

pα pβ

)
(1.165)

=
1
p

(
−aȧδi j

pi p j

a2

)
(1.166)

=
1
p

(
− ȧ

a
p2
)

(1.167)

=−pH (1.168)

If we choose a “comoving temperature parameter” T = Tcm such that:

dTcm

dt
≡−HT, (1.169)

then Eq.(1.162) vanishes, and the lhs of the Boltzmann equation simplifies such that:

d f (t,ε)
dt

= Ĉ[ f ]. (1.170)

The comoving temperature need not be a temperature describing an equilibrium distribu-

tion. It is simply an energy scale we use to convert ε values into momentum values. We
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have defined Tcm in Eq.(1.169) such that it is consistent with the comoving temperature

in Eq.(1.84) used for entropy calculations.

1.6 Topics of study

Figure 1.2 shows the epochs relevant to this work. We will assume that at a high

temperature T ∼ 30 MeV, the neutrinos are in thermal and chemical equilibrium with the

photon–electron–positron plasma. At temperatures of T ∼ 3 MeV, the neutrinos decouple

from the plasma and free–stream. This is the weak decoupling epoch (WD). Although

the neutrinos decouple from the plasma constiuents, the sparse number of baryons still

experience comparatively large fluxes of electron–flavor neutrinos and anti-neutrinos.

The neutrinos are able to maintain weak equilibrium with the neutrons and protons until

temperatures of T ∼ 1 MeV, at the onset of weak–freeze–out (WFO). The positrons

and electrons remain in thermal and chemical equilibrium at temperatures below the

rest mass of the electron. The deficit of electron–positron pairs at low temperatures

T ∼ 10 keV arises from the epoch of positron–electron–annihilation (e±A). Before the

electrons and positrons have completely vanished, the temperature cools low enough to

assemble nuclei from the free neutrons and protons at temperatures T ∼ 100 keV. Big

bang nucleosynthesis forms helium-4, and trace amounts of deuterium and lithium. The

four epochs of WD, WFO, e±A, and BBN have neither distinct starting nor ending times.

Rather, all four epochs require self-consistently solving the coupled set of Boltzmann

integral–differential equations through a wide dynamic scale. In the course of studying

the first four epochs, we deemed it necessary to gain an understanding of ionization

freeze–out (IFO, or simply stated as recombination). This epoch is not coupled to the

previous four epochs in time, but is certainly related to the neutrino and BBN epochs.

We opine that a self-consistent treatment of neutrino dynamics in the early universe
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requires the calculation of recombination, again using Boltzmann equations for atomic

recombination and ionization processes.

We conclude this chapter by briefly outlining the remainder of this work. In Ch.2,

we discuss BBN and how to calculate the primordial abundances. We proceed to give an

example of a non-standard cosmology containing a diluton particle and the ramifications

of heavy–particle decay within BBN in Ch.3. In the context of the sound horizon and

the photon diffusion length, we discuss the physics and numerical techniques of the

recombination epoch in Ch.4. With these techniques from Ch.4, Chs.5 and 6 consider the

examples of the νMR effect and BSM physics. Finally, we present preliminary neutrino

energy–transport calculations in Ch.7. We conclude in Ch.8 with an outlook of future

topics of study.

Appendix A describes the linearization procedure for the BBN network. App.B

gives preliminary work on electron–positron annihilation. App.C describes the decay

spectra of dilutons in regards to pions. Aps.D, E, F, G, and H explain the mathematics

necessary for coding the neutrino–energy–transport integrals.

Section 1.1 is a reprint of some of the material as it appears in “Probing neutrino

physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and

photon decoupling epochs.” Grohs, E.; Fuller, G. M.; Kishimoto, C. K.; Paris, M. W.,

J. Cosmology Astropart., 5 (May 2015) 17. The dissertation author was the primary

investigator and author of this paper.
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(WFO)

e�(e+, �)� . H (e±A)

n(p, �)d . H (BBN)

n(⌫e, e
�)p . H

p(e�, �)H . H (IFO)

e±(⌫i, ⌫i)e
± ⇠ ⌫j(⌫i, ⌫i)⌫j . H (WD)

Figure 1.2: Diagram of the evolution of the universe through weak decoupling (WD),
weak freeze-out (WFO)), electron-positron annihilation (e±A), big bang nucleosynthesis
(BBN), and ionization freeze-out (IFO). The reactions indicate processes typical to that
specific epoch. H is the Hubble expansion rate.



Chapter 2

Big bang nucleosynthesis

2.1 Introduction

Recently there has been a dramatic increase in precision in the determination

of D/H [3]. This improvement in observational precision drives the need to improve

the standard tools used to calculate observables during the BBN and CMB epochs.

This development allows us to consider improved descriptions of nuclear physics and

non-standard particle and cosmological models.

We have developed a generalized BBN subroutine, part of the larger BURST code.

The current BBN routine handles general distribution functions for particles out of equi-

librium. It numerically integrates the binned neutrino occupation probabilities to obtain

thermodynamic variables and number and energy densities for νe, ν̄e,νµ, ν̄µ,ντ, ν̄τ. It is

worthwhile, therefore, to summarize our approach to BBN even though it is substantially

similar in some respects to that given in Refs. [25, 26, 27].

We assume that the cosmic fluid is homogeneous and isotropic and that the

comoving number density of baryons is covariantly conserved. Neutrinos can experience,

in addition to gravity, essentially arbitrary interactions within the Boltzmann transport

35
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approximation.1 We allow for the possibility that neutrinos may decouple from the

plasma with non-equilibrium distributions. This assumption implies that there may be

deviations from the Fermi-Dirac momentum distribution [28, 29, 30]. In fact, it was this

observation that provided initial motivation for developing the current approach.

BBN codes evolve light nuclide abundances Yi(t), defined as

Yi(t) =
ni(t)
nb(t)

, (2.1)

as a function of comoving time t in the background of the Friedmann-Lemaı̂tre-Robertson-

Walker (FLRW) geometry. Here ni(t) is the proper number density of nuclide i = n,

p, 2H, 3He, 4He, . . . and nb(t) is the proper baryon number density. We will focus on

two specific nuclides in this paper: the 4He mass fraction (YP ≡ 4Y4He), and the 2H

relative abundance (D/H≡ YD/YH). The evolution starts from a time when the plasma

temperature T is near 30 MeV. Weak equilibrium obtains at this temperature. The time

dependence of the metric is determined by the energy density ρ(a) as

H(a) =
ȧ
a
=

√
8π

3m2
pl

ρ(a), (2.2)

where H(a) is the Hubble parameter, mpl is the Planck mass, and the ‘dot’ indicates

differentiation with respect to the FLRW-coordinate time t. The energy density is

computed as the integral of the single-particle energy over the momentum distribution:

ρ(a) = ∑
j

∫ d3 p
(2π)3 f j(p;a)

√
p2 +m2

j (2.3)

where the sum over j reflects all species contributing to the energy density, including

but not limited to: photons, baryons, dark matter, e±, and neutrinos. Consistent with the

1However, the code can handle limited generalizations of the Boltzmann approximation to incorporate
effects associated with neutrino quantum kinetics.
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above discussion, we do not need to assume a well defined temperature for any of the

cosmic species. The time dependence of the distribution function fi(p;a) is indicated by

the presence of the scale factor a(t) in its argument. Evolution in time of the distribution

functions is accomplished by solving transport equations, such as the Boltzmann equation,

in FLRW geometry.

Given initial conditions for the temperature T and momentum distributions of

the cosmological constituents (assumed to be in equilibrium through weak and strong

interactions), the BBN code determines the evolution, with respect to the scale factor a(t)

(related to time as dt = da/(aH(a))), of the temperature of the plasma T (a), the electron

chemical potential µe(a), and the nuclide abundances relative to baryon number Yi(a).

The interactions of the light nuclear species is governed by the nuclear reaction

network.2 The reaction network, which is determined by a chosen set of nuclides and the

thermally averaged reactivities nα1nα2〈σβαvα〉, is proportional to the rate of change of

the number density of nuclides participating either in the initial state nαi or final state

nβ j where i, j indexes particles (up to 3) in the initial α or final β channel for the process

α→ β; that is, α and β are two- or three-body reaction channels and αi is the ith nuclide

of the channel α. The nuclear reaction network includes nuclides with mass number

A ≤ 9. Our code allows for the inclusion of additional nuclides with A > 9, but we

maintain the smaller network as the larger network provides no new insights for this

paper. The nuclides are taken to be in thermal equilibrium with the photon–electron

plasma. We are currently employing an updated [31] version of the reaction network

from Ref. [27]. We also couple in all relevant e± and neutrino-induced weak interactions

(charged and neutral current) [32].

2The nuclear reaction network should be derived from reaction cross sections that are governed by the
principles of quantum mechanics, such as unitarity. We are currently developing a unitary reaction network
for application in future work.
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2.2 Standard big bang nucleosynthesis

We need to describe the universe before the commencement of BBN. We start at

a high temperature, but lower than the Quantum-Chrmodynamic (QCD) phase transition,

e.g. T ∼ 30 MeV. There are no quark or gluon relativistic degrees of freedom at this

temperature. The remaining quarks and gluons from the QCD epoch are bound into

baryons. The only two types of baryons are the nucleons: protons and neutrons, and

there are roughly equal numbers of each. The plasma consists of relativistic bosons

and fermions. The only bosonic species is the photon. The fermionic species consist of

electrons, positrons, three flavors of neutrinos, and three flavors of anti-neutrinos. There

is a slight excess of electrons over positrons to maintain overall charge neutrality with

the positvely-charged protons. There may exist unequal numbers of neutrinos for a given

flavor. All of the plasma constiuents are in thermal equilibrium with one another, and

the electrons/positrons have well defined chemical potentials, i.e. µe− = −µe+ . Dark

matter and dark energy have no interactions with the plasma or baryons, except for

gravitational interactions. The energy densities in those sectors are negligible during the

epochs surrounding BBN.

The only inputs for SBBN are the number of baryons and the neutrino degeneracy

parameters. The baryon content is parameterized using:

η≡ nb

nγ

∝
1
s
, (2.4)

for the proper baryon number denisty nb and proper photon number density nγ. η is

proportional to the inverse of the entropy per baryon, and can also be related to the baryon

contribution to closure at the current epoch. The neutrino degeneracy parameter for a
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given flavor ξi ≡ µi/T is parameterized using the lepton number Li:

Li ≡
nνi−nν̄i

nγ

=
1

12ζ(3)
(
π

2
ξν +ξ

3
ν

)
. (2.5)

If there exists equal numbers of neutrinos and anti-neutrinos for a given flavor, then

ξi = 0 and the corresponding lepton number is zero. If the preceeding conditional is false,

then the lepton number is non-zero. Another common input parameter into SBBN is the

radiation energy density ρr, parameterized by the quantity Neff:

ρr =

[
2+

7
4

(
4

11

)4/3

Neff

]
π2

30
T 4. (2.6)

We do not take this quantity as an input parameter of the standard cosmology, but instead

take Neff to be a calculable output quantity sensitive to beyond-standard-model physics.

The calculation of Neff is non-trivial and the subject of Sec.4.5.

BBN begins roughly after the weak-freeze out epoch, i.e. once the neutrinos

no longer efficiently convert neutrons into protons at about T ∼ 1 MeV. Weak freeze-

out sets the initial neutron to proton ratio which allows for the fusion of nucleons into

heavier nuclei. Nucleosynthesis terminates once the nuclear reaction rates become slow

compared to the expansion rate at about T ∼ 10 keV. The temperature T is the plasma

temperature. The product Ta does not behave like a comoving invariant, due to the epoch

of positron-electron annihilation coincident with BBN.

To properly follow SBBN, we evolve three thermodynamic quantities:





T : Photon (plasma) temperature

hv : Ratio of baryon energy density to T 3

φe : electron degeneracy parameter

,
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and the nuclear abundances Yi. Each quantity is evolved with time using an adaptive time

step. We use an explicit second–order Runge–Kutta (RK2) algorithm to integrate the

ODEs for the three thermodynamic quantities. The abundances require a semi-implicit

RK2 method. We discuss the calculation of the time derivative of each quantity, or set of

quanities in the case of {Yi} in the following subsections.

2.2.1 hv quantity

The quantity hv is defined to be:

hv =
ρb

T 3 . (2.7)

To calculate the derivative of hv, we will approximate that the rest mass, (m), contribution

to the baryon energy density dominates over the kinetic term:

ρb ' ρ
(m)
b ∼ 1

a3 =⇒ dρb

dt
=−3Hρb. (2.8)

Therefore:

dhv

dt
=−3H

ρb

T 3 −3
ρb

T 4
dT
dt

(2.9)

=−3hv

(
H +

1
T

dT
dt

)
. (2.10)

To calculate the derivative of hv, we need the temperature derivative.

2.2.2 Electron degeneracy parameter

The electron degeneracy parameter is defined to be φe = µe−/T where µe− is the

total chemical potential of electrons. We begin by considering the equation for charge
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neutrality:

n−−n+ = np, (2.11)

where n− is the number density of electrons, n+ is the number density of positrons, and

np is the total number density of protons. If we assume thermal and chemical equilibrium:

∫ d3 p
(2π)3

1
eE/T−φe

−
∫ d3 p

(2π)3
1

eE/T+φe
= nb ∑

i
ziYi, (2.12)

where the energy is given by the dispersion relation E =
√

p2 +m2
e and zi is the atomic

number of nuclide i. The lhs of Eq.(2.12) is a function of φe and T . The rhs is a function

of scale factor and the nuclear abundances. We can write the time derivative of φe as the

following:
dφe

dt
=

∂φe

∂T
dT
dt

+
∂φe

∂a
da
dt

+∑
i

∂φe

∂Yi

dYi

dt
. (2.13)

Eq.(2.13) involves the expression for the time derivatives of the temperature and abun-

dances. We can find the partial derivatives if we use Eq.(2.12). As an example, we

investigate the derivative ∂φe
∂T :

d
dT

(∫ d3 p
(2π)3

1
eE/T−φe +1

−
∫ d3 p

(2π)3
1

eE/T+φe +1

)
=

d
dT

(
nb ∑

i
ziYi

)

(2.14)

=⇒ 1
2π2

[∫
p2d p

(
− eE/T−φe

(eE/T−φe +1)2

)(
− E

T 2 −
∂φe

∂T

)

−
∫

p2d p

(
− eE/T+φe

(eE/T+φe +1)2

)(
− E

T 2 +
∂φe

∂T

)]
= 0. (2.15)
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If we collect terms in ∂φe/∂T , we find:

∂φe

∂T

∫
p2d p

(
eE/T−φe

(eE/T−φe +1)2
+

eE/T+φe

(eE/T+φe +1)2

)

=
1

T 2

∫
p2d pE

(
− eE/T−φe

(eE/T−φe +1)2
+

eE/T+φe

(eE/T+φe +1)2

)
. (2.16)

The integrals above can be simplified through integration by parts:

∂φe

∂T

∫
E
√

E2−m2
edE

(
−T

∂ f−
∂E
−T

∂ f+
∂E

)
=

1
T 2

∫
E2
√

E2−m2
e dE

(
T

∂ f−
∂E
−T

∂ f+
∂E

)

(2.17)

=⇒ ∂φe

∂T

∫
dE

2E2−m2
e√

E2−m2
e
( f−+ f+) =−

1
T 2

∫
dE

E(3E2−2m2
e)√

E2−m2
e

( f−− f+),

(2.18)

where:

f− =
1

eE/T−φe +1
and f+ =

1
eE/T+φe +1

(2.19)

are the Fermi-Dirac expressions for the occupation probabilities of electrons and positrons,

respectively. Solving for ∂φe/∂T yields:

∂φe

∂T
=− 1

T 2

∫
dE

E(3E2−2m2
e)√

E2−m2
e

( f−− f+)∫
dE

2E2−m2
e√

E2−m2
e
( f−+ f+)

. (2.20)

If we use the expression[33]:

Kα(z) =
∫

∞

0
dt e−zcosh t cosh(αt), (2.21)
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we can write the denominator of Eq.(2.20) as:

∫
dE

2E2−m2
e√

E2−m2
e
( f−+ f+) = 2m2

e

∞

∑
n=1

(−1)n+1 cosh(nφe)

[
2
nz

K1(nz)+K0(nz)
]
,

(2.22)

where Kα(z) is the modified Bessel function of the second kind and z = me/T . A similar

expression with Kα exists for the numerator of Eq.(2.20). In addition, we can use Kα

to approximate the derivatives of φe with respect to scale factor and abundance. The

polynomial expansions of Kα(x) are truncated at seven terms, and the summations over n

in Eq.(2.22) are truncated at five terms. Section 2.3 outlines another method to follow

the thermodynamics of electrons and positrons.

2.2.3 Temperature

The plasma temperature evolves according to Eq.(1.139):

dT
dt

=−3H

ρ̃+ p− 1
3H

(
∂ρ

∂t

)

a,T

dρ

dT

. (2.23)

p is the pressure and ρ̃ is the energy density less the massive contribution:

ρ̃ = ργ +ρe−+ρe+ ≡ ργ +ρe (2.24)

p = pγ + pe + pb, (2.25)
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where the subscript e refers to the sum of electron and positron, and the subscript b to

baryon. The denominator of Eq.(2.23) is:

dρ

dT
=

dργ

dT
+

dρe

dT
+

(
∂ρb

∂T

)

a
(2.26)

=
4ργ

T
+

∂ρe

∂T
+

∂ρe

∂φe

∂φe

∂T
+

3
2

ρb

mu
, (2.27)

where we have made the approximation that the energy density of baryons resides mostly

in the rest mass, but the derivative with respect to temperature is non-zero. Using the

same methods of the previous subsection, we can write the partial derivatives involving

ρe as an infinite series of modified Bessel functions of the second kind. The last term in

Eq.(2.23) is the heat density:

1
3H

(
∂ρ

∂t

)

a,T
=

1
3H

[(
∂ρb

∂t

)

a,T
+

(
∂ρe

∂t

)

a,T

]
, (2.28)

which describes the heat change introduced by nucleosynthesis. A more complete

description of ρb is:

ρb = ∑
i

ni

(
mi +

3
2

T
)

(2.29)

= nb ∑
i

Yi

(
mi +

3
2

T
)

(2.30)

where the sum is over all of the nuclide species. Therefore:

(
∂ρb

∂t

)

a,T
= nb ∑

i

dYi

dt

(
mi +

3
2

T
)
. (2.31)
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We can write the derivative of ρe in Eq.(2.28) as:

(
∂ρe

∂t

)

a,T
=

∂ρe

∂φe

(
dφe

dt
+∑

i

∂φe

∂Yi

dYi

dt

)
. (2.32)

The derivative ∂φe/∂Yi is known as it is needed for the calculation of the total time

derivative of φe. The derivative dφe/dt was the topic of the last subsection and relied

on knowledge of the derivative dT/dt, the topic of this subsection. To avoid the mutual

dependence, we use the Hubble rate:

(
∂ρe

∂t

)

a,T
=

∂ρe

∂φe

(
∂φe

∂a
da
dt

+∑
i

∂φe

∂Yi

dYi

dt

)
(2.33)

=
∂ρe

∂φe

(
∂φe

∂a
aH +∑

i

∂φe

∂Yi

dYi

dt

)
. (2.34)

The derivative ∂φe/∂a contains a 1/a term which will cancel with the a term multiplying

the Hubble rate.

2.2.4 Nuclear Abundances

The last quantities to evolve are the nuclear abundances. We write an expression

for the nuclear reactions assuming at most four unique nuclides:

Ni(
AiXzi)+N j(

A jXz j)↔ Nk(
AkXzk)+Nl(

Al Xzl), (2.35)

where Nm is the number of nuclide X with atomic number zm and atomic mass Am

participating in Rxn.2.35. The nuclear reactions conserve baryon number and charge.
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For strong and electromagnetic reactions, the implications are:

Nizi +N jz j = Nkzk +Nlzl (2.36)

NiAi +N jA j = NkAk +NlAl. (2.37)

For weak interactions, baryon number is conserved, and the overall charge is conserved.

However, there exists electrons or positrons in the final state, implying that the charge of

the nucleons is not conserved. The change in the charges of the nucleons is compensated

for with changes in the electron degeneracy parameter and subsequent derivatives. The

implications for the nuclear abundance derivative of Yi for Rxn.(2.35) are summations

over the three indicies j,k, l [26]:

dYi

dt
= ∑

j,k,l
Ni


−

Y Ni
i Y N j

j

Ni!N j!
[i j]k +

Y Nk
k Y Nl

l
Nk!Nl!

[kl] j


 , (2.38)

where [i j]k is the reaction rate for i+ j← k+ l and [kl] j is the reverse rate. For reactions

with Nm = 1 for each nuclide, [i j]k = nb〈σv〉 where 〈σv〉 is the thermally–averaged

product of cross section and relative velocity.

Eq.(2.38) makes the Boltzmann approximation to employ the thermally–averaged

〈σv〉. Ref.[26] gives a procedure for linearizing Eq.(2.38) such that:

dYi

dt
(t +∆t) = ∑

j
Ci jYj(t +∆t), (2.39)

where Ci j is a matrix independent of the abundances at the future time step, Yj(t +∆t),

but does use the abundances at the previous time step, Yj(t). Appendix A describes the

linearization procedure in detail. We use the linearization technique to semi-implicitly

integrate the ODEs for the evolution of the abundances.
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2.3 Epoch of electron–positron annihilation

As mentioned in Sec.2.2, the electron/positron energy densities are assumed to

be Fermi-Dirac with the same temperature and opposite sign chemical potentials. The

leptons interact weakly with the neutrinos, and interact electromagnetically with the

photons. The relevant electromagnetic interactions are:

e±+ γ↔ e±+ γ, (2.40)

e−+ e+↔ 2γ. (2.41)

For Compton scattering, Rxn.(2.40), the rates are fast at the BBN epoch, so the approxi-

mation of equal temperatures between elecron, positron, and photon species is accurate.

To maintain chemical equilibrium, the forward and reverse rates of Rxn.(2.41) must be

fast compared to the Hubble rate. The forward rate (e−+ e+→ 2γ) will be fast due to

the Coulomb attraction of the reactants. The reverse rate requires an energy threshold of

2me ' 1 MeV and will freeze out. As an estimate, the reverse rate of Rxn.(2.41) goes

as the product of the Thomson cross section and the number density of photons with

energies larger than the rest mass of the electron. We can approximate the rate as:

Γ2γ→e± ' σTT 3e−2me/T (2.42)

= 2.596×1018 s−1
(

T
MeV

)3

exp
(
−1.022

MeV
T

)
. (2.43)

For comparison, we estimate the Hubble expansion rate as:

H ' 1s−1
(

MeV
T

)2

. (2.44)
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At a temperature of T ∼ 1 MeV, the annihilation rate Γ2γ→e± is much larger than the

Hubble rate. At a temperature of 10 keV:

Γ2γ→e± ' 1.070×10−32 s−1 and H ' 10−6 s−1. (2.45)

The above calculations are only estimates. Clearly, the dynamics in the sea of electrons

and positrons are highly sensitive to temperature and there is a rapid freeze–out of

the electron–positron creation rate. A proper description of that dynamics requires a

Boltzmann equation with a Klein–Nishina summed–squared–amplitude[34]:

e−(P1)+ e+(P2)→ γ(P3)+ γ(P4) (2.46)

=⇒ 〈|M |2〉=−2e4
[

P1 ·P4

P1 ·P3
+

P1 ·P3

P1 ·P4

+2m2
e

(
1

P1 ·P3
+

1
P1 ·P4

)
−m4

e

(
1

P1 ·P3
+

1
P1 ·P4

)2
]
, (2.47)

where Pi is the four-momentum of particle i in the comoving frame. For weak interactions,

〈|M |2〉 can be separated into two distinct functions Pi ·Pj and Pi ·Pk, simplifying the

collision integral in the Boltzmann equation. Eq.(2.47) cannot be separated into two

functions like the weak interaction. App.B describes a preliminary treatment of the

collision integral for a similar matrix element to Eq.(2.47).

2.4 Equilibrium

BBN begins in conditions close to equilibrium. We make the approximation that

the constituent particles relevant to BBN all begin in equilibrium with one another, with

the important exception of the baryons being out of chemical equilibrium.

We have already made the implicit assumption of thermal equilibrium among
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the plasma particles when we defined a plasma temperature. We will study chemical

equilibrium within the reaction:

R1 +R2↔ P3 +P4, (2.48)

for reactants Ri and products Pj. If the rates of the forward and reverse reactions in

Eq.(2.48) are fast, then chemical equilibrium is obtained:

µ1 +µ2 = µ3 +µ4, (2.49)

where µi is the chemical potential of species i. To determine the chemical potential, we

use the free energy F :

µ =

(
∂F
∂N

)

T,V
, (2.50)

where N,T,V are the number, temperature, and volume of the system. We can use the

multi-particle partition function, Z, to find the free energy:

F =−T lnZ. (2.51)
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For the single-particle partition function of a non-relativistic gas particle:

Z1 = g
∫ d3xd3 p

(2π)3 e−E/T (2.52)

= g
∫ d3xd3 p

(2π)3 e−m/T−p2/2mT (2.53)

=
g

2π2V e−m/T
∫

d p p2 e−p2/2mT (2.54)

=
g

2π2V e−m/T (2mT )3/2
∫

dxx2 e−x2
(2.55)

=
g

2π2V e−m/T (2mT )3/2 1
4
√

π (2.56)

= gVe−m/T
(

mT
2π

)3/2

. (2.57)

g is the internal partition function and m is the mass of the individual gas particle. We

can relate the multi-particle partition function to the single-particle partition function:

Z =
1

N!
ZN

1 (2.58)

=
1

N!
gNV Ne−mN/T

(
mT
2π

)3N/2

. (2.59)

The expression for the free energy is:

F =−T lnZ (2.60)

=−T
[

N ln(gV )−N
m
T
+

3
2

N ln
(

mT
2π

)
− lnN!

]
(2.61)

'−T
[

N ln(gV )−N
m
T
+

3
2

N ln
(

mT
2π

)
−N lnN +N

]
, (2.62)

where we have used Stirling’s formula to approximate lnN!. If we substitute Eq.(2.62)
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into Eq.(2.50), we find:

µ =

(
∂F
∂N

)

T,V
(2.63)

=−T
[

ln(gV )− m
T
+

3
2

ln
(

mT
2π

)
− lnN

]
(2.64)

=−T ln

[
gV
N

(
mT
2π

)3/2
]
+m (2.65)

=−T ln

[
g
n

(
mT
2π

)3/2
]
+m, (2.66)

where we have used the number density n = N/V . Eq.(2.66) assumes non-relativistic

kinematics, but is applicable to any microphysical process which produces chemical

equilibrium.

2.4.1 Weak Equilibrium

If the leptons can efficiently change isospin, then Eq.(2.49) states:

n+νe↔ p+ e− (2.67)

=⇒ µn +µνe = µp +µe−. (2.68)

For the standard cosmology, the chemical potential of the electrons is small at the

temperatures of weak freeze–out. We assume the chemical potential of the electron

neutrino is zero for the purposes of this section. The chemical potentials of neutrons and
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protons are equal and:

−T ln

[
gn

nn

(
mnT
2π

)3/2
]
+mn =−T ln

[
gp

np

(
mpT
2π

)3/2
]
+mp (2.69)

=⇒ mn−mp

−T
= ln

[
nn

np

gp

gn

(
mp

mn

)3/2
]

(2.70)

=⇒ n/p≡ nn

np
=

gn

gp

(
mn

mp

)3/2

exp
(
−mn−mp

T

)
→ e−δmnp/T , (2.71)

where we have defined the neutron–to–proton ratio n/p. The ratio corresponds to the

total number of neutrons and total number of protons – including free hadrons and

bound nucleons. We take the neutron mass to be the same as the proton mass for

the multiplicative factor, but use the non-zero difference for the exponential factor:

δmnp ≡ mn−mp ' 1.3MeV. The internal partition functions for neutrons and protons

are taken to be close to 2.

We define the electron fraction as:

Ye ≡
ne

nb
=

np

np +nn
=

1
1+n/p

=
1

1+ e−δmnp/T
. (2.72)

Figure 2.1 shows a plot of how the electron fraction changes with decreasing temperature.

The green curve is from a computation with a calculation of the explicit neutron–to–

proton rates. It assumes a baryon density of ωb = 0.022068. The blue curve is a plot of

Eq.(2.72), and is not particular to the early universe. At a temperature of T ∼ 1MeV, the

rates which convert neutrons to protons are not fast enough to maintain weak equilibrium.

This is the so-called weak freeze–out epoch. Nuclear interactions can also change n/p.

Fig.2.1 shows the freeze–out of the total electron fraction at T ∼ 100keV, when helium–4

forms to set n/p∼ 1/7. Alpha–particle formation is quick, and depends sensitively on

n/p at a temperature T ∼ 1MeV.
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Figure 2.1: The evolution of the electron fraction is given as a function of plasma
temperature T . The blue line corresponds to the assumption of weak equilibrium
between the neutrino seas, electrons, positrons, and baryons. The green line corresponds
to a Boltzmann treatment of the weak interactions.

2.4.2 Nuclear Statistical Equilibrium

BBN occurs close to nuclear statistical equilibrium (NSE). We use Eq.(2.49) to

compute the NSE abundances of the heavy nuclides:

µA = zµp +(A− z)µn, (2.73)

where µA is the chemical potential of the nucleus with atomic mass A and atomic number

z. We obtain Eq.(2.73) by summing all of the intermediate NSE expressions for the
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assembly of lighter nuclei. If we substitute Eq.(2.66) into Eq.(2.73), we find:

−T ln

[
gA

nA

(
mAT
2π

)3/2
]
+mA = z

{
−T ln

[
gp

np

(
mpT
2π

)3/2
]
+mp

}

+(A− z)

{
−T ln

[
gn

nn

(
mnT
2π

)3/2
]
+mn

}
, (2.74)

implying:

ln

[
gA

nA

(
mAT
2π

)3/2
]
= z ln

[
gp

np

(
mpT
2π

)3/2
]

+(A− z) ln

[
gn

nn

(
mnT
2π

)3/2
]
+

mA− zmp− (A− z)mn

T
. (2.75)

The last term of Eq.(2.75) we relate to the nuclear binding energy of nucleus AXz:

B≡ zmp +(A− z)mn−mA. (2.76)

Eq.(2.75) becomes:

gA

nA

(
mAT
2π

)3/2

=
gz

p

nz
p

(
mpT
2π

)3z/2 gA−z
n

nA−z
n

(
mnT
2π

)3(A−z)/2

e−B/T (2.77)

=⇒ nA

gA

(
2π

mAT

)3/2

=
nz

p

gz
p

(
2π

mpT

)3z/2 nA−z
n

gA−z
n

(
2π

mnT

)3(A−z)/2

eB/T (2.78)

=⇒ nA = nz
pnA−z

n
gA

gz
pgA−z

n

(
2π

T

)3(A−1)/2
(

mA

mz
pmA−z

n

)3/2

eB/T (2.79)

=⇒ nA

nb
=

(
np

nb

)z(nn

nb

)A−z

nA−1
b

gA

gz
pgA−z

n

(
2π

T

)3(A−1)/2
(

mA

mz
pmA−z

n

)3/2

eB/T . (2.80)

The entropy per baryon can be determined from Eq.(1.81):

s =
1
nb

2π2

45
g?ST 3 =⇒ nb =

1
s

2π2

45
g?ST 3. (2.81)



55

Eq.(2.80) becomes:

YA = Y z
pY A−z

n

(
1
s

2π2g?ST 3

45

)A−1 gA

gz
pgA−z

n

(
2π

T

)3(A−1)/2
(

mA

mz
pmA−z

n

)3/2

eB/T

(2.82)

=⇒ YA = Y z
pY A−z

n

(g?S

s

)A−1 25(A−1)/2π7(A−1)/2

45A−1
gA

gz
pgA−z

n

×T 3(A−1)/2

(
mA

mz
pmA−z

n

)3/2

eB/T . (2.83)

The quantities Yp and Yn are the total proton and neutron abundances, respectively. We

will make the approximation that gp = gn = 2, mp = mn = mu, and mA = Amu, where

mu is the atomic mass unit. We do not make the mass approximations when considering

the binding energy term in the exponential – only in the multiplicative factor. This

approximation is consistent with what we did for weak equilibrium in the previous

section. Eq.(2.83) becomes:

YA = Y z
pY A−z

n

(g?S

s

)A−1 25(A−1)/2π7(A−1)/2

45A−1
gA

2A T 3(A−1)/2
(

A
mA−1

u

)3/2

eB/T (2.84)

= Y z
pY A−z

n

(g?S

s

)A−1
gAA3/2 2(3A−5)/2π7(A−1)/2

45A−1

(
T
mu

)3(A−1)/2

eB/T (2.85)

= Y z
pY A−z

n

(g?S

s

)A−1
gAA3/2 1

2

(
23/2π7/2

45

)A−1(
T
mu

)3(A−1)/2

eB/T (2.86)

=
3.454A−1

2
Y z

pY A−z
n

(g?S

s

)A−1
gAA3/2

(
T
mu

)3(A−1)/2

eB/T . (2.87)

Figure 2.2 shows a plot of the BBN abundances evolving with decreasing tem-

perature. We plot relative abundance with respect to hydrogen–1. The baryon density

is ωb = 0.022068. The solid curves are for the standard cosmology and depart from the

dashed NSE curves of Eq.(2.87) divided by YH . Unlike the equilibrium curve for Fig.2.1,
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the NSE curves are particular to the early universe. We do not assume weak equilibrium,

and so we follow the evolution of the inputs Yp, Yn, and g?S as a function of temperature.

10−210−1100101

T (MeV)

10−24
10−22
10−20
10−18
10−16
10−14
10−12
10−10
10−8
10−6
10−4
10−2

100
Y
i/
Y
H

N

D
3H
3He
4He
6Li
7Li
7Be

dashed: NSE
solid: SBBN

Figure 2.2: The relative abundance evolution is given as a function of plasma tempera-
ture T . The dashed lines correspond to the assumption of NSE, while the solid lines
correspond to a Boltzmann treatment of nuclear reactions. The abundances are free
neutrons (N), deuterium (D), tritium (3H), helium–3 (3He), helium–4 (4He), lithium–6
(6Li), lithium–7 (7Li), and beryllium–7 (7Be). Only the NSE abundances for D, 3H,
3He, and 4He are shown.

We only show the NSE abundances for deuterium, tritium, helium–3, and helium–

4. The NSE abundances for lithium–6, lithium–7, and beryllium–7 are much larger than

the actual abundances and show no convergence for the temperature and abundance ranges

shown in Fig.2.2. Helium–4 departs from equilibrium at a temperature T ∼ 700keV.

Although the binding energy of an alpha particle is B∼ 30 MeV, the helium–4 abundance

maintains NSE to significantly lower temperatures due to the high-entropy environment.
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Tritium and helium–3 maintain equilibrium to even lower temperature than helium–4.

Deuterium is the last abundance to depart from NSE. After alpha–particle formation,

there are few available free–neutron–reactants to synthesize deuterium. The binding

energy of deuterium is small (B ∼ 1MeV), and so deuterium is easily destroyed and

freezes-out at D/H∼ 2.5×10−5.

We modify the standard cosmology by adding physics into the epochs surrounding

BBN. To maintain self-consistency, we modify the equations of the previous sections to

include any new testable physics.

2.5 Verification of cosmological parameters

We provide an example of how to use BBN to constrain beyond–standard–model

physics.

We adopt the point of view advocated in Refs. [35, 36, 11] that the constraint

provided by predictions of BBN should be incorporated simultaneously with constraints

due to recombination effects in the extraction of cosmological parameters. We also

require, as previously discussed, that BBN and recombination be solved iteratively.

In this section, we demonstrate the self-consistent extraction of these parameters by

employing a simple model for the radiation energy density that avoids solving, for

example, the Boltzmann equation, for the set of distribution functions of the cosmic

constituents, in particular the neutrinos.

We follow the standard paradigm for the BBN epoch as originally discussed in

Ref. [25] and subsequently in Refs. [26, 27]. To that extent, we use BURST to verify our

results with those of other theoretical groups [37, 38, 39]. For example, at ωb = 0.022068
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and Ñeff = 3.046, Ref. [2] finds:

YP = 0.24725±0.00032 (2.88)

D/H = (2.656±0.067)×10−5 (2.89)

using the code PARTHENOPE [40]. This compares favorably to our values:

YP = 0.24307±0.00002, (2.90)

D/H = (2.631±0.006)×10−5, (2.91)

where the error bar is only from the uncertainty in ωb. Ref. [2] includes effects of

non-thermal neutrino spectral distortions [40], whereas our model only includes dark

radiation. The non-thermal spectra alters the neutron to proton ratio which is the source

of the disagreement for YP. We give a detailed description of the dark-radiation model to

distinguish between it and the models of Ch. 6.

The model we explore in this section is identical to ΛCDM except for one

additional constituent: dark radiation. The dark radiation energy density is radiation at

all epochs and does not interact with the other energy-density constituents through any

force except gravitation.

The total energy density as given in terms of radiation, matter, and vacuum energy

components is

ρ(a) = ρr(a)+ρm(a)+ρv(a), (2.92)

which depend on the scale factor a as a−4, a−3, a0, respectively, as long as there is no

energy transfer between the species. We assume for the purposes of this section that the

neutrinos are massless, always acting as radiation energy density. The matter energy
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density consists of contributions from baryons and cold dark matter. Modeling the matter

as a pressureless gas and observing that the comoving matter energy density is conserved,

we write the proper energy density as

ρm =
3H2

0 m2
pl

8π
(Ωb +Ωc)

(a0

a

)3
. (2.93)

The vacuum energy is the least understood of the energy densities. Assuming the

universe to be critically closed, the sum of the three energy densities must be equal to the

critical energy density, specified only by the Hubble rate at the current epoch. Hence,

ρv = ρc−ρr,0−ρm,0. The vacuum energy density is negligible at all epochs of interest

in this paper but is included for completeness.

The radiation component is given as:

ρr = ργ +ρν +ρdr (2.94)

where ργ is the photon energy density, ρν is the neutrino energy density, and ρdr is the

dark-radiation energy density. We parametrize ρdr as

ρdr =
7
4

(
4

11

)4/3
π2

30
T 4

δdr, (2.95)

where δdr is the dark-radiation parameter and is always assumed to be non-negative. In

principle, we could entertain negative values of δdr since it is an adjustable parameter

of ρr. Such a change requires a fundamental reworking of the ΛCDM model so that

∑i Ωi = 1. These non-standard cosmologies obtain when considering, for example,

neutrino oscillations. These models, however, are not continuously connected with our

model at δdr = 0, for any values of the parameters, thus motivating the maintenance of

δdr > 0.
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We write N(th)
eff = 3+∆N(th)

eff and assume that the contribution to N(th)
eff from ρν is 3.

Then the contribution from ρdr is given as ∆N(th)
eff . We see then that ∆N(th)

eff = δdr. This is

simply a statement of the fact that Ñeff = 3+∆N(th)
eff = N(th)

eff for ‘standard’ cosmologies. It

is, therefore, unnecessary for this simple dark-radiation model, to deduce Ñeff from rs/rd

since N(th)
eff =Ñeff by construction. This model of dark radiation is the usual model applied,

for example in Ref. [2] and we explore, in this section, the predictions of the present

BURST code to verify our results against those of prior results within the community.

We will use Ñeff, for the remainder of this section, to denote the “effective number of

relativistic degrees of freedom3.”

Figures 2.3–2.6 show the results of computations in which the four parameters

ωb, YP, D/H, and Ñeff are varied. We begin by varying the two model inputs: ωb and Ñeff.

The upper panel in Fig. 2.3 shows the dependence of Ñeff on ωb for curves of constant YP;

the vertical band is the Planck value of ωb = 0.02207±0.00033. The figure is generated

by first choosing a value for the baryon density in the range 0.004≤ ωb ≤ 0.029. Each

selected value of the dark radiation parameter in the range 3≤ Ñeff ≤ 4.5 allows for the

prediction of YP and D/H by parametrizing the radiation energy density as in Eq. (2.6).

The values so obtained are plotted as contours in the Ñeff-ωb plane in the upper and lower

panels of Fig. 2.3. The solid curve is the preferred value YP = 0.2465±0.0097 of Ref.

[1], which is a selection of observations of metal poor extragalactic H II regions. The

contours are spaced by roughly 0.0097/3 showing that Ñeff is not strongly constrained by

values of YP alone; this is a manifestation of the degeneracy of Ñeff and YP. For example,

at YP = 0.2465±0.0035, corresponding to the contours closest to YP = 0.2465, the range

allowed Ñeff is nearly consistent with both the standard, calculated value Neff = 3.046

and the Ref. [2] derived value of Neff = 3.30±0.27.

Predictions of the primordial deuterium abundance are a much more sensitive

3We refer to Neff as the effective number of relativistic degrees of freedom although there are factors that
complicate this interpretation, among them the temperature parameter, and fermionic nature of neutrinos.
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constraint upon allowed values of Ñeff. This can be seen in the lower panel of Fig. 2.3. The

solid line contour with 105×D/H = 2.530±0.04 corresponds to the recent measurement

of Ref. [3]. Contours in this figure are separated by the one standard deviation of Ref.

[3]. There are two points of interest regarding the deuterium figure. First, as noted in Ref.

[3], observation of the primordial component of deuterium is precise enough to begin to

constrain the microscopic physics of the thermally averaged nuclear reaction rates and

their cross sections. Additionally, given the precision of the current and forthcoming

deuterium measurements and the strong dependence of Ñeff on its value (at constant ωb),

we advocate using D/H as a prior, over YP, for future base model parameter searches as

recommended by Refs. [41, 9, 3].

The degeneracy between Ñeff and YP is again evident in Fig. 2.4. Each plot

explores the D/H vs. ωb contour space, where the upper plot contains contours of

constant YP and the lower plot contains contours of constant Ñeff. The shaded bands

in each figure indicate the one-sigma observations of ωb and D/H from Refs. [2, 3],

respectively. Deuterium is not an input parameter into our model. We compute it by

choosing a baryon number and iteratively change the dark-radiation parameter, δdr until

matching the chosen deuterium target. The outputs from the process are Ñeff and YP.

Values of ωb, D/H and Ñeff are in satisfactory agreement with the standard cosmology at

the precision of current observations.

The quantities D/H and ωb are the tightest observationally-constrained parameters

we are currently investigating. Figure 2.5 shows two plots in the YP-Neff plane with

contours of constant ωb (upper plot), and contours of constant 105×D/H (lower plot).

The horizontal band in each figure indicates the one-sigma observation of YP from Ref.

[1]. Like D/H, YP is not an input into our model. Consequently, we adopt the identical

iterative method for YP in Fig. 2.5 as we do for D/H in Fig. 2.4. For the ωb (upper) plot of

Fig. 2.5, the solid contour line is the best-fit value of Ref. [2] with nine-sigma spacing of
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the contours. The contours exist in a subspace of the YP-Neff plane which is well within

current observations, but nevertheless could span a range of radically different physics.

Similarly, the bottom plot shows the 105×D/H value of Ref. [3] as the solid contour

with the other contours spaced fifteen-sigma apart. Clearly, YP and Ñeff do not constrain

the cosmological model as tightly as ωb and D/H. This observation indicates the import

of using the next generation of 30-meter class telescopes and CMB observation to better

determine the light element abundances, particularly, YP with high precision.

Figure 2.6 shows how Ñeff changes in the YP-ωb plane. The shaded bands in each

figure indicate the one-sigma observations of ωb and YP from Refs. [2, 1], respectively.

We may conclude from this plot that there could exist many different values of Ñeff

consistent with the observations of YP and ωb. However, we caution against such a

conclusion without considering the effect on D/H. In fact, we choose not to include a

figure of contours of D/H in the YP-ωb plane because the strong sensitivity of D/H to ωb

produces too large a range of values for YP to be useful as a constraint of the cosmological

model.

All calculations show a consistency between ωb, Ñeff, D/H, and YP to a conser-

vative limit of two-sigma error range in each observation. We expect the uncertainties

in each observation to improve in the coming years with large ground-based CMB ex-

periments [42, 43] and 30-meter class telescopes [44, 45, 46]. Future high-precision

measurements may result in tensions for the best-fit values of ωb, Ñeff, and D/H. These

tensions could be indications of the need for more precise theoretical and numerical

approaches or could signal the presence of physics beyond the standard model. As it

stands here, the bottom panels of Figs. 2.3 and 2.4 shows that the tension between ωb and

D/H cannot be resolved with the addition of extra radiation energy density. Uncertainties

in nuclear reactions may produce disagreement between ωb and D/H, allowing D/H to

become a probe of nuclear physics. It is also possible that the spectroscopic determination
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of D/H may be subject to small systematic errors only recognizable at such precision. An

exciting prospect is the need to revise the CSM to resolve tensions with the observations

of D/H and ωb, possibly leading to the conclusion of BSM physics active during BBN.

2.6 Conclusion

The contour plots of Sec.2.5 show consistency between D/H, ωb, and Ñeff. The

prediction of the deuterium abundance from BBN provides support for the standard

cosmology. SBBN begins close to equilibrium, and only requires the evolution of the

plasma temperature, the scale factor, the electron degneracy parameter, and the nuclear

abundances. Non-standard BBN may require more advanced techniques. We will address

implications arising from non-standard cosmologies in future chapters.

We thank Christel Sutterley for originally providing the numerical codes to

calculate the BBN abundances.

Sections 2.1 and 2.5 are reprints of some of the material as it appears in “Probing

neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis,
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Figure 2.3: (Top) Ñeff plotted against ωb for contours of constant values of YP (labeled
by mass fraction). The solid curve is the preferred value of Ref. [1]. The contours
are spaced by ∆YP ≈ 0.003. (Bottom) Ñeff versus ωb for contours of constant values
of 105×D/H. The solid curve is the preferred value of Ref. [3]. The contours are
spaced by ∆(105×D/H) = 0.04. The vertical shaded band in each figure indicates the
one-sigma observation of ωb from Ref. [2]. In each case, abundances are determined in
a self-consistent BBN calculation.
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Figure 2.4: (Top) 105×D/H plotted against ωb for contours of constant YP. The solid
curve is the preferred value of Ref. [1]. The contours are spaced by ∆YP ≈ 0.003.
(Bottom) 105×D/H versus ωb for contours of constant Ñeff. The shaded bands in each
figure indicate the one-sigma observations of ωb and D/H from Refs. [2, 3], respectively.
The contours are spaced by ∆Ñeff = 0.3
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Ref. [3]. The contours are spaced by ∆(105×D/H) = 0.6. The horizontal band in each
figure indicates the one-sigma observation of YP from Ref. [1].
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Chapter 3

Dilution

3.1 Introduction

Dark matter makes up roughly 25% of the energy density of the universe. The

nature of the dark matter particle is unknown. Primary candidates include the lightest

super–symmetric particle, primordial black holes, axions, and sterile neutrinos among

others. We focus on sterile neutrinos and investigate a specific mechanism for sterile–

neutrino production called dilution. Dilution posits the existence of two sterile neutrinos.

One particle is the dark matter candidate with a lifetime longer than the age of the current

universe. The other particle is shorter lived and decays in the early universe. We will

study the ramifications of the diluton, the second sterile neutrino, during weak decoupling

and big bang nucleosynthesis (BBN).

The diluton decays into standard model particles. Photons, electrons, positrons,

and all three flavors of neutrinos and anti-neutrinos are the only particles to appear in

the final state. The energy in the plasma particles will thermalize with the background

plasma. For an ultra-relativistic bosonic species coupled to the plasma (e.g. photons), the

68
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number density of the particle in thermal equilibrium goes as:

ncoup = g
ζ(3)
π2 T 3, (3.1)

where g is the internal partition function, ζ(3) is the Riemann zeta function of argument

3, T is the plasma temperature, and we have assumed zero degeneracy. For a fermionic

species with ultra-relativistic kinematics (e.g. neutrinos), the number density is the same

as Eq.(3.1) multiplied by an overall factor of 3/4. If a particle has decoupled from the

plasma, i.e. it no longer partakes in energy transfer between the particles constituing the

plasma, then the number density, ndec, of the particle changes with respect to scale factor,

a, as the following:

ndec = n0

(a0

a

)3
, (3.2)

where n0 is the proper number density of the decoupled species at the current epoch,

and a0 ≡ 1 Mpc is the scale factor at the current epoch. The kinematics of the particle

are irrelevant to the form of the number density, i.e. Eq.(3.2) is applicable at all epochs

when the particle is decoupled. Eq.(3.2) also applies to massive particles still thermally

coupled to the plasma, but no longer in chemical equilibrium with the plasma particles.

An example of this phenomenon would be baryons. If we define the baryon–to–photon,

ηb, to be the ratio of the baryon number density to photon number density, then:

ηb, f

ηb,i
=

(
nb, f

nb,i

)(
nγ,i

nγ, f

)
=

(
ai

a f

)3( Ti

Tf

)3

, (3.3)

where the subscripts i and f refer to initial and final values, respectively.

We can relate the temperatures of Eq.(3.3) to numerous quantities. We choose to

relate the temperature to the entropy density. For an ultra-relativistic species, the entropy
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density is:

sV,i ≡ gi
2π2

45
T 3

i , (3.4)

where gi is the internal partition function, and Ti is the temperature of species i. For

the total entropy density in relativstic particles, we need the quantity g?S, the effective,

relativistic, entropic, degrees–of–freedom statistic from Eq.(1.81). In this chapter, we

consider a different quantity g?, the effective relativistic-energy degrees-of-freedom

statistic:

g? ≡∑
i

g(b)i

(
Ti

T

)4

+
7
8 ∑

j
g( f )

j

(
Tj

T

)4

, (3.5)

where the ∑
i

is a sum over the bosonic degrees of freedom, and ∑
j

is a sum over the

fermionic degrees of freedom. g?S has the same form as Eq.(3.5), except for a power of

three on the ratios (Ti, j/T ). Eq.(3.5) allows for different temperatures of each particle

species, but still assumes each species maintains an ultra-relativistic equilibrium energy

density. We will not consider the scenario where the species have different temperatures,

implying that g?S = g?. Our expression for the total entropy density in relativistic particles

is:

sV = g?S
2π2

45
T 3 = g?

2π2

45
T 3 =⇒ T 3

∝
sV

g?
, (3.6)

giving a new ratio of ηb, f to ηb,i of:

ηb, f

ηb,i
=

(
ai

a f

)3( Ti

Tf

)3

=

(
nb, f

nb,i

)(
sV,i

sV, f

)(
g?, f
g?,i

)
≡
(

si

s f

)(
g?, f
g?,i

)
≡ 1

F

(
g?, f
g?,i

)
,

(3.7)

where we have defined s as the entropy per baryon, and the dilution factor F as the ratio

of the final to initial entropy per baryon. Our reason for using s as an alternative to T is

for time–evolution purposes. The classical entropy S evolves as:

dS =
dQ
T

=⇒ dS
dt

=
1
T

dQ
dt

, (3.8)
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for added heat Q. The total entropy and entropy per baryon are constants as the universe

expands, assuming no heat flow.

During the evolution of the early universe, the relativistic–energy degrees–of–

freedom decreases due to two separate processes: particle/anti-particle annihilation; and

decoupling. In the first process, annihilation of the particle/anti-particle seas convert

internal energy to heat. The plasma experiences no net heat flow, and the entropy per

baryon is constant. There must be an associated relative increase in temperature with the

decrease in g?. This relative increase in temperature need not be an absolute increase in

temperature. The increase is with respect to a comoving quantity, such as the product of

the cube–root of baryon density multiplied by scale factor. Therefore:

If s f = si =⇒ g?,ia3
i T 3

i = g?, f a3
f T 3

f

=⇒ Tf = Ti
ai

a f

(
g?,i
g?, f

)1/3

, (3.9)

gives the final temperature in terms of the initial temperature, scale factors, and g? before

and after an epoch of annihilation. In the second process, a particle species decouples

from the plasma and reduces g? and the entropy per baryon. There is no change in the

internal energy, so the temperature remains constant. The ratio of baryon–to–photon

ratios becomes:

ηb, f

ηb,i
=

(
si

g?,i

)(
g?, f
s f

)
=

2π2T 3
i

45
45

2π2T 3
f
=

(
Ti

Tf

)3

= 1, (3.10)

, implying no change in the baryon-to-photon ratio.

In the case of a diluton decaying in the early universe, the heat added is non-zero.
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If all of the heat goes into the plasma, the entropy per baryon evolves as:

ds
dt

=− 1
nbT

∂ρs

∂t

∣∣∣∣
a,T

. (3.11)

The overall negative sign indicates that the change in entropy per baryon is positive as

the diluton energy density, ρs, decreases due to particle decay. Eq.(3.11) assumes that all

of the energy from decay flows into the plasma and no energy flows into decoupled seas.

We will abandon this assumption later in the chapter.

We have considered the baryon to photon ratio, although we are interested in

a relic energy density of dark matter. The ratio of final to initial dark–matter–energy

densities, ρDM, is the same as the ratio of number densities, nDM, (assuming the initial

number density refers to an epoch when the dark matter particle is decoupled):

ρDM, f

ρDM,i
=

mDMnDM, f

mDMnDM,i
=

(
ai

a f

)3

=
1
F

(
g?, f
g?,i

)(
Tf

Ti

)3

=⇒ ρDM, f =
1
F

(
g?, f
g?,i

)(
Tf

Ti

)3

mDMnDM,i

=
1
F

(
g?, f
g?,i

)(
Tf

Ti

)3

mDM

(
3
4

gDM
ζ(3)
π2 T 3

i

)
, (3.12)

where we have taken the initial number density of the dark–matter candidate to be at

an epoch immediately before the particle decouples. We will set the internal partition

function of the dark-matter candidate to 2. The dark matter density at the current epoch

is defined to be the ratio of the dark matter energy density to the critical energy density,

multiplied by the square of the hubble parameter:

ωDM ≡ΩDMh2 =
ρDM,0

ρc,0
h2 =

ρDM,0

3H2
0 m2

pl/8π
h2, (3.13)

where the Hubble rate at the current epoch is defined to be H0 ≡ h× 100 km/s/Mpc
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and h∼ 0.7 from measurements. If we: (1) set the initial quantities (subscript i) to the

quantities at dark–matter decoupling (subscript dec); (2) set the final quantities (subscript

f ) to the quantities at the current epoch (subscript 0); and (3) substitute Eq.(3.12) into

Eq.(3.13), we find:

ωDM = 0.1203×
(

T0

2.726 K

)3

×
( mDM

7.1 keV

)
×
(

g?,dec/g?,0
53.375

)−1

×
(

F
32.34

)−1

.

(3.14)

The calculation of the dilution factor F is non-trivial and is the subject of this

chapter. The motivation for the diluton is the dark–matter production mechanism, but we

stress that the results are applicable to generic treatments of heavy–particle decay during

weak-decoupling and BBN. The structure of this chapter proceeds as follows. Section

3.2 outlines a primitive particle model for sterile neutrinos and applies it to the early

universe. Sec.3.3 discusses the the rates and spectra of the different decay channels of the

diluton. Sec.3.4 gives the approximate scheme for thermalizing the neutrino and plasma

energy from the decays. Sec.3.5 presents first results on the evolution of the entropy,

weak–interaction rates, and nuclear abundances. We conclude in Sec.3.6.

3.2 Preliminaries

3.2.1 Sterile Neutrino Basics

Sterile neutrinos mix with active neutrinos on scales below the weak–interaction.

If we consider the toy model of one active and one sterile neutrino, we can write the

representation of each flavor eigenstate as a superposition of mass eigenstates:

|νa〉= cosθ|ν1〉+ sinθ|ν2〉 (3.15)

|νs〉=−sinθ|ν1〉+ cosθ|ν2〉, (3.16)
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where νa,s are the active/sterile eigenstates, ν1,2 are the mass eigenstates, and θ is the

mixing angle. The set of equations (3.15), (3.16) is incomplete as there are three active

neutrinos and possibly more sterile neutrinos. However, because the mixing angle is

small (sinθ << 1) between any active-sterile pair, Eqs.(3.15) and (3.16) serve to show

that the heavier mass eigenstate is nearly coincident with the sterile flavor state. Typical

integrated cross–sections, 〈σv〉, as a function of energy E for sterile neutrinos behave

like:

〈σv〉 ∼ G2
F sin2

θE2 (3.17)

where GF = 1.166364× 10−11 MeV−2 is the weak coupling constant, also called the

Fermi coupling constant.

3.2.2 Diluton Basics

We investigate the sterile neutrino as a diluton using estimation arguments. The

diluton is produced thermally in the big bang, and exists in thermal and chemical

equilibrium with the primeval plasma if Γs & H, where Γs is a typical scattering rate of

dilutons with active neutrinos, and H is the Hubble rate. We use 〈σv〉 from Eq.(3.17) to

approximate Γs as:

Γs ∼ 〈σv〉ns, (3.18)

where ns∼ T 3 is the number density of the diluton species at temperature T . To determine

the temperature where Γs ∼ H, we use Eq.(3.5) to express the Hubble rate as:

H =

√
8π

3m2
pl

g?
π2

30
T 4 = 1.66g1/2

?
T 2

mpl
, (3.19)

where mpl = 1.220932×1022 MeV is the Planck mass. If we take the energy variable in

Eq.(3.17) to be E ∼ T , we find a relation between Γs and H in terms of temperature and
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g?:

〈σv〉ns ∼ G2
F sin2

θT 5 ∼ 1.66g1/2
?

T 2

mpl
(3.20)

=⇒ Tdec ∼ g1/6
?

(
1

sin2
θ

)1/3( 1
G2

Fmpl

)1/3

(3.21)

= g1/6
?

(
10−9

sin2
θ

)1/3

103 MeV (3.22)

where we have used the approximate relation G2
Fmpl ∼ 1 MeV−3. We exercise caution

in the use of Eq.(3.22), as g? is a function of temperature. For the diluton mass and

mixing angles germane to our discussion of weak decoupling and BBN, the decoupling

temperature is∼ 103 MeV, implying g?∼ 60 and maintaining consistency with Eq.(3.22).

Once the diluton decouples from the plasma, the product of the cube of the scale

factor and the number density, a3ns, would become a comoving invariant if the species

were stable to decay. We can use a comoving temperature Ts to describe the evolution

in phase-space density of the diluton species and an exponential decay expression to

describe the decay of the diluton post decoupling. The energy density is simply equal to

the number density multiplied by the average energy of a given particle:

ρs ∼ ET 3
s e−t/τ, (3.23)

where τ is the lifetime of the diluton. In general, Ē would follow from a general dispersion

relation relating the momentum, mass, and energy. For the diluton masses and epochs we

consider: Ē ∼ ms, the mass of the diluton. The energy density is:

ρs ∼ msT 3
s e−t/τ→ ms

3
2π2 ζ(3)T 3

s e−t/τ, (3.24)

where we have explicitly written out the expression for the energy density so as to
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implement it in a calculation. We assume no asymmetry between particles and anti-

particles, implying Eq.(3.24) contains an overall multiplicative factor of 2. For the

diluton temperature, we use the entropy in ultra-relativistic particles to relate the diluton

temperature to the plasma temperature at weak decoupling. If we assume that the

diluton decouples after the termination of tau/anti-tau particle annihilation, but before the

quark-hadron phase transition, the relativistic-energy degrees of freedom is:

g(sd)
? =2+2×8+

7
8
(2×2+2×2+1×2×3+2×2×3×3) = 61.75, (3.25)

γ g µ e ν q (3.26)

for photons (γ), gluons (g), muons/anti-muons (µ), electrons/positrons (e), neutrinos/anti-

neutrinos (ν), and quarks/anti-quarks (q). At the onset of weak decoupling, only the

photons, electrons/positrons, and neutrinos carry the entropy in relativistic particles,

implying:

g(wd)
? = 2+

7
8
(2×2+1×2×3) = 10.75. (3.27)

Therefore, the ratio of the diluton to plasma temperature at the onset of weak decoupling

is:
Ts

T
=

(
g(wd)
?

g(sd)
?

)
=

1
1.79

. (3.28)

Eq.(3.28) is only applicable at the start of weak decoupling. During the epoch of positron–

electron annihilation, the plasma temperature experiences a non-trivial evolution and

Eq.(3.28) is no longer applicable. During this epoch, the diluton temperature parameter

redshifts with the expansion. It suffices to find the diluton lifetime in order to determine

all of the quantities in Eq.(3.24)
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3.3 Decay channels

The diluton decays into several channels. We consider the following channels in

our analysis:

νs→ νi +ν j + ν̄ j (3.29)

νs→ νi + γ (3.30)

νs→ νi +π
0 (3.31)

νs→ π
±+ e∓ (3.32)

νs→ π
±+µ∓ (3.33)

νs→ νi + e−+ e+ (3.34)

νs→ νi +µ−+µ+. (3.35)

The corresponding channels for ν̄s are symmetric. We will consider diluton masses well

in excess of active neutrino masses. Therefore, Rxns.(3.29) and (3.30) are always present.

Rxn.(3.31) - (3.35) require a mass threshold for ms. We do not consider diluton masses

heavy enough for τ particles in the final state. In addition, we do not include decays into

K±,0 channels for this analysis.

We make the approximation that Pauli blocking of fermions in the final state

is negligible at the epochs of interest. Therefore, the rate of disintegration for a given

channel is constant in temperature, and given as a function of ms, sin2
θ, and fundamental

constants[16].
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3.3.1 Decay into three neutrinos

The decay rate for this process is[16]:

Γ3ν =
G2

F
192π3 m5

s sin2
θ (3.36)

≈ 3.47×10−5 s−1
( ms

MeV

)5
sin2

θ. (3.37)

For the decay spectrum, we approximate that all three neutrinos equally share the initial

energy, implying for a given neutrino species i:

d fi

dE dt

∣∣∣∣
3ν

= Γ3νδ

(
E− ms

3

) 2
3
. (3.38)

where p is the momentum/energy of the neutrino and δ(x−x0) is the Dirac-delta-function.

The factor of 2/3 arises from the assumption that the probability the decay produces each

neutrino species (e,µ,τ) is equally likely. For anti-neutrinos, the factor would be 1/3.

The factors are switched when considering the decay of an anti-diluton.

3.3.2 Decay into active neutrino and a photon

The decay rate for this process is[16]:

Γνγ ≈
9G2

F
512π4 αm5

s sin2
θ (3.39)

≈ 2.72×10−7 s−1
( ms

MeV

)5
sin2

θ, (3.40)

where α≈ 1/137 is the fine-structure constant. The neutrino and photon are assumed

to be ultra-relativistic. Therefore, the energy is shared equally among the two daughter

particles:
d fi

dE dt

∣∣∣∣
νγ

= Γνγδ

(
E− ms

2

) 1
3
. (3.41)
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3.3.3 Decay into active neutrino and neutral pion

Assuming the diluton has a larger mass than the neutral pion (mπ0 ∼ 135.0 MeV),

the decay rate for this process is[16]:

Γνπ0 =
G2

F f 2
π

16π
ms(m2

s −m2
π0)sin2

θ (3.42)

≈ 70.56s−1
( ms

MeV

)3
(1− x2)sin2

θ, (3.43)

where x ≡ mπ0/ms and fπ = 131 MeV. The decay is into two particles, so the decay

spectra for each particle is monoenergetic. For the resulting neutrino:

d fi

dE dt

∣∣∣∣
νπ0

= Γνπ0δ

[
E− ms

2
(1− x2)

] 1
3
. (3.44)

We assume the neutral pion instantaneously decays into two photons.

3.3.4 Decay into charged pion and electron

Assuming the diluton has a larger mass than the sum of the charged pion and

electron (mπ +me ∼ 140 MeV), the decay rate for this process is[16]:

Γπe = 2
G2

F f 2
π

16π
ms
{[

m2
s − (mπ +me)

2][m2
s − (mπ−me)

2]}1/2
sin2

θ (3.45)

≈ 1.411×102 s−1
( ms

MeV

)3{[
1− (x+ y)2][1− (x− y)2]}1/2

sin2
θ, (3.46)

where x ≡ mπ

ms
and y ≡ me

ms
. The extra factor of 2 arises from two equally likely decay

channels: νs→ π++ e− and νs→ π−+ e+. We assume that the charged pion instanta-

neously decays into a muon. Without loss of generality, let us consider the case with

νs→ π++ e−. The resulting decay of the π+ is π+→ νµ +µ+. We also assume that the

muon instantaneously decays via µ+→ ν̄µ +νe + e+. This decay channel produces three
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distinct flavor/parity neutrinos: νe,νµ, and ν̄µ. Appendix C explains the derivation for the

spectra of each neutrino. For the νµ:

d fνµ

dE dt

∣∣∣∣
πe

= Γπe
mπ

2E(2)p(1)
θ

[
E−E(2)E(1)− p(1)

mπ

]
θ

[
E(2)E(1)+ p(1)

mπ

−E

]
, (3.47)

where the quantities E(1), p(1), and E(2) are defined in App.C and given in terms of the

masses of the diluton, charged pion (mπ), muon, and electron.

For the νe resulting from µ+ decay, the spectrum is:

d fνe

dE dt

∣∣∣∣
πe

=
mπmµ

4E(2)p(1)

E(max)
µ∫

E(min)
µ

dEµ
1
pµ

E(max)’
νe∫

E(min)’
νe

dE
′
νe

d fνe

dE ′νe

1
E ′νe

, (3.48)

where the quantities E (max)
µ , E (min)

µ , E (min)’
νe , and E (max)’

νe are defined in App.C. E (max)
µ and

E (min)
µ are given in terms of masses. E (min)’

νe and E (max)’
νe are given in terms of masses and

Eµ, the dummy variable of the outer integral. The quantity d fνe/dE
′
νe

is the probability

density for producing a νe with energy E
′
νe

unique to muon decay.

For νµ, we make the approximation that the decay spectrum is similar enough to

the νe spectrum that we do not execute another computation, i.e.:

d fνµ

dEνµ dt

∣∣∣∣
πe

=
d fνe

dEνe dt

∣∣∣∣
πe
. (3.49)
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3.3.5 Decay into charged pion and muon

Assuming the diluton has a larger mass than the sum of the charged pion and

muon (mπ +mµ ∼ 245 MeV), the decay rate for this process is[16]:

Γπµ = 2
G2

F f 2
π

16π
ms
{[

m2
s − (mπ +mµ)

2][m2
s − (mπ−mµ)

2]}1/2
sin2

θ (3.50)

≈ 1.411×102 s−1
( ms

MeV

)3{[
1− (x+ y)2][1− (x− y)2]}1/2

sin2
θ, (3.51)

where, for this channel, x≡ mπ/ms and y≡ mµ/ms. We assume that the pion and muons

(from both νs and π± decays) decay instantaneously. Therefore, this νs–decay channel

produces five neutrinos. The spectra of the three neutrinos arising from pion decay have

similar spectra to those of section 3.3.4, with a modification of some parameters due

to the difference in mµ compared to me. Without loss of generality, we consider the

decay νs→ π++µ−. The µ− decays by µ−→ νµ +νe + e−. For the νe, App.C gives the

spectrum as:

d fνe

dE dt

∣∣∣∣
πµ

= Γπµ
mµ

2p(3)

Ẽ(max)’
νe∫

Ẽ(min)’
νe

dE
′
νe

d fνe

dE ′
νe

1
E ′

νe

, (3.52)

where the quantities E(3), p(3), Ẽ (min)’
νe

, and Ẽ (max)’
νe

are defined in App.C. We assume a

similar spectrum for the νµ resulting in the muon decay.

3.3.6 Decay into active neutrino and electron–positron pair

Assuming the diluton has a larger mass than twice the electron mass, the decay rate

for this process is related to the three neutrino decay rate. There is only one possibility for

the particle/anti-particle pair in this channel, as compared to the three–neutrino channel
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where there are three possibilities. Thus:

Γνe± =
1
3

Γ3ν. (3.53)

We will approximate the spectrum of the neutrino as monoenergetic. To calculate the

energy, we assume that all three particles have the same geometry as three-neutrino decay,

implying that they each particle is separated by an angle of 120◦. Therefore, the spectrum

of the neutrino is:
d fi

dE dt

∣∣∣∣
νe±

= Γνe±δ(E−Eνe±)
1
3
, (3.54)

where:

Eνe± ≡
ms

3

(
2
√

1−3x2−1
)
, (3.55)

for x = me/ms.

3.3.7 Decay into active neutrino and muon/anti-muon pair

Assuming the diluton has a larger mass than twice the muon mass, the decay rate

for this process is equal to the νe± decay rate. We again assume that the decay products

from the νs decay are monoenergetic and separated by 120◦. This channel produces five

neutrinos, one from the νs decay and two each from the µ± decays. The spectrum for the

daughter neutrino resulting from the νs decay is similar to that of Eq.(3.54) in Sec. 3.3.6.

The monoenergetic muons cause the resulting spectra of the muon-decay neutrinos to be

similar to the spectrum of Eq.(3.52) in Sec. 3.3.5, with a substitution of the E(3) quantity

to that of the muon energy:

Eνe± ≡
ms

3

(
2
√

1−3x2−1
)
, (3.56)

for x = mµ/ms.



83

3.3.8 Total Decay rate

The total decay rate is given as the sum of the seven rates:

Γs ≡ Γ3ν +Γνγ +Γνπ0 +Γπe +Γπµ +Γνe±+Γνµ±. (3.57)

The rate for each decay channel contains an identical overall factor of sin2
θ, implying

that we can write the total decay rate as:

Γs = Rsin2
θ≡ 1

τ
, (3.58)

where R is a function of the diluton mass (and other masses, constants, etc.) but inde-

pendent of the mixing angle, and τ is the mean lifetime of the diluton. We define the

branching ratios , f (i)
br , as the probability the diluton decays into any one given channel i:

f (i)
br ≡

Γi

Γs
, (3.59)

which also are independent of mixing angle. Therefore, we can change the lifetime of

the diluton by altering the mixing angle, while preserving the branching ratios at a given

diluton mass. This allows us to study masses and lifetimes of consequence in weak

decoupling and BBN.

3.4 Thermalization Procedure

All of the spectra in Sec. 3.3 have corresponding spectra for a ν̄s. We assume zero

degeneracy between the dilutons and anti-dilutons, implying we can mirror the spectra

for the ν̄s with the spectra from νs decay.

The decay channels of Sec.3.3 produce photons, electrons, and positrons in the
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final state. That energy immediately thermalizes with the primeval plasma, thereby

changing the temperature of the plasma. The termperature, T , changes as a function of

time t according to Eq.(1.139):

dT
dt

=−3H
ρ̃+ p− 1

3H
∂ρ

∂t
|a,T

dρ

dT

, (3.60)

where ρ is the energy density, p is the pressure, and (∂ρ/∂t)a,T is the energy density

added through heating at constant T and scale factor a. In the standard cosmology (SC),

the heat added has three terms in the weak decoupling/BBN epochs:

(
∂ρ

∂t

)(SC)

a,T
=−

[
∂ρe

∂t
+

∂ρb

∂t
+

∂ρν

∂t

]

a,T
, (3.61)

where the first and second terms are the heat changes in the charged lepton and baryon

sectors from nuclear reactions, and the third term is the heat change in the neutrino sector

from the non-sharp weak–decoupling transition. The overall minus sign indicates that a

reduction in energy density for any one sector raises the plasma temperature. The first

two terms of Eq.(3.61) tend to be negative, as nuclear fusion releases binding energy.

The neutrino term is positive within the standard cosmology, implying a net flow of heat

from the plasma to the neutrinos. Calculating the third term requires a full Boltzmann

treatment to accurately describe the kinematics of the neutrinos and positrons/electrons.

This is the subject of Chapter 7. The case of a decaying particle requires one more term

in Eq.(3.61):
∂ρ

∂t

∣∣∣∣
a,T

=−
[

∂ρe

∂t
+

∂ρb

∂t
+

∂ρν

∂t
+ fpl

∂ρs

∂t

]

a,T
. (3.62)
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We use Eq.(3.24) to find:

∂ρs

∂t

∣∣∣∣
a,T

=−3ζ(3)
2π2

ms

τ
T 3

s e−t/τ. (3.63)

The negative sign shows that as the diluton decays, heat flows into the plasma. However,

not all the heat from diluton decays flows into the plasma. Therefore, the factor fpl

denotes the fraction of heat flowing into the plasma per decay.

3.4.1 Injection of entropy into plasma

The fraction of heat flow is different for each decay channel, and different for

each micro-decay for a given channel in the cases of pions or muons in the intermediate

state. To calculate fpl, we calculate the average energy in neutrinos for a given decay

channel:

E(i)
ν =

Ni

∑
j=1

ms∫
0

dE
d f (i)j

dE
E, (3.64)

where the sum over j is for the Ni neutrinos created in decay channel i. The average

energy per diluton decay is the weighted average of the average energy in neutrinos for a

given decay and the branching ratios of Eq.(3.59):

Eν =
7

∑
i=1

f (i)
br E(i)

ν . (3.65)

With Eq.(3.65), we can compute fpl:

fpl ≡
ms− Ēν

ms
. (3.66)
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3.4.2 Scattering of decay neutrinos on electrons and positrons

The injection of entropy into the plasma is not the only way for heat to flow

out of the diluton sector. High energy neutrinos born from diluton decays scatter on

the active neutrinos, thereby increasing the total energy and skewing the spectra in the

neutrino seas. The decay neutrinos can also scatter on electrons and positrons, thereby

raising the temperature of the plasma (a negative (∂ρν/∂t)a,T in Eq.(3.61).) A proper

treatment of the energy transport requires a Boltzmann treatment and will be left to later

work. For the purposes of the present work, we will institute the approximation that

neutrinos with energies above a certain energy value scatter down to that energy value

via electron/positron interactions only (thereby heating the plasma), within one time step.

We label this energy value Etherm. Neutrinos with energies below Etherm free–stream.

We can calculate Etherm by approximating the rate of scattering with the expansion

rate. The scattering rate approximation is Γ∼ 〈σv〉ntar, where 〈σv〉 is an average product

of an integrated cross section with a relative velocity, and ntar is the number density of the

target particles. For weak interactions, typical cross sections go as ∼ G2
FE2. We take the

square of the energy to be∼ EthermT , a combination of the neutrino energy (Etherm) and the

electron/positron energy (∼ T ). The number density of the target electrons/positrons is

that of a relativistic species, and is∼ T 3. Our expression for the equality of the expansion

rate and scattering rate is:

H ∼ G2
FEthermT 4 =⇒ Etherm = Adec

H
G2

FT 4
, (3.67)

where Adec = 4.8419 is a constant. In radiation–dominated conditions, H ∼ T 2, implying

Etherm rises with decreasing temperature: Etherm ∼ 1/T 2.

The functional form of Etherm in terms of H,GF and T is reasonable, given the

approximation of Eq.(3.67). Our implementation of Etherm is cause for suspicion. One
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limitation of the Etherm program is the poor description of high temperatures. If neutrinos

down scatter to Etherm, then at high temperatures Etherm will be a value much lower than

the average energy of a thermal spectrum. Clearly, neutrinos at energies above Etherm

can down scatter, but they can also up scatter. Our prescription for Etherm does not allow

such a process. In addition, in the epochs when Etherm accurately depicts a barrier for

thermalization, the thermalized decay neutrinos are grouped into a delta function at

the value of Etherm. In reality, the thermalized neutrinos would scatter into a spectrum

approaching an ultra-relativistic Fermi–Dirac blackbody. Lastly, we approximated that the

neutrinos are only down scattering on electrons and positrons. Cross sections for neutrino–

neutrino scattering are comparable to those of neutrino–electron. Therefore, more energy

density should be added to the neutrino seas, and equivalently less energy density to the

plasma. These limitations are further proof that only a Boltzmann treatment between the

neutrinos and electrons/positrons can accurately describe the energy transport.

3.5 Evolution of the early universe

The previous sections provide the framework to evolve the diluton energy density

and associated quantities throughout weak decoupling and BBN. To see how the diluton

affects the abundances, we need to pick a mass and lifetime in accordance with weak

decoupling scales. The relict neutrinos begin to go out of chemical equilibrium with the

electrons and positrons at T ∼ 3 MeV which corresponds to a time of ∼ 0.1 s. If the

dilutons decay away before this time, then the relict neutrinos are still coupled to the

plasma and we can use Eqs.(3.61) and (3.62) to study the evolution of the equilibrium

distributions. In addition, BBN ends at T ∼ 30 keV, corresponding to a time of ∼ 103 s.

If the dilutons were to decay at this late of a time, they would not interact with the

plasma, although they could interact with the ambient protons causing a later epoch of



88

nucleosynthesis. We do not consider that case, and instead focus on diluton lifetimes

with ranges of 0.1-100 seconds.

We investigate the diluton mass ranges such that all seven decay channels of

Sec.3.3 are present. This requires masses in excess of 250 MeV. We will not venture

too far from this lower bound, as this results in a considerable increase in entropy with

manifest implications for BBN. Figure 3.1 shows the evolution of the entropy per baryon,

s, in a scenario where the diluton has a mass of 350 MeV and a lifetime of 5.2 s. We

define the dilution factor F as the following:

F ≡ sfinal

sinitial
. (3.68)

The initial and final values of the entropy per baryon correspond to epochs before and

after the decay of the diluton, respectively. The final value of s must agree with the

CMB–inferred value, s(CMB) ∼ 5.90×109. Fig.3.1 has an initial value of s∼ 6.0×108.

An analytical calculation of the predicted sinitial is tedious due to the complexity of the

decay spectra and the Etherm program. Therefore, we iterate on sinitial to find a value which

produces a final value of s in agreement with the CMB. The change in s occurs primarily

during the weak decoupling epoch, necessitating a transport calculation. The end of the

dilution epoch occurs before the onset of helium formation.

We note that the predicted value of Neff is much lower than that predicted by

the standard model. We stress that one of the limitations of our Etherm program is the

underestimate of the energy flow into the active neutrino seas. If a proper Boltzmann

treatment produced an Neff as low as the scenario in Fig.3.1, then the scenario would be

incompatible with observed results.

The diluton acts in two separate ways to affect the active neutrino spectra: (1) it

creates high-energy non-thermal neutrinos and (2) it dilutes the background neutrinos by
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Figure 3.1: The entropy per baryon, s, is given as a function of plasma temperature T .
The diluton has a mass ms = 350 MeV and a lifetime of 5.2 s. The shaded vertical bar at
T ∼ 3 MeV indicates the start of weak decoupling. The shaded vertical bar at T ∼ 0.1
MeV indicates the epoch of helium formation.

injecting entropy into the plasma. These competing effects require a numerical treatment

of the weak interaction rates with nucleons, namely:

n+νe↔ p++ e− (3.69)

n+ e+↔ p++νe (3.70)

n↔ p++ e−+νe. (3.71)

Fig.3.2 shows the evolution of the combined forward (n→ p) and combined reverse

(p→ n) rates in Rxns.3.69 - 3.71, plotted along with the Hubble rate. The figure compares
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the rates between the standard cosmology (SC - dashed curves), and a cosmology with

a ms = 350 MeV, τ = 5.2 s diluton (DS - solid curves). At the temperaures plotted, the

Hubble rate and forward n→ p rate are similar in the SC and DS simulations. The reverse

p→ n rate is highly sensitive to the specific cosmology. The reverse rate requires an

energy threshold for the νe equal to the sum of the electron mass and the neutron–proton

mass difference. No such threshold exists for the forward rate. The diluton is able

to create neutrinos with energies in excess of 100 MeV. Therefore, the reverse rate is

disproportionately larger in the DS case than the SC case. The implications for a larger

p→ n rate are more ambient neutrons at later times.
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Figure 3.2: The neutron to proton rates and Hubble rate are given as a function of
plasma temperature T . The dashed lines correspond to the standard cosmology (SC),
while the solid lines correspond to a diluton scenario (DS). The diluton has a mass
ms = 350MeV and a lifetime of 5.2 s.
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Fig.3.1 shows that the diluton has decayed away before 4He formation. However,

the high-energy decay neutrinos can still interact with protons, through the reverse rate

of Rxn.(3.70). Fig.3.3 shows the evolution of the relative abundances with respect to the

plasma temperature. The abundance, Yi, is defined through the mass fraction, Xi:

Yi ≡
Xi

Ai
=

ni

nb
, (3.72)

where Ai is the atomic number of species i, ni is the proper number density, and nb is

the proper number density of all baryons. We look at relative abundances with respect

to single–proton hydrogen, Yi/YH, in Fig.3.3. We only consider light abundances with

A≤ 7. The dashed lines correspond to SBBN (within the SC), and the solid lines to the

DS of ms = 350 MeV, τ = 5.2 s. Notice that at low temperatures (T ∼ 60 keV) after 4He

formation, there is a larger abundance of free neutrons for DS as compared to SBBN, the

result of the enhanced p→ n rate. The extra neutron abundance is too low to affect the

deuterium and 4He abundances. However, the additional neutrons imply faster strong

interactions for heavier nuclides. Specifically, the reactions:

n+7 Be→ 24He (3.73)

n+7 Be→7 Li+ p followed by 7Li+ p→ 2 4He, (3.74)

are enhanced with more neutrons and will destroy 7Be. For the DS, the relative abundance

of 7Be is 2.3× 10−10, a factor of ∼ 2 smaller than the SBBN prediction. 7Be decays

via electron capture to 7Li during the recombination epoch, thereby alleving tension

(although not eliminating it in this specific DS) between primordial predictions and

observations of lithium, while preserving the deuterium and 4He abundances.
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Figure 3.3: The relative abundance evolution is given as a function of plasma tempera-
ture T . The dashed lines correspond to the standard cosmology, while the solid lines
correspond to a diluton scenario. The diluton has a mass ms = 350 MeV and a lifetime
of 5.2 s. The abundances are neutrons (N), deuterium (D), hydrogen-3 (3H), helium-3
(3He), helium-4 (4He), lithium-6 (6Li), lithium-7 (7Li), and beryllium-7 (7Be).

3.6 Conclusion

The inclusion of a diluton in the early universe is a major departure from the

standard cosmology. We initially posed the problem as a mechanism to create a relic abun-

dance of dark matter particles congruent with observations. If the lifetime of the diluton is

short or long compared to weak decoupling/BBN time scales, then observable quantities

from those epochs are largely unaffected, while the dark matter candidate is diluted to

the present density. We chose to focus on lifetimes close to weak–decoupling/BBN time

scales, causing pronounced effects on primordial abundances and Neff. We classify the
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analysis done here as a first approximation to a Boltzmann treatment. The diluton prob-

lem is inherently non-perturbative and a difficult computational challenge, encompassing

many Hubble times and decades of neutrino and plasma energies. We emphasize the

necessity to follow the evolution of the active neutrino seas in order to constrain the radi-

ation energy density (through Neff) and the dynamically evolving neutron–to–proton ratio

(though the νe and νe spectra). The diluton provides a means to change the primordial

lithium abundance through a late epoch of proton transmutation, while preserving the

other abundances.

The non-thermal spectra from diluton decays could affect other cosmological

observables. Specifically, the sum of the light neutrino masses statistic includes the

inherent assumption of the neutrinos decoupling in roughly thermal distributions. A

cosmology with a diluton adds energy into the neutrino seas through a non-thermal

mechanism, and changes the interpretation of a statistic like the sum of the neutrino

masses.

Future work will include the transport of the decay neutrinos. In addition, the high

energy neutrinos at later times can interact with nuclei. Therefore, we will need to include

nuclear–weak interactions to properly follow the nucleosynthesis. In addition, our spectra

are incomplete, as decay channels for three–neutrino, neutrino and electron/positron pair,

and neutrino and muon/anti-muon pair are not monoenergetic. These spectra need to be

included. Finally, we need a Boltzmann treatment in the case where the decay products

have energies on order the temperature of the plasma. This occurs for shorter lifetimes

and lighter–mass dilutons then what we considered here.

We thank Chad Kishimoto, Alex Kusenko, Amol Patwardhan and George Fuller

for useful conversations with respect to cosmology, sterile neutrino physics, and early-

universe computations.



Chapter 4

Recombination

4.1 Introduction

In this chapter, we present a method to determine an alternative to the quantity

Neff, usually presented in the following way:

ρr = 2

[
1+

7
8

(
4

11

)4/3

Neff

]
π2

30
T 4, (4.1)

where ρr is the radiation energy density and T is the photon temperature. Based on the

construction of the rhs of Eq.(4.1), Neff serves as the effective number of neutrinos. We

note several important qualifiers of Equation (4.1). First, Eq.(4.1) is only valid after

the epoch of positron–electron annihilation, when the ratio of comoving temperature

to photon temperature attains the value (4/11)1/3. Second, the ratio (4/11)1/3 assumes

a sharp transition in weak decoupling. Chapter 7 discusses in detail the Boltzmann–

equation treatment of weak decoupling, and shows the ratio of temperatures does not

obtain (4/11)1/3 exactly. Third, radiation is by definition composed of massless particles,

yet neutrinos have small non-zero masses. Fourth, even if neutrinos were massless, the

cosmological radiation–energy–density does not necessarily have to be composed of only

94
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photons and neutrinos. Lastly, the radiation energy density is not directly measurable

at either the BBN or CMB epochs. It can only be inferred through the examination of

primordial abundances (in the case of BBN) or the examination of angles (in the case of

CMB power spectra). These qualifications place strict limits on the utility of Neff, and

thus result in an inconsistent analysis with regards to beyond–standard–model physics.

Therefore, we attempt to describe early–universe physics through a different yet similar

quantity than Neff in Eq.(4.1).

We term our new quantity Ñeff, and construct it such that Ñeff = Neff in the standard

cosmology. Initially, our motivation for using Ñeff was to assign a Neff value at photon-

decoupling in a non-standard cosmology containing light sterile neutrinos (ms ∼ 1 eV.)

For the purposes of discussion, we consider a toy–model where the sterile neutrino

(and corresponding anti-neutrino) species has an identical spectrum to the three active

neutrinos. The kinematics for particles at the sterile–neutrino mass scale are ultra-

relativistic at the BBN epoch. Therefore, Neff = 4 during BBN. At photon decoupling, the

temperature is∼ 0.2 eV. The sterile–neutrino spectrum would have a similar temperature–

like parameter, implying that the sterile–neutrinos are neither ultra-relativistic nor non-

relativistic. In this case, Neff is indeterminate. Our parameter, Ñeff, uses the sound horizon

and photon diffusion length and is able to characterize the Neff contribution from the

sterile neutrino sector. Light sterile neutrinos are only one example of the greater utility of

Ñeff. In Ch.6, we present more examples of non-standard cosmologies and the predictions

of Ñeff.

Fig.4.1 shows a diagram of the sound horizon (rs), photon diffusion length

(rd), and related angles imprinted on the surface of the comoving two-sphere in an

expanding universe. Calculating the diffusion length requires an extensive computation

of recombination, and is the principal subject of this chapter. The rest of the chapter

is outlined as follows. In section 4.2,we begin by discussing the physics, mathematics,
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Figure 4.1: Diagram of the sound horizon rs, photon diffusion length rd , angular
diameter distance of last scattering DA, and the angles subtended by rs and rd .

and models needed to calculate the Hubble radius. We use the techniques of Sec.4.2

to calculate an analytical expression for the sound horizon in 4.3. Sec.4.4 details the

non-trivial calculation of the photon diffusion length. Using the results from Secs.4.3

and 4.4, we asseble the sound horizon and photon diffusion length into Ñeff in Sec.4.5.

We conclude in Sec.4.6.

4.2 Hubble Radius

The Hubble radius is not needed to calculate Neff. However, in calculating the

Hubble radius, we will demonstrate and explicitly use the physics, mathematics, and
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models necessary for calculating the sound horizon and the diffusion length. Therefore,

we proceed as follows.

The Hubble radius is the proper distance a photon could travel in the age of

the universe. In a homogeneous and isotropic universe, we write the square of the line

element (or metric) as:

ds2 = dt2−a2(t)
(

dr2

1− kr2 + r2dΩ

)
. (4.2)

The units of ds and dt are length implying that the unit of ar must also be length. In the

denominator of the radial-radial coefficient, we have 1− kr2. The quantity k describes

the curvature of spacetime. We would like to use coordinates where k takes on values

0,±1. If we ascribe a length unit to r, then k has units 1/length2 implying that a change

in units will change the value of k if k 6= 0. Therefore, we will take r to be dimensionless

and ascribe a dimension of length on the scale factor a.

For calculating the Hubble radius, take dθ = dφ = 0. Define the conformal time

η such that:

η =

t∫
0

dt ′

a
=⇒ dη =

dt
a
. (4.3)

Taking k = 0, we can rewrite the metric as:

ds2 = a2dη
2−a2dr2. (4.4)

Photons follow null geodesics, or ds = 0. Therefore, the comoving Hubble radius r? is

given as:

r? ≡
∫ r?

0
dr =

∫
η?

0
dη. (4.5)

The comoving distance reflects the fact that the physical distance between coordinates

changes with an expanding universe. To determine the proper Hubble–radius distance,
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scale the differential line element dr by the radial–radial component of the metric:

d?(t?) =
∫ r?

0

√
−grr(t?)dr =

∫ r?

0
a(t?)dr. (4.6)

Note that we have a(t?), not a(t). This is because we concern ourselves with the proper

distance at a certain epoch, namely t?. In other words, to calculate a proper distance

at the epoch of interest, we need to know how spacetime is curved at that epoch. How

spacetime got into that state is irrelevant for calculating the proper distance. Thus, we

pull a(t?) outside of the integral. Using our expression for the comoving Hubble radius:

d?(t?) = a(t?)
∫ r?

0
dr = a(t?)

∫
η?

0
dη = a(t?)

∫ t?

0

dt
a
. (4.7)

We cannot take the a in the denominator out of the integral in Eq.(4.7) because we are

tracing the path followed by a theoretical photon (a real photon would scatter on other

particles, thereby decreasing the distance) as it moves through an expanding universe.

We will use this prescription when calculating other proper distances from comoving

distances, namely d(t?) = a(t?)r(t?).

We need to choose a value to use for the scale factor at the epoch of interest t?.

The scale factor is fixed to be zero at the big bang. Since we ascribe a length unit to

the scale factor, the scale factor will have a different numerical value depending on the

choice of units. We will use the following strategy to mitigate any problems arising from

this arbitrary choice. First, whenever we derive an equation, we will attempt to use ratios

of scale factors at different epochs instead of an absolute scale factor. Secondly, we will

adopt a value of the scale factor at the current epoch so that coordinate distances are

exactly equal to proper distances, measured in Mpc. In other words: a0 = 1 Mpc. Many

authors combine the above strategy and convention into making a dimensionless scale

factor, i.e. a→ a/a0. This eliminates the need for a length unit and simplifies notation.
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In an effort to be clear and lucid in this chapter, we will not adopt a dimensionless scale

factor.

We need to write the coordinate time in terms of the scale factor. From the

Friedmann equation, we obtain the Hubble rate H:

H ≡ 1
a

da
dt

where H2 =
8πG

3
ρ, (4.8)

where ρ is the energy density of the universe and G is Newton’s gravitational constant.

Thus the comoving Hubble radius is:

r? =
∫ a?

0

da
a2H

. (4.9)

To determine H as a function of a, we need to resort to a model of the energy density.

Ignoring dark energy, the universe is filled with matter and radiation, implying:

H =

[
8πG

3
(ρm +ρr)

]1/2

. (4.10)

We use the following “model–parameter forms” for radiation and matter:

ρr ≡
(

1+
7
8

(
4

11

)4/3

Neff

)
ργ (4.11)

=

(
1+

7
8

(
4

11

)4/3

Neff

)
π2

15
T 4

γ (4.12)

=

(
1+

7
8

(
4

11

)4/3

Neff

)
π2

15
T 4

γ,0

(a0

a

)4
, (4.13)

ρm ≡ ρm,0

(a0

a

)3
(4.14)

= Ωmρc,0

(a0

a

)3
(4.15)

= Ωm
3H2

0
8πG

(a0

a

)3
. (4.16)



100

ρc = 3H2/8πG is the critical density and the subscript 0 denotes values at the current

epoch. Ωm is the matter contribution to the critical density at the current epoch (we do not

adorn a 0 on Ωm). The photon temperature goes as 1/a due to the expanding universe

and the small baryon number density. Hence the a−4 scaling in ρr. The model–parameter

forms are used for ease in computation, even if they do not reflect physical reality properly.

To simplify the computations, we will examine the epoch of matter-radiation equality,

denoted eq. By definition, ρr,eq = ρm,eq. Using the model–parameter forms of ρr and ρm,

and solving for aeq/a0:

aeq

a0
=

(
1+ 7

8

( 4
11

)4/3
Neff

)
8π3GT 4

γ,0

45H2
0 Ωm

. (4.17)

Putting in factors of ~,c,kb and using the CMB temperature of Tγ,0 = 2.726 K and

defining H0 ≡ h×100 km/s/Mpc, we have:

aeq

a0
=

1+0.2271Neff

4.067×104 Ωmh2 . (4.18)

We can write the matter density at equality as

ρm,eq = ρm,0

(
a0

aeq

)3

=
3ΩmH2

0
8πG

(
a0

aeq

)3

. (4.19)

We can write the Hubble rate as the following:

H =

[
8πG

3
(ρm +ρr)

]1/2

(4.20)

=

[
8πG

3

(
ρm,eq

(aeq

a

)3
+ρr,eq

(aeq

a

)4
)]1/2

(4.21)

=

[
8πG

3
ρm,eq

(aeq

a

)4
(

1+
a

aeq

)]1/2

. (4.22)
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Thus, the comvoing Hubble radius can be computed:

r? =
∫ a?

0

da
a2H

(4.23)

=
∫ a?

0

da
a2

(
8πG

3
ρm,eq

)−1/2( a
aeq

)2(
1+

a
aeq

)−1/2

(4.24)

=

√
3

8πGρm,eq

1
a2

eq

∫ a?

0

da√
1+ a

aeq

(4.25)

=

√
3

8πGρm,eq

2
aeq

(√
1+

a?
aeq
−1
)

(4.26)

=

√
a3

eq

ΩmH2
0 a3

0

2
aeq

(√
1+

a?
aeq
−1
)

(4.27)

=
2
a0

√ aeq

ΩmH2
0 a0

(√
1+

a?
aeq
−1
)

(4.28)

rH = 5.99×103
√

aeq

a0
(Ωmh2)−1/2

(√
1+

a
aeq
−1
)

Mpc
a0

, (4.29)

where we have dropped the ? notation and renamed the comoving Hubble radius rH for

ease. aeq is a function of Neff and uses the quantities Ωmh2 and Tγ,0. Fig.4.2 shows a plot

of the comoving Hubble radius versus Neff.

4.3 Sound Horizon

The sound horizon is defined as

rs(aγd) =
∫ aγd

0
da

1
a2H(a)

√
3(1+R(a))

(4.30)
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Figure 4.2: Comoving Hubble radius versus Neff. The comoving Hubble radius is
calculated at the epoch of photon decoupling, defined as aγd/a0 ≡ 1/1091.43.

where aγd is the scale factor at photon decoupling.1 The ratio R(a) is given as

R(a) =
3ρb(a)
4ργ(a)

, (4.31)

where ρb and ργ are the baryon rest mass and photon field energy densities, respectively.

The angular size of the sound horizon θs
2, determined from the spacing of the

acoustic peaks in the CMB temperature power spectrum, is related to the sound horizon

1Reference [2] takes aγd → a? where the optical depth is unity.
2Reference [2] takes θs→ θ?.
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by the angular diameter distance DA(aγd) at photon decoupling (scale factor aγd) as

θs(aγd) = aγd
rs(aγd)

DA(aγd)
, (4.32)

since the angle θs is small. The angular diameter distance is

DA(a) = a
∫ a0

a
da′ [a′2H(a′)]−1. (4.33)

The quantity DA(aγd) depends on the vacuum (dark) energy equation of state, which

is not very well understood. Our approach will eliminate dependence on this poorly

constrained component of the energy density.

We can write an expression for the comoving sound horizon in terms of the

conformal time as:

rs =

η∫
0

csdη
′
, (4.34)

where cs is the speed of sound. If p is pressure, the speed of sound is defined as:

c2
s =

∂p
∂ρ

. (4.35)

At and before photon decoupling, only photons and baryons interact with one another

acoustically, to a first approximation. Therefore, we can write the sound speed as:

c2
s =

∂p
∂ργ

dργ

dρ
+

∂p
∂ρb

dρb

dρ
. (4.36)

We make the approximation that matter exhibits no pressure, implying that the second

term vanishes. To determine ∂p/∂ργ×dργ/dρ, note the following:

ρ = ργ +ρb =⇒ dρ

dργ

= 1+
dρb

dργ

(4.37)
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. ρb and ργ are related to the scale factor as implied above:

ρb ∼ a−3 =⇒ dρb

da
=−3

ρb

a
(4.38)

ργ ∼ a−4 =⇒ dργ

da
=−4

ργ

a
. (4.39)

Thus:
dρb

dργ

=
3ρb

4ργ

= R =⇒ dργ

dρ
= (1+R)−1. (4.40)

The equation of state for radiation is p = ρ/3. This gives the following expression for

the sound speed:

cs =
1√

3(1+R)
, (4.41)

where R is a function of a. Rewriting the comoving sound horizon in terms of the scale

factor:

rs =
∫ a?

0

da

a2H
√

3(1+R)
, (4.42)

recovering Eq.(4.30).

We need to write R and H in terms of a. R is the following:

R =
3
4

ρb

ργ

=
3
4

ρb,eq(
aeq
a )3

ργ,eq(
aeq
a )4

= Req
a

aeq
. (4.43)

Note that Req 6= 3/4 since there are other forms of matter (e.g. Dark Matter) and other

forms of radiation (e.g. active neutrinos). Furthermore, Req can be parameterized using
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Neff:

Req =
3
4

ρb,eq

ργ,eq
(4.44)

=
3
4

ρb,0

(
a0
aeq

)3

ργ,0

(
a0
aeq

)4 (4.45)

=
3
4

ρb,0

ργ,0

aeq

a0
(4.46)

=
3
4

Ωbρc,0
π2

15T 4
γ,0

aeq

a0
(4.47)

=
3
4

Ωb
3H2

0
8πG

π2

15T 4
γ,0

(
1+ 7

8

( 4
11

)4/3
Neff

)
8π3GT 4

γ,0

45H2
0 Ωm

(4.48)

=
3
4

Ωb

Ωm
(1+0.2271Neff). (4.49)

In addition, we write H using the same expression as above:

H =

[
8πG

3
ρm,eq

(aeq

a

)4
(

1+
a

aeq

)]1/2

. (4.50)

We are now able to compute the comoving sound horizon:

rs =
∫ a?

0

da

a2H
√

3(1+R)
(4.51)

=
∫ a?

0

da
a2
√

3

[
8πG

3
ρm,eq

(aeq

a

)4
(

1+
a

aeq

)]−1/2(
1+Req

a
aeq

)−1/2

(4.52)

=
1

a2
eq

√
3

8πGρm,eq

1√
3Req

∫ a?

0

(
1+

a
aeq

)−1/2( 1
Req

+
a

aeq

)−1/2

da (4.53)

=
1

aeq

√
3

8πGρm,eq

1√
3Req

∫ u?

0
(1+u)−1/2

(
1

Req
+u
)−1/2

du. (4.54)
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Recall for positive numbers α and β:

∫ dx√
α+ x

√
β+ x

= 2ln
(√

α+ x+
√

β+ x
)
+C. (4.55)

Thus:

rs =
2

aeq

√
3

8πGρm,eq

1√
3Req

ln

(√
1+

a
aeq

+

√
1

Req
+

a
aeq

)∣∣∣∣
a?

0
(4.56)

=
2

aeq

√
3

8πGρm,eq

1√
3Req

ln
[

1
Req

(√
Req +Req

a
aeq

+

√
1+Req

a
aeq

)]∣∣∣∣
a?

0
(4.57)

=
2

aeq

√
3

8πGρm,eq

1√
3Req

ln
[

1
Req

(√
Req +R+

√
1+R

)]∣∣∣∣
R?

0
(4.58)

=
2

aeq

√
3

8πGρm,eq

1√
3Req

ln

(√
Req +R?+

√
1+R?

1+
√

Req

)
. (4.59)

Define keq such that:

keq ≡ aeqH(aeq) (4.60)

= aeq

√
8πG

3
ρeq = aeq

√
8πG

3
2ρm,eq (4.61)

= aeq

√
8πG

3
2ρm,0

(
a0

aeq

)3

= aeq

√
H2

0
ρc,0

2ρm,0

(
a0

aeq

)3

(4.62)

= a0

√
2H2

0 Ωm
a0

aeq
, (4.63)

and we write rs as:

rs =
2

aeq

√
3

8πGρm,eq

1√
3Req

ln

(√
Req +R?+

√
1+R?

1+
√

Req

)
(4.64)

=
2

3keq

√
6

Req
ln

(√
Req +R?+

√
1+R?

1+
√

Req

)
(4.65)
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Eq.(4.65) gives the comoving sound horizon at R? in terms of Ωb, Ωm, h, and Neff and

agrees with Ref.[23]. Fig.4.3 shows a plot of the comoving sound horizon versus Neff at

photon decoupling.

0 1 2 3 4 5
Neff

135

140

145

150

155

160

165

r s

Ωmh
2 = 0.143000

Ωbh
2 = 0.022068

aγd/a0 = 9.162× 10−4

Figure 4.3: Comoving sound horizon versus Neff.
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4.4 Diffusion length and free–electron fraction

4.4.1 Definition of diffusion length

In the tightly coupled limit, photon diffusion damping is characterized through

the damping wave number [47, 48, 49, 50]

k−2
d =

∫ aγd

0

da
a2H(a)

1
ane(a)σT

R2(a)+ 16
15(1+R(a))

6(1+R(a))2 , (4.66)

where σT is the Thomson cross section, and ne is the free–electron proper number density.

Here, we have assumed that moments of the temperature fluctuation higher than the

quadrupole make a negligible contribution in the linearized Boltzmann equation for the

photon distribution.

Equation (4.66) requires the free–electron fraction, ne(a), determined in the

recombination history, as discussed below. The free–electron fraction, over the course

of the recombination history, depends strongly on the primordial helium mass fraction

YP. The point that BBN and recombination are related is well known [11] but has not

been implemented self-consistently as a constraint for general, BSM physics model

cosmologies. We return to it after describing the relation between rs and kd to directly

observable quantities given by the CMB power spectrum.

The observed diffusion angle θd(aγd) [2] is related to the diffusion damping

length, rd = π/kd as

θd(aγd) = aγd
rd(aγd)

DA(aγd)
, (4.67)

with the same stipulation regarding the smallness of the angle in Eq.(4.32).
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4.4.2 Step–function method

An analytic expression to Eq.(4.66) exists in the approximation that R = 0:

k−2
d =

8
45

∫
η

0

dη
′

neσT a
=

8
45

∫ a?

0

da
neσT a3H

. (4.68)

We will take the universe to be fully ionized until the sharp transition at aγd , as a

simplifying assumption. When we work with this specific assumption, we will call it

the“step–function method”. If electrons are assumed to be non-relativistic, then:

ne =





ne,0

(a0

a

)3
if a < aγd

0 if a > aγd

. (4.69)

Obviously the comoving number density of electrons has changed since photon decou-

pling because of other astrophysical processes. We are using the expression for ne to

show the scaling prior to photon decoupling. We use:

H2 =
8πG

3

(aeq

a

)4
ρm,eq

(
1+

a
aeq

)
(4.70)

for the Hubble rate which we derived above. Our expression for kd becomes:

k−2
d =

8
45

1
ne,0σT a3

0a2
eq

√
3

8πGρm,eq

a?∫
0

a2da
(

1+ a
aeq

)1/2 (4.71)

=
8

45
aeq

ne,0σT a3
0

√
3

8πGρm,eq

u?∫
0

u2du
(1+u)1/2 , (4.72)
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where we have assumed a? < aγd . Using the substitution u+1 = x =⇒ du = dx:

k−2
d =

8
45

aeq

ne,0σT a3
0

√
3

8πGρm,eq

∫ x(u?)

x(0)

(x−1)2dx√
x

(4.73)

=
8

45
aeq

ne,0σT a3
0

√
3

8πGρm,eq

∫ x(u?)

x(0)

(x2−2x+1)dx√
x

(4.74)

=
8

45
aeq

ne,0σT a3
0

√
3

8πGρm,eq

∫ x(u?)

x(0)
(x3/2−2x1/2 + x−1/2)dx (4.75)

=
8

45
aeq

ne,0σT a3
0

√
3

8πGρm,eq

[
2
5

x5/2− 4
3

x3/2 +2x1/2
]x(u?)

x(0)
(4.76)

=
8

45
aeq

ne,0σT a3
0

√
3

8πGρm,eq

[
2
5
(1+u)5/2− 4

3
(1+u)3/2 +2(1+u)1/2

]u?

0
(4.77)

=
8

45
aeq

ne,0σT a3
0

√
3

8πGρm,eq

×
[

2
5

(
1+

a
aeq

)5/2

− 4
3

(
1+

a
aeq

)3/2

+2
(

1+
a

aeq

)1/2
]a?

0

(4.78)

=
16

225
aeq

ne,0σT a3
0

√
3

8πGρm,eq

×
[(

1+
a

aeq

)5/2

− 10
3

(
1+

a
aeq

)3/2

+5
(

1+
a

aeq

)1/2
]a?

0

(4.79)

=
16

225
aeq

ne,0σT a3
0

√
3

8πGρm,eq

×
[(

1+
a?
aeq

)5/2

− 10
3

(
1+

a?
aeq

)3/2

+5
(

1+
a?
aeq

)1/2

− 8
3

]
. (4.80)
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The end result is:

k−2
d =

16
225

a5/2
?

a3/2
eq ne,0σT a3

0

√
3

8πGρm,eq
×

[(
1+

aeq

a?

)5/2

− 10
3

aeq

a?

(
1+

aeq

a?

)3/2

+5
(

aeq

a?

)2(
1+

aeq

a?

)1/2

− 8
3

(
aeq

a?

)5/2
]

(4.81)

Writing the electron number density in terms of the baryon mass density:

ne = np+ = nH +2nHe =
ρb

mb

(
mbnH

ρb
+

4mbnHe

2ρb

)
=

ρb

mb

(
Xp +

Yp

2

)
(4.82)

=
ρb

mb

(
1−Yp +

Yp

2

)
=

ρb

mb

(
1− Yp

2

)
(4.83)

where Xp and Yp are the primordial hydrogen and helium mass fractions, respectively,

and mb is the baryon mass. For the purposes of recombination, we assume that BBN only

produces hydrogen and helium. At the current epoch:

ρb,0 = Ωbρc,0 = Ωb
3H2

0
8πG

(4.84)

=⇒ ne,0 =
3ΩbH2

0
8πmbG

(
1− Yp

2

)
(4.85)

Using a similar expression from above:

ρm,eq = Ωm
3H2

0
8πG

(
a0

aeq

)3

. (4.86)
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Putting these expressions into our damping wavenumber expression:

k−2
d =

16
225

a5/2
?

a3/2
eq σT a3

0

√
a3

eq

ΩmH2
0 a3

0

8πmbG
3ΩbH2

0

(
1− Yp

2

)−1

×
[(

1+
aeq

a?

)5/2

− 10
3

aeq

a?

(
1+

aeq

a?

)3/2

+5
(

aeq

a?

)2(
1+

aeq

a?

)1/2

− 8
3

(
aeq

a?

)5/2
]

(4.87)

=
128π

675
mbG
σT a2

0

(
a?
a0

)5/2

(ΩmH2
0 )
−1/2(ΩbH2

0 )
−1
(

1− Yp

2

)−1

×
[(

1+
aeq

a?

)5/2

− 10
3

aeq

a?

(
1+

aeq

a?

)3/2

+5
(

aeq

a?

)2(
1+

aeq

a?

)1/2

− 8
3

(
aeq

a?

)5/2
]

(4.88)

Writing H0 = h×102 km/s/Mpc, and inserting factors of ~ and c:

k−2
d =9.108×106

(
Mpc
a0

)2( a
a0

)5/2

(Ωmh2)−1/2(Ωbh2)−1
(

1− Yp

2

)−1

×
[(

1+
aeq

a

)5/2
− 10

3
aeq

a

(
1+

aeq

a

)3/2

+5
(aeq

a

)2(
1+

aeq

a

)1/2
− 8

3

(aeq

a

)5/2
]
, (4.89)

where we have dropped the ? notation on the scale factor for ease.

Fig.4.4 shows the evolution of the comoving diffusion length with the scale factor

for both the above approximation expression with R = 0 and a numerical solution using

the step–function method, denoted by the superscript (step). We obtain the numerical

solution by integrating the expression for the diffusion damping wave number while not

setting R = 0, but maintaining the same model–parameter forms of ρm, ρr, and ne. The

approximation holds at early epochs and breaks down at late epochs when clearly R 6= 0.

Fig.4.5 shows plots of rd for the R = 0 approximation and the numerical integra-
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Figure 4.4: Comoving diffusion length rd versus scale factor ratio a/a0. r(R=0)
d is the

comoving diffusion length using the approximation in Eq.(4.89). r(step)
d is the comoving

diffusion length using the step–function method. We highlight certain epochs of interest
at aeq and aγd .

tion for the step–function method at the epoch of photon decoupling. In addition, we

include a plot of the damping wavenumber kd versus Neff in Fig.4.6.

4.4.3 Saha equilibrium approximation

The step–function method does not accurately depict phsical reality. The ion-

ization fraction does not change discontinuously. Rather, the free electrons recombine

gradually onto nuclei to form bound states. If the step–function method is a first approx-

imation to recombination physics, then a second approximation is to assume that the

free–electron fraction Xe stays in equilibrium. We call this the equilibrium method.
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Figure 4.5: Comoving diffusion length versus Neff. The superscript notation is the same
as in Fig.4.4.

The universe contains hydrogen, helium, and trace amounts of other nuclei. For

simplicity, we assume the baryons are only hydrogen nuclei, i.e. protons, unless otherwise

noted. The relevant chemical reaction is:

p++ e−↔ H0 + γ. (4.90)

In equilibirum:

µp +µe = µH , (4.91)

where µi is the chemical potential of the ith species. The argument to find the equilibrium

free–electron fraction is similar to that made in Sec.2.4. We repeat it here because of the
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Figure 4.6: Diffusion damping wave number versus Neff. The superscript notation is
the same as in Fig.4.4.

intricacies of the atomic partition function.

Since there is no constraint fixing the total number of photons, the photon chemi-

cal potential is identically zero and does not contribute in Eq. [4.91]. The expression for

the chemical potential is the following:

µi =

(
∂F
∂Ni

)

T,V,N j

, (4.92)

where F is the free energy, and the derivative is done with respect to the number of

particles Ni while keeping the number of particles of other species N j constant. The free
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energy is related to the partition function Z as follows:

F =−T lnZ =−T ∑
i

lnZi =−T ∑
i

ln
ζ

Ni
i

Ni!
, (4.93)

where ζi is the partition function of a single gas particle of species i and independent of

Ni. Thus, the chemical potential becomes (dropping the i subscript):

µ =−T ln
ζ

N
, (4.94)

where we used Stirling’s formula to simplify the factorial notation, namely: lnN! '

N lnN−N. To calculate the single-particle partition function, observe:

ζ = Zint

∫
d3x

∫ d3 p
(2π)3 e−p2/2mT (4.95)

=
ZintV
2π2

∫
∞

0
p2e−p2/2mT d p (4.96)

=
ZintV
2π2 (2mT )3/2

∫
∞

0
x2e−x2

dx (4.97)

=
ZintV
2π2 (2mT )3/2

√
π

4
(4.98)

= ZintV
(

mT
2π

)3/2

, (4.99)

where Zint is the internal partition function and we have assumed m� T . Thus, we can

now write the chemical potential as:

µ =−T ln

[
ZintV

N

(
mT
2π

)3/2
]
=−T ln

[
Zint

n

(
mT
2π

)3/2
]
, (4.100)

where n is the number density. For the electron and proton, the internal partition function

is simply the spin degrees of freedom, i.e. Z{e,p}int = g{e,p}. For hydrogen, the partition
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function is the following:

Z(H)
int = gH ∑

bound states
e−ε/T . (4.101)

Bohr’s formula for the energy of a bound state with principal quantum–number n is

En =−∆Q/n2 with degeneracy n2 for positive integer n. This sum is infinite, so we will

take only the first term. In other words, we assume that the excited states are not in

equilibrium with the plasma. Thus:

Z(H)
int = gH

∞

∑
n=1

n2e∆Q/n2T → gHe∆Q/T (4.102)

Substituting Eq.(4.102) into Eq. [4.91]:

−T ln

[
gp

np

(
mpT
2π

)3/2
]
−T ln

[
ge

ne

(
meT
2π

)3/2
]
=−T ln

[
gHe∆Q/T

nH

(
mHT
2π

)3/2
]

(4.103)

=⇒ nH

nenp
=

gH

gegp

(
mH

memp

)3/2(2π

T

)3/2

e∆Q/T ≡C(T ), (4.104)

which serves to define the function C(T ). Since the universe is only protons and electrons

(in this approximation), the total number of baryons is equal to the sum of hydrogen

atoms and free protons, and the number of electrons is equal to the number of protons by

charge neutrality:

np = ne and nb = nH +np =⇒ nH = nb−ne. (4.105)
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Thus, we are left with the following algebraic equation:

nb−ne

n2
e

=C =⇒ n2
e +

ne

C
− nb

C
= 0 (4.106)

=⇒ ne =−
1

2C
+

1
2

√
1

C2 +4nb/C (4.107)

= nb

√
1+4nbC−1

2nbC
(4.108)

We will now introduce a correction to the leading nb (while preserving the

function C and other nb terms) to reflect the fact that there is also helium in the universe:

ne = ne,0

(a0

a

)3
√

1+4nbC−1
2nbC

≡ ne,0

(a0

a

)3
Xe. (4.109)

We can again integrate Eq.(4.66), but now with the correction from Eq.(4.109). Fig.4.7

shows a plot of rd versus scale factor. Clearly, Xe ∼ 1 in equilibrium at high temperatures.

Thus, the step function-method is a valid approximation at high temperatures. At the

epoch of photon decoupling, the approximation breaks down rapidly and the two curves

in Fig.4.7 diverge. Also included is a plot of kd versus Neff at the epoch of photon

decoupling in Fig.4.8.

4.4.4 Boltzmann–equation approximation

The equilibrium method is only a second approximation. A further refinement is

to use the Boltzmann equation to solve for Xe, which we call the Boltzmann–equation

method. If we consider a reaction with two reactants and two products, such as 1+2→
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Figure 4.7: Comoving diffusion length versus scale factor. r(step)
d is the comoving

diffusion length using the step–function method. r(saha)
d is the same quantity using the

equilibrium method.

3+4, then the interaction rate of species 1 follows the Boltzmann equation:

a−3 d(n1a3)

dt
=

∫
Π1Π2Π3Π4(2π)4

δ
4(P1 +P2−P3−P4)×

[ f3 f4(1± f1)(1± f2)|M |234→12− f1 f2(1± f3)(1± f4)|M |212→34]

(4.110)

Eq.(4.110) contains many implicit assumptions, chief among them being conservation of

particle number. We will still use Eq.(4.110) even when one of the species is a photon.
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Figure 4.8: Damping diffusion wave number versus Neff. The superscript notation is
the same as in Fig.4.7

We define the “pseudo”–phase–space factor Π as:

Π =
g

(2π)3
d3 p
2E

. (4.111)

The delta function in Eq.(4.110) ensures conservation of four–momentum P. The occu-

pation fraction f is the probability of finding a particle in the momentum state between

p and p+dp. In isotropic conditions, f (~p, t) = f (p, t). A (1− f ) factor corresponds to

fermions, while a (1+ f ) factor corresponds to bosons. |M |2i→ f is the summed-squared

amplitude and corresponds to the probability the system evolves from initial state i to
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final state f . Assuming CP invariance, we can write:

|M |2i→ f = |M |2f→i ≡ |M |2. (4.112)

Eq.(4.110) is an integral–differential equation. We will make further approxima-

tions to convert Eq.(4.110) into a strictly differential equation. We begin by making the

Boltzmann approximation, assuming that the system is close to equilibrium and dilute

enough that Maxwell–Boltzmann statistics apply. Hence:

f (p, t) = f (E, t)' e−(E−µ)/T and (1− f )' 1. (4.113)

Thus, Eq.(4.110) becomes:

a−3 d(n1a3)

dt
=

∫
Π1Π2Π3Π4(2π)4

δ
4(P1 +P2−P3−P4)|M |2×

e−(E1+E2)/T (eµ3/T eµ4/T − eµ1/T eµ2/T ), (4.114)

where we have used energy conservation to write E3 +E4 = E1 +E2. The expression

involving the chemical potentials in Eq.(4.114) is independent of the pseudo–phase–space

factors and comes outside the integral, which we call I. We can arrange the remaining

terms in I as follows:

I =
∫

Π1Π2Π3Π4(2π)4
δ

4(P1 +P2−P3−P4)|M |2e−(E1+E2)/T (4.115)

=g1g2

∫ d3 p1

(2π)3 e−E1/T d3 p2

(2π)3 e−E2/T×∫
Π1e−E1/T Π2e−E2/T Π3Π4(2π)4δ4(P1 +P2−P3−P4)|M |2

g1g2
∫ d3 p1

(2π)3 e−E1/T d3 p2
(2π)3 e−E2/T

(4.116)

≡g1g2

∫ d3 p1

(2π)3 e−E1/T d3 p2

(2π)3 e−E2/T ×〈σv〉, (4.117)
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where 〈σv〉 is the thermally–averaged product of cross section and relative speed. Clearly,

〈σv〉 is not a strict average. We can now write Eq.(4.114) as:

a−3 d(n1a3)

dt
= 〈σv〉g1g2

[∫ d3 p1

(2π)3 e−E1/T d3 p2

(2π)3 e−E2/T
]
(eµ3/T eµ4/T − eµ1/T eµ2/T )

(4.118)

= 〈σv〉g1g2

[
T 3

(2π)3 (m1m2)
3/2
]
(eµ3/T eµ4/T − eµ1/T eµ2/T ). (4.119)

At this point, we will drop the generality of the two-body expression 1+2↔ 3+4 and

use Eq.(4.90) with species 1 as an electron. Species 4 is then a photon with vanishing

chemical potential. Since we are still assuming approximate equilibrium, we can use

Eq.(4.100) for the chemical potential expression in Eq.(4.119):

eµH/T − eµe/T eµp/T =
nH

gH

(
2π

mHT

)3/2

e−∆Q/T − nenp

gegp

(
2π

T

)3 1
(memp)3/2 . (4.120)

We can now write Eq.(4.119) as:

a−3 d(nea3)

dt
=〈σv〉gegp

[
T 3

(2π)3 (memp)
3/2
]
×

[
nH

gH

(
2π

mHT

)3/2

e−∆Q/T − nenp

gegp

(
2π

T

)3 1
(memp)3/2

]
(4.121)

=〈σv〉
[

nH
gegp

gH

(
mempT
2πmH

)3/2

e−∆Q/T −nenp

]
. (4.122)

Recall that in a hydrogen–only universe: np = ne and nb = nH + ne. Thus, Eq.(4.122)
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becomes:

a−3 d(nea3)

dt
= 〈σv〉

[
nH

gegp

gH

(
mempT
2πmH

)3/2

e−∆Q/T −nenp

]
(4.123)

= 〈σv〉
[
(nb−ne)

(
meT
2π

)3/2

e−∆Q/T −n2
e

]
(4.124)

= 〈σv〉nb

[
(1−Xe)

(
meT
2π

)3/2

e−∆Q/T −X2
e nb

]
(4.125)

=⇒ 1
nba3

d(nea3)

dt
= 〈σv〉

[
(1−Xe)

(
meT
2π

)3/2

e−∆Q/T −X2
e nb

]
(4.126)

=⇒ dXe

dt
= 〈σv〉

[
(1−Xe)

(
meT
2π

)3/2

e−∆Q/T −X2
e nb

]
, (4.127)

where we have taken the proton mass to be equivalent to the hydrogen mass. Changing

variables from t to a, let us write Eq.(4.127) in a more compact form:

dXe

da
=

dXe

dt
1

aH
=

1
aH

[
(1−Xe)β−X2

e nbα
(2)
]
, (4.128)

where β is the ionization rate:

β≡ α
(2)
(

meT
2π

)3/2

e−∆Q/T , (4.129)

and α(2) is the recombination rate:

α
(2) ≡ 〈σv〉=





9.78
α2

m2
e

(
∆Q
T

)1/2

ln
∆Q
T

if T ≤ ∆Q

0 otherwise

. (4.130)

Eq.(4.128) is the final version of the Boltzmann equation which we can solve

numerically. Fig.4.9 shows a plot of the comoving diffusion length versus scale factor.

We solved Eq.(4.128) using an explicit RK4 scheme. The non-equilibrium solution falls
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between the two extreme approximations of the step–function and equilibrium methods.

However, the Boltzmann–method is nearly identical to the assumption of equilibrium.
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2 = 0.022068

Yp = 0.247710

T0 = 2.726 K

Neff = 3.046

Figure 4.9: Comoving diffusion length versus a/a0. The superscript notation is the
same as in Fig.4.7 with the addition of r(boltz)

d being the comoving diffusion length with
the applied Boltzmann–equation method.

4.4.5 Boltzmann–equation correction

Ref.[51] argued that Eq.(4.128) over–estimates the rate of change of Xe. The

author derived a different equation by ignoring recombination onto the n = 1 level and

only considering recombination for levels with n ≥ 2. Remarkably, Ref.[51] arrived

at Eq.(4.128) multiplied by an overall correction factor. We shall refer to this as the

Bolzmann–correction method. We will again ignore the presence of helium and assume

a hydrogen–only universe.
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Recombination onto the ground state

To begin, we need to know how much ionizing radiation is present at a given

temperature. To do this, we will resort to a Boltzmann equation for radiation:

∂

∂t

(
p

dÑ
d p

)
+

d p
dt

∂

∂p

(
p

dÑ
d p

)
= p

dJ
d p

. (4.131)

Ñ is the number of photons as a function of photon-momentum p and time t. J is the

net–photon–production rate. The derivatives, dÑ/d p and dJ/d p are the relevant quantity

Ñ or J per unit momentum interval. The photon momenta redshift, so the derivative

d p/dt =−pH. The product nba3 is independent of time and photon momentum, so if

we divide Eq.(4.131) by nba3, we have:

∂

∂t

(
p

nba3
dÑ
d p

)
= pH

∂

∂p

(
p

nba3
dÑ
d p

)
+

p
nba3

dJ
d p

. (4.132)

If we define ñ = Ñ/a3 and j = J/a3, Eq.(4.132) becomes:

∂

∂t

(
p
nb

dñ
d p

)
= pH

∂

∂p

(
p
nb

dñ
d p

)
+

p
nb

d j
d p

. (4.133)

At first, we will concern ourselves with photon production and photo–ionization of the

ground state. To wit, we write d j/d p as:

d j
d p

= σ(p)

[
2p2

π

(
2π

meT

)3/2

e−(p−∆Q)/T n2
e−

dñ
d p

n1s

]
, (4.134)

where σ(p) is the momentum–dependent cross–section for photo–ionization of hydrogen

and n1s is the number density of hydrogen atoms in the ground state. For momenta

above the binding energy of hydrogen, the photon spectrum is in near equilibrium and

Maxwell–Boltzmann–like. If ñI is the number density of photons with momenta above
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∆Q, then we can write:

dñ
d p

=
ñI

T
e−(p−∆Q)/T for p > ∆Q. (4.135)

Substituting Eq.(4.135) and Eq.(4.134) into Eq.(4.133) gives (for p > ∆Q):

∂

∂t

(
p
nb

ñI

T
e−(p−∆Q)/T

)
= pH

∂

∂p

(
p
nb

ñI

T
e−(p−∆Q)/T

)
+

p
nb

σ(p)

×
[

2p2

π

(
2π

meT

)3/2

e−(p−∆Q)/T n2
e−

ñI

T
e−(p−∆Q)/T n1s

]

(4.136)

=⇒ p
T

e−(p−∆Q)/T ∂

∂t

(
ñI

nb

)
=

pHñI

T nb

∂

∂p

(
pe−(p−∆Q)/T

)
+

p
nb

σ(p)

×
[

2p2

π

(
2π

meT

)3/2

e−(p−∆Q)/T n2
e−

ñI

T
e−(p−∆Q)/T n1s

]
.

(4.137)

Dividing Eq.(4.137) by p and integrating for p≥ ∆Q gives:

∂

∂t

(
ñI

nb

)
=−H

ñI

nb

∆Q
T

+
n2

e
nb

(
2π

meT

)3/2 ∞∫
∆Q

2p2

π
σ(p)e−(p−∆Q)/T d p

− ñIn1s

nb

1
T

∞∫
∆Q

σ(p)e−(p−∆Q)/T d p. (4.138)

We define the recombination coefficient for transitions direct to the ground state as:

α1s =

(
2π

meT

)3/2 ∞∫
∆Q

2p2

π
σ(p)e−(p−∆Q)/T d p. (4.139)
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Due to the rapid decay of the exponential e−(p−∆Q)/T , we will approximate the last

integral in Eq.(4.138) as:

σI '
1
T

∞∫
∆Q

σ(p)e−(p−∆Q)/T d p, (4.140)

where σI ≡ σ(p = ∆Q). Thus, Eq. [4.138] becomes:

∂

∂t

(
ñI

nb

)
=−H

ñI

nb

∆Q
T

+α1s
n2

e
nb
−σI

ñIn1s

nb
. (4.141)

The lhs of Eq.(4.141) is of order ∼ H ñI/nb. The first term on the rhs of Eq.(4.141) is

of order ∼ H ñI∆Q/(nbT ). At the temperatures of interest, ∆Q/T ∼ 50. Thus, we will

make the approximation that the lhs of Eq.(4.141) is zero, producing:

0 =−H
ñI

nb

∆Q
T

+α1s
n2

e
nb
−σI

ñIn1s

nb
(4.142)

=⇒ ñI =
α1sn2

e

σIn1s +
Q
T H

. (4.143)
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Substituting Eq.(4.143) into the integrated form of the photon–production Eq.(4.134)

yields:

j =
∞∫

∆Q

d j
d p

d p (4.144)

= α1sn2
e−σI ñIn1s (4.145)

= α1sn2
e−σIn1s

α1sn2
e

σIn1s +
Q
T

H
(4.146)

= α1sn2
e

Q
T

H

σIn1s +
Q
T

H
(4.147)

= α1sn2
e

1
σIn1sT

QH
+1

. (4.148)

The factor σIn1sT/(QH)∼ 107 at the decoupling epoch. Therefore, ground-state recom-

bination is suppressed by a factor of 107, and we can ignore this process[51].

Recombination onto the excited states

We now move on to recombination onto higher states. Using Eq.(4.128) as a

standard Boltzmann equation, our modified Boltzmann equation becomes:

dXe

dt
= ∑

q>1

(
βqnq

nb
−αqX2

e nb

)
. (4.149)

Here we use the symbol q for principal quantum number so as not to confuse it with the

symbol n for number density. The sum is for q> 1 because we neglect recombination onto

the ground state due to the argument in the previous section. We make no distiniction in

recombination to states of same q but differing quantum numbers l and m. In other words,

the degeneracy of the excited states is built into the coefficients. To solve Eq.(4.149),



129

we need expressions for the ionization, βq, and recombination, αq, coefficients and the

number densities of the excited hydrogen states, nq. We will make some simplifying

assumptions.

First, we will assume that the recombination and ionization rates are related to

one another through the Saha equation:

βq

αq
=

1
q2

(
meT
2π

)3/2

e−Eq/T , (4.150)

where Eq is the binding energy of the qth state and the 1/q2 factor is due to the degeneracy

of the qth state, i.e. there are more ways to recombine then there is to ionize. Accounting

for the electron spin quantum number, there should be another factor of 2 in the denomi-

nator of the above expression. However, that factor is already taken care of in the Saha

expression.

Second, the ratio of number densities is also in equilibrium:

nq

n2
=

q2

4
e−(E2−Eq)/T , (4.151)

where the factor q2/4 is the ratio of degeneracy factors for the two states. We will define

the quantity R ≡ n2/4n1. From the previous discussion, R is not in equilibrium. Thus:

nq = n1q2R e−(E2−Eq)/T . (4.152)

We define the summed quantity αc as:

αc ≡ ∑
q>1

αq. (4.153)
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With this definition, we can manipulate the expression with βq in the following manner:

∑
q>1

βqnq

nb
=

1
nb

∑
q>1

αq
1
q2

(
meT
2π

)3/2

e−Eq/T n1q2R e−(E2−Eq)/T (4.154)

=
n1R
nb

(
meT
2π

)3/2

e−E2/T
∑
q>1

αq (4.155)

=
n1R
nb

(
meT
2π

)3/2

e−E1/T e−(E2−E1)/T
αc (4.156)

≡ βc
n1R
nb

e−(E2−E1)/T . (4.157)

With the new expressions for αc and βc, we can simplify Eq.(4.149) to:

dXe

dt
= βcR

n1

nb
e−(E2−E1)/T −αcX2

e nb. (4.158)

We will make the assumption that most of the neutral hydrogen is in the ground state

when recombination occurs, implying n1 ∼ nH = nb− ne. Furthermore, the summed

coefficients βc and αc are simply the coefficients of Eqs.(4.129) and (4.130), namely

βc = β and αc = α(2). We now write Eq.(4.158) as:

dXe

dt
= βR (1−Xe)e−(E2−E1)/T −α

(2)X2
e nb. (4.159)

We must determine an expression for R before we proceed to solve Eq.(4.159). Let us

return to the Boltzmann equation we derived for photons, Eq.(4.133):

∂

∂t

(
p
nb

dñ
d p

)
= pH

∂

∂p

(
p
nb

dñ
d p

)
+

p
nb

d j
d p

(4.160)

We are going to integrate this equation in a small region centered around the momentum
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of the Lyman–α photon, which we call pα ≡ 3∆Q/4:

pα+δp∫
pα−δp

d p
∂

∂t

(
p
nb

dñ
d p

)
=

pα+δp∫
pα−δp

d p pH
∂

∂p

(
p
nb

dñ
d p

)
+

pα+δp∫
pα−δp

d p
p
nb

d j
d p

(4.161)

=⇒ ∂

∂t

(
pα

nb

dñ
d p

∣∣∣∣
pα

2δp

)
=

pαH
nb

(
p

dñ
d p

)∣∣∣∣
pα+δp

pα−δp
+

pα

nb

d j
d p

∣∣∣∣
pα

2δp (4.162)

=⇒ pα2δp
nb

∂

∂t

(
dñ
d p

∣∣∣∣
pα

)
=

pαH
nb

(
dñ
d p

∣∣∣∣
pα

2δp+ pα

d2ñ
d p2

∣∣∣∣
pα

2δp

)
+

pα

nb

d j
d p

∣∣∣∣
pα

2δp

(4.163)

=⇒ ∂

∂t

(
dñ
d p

∣∣∣∣
pα

)
= H

dñ
d p

∣∣∣∣
pα

+ pαH
d2ñ
d p2

∣∣∣∣
pα

+
d j
d p

∣∣∣∣
pα

. (4.164)

The term on the lhs of Eq.(4.164) is nearly identical to the first term on the rhs of the

same equation. After we subtract those terms, we have:

− d j
d p

∣∣∣∣
pα

= pαH
d2ñ
d p2

∣∣∣∣
pα

(4.165)

=⇒ − 1
pαH

d j
d p

∣∣∣∣
pα

2δp =
d2ñ
d p2

∣∣∣∣
pα

2δp =
dñ
d p

∣∣∣∣
pα+δp

− dñ
d p

∣∣∣∣
pα−δp

(4.166)

=⇒ − 2π2

gγ p3
αH

d j
d p

∣∣∣∣
pα

2δp =
2π2

gγ p2
α

dñ
d p

∣∣∣∣
pα+δp

− 2π2

gγ p2
α

dñ
d p

∣∣∣∣
pα−δp

. (4.167)

The dimensionless factor (2π/gγ p2)(dni/d p) is a phase-space probability for species i

to occupy the state with momentum p. The first term on the rhs of Eq.(4.167) represents

the photons blueward of the Lyman–α line. These photons have a high enough energy to

excite an electron from the q = 1 state to the q = 2 state, thereby reducing the number of

photons. The second term on the rhs of Eq.(4.167) represents the photons redward of the

Lyman–α line. These photons do not have the requisite energy for the excitation, thereby

preserving the number of photons. As we have stressed before, the Lyman–α excitation
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is not in equilibrium. Thus, a large

2π2

gγ p2
α

dñ
d p

∣∣∣∣
pα+δp

, (4.168)

induces a negative photon–production rate. Therefore the difference of these two terms

in Eq.(4.167) represents the difference between the equilibrium ratio to the out–of–

equilibrium ratio. In terms of an equation:

π2

p2
α

dñ
d p

∣∣∣∣
pα+δp

− π2

p2
α

dñ
d p

∣∣∣∣
pα−δp

' e−(E1−E2)/T − n2

4n1
(4.169)

= e−(E1−E2)/T −R , (4.170)

where gγ = 2. There is no restriction on the sign of the above quantity, and indeed the

above quantity is negative. Furthermore, the single term on the lhs of Eq.(4.167) is

representative of Lyman–α production, which is the difference between recombination,

ionization, and two-photon decay of the q = 2 state:

j(pα) = α
(2)n2

e−
βe(E1−E2)/T

4
n2−Λ2γ

(n2

4
−n1e−(E1−E2)/T

)
(4.171)

= α
(2)n2

e−βe(E1−E2)/T R n1−n1Λ2γ(R − e−(E1−E2)/T ) (4.172)

' α
(2)n2

e−βe(E1−E2)/T R nH−nHΛ2γ(R − e−(E1−E2)/T ). (4.173)
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If we take the limit as δp→ 0 of Eq.(4.167), we are left with:

lim
δp→0

(
− π2

p3
αH

)
d j
d p

∣∣∣∣
pα

2δp = e−(E1−E2)−R (4.174)

− π2

p3
αH

lim
δp→0

d j
d p

∣∣∣∣
pα

2δp = (4.175)

− π2

p3
αH

j(pα) = (4.176)

=⇒ j(pα) =
p3

αH
π2 (R − e−(E1−E2)). (4.177)

We substitute Eq.(4.177) into Eq.(4.173):

p3
αH
π2 (R − e−(E1−E2)/T ) = α

(2)n2
e−βe(E1−E2)/T R nH−nHΛ2γ(R − e−(E1−E2)/T )

(4.178)

=⇒ R
(

p3
αH
π2 +βe(E1−E2)/T nH +Λ2γnH

)
= α

(2)n2
e + e−(E1−E2)/T

(
p3

αH
π2 +Λ2γnH

)
.

(4.179)

If we solve for R , we find:

R = e−(E1−E2)/T
α(2)n2

ee(E1−E2)/T +
(

p3
αH
π2 +Λ2γnH

)

p3
αH
π2 +βe(E1−E2)/T nH +Λ2γnH

(4.180)

= e−(E1−E2)/T
α(2) X2

e nb
(1−Xe)

e(E1−E2)/T +
(

p3
αH

π2nH
+Λ2γ

)

p3
αH

π2nH
+βe(E1−E2)/T +Λ2γ

(4.181)

= e−(E1−E2)/T
α(2) X2

e nb
(1−Xe)

e(E1−E2)/T +
(
Λα +Λ2γ

)

Λα +β(2)+Λ2γ

, (4.182)
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where

Λα ≡
p3

αH
π2nH

=
(3∆Q)3H
43π2nH

=
(3∆Q)3H
(8π)2nH

, (4.183)

β
(2) ≡ βe(E1−E2)/T = βe3∆Q/4T . (4.184)

Finally, we substitute Eq.(4.182) into Eq.(4.159):

dXe

dt
= β

α(2) X2
e nb

(1−Xe)
e(E1−E2)/T +

(
Λα +Λ2γ

)
(
Λα +β(2)+Λ2γ

) (1−Xe)−α
(2)X2

e nb (4.185)

= β
Λα +Λ2γ

Λα +β(2)+Λ2γ

(1−Xe)−
[

α
(2)X2

e nb−β
α(2)X2

e nbe(E1−E2)/T

Λα +β(2)+Λ2γ

]
(4.186)

= β(1−Xe)
Λα +Λ2γ

Λα +β(2)+Λ2γ

−α
(2)X2

e nb
Λα +β(2)−βe(E1−E2)/T )+Λ2γ

Λα +β+Λ2γ

(4.187)

≡
[
β(1−Xe)−α

(2)X2
e nb

]
C (4.188)

=⇒ dXe

da
=

1
aH

[
β(1−Xe)−α

(2)X2
e nb

]
C, (4.189)

where C is the correction of Ref.[51]:

C =
Λα +Λ2γ

Λα +Λ2γ +β(2)
. (4.190)

Obviously there are other processes which can excite atoms, most notably collisional

excitations. We ignore those processes in the correction factor above. Eq.(4.189) is

Eq.(4.128) with the rhs multiplied by C from Eq.(4.190). We can integrate Eq.(4.189)

using the RK4 scheme. The results are in Fig.4.10. Also included is Fig.4.11: a plot of

how Xe evolves with scale factor for a cosmology with no helium and a slightly higher

Neff than standard. The last plot of this section is Fig.4.12 and shows how kd changes

with Neff for the Boltzmann–equation and the Boltzmann–correction method.
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Figure 4.10: Comoving diffusion length vs. a/a0. The superscript notation is the same
as in Fig.4.9 with the addition of r(corr)

d being the comoving diffusion length with the
applied Boltzmann–correction method.

When calculating the diffusion lengths, we stated that we were working under

the simplification of no helium in the universe. This is not quite true, since we made

sure our expression for the electron–density at the current epoch included corrections for

the presence of neutrons in helium. However, our evolution of the free–electron fraction

in the equilibrium, Boltzmann–equation, and Boltzmann–corrections methods did not

account for any helium. We made the assumption the helium recombination is identical

to hydrogen recombination and the two processes happen in concert together. We now

discard that false persumption and include a separate Boltzmann equation for helium.
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Figure 4.11: Free–electron fraction Xe vs. a/a0. The superscript notation is consistent
with all previous plots.

4.4.6 Inclusion of helium

We have written an independent code to calculate the free–electron fraction, Xe.

The results agree well with Ref. [52] (RECFAST). In fact, the agreement is within 2% for

most of the range 10−4 . a/a0 . 10−3 (104 & z& 103). We have not included additional

fit parameters, as in Ref. [52], that modify recombination and ionization terms of the

three-level treatment to obtain agreement with the full 300-level computation [53]. The

code allows significant deviations from the model parameters of ΛCDM; it should be

used with caution, however, since the effective three-level treatments for helium and

hydrogen recombination have been optimized for near-standard model parameters.
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Figure 4.12: Damping diffusion wave number vs. Neff. The superscript notation is
consistent with all previous plots.

The number density of free and total electrons is

n(free)
e = np +nHe II +2nHe III, (4.191)

n(tot)
e = nb

(
1− YP

2

)
, (4.192)

where nb, np, nHe II, nHe III are the proper number densities for baryons, protons, singly- and

doubly-ionized helium, respectively. We write the free–electron fraction as

Xe ≡
n(free)

e

n(tot)
e

≡ Xp +XHe II +2XHe III, (4.193)

so defined to take values in the range 0≤ Xe ≤ 1.
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We follow Refs. [51, 54] and consider the simplification of the multi-level hy-

drogen and helium atoms to that of an effective three-level system which includes the

ground n = 1 state, the first excited n = 2 states, and the continuum. All other excited

states are assumed to be in equilibrium with the 2s state. We treat He II recombination

approximately [53] (via the Saha equation) since it is essentially complete at the advent

of the epoch of He I recombination. The He III contribution, therefore, in the Boltzmann

equation for He II is negligible.

Boltzmann equations for H II and He II contain a thermally-averaged cross section

and relative velocity 〈σv〉. We use Case B recombination coefficients for the 〈σv〉 of

both neutral hydrogen [55] and helium [56]. Along with a Saha equation for He III,

the Boltzmann equations for H II and He II are a coupled set of ordinary differential

equations constituting a recombination network to model the ionization history of the

universe prior to photon decoupling.

Fig. 4.13 shows the evolution of the free–electron fraction with scale factor for

various values of ωb and concomitant values of YP. The vertical shaded bar is centered

on aγd , the scale factor at photon decoupling, given by Ref. [2] for a best-fit-value

ωb = 0.022068. The recombination rate increases with increasing ωb which results in

a lower freeze-out value of the free–electron fraction at large a/a0. The recombination

history is largely insensitive to the helium fraction but we calculate YP for each value of

ωb to maintain self-consistency between BBN and recombination. The values of YP are

YP = 0.220,0.238,0.243,0.246 for increasing ωb.

4.5 rs/rd as a proxy for Neff

In this section we describe our method for determining Neff in detail. We introduce

two variants of Neff. When referring to the radiation energy density equation (4.1), which
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Figure 4.13: Free-electron fraction Xe as a function of scale factor a/a0 and redshift z
(at top.) The different curves correspond to various values of ωb. The cold dark matter
contribution is held fixed at ωc = 0.12029. The vertical shaded bar is the scale factor at
photon decoupling, aγd given by Ref. [2].

takes as an input the quantity Neff, we designate Neff as N(th)
eff . When considering general

cosmologies, perhaps with BSM physics, we deduce the value of Neff from the observable

quantity rs/rd = θs/θd , described in this section, and designate it as Ñeff. The simplest

cosmologies for which Eq. (4.1) obtains, having negligible neutrino mass, standard model

constituents and no energy transfer between species have N(th)
eff =Ñeff.

We consider a test input cosmology that is non-standard yet substantively similar

to ΛCDM. We proceed by determining YP at temperature T ∼ 0.1 MeV using the BBN

network of BURST [31]. The principal observational cosmological input at this time

is ωb. Also input and incorporated into the BBN subroutine is any neutrino and BSM
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physics that constitute the test cosmology. Subsequently, we compute the recombination

history of the universe from early times (a/a0 ∼ 10−7) to the current epoch. Specific

observational inputs include ωb, ωc (where for cold dark matter ωc ≡Ωch2), YP, and H0

(the Hubble constant, H0 = H(a0)). For the purposes of the present discussion, other

inputs of particular importance include neutrino occupation probabilities (as output from

a neutrino transport calculation of weak decoupling that is fully coupled to BBN) and

neutrino rest masses. The neutrino energy density of the neutrino seas is calculated by

writing the occupation probabilities in the mass eigenbasis [57]. We emphasize the fact

that N(th)
eff is not input as a base parameter; this is of paramount import in the present

approach. The recombination history, ne(a) determines the optical depth as a function of

scale factor:

τ(a)≡
∫ a0

a

da′

a′2
a′ne(a′)σT (4.194)

We define the scale factor at photon decoupling aγd such that τ(aγd)≡ 1. In this definition,

we do not include the effects of cosmic reionization when calculating ne(a) for use in

Eq. (4.194) [2]. We apply aγd and the input cosmology to equations (4.30) and (4.66) to

compute the sound horizon and photon diffusion length, respectively. We arrive in this

way at a ratio (rs/rd)
(inp) for our input cosmology.

Our immediate objective is to determine a value of Neff (here termed Ñeff) cor-

responding to this value for (rs/rd)
(inp). We map out a range of values of rs/rd that

correspond to the same input cosmology as that used in calculating (rs/rd)
(inp), with

one significant difference. We parametrize all of the neutrino and BSM physics into the

single N(th)
eff parameter. We then use N(th)

eff to calculate the radiation energy density in Eq.
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(4.1) to determine the Hubble rate. We vary N(th)
eff to compute the function

rs/rd = rs/rd[ωb,ωc,YP, . . . ;N(th)
eff ], (4.195)

shown in Fig. 4.14. Since rs/rd is a one-to-one function of N(th)
eff , we may invert Eq. (4.195)

to obtain N(th)
eff = N(th)

eff [rs/rd]. The final step is to evaluate the previous function with our

input cosmology ratio, i.e. Ñeff = N(th)
eff [rs/rd = (rs/rd)

(inp)], to obtain a value of Ñeff. As

an example, we take the best-fit values from Ref. [2] combined with WMAP Polarization

data (100θs = 1.04136 & 100θd = 0.161375) to obtain (rs/rd)
(inp) = 100θs/100θd =

6.45304. This corresponds to a value Ñeff = 3.31 on Fig. 4.14, in line with the best-fit

value Neff = 3.25 (3.51+0.80
−0.74 at 95% limits) [2]. We again note that for the simplest

cosmologies the two generally distinct functions N(th)
eff [rs/rd] and Ñeff[rs/rd] reduce to the

same function and have N(th)
eff = Ñeff.

Figure 4.14, which shows the function rs/rd[N
(th)
eff ], demonstrates an important

constraint between phenomena occurring during the epochs of BBN and recombina-

tion/photon decoupling. For a given input cosmology (ωb,ωc, . . .), the graph of rs/rd as

a function of N(th)
eff requires a computation of ne(a) to obtain rd for each value of N(th)

eff .

We can understand Fig. 4.14 qualitatively by a simple scaling argument. We

expect that, as the radiation energy density increases with increasing N(th)
eff , the sound

horizon and the diffusion length will decrease with the increasing Hubble rate H(a).

The sound horizon decreases due to the increased energy density driving a more rapid

expansion and a decrease in the sound speed, cs = [3(1+R(a))]−1/2. The diffusion

length increases, naively, due to a decrease in the scattering rate driven by the reduced

Hubble time. Caution should be taken when using such naive scaling arguments. For

example, the non-trivial dependence of the recombination history leads to counterintuitive

effects in the Ñeff dependence on ∑mν [58]. Ref. [58] demonstrates that where a naive
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Figure 4.14: Ratio of the comoving coordinate of the sound horizon radius rs to that of
the photon diffusion length rd as a function of N(th)

eff for cosmological parameter values
YP = 0.2425, ωb = 0.22068, and ωc = 0.12029.

scaling argument would suggest an increase in Ñeff with increasing ∑mν, the non-trivial

dependence of the recombination history on ∑mν implies Ñeff decreases monotonically

and rapidly with increasing ∑mν (see Ch.5).

4.6 Conclusion

Our procedure for Ñeff is an attempt to delineate the physics of BBN from that of

the CMB. The sound horizon is largely insensitive to the processes involved in BBN. The

photon diffusion length is indeed sensitive to BBN through the necessary inclusion of

Yp in recombination. Therefore, our procedure does not relieve the degeneracy between
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Neff and Yp. To maintain self-consistency, we always calculate the primordial abundances

when adding in BSM physics. We will use Ñeff to show how the presence of BSM physics

would affect CMB observables in later chapters.
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Chapter 5

Neutrino–mass recombination effect

We show how small neutrino rest masses can increase the expansion rate near the

photon decoupling epoch in the early universe, causing an earlier, higher temperature

freeze-out for ionization equilibrium compared to the massless neutrino case. This yields

a larger free-electron fraction, thereby affecting the photon diffusion length differently

than the sound horizon at photon decoupling. This neutrino-mass/recombination effect

depends strongly on the neutrino rest masses. Though below current sensitivity, this

effect could be probed by next-generation cosmic microwave background experiments,

giving another observational handle on neutrino rest mass.

In this Letter, we show that the earlier epoch of ionization freeze-out caused by

neutrino rest mass affects the deduced radiation energy density in a novel way. The

physics of this freeze-out and its relation to observations of the cosmic microwave

background (CMB) is a well studied issue [59, 60, 61, 30, 10, 18, 62, 63]. Here we

focus on the influence of the recombination history on the CMB parameter Neff and a

subsequent counterintuitive result on its deduced value.

The theoretical definition of Neff arises from a parametrization of radiation energy

144
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density, ρrad, in terms of the photon temperature at decoupling, Tγ, given by:

ρrad =

(
1+

7
8

(
4

11

)4/3

N(th)
eff

)
π2

15
T 4

γ . (5.1)

(We set ~= c = kb = 1 throughout this work.) We adorn Neff with a superscript (th) to

distinguish the theoretical version of Neff, an input parameter in public Boltzmann codes

[64], from the CMB inferred value of Neff described below. Calculations which include

non-equilibrium processes in the early universe suggest N(th)
eff = 3.046 [60, 59, 61, 30].

Since active neutrinos decouple from the plasma with ultra-relativistic kinematics,

their energy densities do not behave like Fermi-Dirac distributions at photon decoupling.

The energy density of neutrinos with rest masses mνi and neutrino temperature Tν is:

ρν(mνi,Tν) = ∑
i

∫ d3 p
(2π)3 Ei fν(p,Tν) (5.2)

=
1

2π2 ∑
i

∫
∞

0
d p p2

√
p2 +m2

νi

ep/Tν +1
, (5.3)

where the sum is over active neutrino mass eigenstates, νi and the second expression

follows from an assumption of decoupled neutrinos. With this assumption, the behavior

of the neutrino energy density is a sum of ultra-relativistic Fermi-Dirac occupation

probabilities, fν = (exp(p/Tν)+ 1)−1, but with a general energy dispersion relation,

Ei =
√

p2 +m2
νi . Therefore, the energy density in the presence of a massive-neutrino

species is larger than in the massless case and becomes increasingly significant at later

times; it does not scale as T 4 ∼ a−4 as in Eq.(5.1).

The cosmological constraint (at the level of 2σ) on the sum of the light neutrino

masses is ∑mν ≤ 0.23 eV [2]. If we take ∑mν to be at this upper limit and assume

degenerate mass eigenvalues, each neutrino has an associated mass ∼ 0.08eV. We

see that the neutrino rest masses and temperatures at photon decoupling (Tγ ≈ 0.2eV,
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Tν ≈ 0.15eV) are coincidentally at the same scale, meaning that neutrinos can not be

treated either as pure matter or pure radiation. An individual neutrino has an average

momentum of ∼ 0.5eV at photon decoupling. As a consequence, we expect fractional

corrections to the relativistic neutrino energy density stemming from neutrino rest mass

to be ∼ m2/2p2 ∼ 0.01, with a concomitant change to N(th)
eff of ∼ 3× 0.01 ∼ +0.03.

If we were to unphysically classify the entire neutrino energy density into ρrad the

corresponding change to N(th)
eff would be ∆N(th)

eff ≡ N(th)
eff −3' 5

7π2

(11
4

)2/3
∑

3
i=1

(
mi
Tγ

)2
. We

arrive then at ∆N(th)
eff ' 0.04 for ∑mν = 0.23eV, a change consistent with the simple

kinematic estimate above, and not to be confused with ∆N(th)
eff ≈ 0.046 stemming from

non-equilibrium neutrino scattering and quantum-electrodynamic effects inherent in

Refs.[59, 60, 61].

The radiation energy density is not directly measured by observation of the CMB.

References [18] and [63], however, have shown that the ratio of the sound horizon to

the photon diffusion length at the photon decoupling epoch is sensitive to the radiation

energy density. Consequently, we distinguish between N(th)
eff , the input parameter that

determines the radiation energy density in Eq.(5.1), and a measure of radiation energy

density inferred from observations of the CMB, which we shall term Ñeff. We determine

Ñeff by computing the sound horizon, rs and the photon diffusion length, rd at the photon

decoupling epoch in the manner described below.

The quantities rs and rd are given in terms of integrals over the scale factor a [2]:

rs =
∫ aγd

0

da
a2H

1√
3(1+R)

, (5.4)

r2
d = π

2
∫ aγd

0

da
a2H

1
ane(a)σT

R2 + 16
15(1+R)

6(1+R)2 , (5.5)

where H = H(a) is the Hubble expansion rate, σT is the Thomson cross section, ne(a) is

the free-electron number density, and R(a)≡ 3ρb/(4ργ) is a ratio involving the baryon
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rest mass and photon energy densities, ρb and ργ, respectively. The integrals span the

early history of the universe, ending at aγd , the epoch of photon decoupling at a redshift

z = 1090.43 [2]. In the analysis to follow, we ignore the small dependence of the value of

aγd on ∑mν. This is not entirely self-consistent but we will demonstrate that a consistent

treatment changes the decoupling redshift from z = 1090 to z = 1091. The associated

change in aγd has negligible effect on rs and rd; this is similar to the finding in Ref.[18].

We should note that Eq.(5.5) is approximate and a more complete analysis would include

effects beyond the tight-coupling approximation[65].
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Figure 5.1: The free-electron fraction, Xe, is given as a function of scale factor ratio,
a/a0 (≡ 1 at current epoch), and redshift, z, (at top). The primordial helium mass
fraction is taken to be YP = 0.242. The shaded, vertical bar corresponds to the epoch of
photon decoupling given by Ref.[2].

Using Eq.(5.3) with neutrino masses taken as described above for a given value
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of ∑mν and the known relations for ργ and ρb we compute the quantities rs and rd from

Eqs.(5.4) and (5.5), respectively. We choose N(th)
eff in Eq.(5.1) to reproduce this ratio of

rs/rd , which is a monotonically decreasing function of N(th)
eff . The quantity so determined

is termed Ñeff and it reduces to N(th)
eff for massless neutrinos. It has been motivated

here by the need to characterize massive neutrinos but it is applicable to non-standard

cosmic constituents that may have non-equilibrium distributions. Using the ratio rs/rd

in the determination of Ñeff avoids any reference to the angular diameter distance to last

scattering and, therefore, dependence on the dark energy equation of state. In contrast to

Ref.[18] we do not change the value of the primordial helium abundance, YP to keep θd

fixed.

A scaling analysis, similar to that of Ref.[18], demonstrates the approximate

relation between the sound horizon, the diffusion length, and the Hubble rate. Consider a

scale transformation to the Hubble rate, H→ λH, and the corresponding alteration to rs

and rd . If we neglect the dependence of R(a) and ne(a) on λ we have

rs ∝
1
λ

and rd ∝
1√
λ

=⇒ rs

rd
∝

1√
λ
. (5.6)

These relations suggest that a larger Hubble rate (λ > 1) results in a smaller value of the

ratio rs/rd . This fact and ∆(rs/rd) ∼ −∆Ñeff (since rs/rd is monotonically decreasing

with Ñeff) means that a larger Hubble rate would imply a larger value of Ñeff. In fact, as

we will show, the λ-scale dependence of ne(a) leads to the consequence that a larger

Hubble rate results in a larger ratio of rs/rd .

The photon diffusion length rd depends on the number density of free electrons

ne. To calculate ne, we follow the competition between ionization and recombination

in an expanding universe. The hydrogen contribution to the free-electron fraction,
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X (H)
e ≡ n(free)

e,H /n(total)
e , follows from the Boltzmann equation [51, 54]:

dX (H)
e

da
=

1
aH

(
ΓH(γ,e−)H+−ΓH+(e−,γ)H

)
, (5.7)

where ΓH(γ,e−)H+ is the ionization rate and ΓH+(e−,γ)H is the recombination rate. There is

a similar Boltzmann equation for the contribution of helium to the free-electron fraction,

X (He)
e ≡ n(free)

e,He /n(total)
e .
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Figure 5.2: The relative change in the free-electron fraction, ∆Xe/Xe given as a function
of scale factor ratio, a/a0, and redshift, z, (at top). The primordial helium mass fraction
and vertical bar are identical to Fig. 5.1. Each curve corresponds to a different non-zero
∑mν. The curves are in equal increments of ∆Σmν = 0.2 eV, starting with the smallest
change for ∑mν = 0.2 eV and ending with the largest change for ∑mν = 1.0 eV.

We employ a recombination reaction network that includes hydrogen and helium

and which is similar to, but independent of, the code recfast[52]. Figure 5.1 shows a
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calculation of the free-electron fraction, Xe ≡ X (H)
e +X (He)

e , as a function of scale factor

ratio a/a0 (≡ 1 at current epoch), where we have taken ∑mν = 0. We neglect effects due

to reionization processes at low redshift, z∼ O(1). We evolve the free-electron fraction

through the photon decoupling epoch to show the freeze-out of ionization equilibrium.

Note the drop from the initial value of Xe = 1 near a/a0' 2×10−4. This is a consequence

of the recombination onto He III.

Similarly, in Fig. 5.2 we plot the change in Xe for non-zero values of ∑mν relative

to the case with ∑mν = 0. Non-zero ∑mν has a discernible effect on the freeze-out of

Xe. A larger ∑mν implies a larger Hubble rate which implies an earlier epoch for Xe

freeze-out. In a study of the expansion rate during recombination, Ref.[66] observed

that scaling the Hubble rate affects the recombination history. Here we build on this

argument to explicitly consider the role of neutrino rest mass on recombination. The

curve describing the largest change corresponds to ∑mν = 1.0 eV, whereas the smallest

change corresponds to ∑mν = 0.2 eV; consecutive curves are spaced by ∆Σmν = 0.2

eV. The larger Xe at aγd produces a smaller rd , opposite to the expectation from Eq.(5.6)

based solely on the λ-scale dependence of the Hubble rate.

In order to investigate physics beyond the standard models of particle physics

and cosmology, we have formulated a self-consistent approach that is not constrained

to minimal extensions to the standard model. To do so, we simulate the early universe

from weak decoupling through Big Bang Nucleosynthesis (BBN) to photon decoupling

using the BURST code[67]. This treatment self-consistently incorporates binned, general,

momentum occupation probabilities for each of six neutrino species (νe, ν̄e, νµ, ν̄µ,

ντ, and ν̄τ) and a Boltzmann treatment of neutrino scattering, absorption and emission

processes to evolve the early universe.

In this treatment, neutrinos decouple from the γ, e± plasma at high temperatures,

1.T .3 MeV, ensuring that their kinematics are ultra-relativistic [57, 68]. Addition-
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ally, the computation of YP in this treatment may be more nuanced than in the standard

cosmology. For general cosmologies, YP is not simply a function of N(th)
eff and ωb. Assum-

ing zero lepton numbers and an adopted world-average neutron lifetime of 886 s, our

calculations give a 4He primordial mass fraction YP = 0.242 taking the baryon number

Ωbh2 ≡ ωb = 0.022068 from the Ref.[2] best-fit. This is consistent with the observa-

tionally inferred primordial helium abundance [8, 1]. Although we take the neutrinos to

decouple in weak eigenstates, i.e. flavor states, we write their occupation probabilities in

the mass eigenbasis. Since we are assuming the neutrinos have identical thermal spectra

with zero-chemical potential in the weak eigenstates, we can use the same occupation

probabilities for the mass eigenstates at a given momentum p [69, 57].
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Figure 5.3: The change in Ñeff, ∆Ñeff, is given as a function of scale factor ratio, a/a0,
and redshift, z, (at top). The primordial helium mass fraction and vertical bar are
identical to Fig. 5.1. For each value of ∑mν, ∆Ñeff is initially positive. ∆Ñeff becomes
negative once the recombination histories of Fig. 5.2 differ from the massless case.
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Figure 5.3 shows the evolution of Ñeff with scale factor. Here for illustrative

purposes, we treat ∆Ñeff as a quantity to be determined at any epoch, whereas it is only

observed at photon decoupling. The neutrino rest mass has no discernible effect on

Ñeff at early epochs, at small a/a0. At larger values of a/a0 (∼ 5× 10−4), the extra

energy density from the neutrino rest masses produces a larger Ñeff in accordance with

Eq.(5.6) before the neutrino-mass/recombination (νMR) effect is significant. If we were

to extrapolate this evolution trend to the epoch of photon decoupling, we would find a

value of ∆Ñeff > 0. The νMR effect intervenes to modify this extrapolation and results in

∆Ñeff < 0 at aγd .

Each evolution curve for ∆Ñeff in Fig. 5.3 corresponds to an evolution curve for

Xe(a) in Fig. 5.2 for various values of ∑mν. The smallest value of ∑mν produces the

smallest change in Xe, which subsequently changes ∆Ñeff the least. Conversely, the largest

value of ∑mν produces the largest change in Xe, which changes ∆Ñeff the most. From the

curves in Fig. 5.3, it is clear that the effect of neutrino rest mass in producing a higher Xe

at freeze-out overwhelms the effect of the extra energy density, thereby decreasing Ñeff at

photon decoupling, i.e. at a = aγd , the vertical bar in Figs. 5.2 & 5.3.

There are several interesting features to note in Fig. 5.3. Each curve in Fig.

5.3 goes through ∆Ñeff = 0 near the value a/a0 ∼ (7.65± 0.10)× 10−4. The larger

the value of ∑mν, the higher the curvature of the function ∆Ñeff(a). For values of

a/a0 above ∆Ñeff = 0, the slope of ∆Ñeff(a) is an extremely rapidly decreasing function

of ∑mν. We note that for ∑mν = 0.23 eV, the preferred upper limit from Ref.[2],

we find ∆Ñeff = −0.005. This effect is certainly below present sensitivities of CMB

observations. Next-generation CMB measurements, however, aspire to percent level

accuracy in determinations of the relativistic energy density[70]. The exquisite sensitivity

of the νMR effect on ∆Ñeff(aγd) suggests that it may be an important component in future

precision determinations of cosmological parameters.
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As mentioned earlier, we do not constrain aγd to maintain a uniform optical depth

τ(aγd)

τ(aγd) =
∫ a0

aγd

da
a2H

ane(a)σT ≡ 1, (5.8)

when comparing different values for ∑mν. Note that this definition of τ(aγd) does not

include reionization effects on ne(a). We should emphasize that each curve in Figs.

5.2 and 5.3 is calculated using the same value for the scale factor of last scattering

aγd = 9.162×10−4 (corresponding to z = 1090.43). This is not self consistent, strictly

speaking, but we have verified that the effect on Ñeff, due to the differences in ne and

H, is negligible. If we impose the constraint in Eq.(5.8), we find aγd decreases by a few

parts in 104 for ∑mν = 0.23 eV, which has an insignificant effect on Ñeff.

Up to this point in the present analysis we have not considered variation of the

primordial helium mass fraction YP since BBN occurs at high enough temperatures that

the neutrinos are effectively massless. If we consider, however, cosmological parameters

that affect YP we can examine the dependence of ionization freeze-out (and subsequent

alteration of Ñeff) on both ∑mν and YP simultaneously. A direct way to vary YP is to

consider changes to the baryon number ωb. In the range of values of ωb that we’re

interested in, YP is a monotonically increasing function of ωb.

Figure 5.4 shows a contour plot of ∆Ñeff in the ∑mν versus ωb parameter space;

contours correspond to constant values of−∆Ñeff. Varying ωb requires new computations

of YP from BBN and Xe(a) from recombination. Changing ∑mν requires a new computa-

tion of Xe but no new computation of YP. As a consequence, we compute BBN with the

BURST code only once for a given ωb, and compute the recombination history for each

pair (ωb, ∑mν). Holding ∑mν fixed, the change in |∆Ñeff| increases with increasing ωb

due to the different recombination histories effecting a change in rd . Note that the change
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Figure 5.4: Contours of constant −∆Ñeff in the ∑mν vs. ωb parameter space. The
shaded, vertical bar corresponds to the 1σ error for ωb [2].

in rs does not completely compensate for the change in rd . The shaded vertical region

in Fig. 5.4 is the 1σ range of ωb given by Ref.[2], but we explore a larger range in the

ωb parameter space to illustrate the dependence of Ñeff on ∑mν and ωb. An interesting

feature of these curves is their increasing curvature with decreasing ωb and increasing

∑mν. This is a consequence of an enhancement of the νMR effect with increasing ωb: as

∑mν increases, the change in Ñeff is faster for higher values of ωb.

We have discussed two ways in which neutrino rest mass affects measurable

quantities at photon decoupling. First, neutrino rest mass drives an earlier recombination

freeze-out resulting in a higher free-electron fraction. Second, this effect is enhanced

with increasing ωb stemming from a self-consistently calculated recombination history.

As radiation energy density is not a directly measurable quantity, we use observable
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quantities to indirectly arrive at the radiation energy density. For this purpose, we choose

the ratio of the sound horizon to the photon diffusion length. Photon diffusion is sensitive

to the recombination history, which requires a Boltzmann-equation treatment. We find

a non-trivial evolution of ∆Ñeff with scale factor, as shown in Fig. 5.3. Note that the

evolution of Ñeff shown in this figure does not reflect a kinematical evolution of the

radiation energy density with a massive component. The trends evidenced in this figure

are a consequence of the νMR effect.

Self-consistency is a primary motivation for defining the radiation energy density

parameter Ñeff in terms of the ratio rs/rd; it generalizes the N(th)
eff parameter to the mas-

sive neutrino case. Further, Ñeff is defined for arbitrary energy densities and arbitrary

distribution functions. Moreover, Ñeff makes no assumption regarding the underlying

cosmological model. We use Ñeff to relate the sound horizon and photon diffusion length

to predictions made by the standard cosmological model via the parameter N(th)
eff .

The νMR effect is an example of a recurring phenomenon in cosmology: an

increase in the expansion rate leads to an earlier epoch of freeze-out. This effect was

revealed in the present context by using Ñeff to infer the cosmic radiation energy content

from observable CMB data, rather than treating N(th)
eff as an input. The procedure we

describe here differs from that adopted by the public Boltzmann codes. CAMB[64], for

example, includes options to evolve massive neutrino energy density through the epoch

of recombination and requires N(th)
eff to be provided as an input.

Depending on ∑mν, the concomitant changes in ionization equilibrium and Ñeff

discussed here may be within the sensitivity of the next generation CMB experiments

when polarization effects are taken into account[2, 43, 71, 70]. CMB precision is planned

to be increased to the Ñeff ∼ 1% level which would probe both massive active neutrinos

and other possible components of dark radiation. Scenarios with sterile neutrinos and

other very weakly coupled light massive species with masses larger than those associated
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with the active neutrinos could enhance the effects discussed here. However, depending

on their masses and their flavor mixing with active species, sterile neutrinos could

have number densities and energy spectra which differ from those of active neutrinos

[72, 73, 74, 75, 76, 77], complicating the analysis given here.
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Chapter 6

Examples for neutrino sector

beyond–standard–model physics

We describe three examples of unresolved issues in BSM/CSM physics, which

require the fully self-consistent parameter determination described in previous sections.

We consider, in turn, models incorporating neutrino rest mass, sterile neutrinos, and

non-zero lepton numbers. We use, throughout this section, the observationally-inferred

definition of Neff, Ñeff.

6.1 Neutrino rest mass

Section 2.5 details a self-consistent treatment of the BBN observables YP, D/H,

Ñeff, and ωb. The sum of the light neutrino masses, denoted ∑mν, has no bearing on the

determination of primordial abundances in BBN calculations due to the high temperatures

relevant there. Here, however, we explore the epochs and energy scales in the history of

the universe associated with the ∑mν energy scale in order to investigate the relationship

between ∑mν and the other four observables of interest (ωb, Ñeff, YP and D/H). Specific

157
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Figure 6.1: Determination of ∑mν plotted against ωb at constant ∆Ñeff. The contours
are spaced by ≈ 0.01 in values of ∆Ñeff. All contours correspond to ∆Ñeff < 0.
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examples of such epochs that we might consider include the surface of last scattering

(z∼ 1100) and the advent of LSS (z. 10). We focus on the surface of last scattering and

implications for the CMB in this paper.

Reference [58] (hereafter GFKPI) investigates the effect of neutrino rest mass on

Ñeff using the BURST suite of codes. Conventional estimates based on the energy density

added by non-zero neutrino rest masses suggest an increase in N(th)
eff . However, using the

method outlined in Sec. 4.5, GFKPI shows a decrease in Ñeff. The decrease is due to

an effect on the recombination history stemming from an increase in the Hubble rate,

which results in a larger free-electron fraction. This counterintuitive result is termed the

“neutrino-mass/recombination (νMR) effect.” The νMR effect manifests itself only in a

self-consistent treatment, such as that employed by GFKPI.

In addition, GFKPI investigates the dependence of the νMR effect on ωb. We

revisit this physics here in preparation for a discussion on the effect of non-zero lepton

number Lν later, in Sec. 6.3.2. Increasing ωb leads to an enhancement of the νMR

effect when ∑mν is held constant, as is evident by the curvature of the contours in Fig.

6.1. The enhancement is a consequence of the effect that changing ωb has on the the

recombination history. We might naively expect a larger change in the Hubble rate

relative to the massless neutrino case resulting in an enhanced νMR effect for the smaller

ωb case. This is opposite to that observed in Fig. 6.1. This result also is counterintuitive

based on expectations from a simple scaling of the energy density and the resulting

change in the recombination history [58].

The origin of the enhancement of the νMR effect can be understood by consider-

ing a simplification of the Boltzmann equation that determines the recombination history

[Eq. (4.193)]. We take YP = 0 for the purposes of this argument since the νMR enhance-

ment is insensitive to YP, as we have verified numerically for the ranges of parameters

we are considering. In this simple scenario, Xe = Xp and we obtain an expression for the
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change in the free-electron fraction:

dXe

dt
= (1−Xe)β−X2

e n(tot)
e α

(2), (6.1)

where β≡ α(2)(meT/2π)3/2e−∆Q/T is the ionization coefficient and α(2) is the recombi-

nation coefficient with ∆Q = 13.6 eV.

Equation (6.1) for the recombination history shows that the free-electron dis-

appearance rate is proportional to the total electron number density, which in turn is

proportional to ωb through Eq. (4.192). Equation (4.192) also shows how n(tot)
e relates to

YP. Note that ωb and YP affect n(tot)
e differently. However, due to the relative insensitivity

of YP to ωb, the ωb dependence dominates in Eq. (4.192). The increase in energy density

from ∑mν 6= 0 and the increase in the free-electron disappearance rate combine to alter

the recombination history so as to enhance the νMR effect for increasing ωb.

6.2 Sterile neutrinos

We next consider the possibility that there exists either single or multiple sterile-

neutrino species, which could have profound implications in cosmology. We entertain

two possibilities of either light or heavy sterile neutrinos.

6.2.1 Light sterile neutrinos

Observations of neutrino events in large scintillating detectors may have revealed

anomalies that could be interpreted as sterile neutrinos with rest masses mνs ∼ 1 eV

[78, 79, 80]. We investigate the presence of a single sterile neutrino in the early universe

by employing a model where the sterile state populates a thermal Fermi-Dirac shaped

distribution with temperature parameter Ts, possibly through flavor mixing. The sterile
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Figure 6.2: Ratio of the sterile to active neutrino temperatures, Ts/Tν, plotted against
mνs for contours of constant Ñeff for ∑mν = 0.06 eV. Horizontal dotted lines show the
prediction if the sterile neutrino was massless, i.e. mνs = 0

neutrino temperature, Ts is taken to be less than or equal to the active neutrino temperature

Tν. The ratio Ts/Tν is assumed to be the same throughout weak decoupling, BBN, and

recombination. For this analysis, we do not investigate smaller active-sterile neutrino

mixing angles with resultant non Fermi-Dirac-shaped energy spectra [81, 57]. Future

work will consider such physics [82].

Figure 6.2 displays contours of constant Ñeff. The vertical axis is the ratio

Ts/Tν and the horizontal axis the sterile neutrino rest mass mνs . We maintain the ratio

Tν/T = (4/11)1/3, assuming covariant conservation of entropy, starting at the end of

the epoch of e±-annihilation and continuing throughout the remainder of the history of

the universe. The dotted lines show the expectation from the dark radiation analysis of
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Sec. 2.5 without employing the self-consistent, iterative approach developed in Sec. 4.5.

The deviation of the contours from the dotted lines is again due to an effect similar to

the νMR effect but, in this instance, due to the sterile state. Fig. 6.2 takes the sum of

the active neutrino masses to be 0.06 eV. This is inconsequential for large Ts/Tν . 1.

For Ts/Tν . 0.1, ∆Ñeff < 0 due to the νMR effect in the active neutrino sector. As a

consequence, the contour for Ñeff = 3 is not coincident with the mνs axis. Since mνs is too

small to be of any significant kinematic effect during BBN, we need only compute BBN

once for a given value of Ts/Tν. During recombination, mνs is kinematically important

and affects the Hubble rate. Hence, for every point in the Ts/Tν-mνs plane of Fig. 6.2 we

calculate recombination. This figure clearly emphasizes the need for a self-consistent

treatment between BBN and recombination when considering this BSM physics.

6.2.2 Heavy sterile neutrinos

Heavy sterile neutrinos that decay out of equilibrium in the early universe can

affect weak decoupling and, as a consequence, primordial nucleosynthesis [69, 16, 83].

Sterile neutrinos in the rest mass range 0.1 GeV≤ mνs ≤ 1.0 GeV, with lifetimes & 1 s

decaying during the weak decoupling, weak freeze-out, and/or BBN epochs can have

constrainable, sometimes dramatic, cosmological effects.

Such sterile neutrinos have mass and vacuum mixings with νe,νµ,ντ constrained

by accelerator and other laboratory oscillation experiments/observations [84, 85, 86,

87, 88, 89, 90, 91], beta-decay experiments [92], and cosmological considerations,

including constraints on ∑mν and Neff [93, 94, 95, 96, 97, 98, 99, 100]. In fact, stringent

constraints can be obtained from Neff limits alone [16], as sterile neutrinos decaying out

of equilibrium can lead to dilution (entropy production) which, in the weak decoupling

epoch, can lead to distortions in the relic neutrino energy spectrum, affecting ∑mν, and

have significant impact on the relativistic energy content and, hence, Neff. A sophisticated



163

theoretical and computational treatment of dilution physics is a challenging endeavor.

We have developed BURST to address this specific problem. BURST employs individual

neutrino spectra for each species, binned according to the co-moving quantity ε≡ E/Tν.

The binned-spectra evolve with the universe as heavy particles decay, injecting entropy

into the neutrino seas, and subsequently equilibrate by scattering on background neutrinos

and electrons and positrons. We track multiple decades of ε values over many Hubble

times. Our Boltzmann solver calculates the rates for each individual scattering process

so we can decipher the contributions of each process to the shape of the neutrino spectra.

Even though these heavy sterile neutrinos may decay away before an epoch where

T ∼ 10 keV, they can nevertheless alter the relationship between YP, D/H, Neff, ∑mν, and

ωb, necessitating the need for a self-consistent treatment between the weak decoupling,

weak freeze-out, BBN, recombination, photon decoupling, and advent of LSS epochs

[101].

6.3 Lepton numbers

We examine how lepton numbers affect the primordial abundances and Ñeff. We

define the lepton number Lν for a neutrino species ν in a flavor eigenstate as

Lν ≡
nν−nν̄

nγ

, (6.2)

where nν is the number density of neutrino species ν, nν̄ is the number density of anti-

neutrino species ν̄, and nγ is the number density of photons. Here, for illustrative purposes,

we take Lνe = Lνµ = Lντ
≡ Lν. The efficiency of neutrino oscillations in equating lepton

numbers is approximate, and indeed dependent on neutrino physics [102, 103, 104]. In

fact, Ref. [103] shows that oscillations with solar mass-splitting scales cause disparate

lepton numbers in e,µ,τ neutrinos to equilibrate to within an order of magnitude of one
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another. The limitations of existing calculations revolve around how quantum damping

and neutrino energy dependence are handled.

We use the comoving-invariant neutrino degeneracy parameter ξν ≡ µν/Tν, where

µν is the chemical potential of neutrino ν, to compute Lν. The present model assumes

that the lepton number evolves through the epoch of e± annihilation only in response

to the relative increase in nγ. We do not consider any BSM physics which could alter

the difference nν−nν̄; that is, we fix ξν throughout weak decoupling, BBN, and photon

decoupling. We relate the degeneracy parameter to the lepton number using the following

expression [105, 19, 81]:

Lν =
4

11
1

12ζ(3)
(
π

2
ξν +ξ

3
ν

)
, (6.3)

where ζ(3)≈ 1.202. The factor 4/11 in Eq.(6.3) implies that our lepton numbers refer

to the post e± annihilation epoch, where Tν/T = (4/11)1/3.

6.3.1 Effect on nucleosynthesis

The helium mass fraction is sensitive to the neutron-to-proton ratio, n/p. We

determine n/p by calculating the weak rates associated with neutrino-nucleon reactions,

namely:

νe +n
 e−+ p+ (6.4)

ν̄e + p+
 e++n (6.5)

and in addition, neutron and inverse neutron decay:

n
 e−+ ν̄e + p+ (6.6)



165

0.005 0.010 0.015 0.020 0.025
ωb

−0.04

−0.02

0.00

0.02

0.04

L
ν

0.195

0.210

0.225

0.240

0.255

0.270

0.285

Figure 6.3: Lepton asymmetry Lν [Eq.(6.2)] plotted against ωb for contours of constant
YP. The contours are spaced by ∆YP = 0.015.
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Figure 6.4: Lepton asymmetry Lν plotted against ωb for contours of constant 105×
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The net rates in reactions (6.4) and (6.5) fall below the Hubble rate at the epoch of weak

freeze-out. Weak freeze-out largely precedes the alpha-particle formation process in

BBN, though unlike the brief time/temperature range of α-formation, weak freeze-out

occurs over several Hubble times at this epoch. The rates in reactions (6.4) through (6.6)

are sensitive to the neutrino and e± distributions. We follow Ref. [27] to evolve T and

the electron chemical potential in order to maintain equilibrium between the electrons,

positrons and photons. For the electron-flavor neutrinos, we use the comoving invariants

aTν and ξνe to compute the neutrino distributions. We set ∑mν = 0 as neutrinos of sub-eV

rest mass remain ultra-relativistic throughout weak freeze-out.

Figures 6.3 and 6.4 show the helium mass fraction and the relative deuterium

abundance, respectively. Each plot is in the Lν-ωb plane for contours of constant pri-

mordial abundance. The relationships between lepton number and nucleosynthesis are

well known [106, 41]. Increasing Lνe leads to an overabundance of neutrinos compared

to anti-neutrinos. The forward rate of reaction (6.4) freezes-out after the forward rate

of reaction (6.5). The imbalance lowers n/p which lowers YP as seen in Fig. 6.3. The

decrease in n/p also leads to a decrease in D/H, although deuterium is not as sensitive to

Lν as helium. However, D/H is known to much higher precision than is YP.

Comparing with recent observations [1, 3], the two light element abundances

achieve consistency at 2σ. YP prefers a value of Lν < 0 whereas D/H prefers a positive

value of Lν. If future observations of the light-element abundances were to show a larger

disagreement than 2σ, lepton numbers of identical value could not solely rectify the

tension. Future analyses will consider scenarios with multiple facets of BSM physics

including non-zero lepton numbers [107]. This analysis will use Ñeff as a discriminating

factor.
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Figure 6.5: ∑mν plotted against ωb for contours of constant ∆Ñeff. The blue contours
are for Lν = −0.05. The magenta contours are for Lν = 0. The red contours are for
Lν = 0.05. Solid contours are for positive values; dashed contours are for negative
values.

6.3.2 Effect on Neff

We consider how two aspects of non-CSM/BSM physics (Lν 6= 0 and/or ∑mν 6= 0)

modify Ñeff. If we set the neutrino rest mass to ∑mν 6= 0, we can investigate whether the

νMR effect still applies with non-zero Lν. Figure 6.5 shows the changes to Ñeff in the

∑mν-ωb plane for three values of Lν =−0.05,0,0.05 corresponding to blue, magenta,

and red contours, respectively. The non-zero lepton number increases Ñeff for small

values of ∑mν in accordance with Ref.[10]. However, for values of ∑mν ∼ 1.0 eV, the

νMR effect overwhelms the extra energy density from more particles to lower Ñeff below

three.
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Figure 6.5 also shows that, despite the total energy density being insensitive to

the sign of Lν, the contours for non-zero values of Lν with opposite sign do not overlap

because YP depends sensitively on its value. YP is largest for the blue contours, so more

helium suppresses the νMR effect.

Note that taking Lν 6= 0 conflates the interpretation that the effect of ∑mν is

identical to perturbations in the matter power spectrum, which are used in calculating the

suppression of power on small scales. This is borne out by the present model where the

∑mν statistic cannot be equated to the cosmological measurement. In our model, ∑mν

is simply the sum of the active vacuum neutrino mass eigenvalues. The observationally

determined value of ∑mν depends on quantities other than the sum of the active neutrino

masses such as their energy distributions.

6.4 Conclusion

We have shown that the parameters Neff and ∑mν are inadequate to fully cover

the neutrino sector when considering BSM physics. Active neutrino rest mass, sterile

neutrinos, and lepton numbers modify predictions of Neff and ∑mν. The characterization

of this physics (and undoubtedly other phenomena) requires a self–consistent treatment

of the universe from early times (weak decoupling) to late times (the advent of LSS).

Chapter 6, in full, is a reprint of some of the material as it appears in “Probing

neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis,

and photon decoupling epochs.” Grohs, E.; Fuller, G. M.; Kishimoto, C. K.; Paris, M.

W., J. Cosmology Astropart., 5 (May 2015) 17. The dissertation author was the primary

investigator and author of this paper. We thank Lauren Gilbert, Jeremy Ariche, Amit

Yadav, and JJ Cherry for useful discussions.



Chapter 7

Transport

7.1 Introduction

Above a temperature of a few MeV, the neutrinos efficiently exchange energy

with the electrons and positrons. Besides cold–dark–matter, all of the constiuents of the

universe are in close thermal contact until weak decoupling in the standard cosmology.

In our work so far, we have assumed an instantaneous decoupling of the neutrinos from

the electromagnetic plasma. We abandon this approximation in this chapter.

Ref.[28] (hereafter called DHS) confronted the problem of the non-sharp tran-

sition of weak decoupling. In their seminal work, the authors used a non-perturbative

method to calculate the collision integrals in the Boltzmann equation, Eq.(1.170):

d f (ε)
dt

= Ĉ[ f (ε)], (7.1)

We define the independent variable ε = E/Tcm from Eq.(1.72), where we have equated the

energy and the magnitude of the three–momentum, and used the comoving temperature

Tcm. f (ε) is the phase–space occupation probability (or simply occupation probability)

of the neutrinos and the input into the collision integral of Eq.(7.1). For the processes

170
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relevant to weak decoupling, it is necessary to calculate the occupation probabilities for

the charged leptons. We assume FD equilibrium spectra, using a chemical potential and

temperature, for the electron and positron occupation probabilities:

fe±(E) =
1

e(E±µ)/T +1
≡ 1

exp
(

E
T
±φe

)
+1

, (7.2)

where we have defined the electron degeneracy parameter, φe. The finite mass of the

electron complicates the expression in Eq.(7.2). We use a temperature–scaled mass mε,

which we define as:

mε ≡
me

Tcm
. (7.3)

We do not use the plasma temperature T in our definition of mε, opting instead to use the

comoving temperature.

The calculation of the collision integral in Eq.(7.1) is non-trivial. However, the

integrations are easily parallelizable. Therefore, we execute our computations on a

supercomputer. We have written our code BURST in Fortran 90/95, using OPENMPI for

message passing. We have not used any publicly available Boltzmann–collision–term

calculators in BURST. Our code is tuned for the specific problem of the weak–decoupling

collision terms. We always consider speed and accuracy when modifying the parallel

version of our code. The efficiency of the parallel structure reduces the run time by nearly

a factor of the number of cores. Calculations involving the neutrino Quantum Kinetic

Equations (QKEs, see Ref.[12]) mandate the use of sophisticated numerical techniques

for speed and accuracy. With the QKE problem in mind, we designed BURST to calculate

the collision integrals as efficiently as possible.

We define δ f at a given time and ε to be the relative change in the occupation
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probabilities with respect to (wrt) a FD occupation probability:

δ f ≡ f (ε, t)− f (eq)(ε)

f (eq)(ε)
where f (eq)(ε) =

1
eε +1

. (7.4)

f (eq) is independent of time or temperature. To encapsulate the total change in the neutrino

spectrum, we encode the neutrino energy density into Neff, the so–called effective number

of neutrinos. The standard definition of Neff is the following:

ρr =

[
2+

7
4

(
4

11

)4/3

Neff

]
π2

30
T 4. (7.5)

If we equate the radiation–energy density to the sum of the photon and neutrino energy

densities, we find:

ργ +ρν =

[
1+

7
8

(
4

11

)4/3

Neff

]
ργ (7.6)

=⇒ Neff =
8
7

(
11
4

)4/3
ρν

ργ

. (7.7)

We use Eq.(7.7) when calculating Neff. The calculation of the photon energy density is

straight–forward. To calculate the neutrino energy density, we use Boole’s rule[108]

when integrating the neutrino spectra over ε to obtain a dimensionless number. We

multiply the dimensionless number by T 4
cm to determine the energy density.

The outline of this chapter is as follows. In Sec.7.2, we briefly give an overview

of past approaches to solving the weak–decoupling problem. Sec.7.3 lists the summed–

squared–amplitudes needed in calculating the collision term in Eq.(7.1). We follow DHS

and do not include finite–temperature QED effects when calculating the collision terms.

In Sec.7.4, we outline our non-perturbative approach. Sec.7.5 discusses the quantization

of error in the coupled Ordinary Differential Equation (ODE) network of the occupation
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probabilities. Secs.7.3, 7.4, and 7.5 lay the framework for an actual weak–decoupling

calculation, which we present in Sec.7.6. We conclude in Sec.7.7

7.2 Overview of past approaches

The problem we consider in this chapter is the departure from equilibrium in weak

decoupling. Such a problem can be treated perturbatively, as was done by Refs.[30, 109].

DHS and Ref.[29] treated the same problem, but used a non-perturbative approach by

binning the neutrino spectra.

Different research groups estimated the correction to the neutrino spectra without

using a set of Boltzmann equations. Ref.[110] examined the effect of finite–temperature

radiative corrections on the production of helium. In addition, the authors of Ref.[110]

estimated the effect of incomplete weak decoupling by assuming thermal equilibrium is

maintained in a single neutrino species and using a constant, average cross section. They

found relative changes in the νe temperature of ∼ 3×10−3 and the νµ,τ temperature of

∼ 1×10−3 when only considering positron–electron annihilation. Refs.[111, 112] also

looked at changes in the neutrino temperatures and found similar results to within an

order of magnitude. Refs.[113, 114, 115] all used coupled sets of Boltzmann equations

for their treatment of the weak decoupling problem. Refs.[113, 114] used a Boltzmann

approximation for their Boltzmann equations. Ref.[115] did not make the Boltzmann

approximation, and found relative changes in the energy densities of:

δρνe ≡
∆ρνe

ρ
(eq)
ν

= 0.83%, (7.8)

δρνµ = 0.41%. (7.9)

DHS assumes a baryon-free, FLRW universe. The independent variable is x≡ma,
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where a is the scale factor, and m is a generic mass scale. x is normalized such that the

comoving temperature is:

Tcm =
1 MeV

x
. (7.10)

DHS evolves, in x, three sets of quantities. The first quantity is the total energy density,

deduced from covariant energy conservation:

x
dρ

dx
=−3(ρ+ p), (7.11)

where ρ is the total energy density and p is the total pressure. The total energy density

includes photons, charged leptons, and the partially decoupled neutrino species. From

Eq.(7.11), DHS deduces a plasma temperature. The electron and positron chemical

potential is identically zero since there is no baryon asymmetry. Therefore, the degeneracy

parameter φe is not an evolution variable. With Eq.(7.11), DHS evolves the sets of

Boltzmann equations for νe and νµ. The Boltzmann equations are indexed by the

dimensionless quantity y≡ p ja. The ντ spectrum is identical to νµ, and the anti-neutrinos

have identical spectra to the corresponding neutrino.

The number of bins in y is either 100 or 200, although DHS achieves acceptable

convergence at 100 bins. The bins are linearly-spaced from y = 0 to y = 20.0. There

is a point at zero which is evolved with different collision integrals. DHS executes

two different, but in theory identical, procedures (called FD). The first FD procedure

evolves the occupation probabilities directly. The second procedure evolves the changes

δ(x,y), where f (x,y) = f (eq)(x,y)(1+δ(x,y)). f (eq)(x,y) is a FD occupation probability

at coordinate x. The two procedures should give identical results. Differences arise due to

machine precision; however, the two procedures produce similar results for convergence.

In addition to the two FD procedures outlined above, DHS solves the neutrino Boltzmann

equations by employing the Boltzmann approximation. Within this approximation, there
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are an additional two procedures (called MB). The first MB procedure integrates the

scattering integrals exactly the same way as the procedures for f (x,y) and δ(x,y) except

using the Boltzmann approximation, where 1− f → 1. The second procedure uses two

different integrals for the forward and reverse rates. The forward rate is the same as the

first procedure. The reverse rate explicitly integrates the integrals over the phase space

of the third particle, since 1− f3→ 1 and so
∫

d p3 is analytic. Both MB procedures are

approximations to the FD procedures outlined first, and are not expected to converge

with the FD results. However, the MB procedures supply a method to check for coding

or computational errors. The authors claim complete agreement between the two MB

procedures.

For the FD procedures, the authors initiate the computation at three points,

denoted xin = 0.1,0.2, and 0.5. The last initialization point (equivalent to Tcm = 2 MeV)

does not converge with the first two points. The authors use 4000 points in x. The

computation ends at x= 60.0 once freeze-out has occured. There are two ODE integration

algorithms: a simple time evolution (presumably Eulerian); and a Bulirsch-Stoer routine

similar to that of Ref.[108], except written in C. The Bulirsch-Stoer routine agrees well

with the simple time evolution for 4000 points in x. Convergence is most sensitive to the

number of points in x, as compared to the number of bins, the initial x, the FD procedure,

or the ODE algorithm. DHS accepts the following values for the relative changes in the

neutrino energy densities:

δρνe = 0.94%, (7.12)

δρνµ = 0.40%, (7.13)
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and the final ratio of photon to comoving temperatures:

T
Tcm

= 1.3991. (7.14)

This would imply:

Neff =

(
11/4

1.39913

)4/3

(3+0.0094+2×0.0040) = 3.034. (7.15)

The authors published an addendum[59] where they improved the accuracy of the code,

and still found the same value for Neff.

Ref.[29] also treated the problem with a binned spectrum. However, their binning

scheme was pseudo-logarithmic; it consisted of 40 linear-spaced bins per decade, ranging

from 10−5.5 ≤ ζ≤ 101.7, for a total of 289 points (in Ref.[29] ζ = p/Tcm.) The authors

began their integration at T = 10 MeV and terminated it at T = 1 keV, while maintaining

a relative accuracy of 10−7 at each time step. The authors assumed zero asymmetry

between the electrons and positrons. For the integration, the authors employ a unique

numerical scheme which does not require the calculation of the full Jacobian matrix.

Their scheme is more efficient than the standard adaptive RK5 scheme by a factor of

20-60. The authors find Neff = 3.022, lower than DHS.

Departing from the bin schemes, Ref.[30] adopts a perturbative approach using

orthogonal polynomials weighted by the Fermi-Dirac expression for occupation proba-

bility. They employ a Fortran code developed by Ref.[116]. In Ref.[30], the orthogonal
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polynomials Pi are defined such that:

fνα
(x,y) =

1
ey +1

[
1+

∞

∑
i=0

b(α)i (x)Pi(y)

]
, (7.16)

∞∫
0

dy
Pi(y)Pj(y)

ey +1
= δi j, (7.17)

where x ≡ me a and y ≡ pa. The coefficients b(α)i are different for νe compared to νµ,

and evolve according to the Boltzmann equation:

db(α)i
dx

=
1

xH

∞∫
0

dy1Pi(y1)Iνα
[ fνe , fνµ], (7.18)

where Iνα
is the collision integral. The summation in Eq.(7.16) is truncated at i = 3.

Ref.[116] describes the integration method of Eq.(7.18) as backward differentiation using

Newton’s method and an adaptive step–size. Ref.[30] determines Neff to be 3.0345, in

agreement with DHS. In addition, Ref.[30] does another calculation with QED correc-

tions. The corrections renormalize the masses of the photon and electron. Along with

the Boltzmann solution, Ref.[30] determines Neff to be 3.0395. A later paper by many of

the same authors of Ref.[30], finds Neff = 3.046[117]. Ref.[117] included an improved

numerical technique over Ref.[30] to calculate the derivative of the plasma temperature.

Ref.[109] also used a perturbative method to determine Neff. Their approach

assumes the neutrino spectra are close to thermal equilibrium, but need not be in chemical

equilibrium. They use the weight function:

wϒ(z)≡
z2

ϒ−1ez +1
, (7.19)

and find orthogonal polynomials based on that weight. For the weak-decoupling problem,

Ref.[109] uses two modes, and finds Neff = 3.044, including the finite temperature QED
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corrections.

7.3 Weak Interactions

7.3.1 Summed–squared amplitudes

Table 7.1 gives the summed–squared amplitudes for the two–body processes we

consider in weak decoupling. The numbering scheme for the four–momenta in Tb.7.1 is:

1+2↔ 3+4, (7.20)

where particle 1 is always a neutrino (or anti-neutrino). We use four-momenta P for

massless particles (neutrinos), and four-momenta Q for massive particles (charged leptons

at all temperatures under consideration).

The summed–squared–amplitudes are different for the electron–flavor neutrinos

compared to the mu or tau–flavor neutrinos. The addition of a charged–current diagram

for the electron–flavor only, changes the factors of 2sin2
θW −1 to 2sin2

θW +1.

Notice the difference between Tb.7.1 and Tbs.(1) and (2) in DHS. Row 11 of

Tb.7.1 corresponds to Row 6 of Tb.(1) in DHS. The expressions for column 2 are the

same. However, particle 3 of Row 11 is an electron, and particle 3 of Row 6 is a positron.

The discrepancy also occurs between Row 12 of Tb.7.1 and Row 6 of Tb.(2) in DHS. Our

expression does agree with Row 7 of Tb.(1) in Ref.[115].
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Table 7.1: Table of summed-squared scattering amplitudes 〈|M |2〉. i is always different
than j. Not included are scatterings involving one anti-neutrino and one charged lepton.
Those matrix elements are identical to the corresponding parity conjugate reactions
of rows 6–10. S is the symmetrization factor and is unity for all processes except the
process in row 1, where S = 1/2.

Process G−2
F S〈|M |2〉

νi +νi↔ νi +νi 26(P1 ·P2)(P3 ·P4)

νi +ν j↔ νi +ν j 25(P1 ·P2)(P3 ·P4)

νi +νi↔ νi +νi 27(P1 ·P4)(P2 ·P3)

νi +ν j↔ νi +ν j 25(P1 ·P4)(P2 ·P3)

νi +νi↔ ν j +ν j 25(P1 ·P4)(P2 ·P3)

νe + e−↔ e−+νe

25[(2sin2
θW +1)2(P1 ·Q2)(Q3 ·P4)

+4sin4
θW (P1 ·Q3)(Q2 ·P4)

−2sin2
θW (2sin2

θW +1)m2
e(P1 ·P4)]

νµ(τ)+ e−↔ e−+νµ(τ)

25[(2sin2
θW −1)2(P1 ·Q2)(Q3 ·P4)

+4sin4
θW (P1 ·Q3)(Q2 ·P4)

−2sin2
θW (2sin2

θW −1)m2
e(P1 ·P4)]

νe + e+↔ e++νe

25[(2sin2
θW +1)2(P1 ·Q3)(Q2 ·P4)

+4sin4
θW (P1 ·Q2)(Q3 ·P4)

−2sin2
θW (2sin2

θW +1)m2
e(P1 ·P4)]

νµ(τ)+ e+↔ e++νµ(τ)

25[(2sin2
θW −1)2(P1 ·Q3)(Q2 ·P4)

+4sin4
θW (P1 ·Q2)(Q3 ·P4)

−2sin2
θW (2sin2

θW −1)m2
e(P1 ·P4)]

νe +νe↔ e−+ e+
25[(2sin2

θW +1)2(P1 ·Q4)(P2 ·Q3)

+4sin4
θW (P1 ·Q3)(P2 ·Q4)

+2sin2
θW (2sin2

θW +1)m2
e(P1 ·P2)]

νµ(τ)+νµ(τ)↔ e−+ e+
25[(2sin2

θW −1)2(P1 ·Q4)(P2 ·Q3)

+4sin4
θW (P1 ·Q3)(P2 ·Q4)

+2sin2
θW (2sin2

θW −1)m2
e(P1 ·P2)]
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7.3.2 Collision integrals

With the summed–squared–amplitudes in Tb.7.1, we can calculate the collision

integral for Eq.(1.170) from Ch.1:

Ĉ[ f1(p1)] =
1

2E1
∑

∫ d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

× (2π)4
δ
(4)(P1 +P2−P3−P4)S〈|M |2〉F(p1, p2, p3, p4), (7.21)

where S is the symmetrization factor for identical particles, and:

F(p1, p2, p3, p4)≡ f3(p3) f4(p4)[1− f1(p1)][1− f2(p2)]

− f1(p1) f2(p2)[1− f3(p3)][1− f4(p4)], (7.22)

for occupation probabilities only dependent on the magnitude of the three momentum.

In Eq.(7.21), the sum is over all processes involving f1. δ(4)(P1 +P2−P3−P4) is a

four–momentum conserving delta function. The factor 1/2E1 is put in by hand so that

the integral over d3 p1 of the collision integral for f1 vanishes in number–conserving

processes. All of the amplitudes in Tb.7.1 are proportional to G2
F , the square of the Fermi–

coupling constant. We take that factor outside of the integral in Eq.(7.21), along with T 5
cm.

The remainder of the integral is unit–less and in terms of ε, our binning parameter for the

occupation probabilities. The product G2
F T 5

cm has dimensions of energy, and so we divide

by ~ to obtain a time derivative.

In general for two-body processes, Eq.(7.21) is a nine–dimensional integral over

the phase–spaces of particles 2, 3, and 4. The delta function reduces the collision

integral to five dimensions. Homogeneity and isotropy further reduce Eq.(7.21) to a

two–dimensional expression in terms of single–particle energies of either species 2 and

3, or 2 and 4, or 3 and 4. The reduction from five to two–dimensions is non-trivial and
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depends on the specific process in Tb.7.1. Appendix D details a comparison between a

three–dimensional and a two–dimensional expression for the process in the first row of

Tb.7.1. App.E shows how to obtain a three–dimensional expression for the process in

the fifth row of Tb.7.1. Apps.F, G, and H contain the algebra for the reduction of the

collision integrals to two dimensions for the processes involving the charged leptons.

7.4 Non-perturbative approach

7.4.1 Binning

We employ a linear binning scheme for the occupation probabilities in terms of

the comoving invariant quantity ε = p/Tcm. For the energy scales we consider during

weak decoupling, the neutrinos are ultra-relativistic, implying the energy is equal to

the momentum and so ε = Eν/Tcm. We partition the interval from ε = 0 to ε = εmax

into Nbins number of equal–length bins. εmax should be large enough to encompass the

most–actively–evolving bins, yet still small enough to ensure high resolution. For a linear

binning scheme, we use Nbins +1 abscissas and place an abscissa at ε = 0. We do not

integrate this point in order to avoid division by zero. However, the limit of the scattering

integrals is zero as ε→ 0. The abscissa at zero also helps in interpolation accuracy.

7.4.2 Integration methods

The scattering integrals are over two dimensions in ε. We use the terms “inner”

to refer to the first integration, and the term “outer” to refer to the second integration. It

makes no difference to use momentum or energy if a given one–dimensional integral is

over a neutrino kinematic variable. We simply divide the energy/momentum variable by

Tcm to obtain an ε quantity. If the integral is over a charged–lepton kinematic variable,
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we choose to use energy. For example, the occupation probability for an electron is:

fe− =

[
exp
(

E−µ
T

)
+1
]−1

(7.23)

=

[
exp
(

E
T
−φe

)
+1
]−1

(7.24)

=

[
exp
(

E
Tcm

Tcm

T
−φe

)
+1
]−1

(7.25)

=

[
exp
(

ε
Tcm

T
−φe

)
+1
]−1

. (7.26)

The summed–squared–amplitude expressions require both energies and three–momenta,

so we can determine dimensionless momenta using:

p
Tcm

=

√
E2−m2

e
Tcm

=

√(
E

Tcm

)2

−
(

me

Tcm

)2

=

√
ε2−m2

ε , (7.27)

where mε will continuously increase with decreasing Tcm.

Depending on the specific process in Tb.7.1, the epsilon dimension may be over

a neutrino or a charged lepton. For the inner integral, regardless of the species, the

integration method is always a Gauss quadrature method. We modified the publicly–

available software of Ref.[118] to calculate the quadrature weights and abscissas within

BURST. If the limits of the inner integral are finite, we usually use a Gauss–Legendre

quadrature method. For large finite intervals (∆ε > 200), we use a Gauss–Laguerre

quadrature method. For semi-infinite limits, we always use Gauss–Laguerre.

If the outer integral is over an ε-value of a charged lepton, we use either a Gauss–

Legendre or Gauss–Laguerre method, depending on the integration limits. If it is over a

neutrino energy, we use Boole’s rule with absicssas aligned with the bin points in order

to avoid an interpolation of the occupation probabilities for the neutrino energy of the

outer integral.
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7.4.3 Interpolation and Extrapolation

As detailed in the appendices, we have the freedom to pick which single–particle

ε-values to use in calculating the collision integral. The 2×2 processes in Tb.7.1 have at

least two neutrinos in the combined initial and final states. We always use three of the

four dimensions of the delta function to eliminate an integral over the phase space of one

of the neutrino species. This procedure requires an interpolation over the ε-value of that

species to determine the occupation probability. For processes that involve four neutrinos

or anti-neutrinos, we do another interpolation over ε for the occupation probability of the

inner–integration–variable species. The outer–integration is either a Gauss–quadrature

method over a charged lepton, or a Boole’s rule method over the bin points. In either

case, no interpolation is required. There is no situation in which we need to interpolate

the occupation probabilities for the charged leptons. We always use exact FD expressions

for electrons and positrons.

We use a polynomial interpolator[108] for the neutrino occupation probabilities,

if the energy of the third or fourth neutrino does not fall on an abscissa. We have found

the interpolation is more accurate if we interpolate on the logarithms of the occupation

probabilities, as opposed to the occupation probabilities themselves. For ε-values larger

than εmax, we have to extrapolate. If the ε-value is larger than 300.0, we set the occupation

probability to be f = e−300. For εmax < ε < 300.0, we use the following expression:

log[ f (ε)] = log[ f (εmax)]+ log
[

f (eq)(ε)

f (eq)(εmax)

]
. (7.28)
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If we solve for the relative change in f (ε) using Eq.(7.28), we find:

δ f (ε) =
f (ε)− f (eq)(ε)

f (eq)(ε)
(7.29)

=

f (eq)(ε)
f (εmax)

f (eq)(εmax)
− f (eq)(ε)

f (eq)(ε)
(7.30)

=
f (εmax)

f (eq)(εmax)
−1 (7.31)

= δ f (εmax) if εmax < ε < 300.0. (7.32)

Figure 7.5 suggests Eq.(7.32) is an inaccurate extrapolation.

7.4.4 Acceptance tolerance for rates

FD occupation probabilities guarantee the collision integral is zero, regardless

of the summed–squared amplitude. Numerical integration, interpolation, and finite

machine precision engender non-zero values of the collision integrals when calculated

in equilibrium conditions. Therefore, during an actual computation, the need arises to

set a tolerance to accept a collision–integral value as non-zero, or conversely reject a

value as the result of imprecision. To accomplish this task, we use the net rate and

forward–reverse–summed (frs) rate. The net rate is simply the value produced by the

collision integral in Eq.(7.21). As the label indicates, the frs rate is the same as the net

rate, except that instead of a difference in Eq.(7.22), the equation uses a sum.

We calculate the net and frs rates for each neutrino species, in each bin, for each

process in Tb.7.1, assuming strict thermal and chemical equilibrium between the three

flavors of neutrinos, anti-neutrinos, positrons and electrons. We sum over all of the

processes to obtain the collision integral for the net rate, and a modified collision integral

for the frs rate. For each neutrino species and each bin, we calculate the precision ratio,
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defined as:

Rνi(ε)≡
|Ĉ[ f (eq)

i (ε)]|
Ĉ[ f (eq)

i (ε)]frs
. (7.33)

The frs rate is strictly positive. We take the absolute value of the net rate to obtain a

positive precision ratio. Eq.(7.33) is independent of temperature, except for the electron

and positron quantity mε. When calculating the collision integrals in Eq.(7.33), we set

mε = 0.

During our actual computation of weak decoupling, we calculate the collision

integrals for both the net and frs rates at each time step. We then take a ratio of ratios and

compare to a dimensionless tolerance (net/frs)(tol):

{ |Ĉ[ fi(ε)]|
Ĉ[ fi(ε)]frs

}/
Rνi(ε)∼ (net/frs)(tol). (7.34)

If the lhs of Eq.(7.34) is larger than the tolerance threshold, we accept the collision

integral as non-zero and use it in our time derivative of the occupation probability fi(ε).

If the lhs of Eq.(7.34) is smaller than the threshold, we set the collision integral to zero.

7.5 Sum rule tests

We define the total scaled errors in the number and energy densities as:

δ




dn

dt


=

6
∑

ν=1

∫
dεε

2
d fν

dt

∣∣∣∣
net

∑
ν

∫
dεε

2
d fν

dt

∣∣∣∣
frs

(number) (7.35)

δ

(
dρ

dt

)
=

∑
ν

∫
dεε

3 d fν

dt

∣∣∣∣
net

∑
ν

∫
dεε

3 d fν

dt

∣∣∣∣
frs

(energy). (7.36)
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The summation over ν is for the three flavors of neutrinos and anti-neutrinos. We choose

to use a ratio of sums as opposed to a sum of ratios. The ratio of sums gives a total error

in the neutrino seas. We use a scaled error where the denominator in expressions (7.35)

and (7.36) is always non-zero. In thermal equilibrium, the total scaled errors are ∼ 10−12

for both the number and energy sum rules for 100 bins. The total scaled errors do not

change for non-zero mε or φe.

We introduce a test to monitor error in the sum rules in an out–of–equilibrium

scenario. Within ε space, we add a Gaussian distribution to the FD occupation probabili-

ties:

ε = 3.0, (7.37)

A =
9.0

eε +1
, (7.38)

σε = 0.2, (7.39)

f (ε) =
1

eε +1
+Ae−(ε−ε)2/2σ2

ε . (7.40)

To monitor the sum rules, we only investigate the processes isolated within the neutrino

seas. We do not follow the spectra of the charged leptons, so scattering processes

involving electrons and positrons will not preserve the sum rules. In effect, we do not

calculate the collision terms involving charged leptons in this test.

Figure 7.1 shows the total scaled error for both the number and energy densities as

a function of the number of bins, Nbins. The calculation occurs in an infinite homogeneous

and isotropic slab for a single time step. The rates depend on a temperature–like parameter.

However, the total scaled errors for the sum rules are independent of temperature, and so

we do not mandate a temperature for Fig.7.1. We only include data points for Nbins ≥ 300.

The calculations for 100 and 200 bins give total scaled errors of ∼ 10−3 and 10−4,

respectively, for both sum rules.
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Figure 7.1: The total scaled error in the sum rules as a function of the number of bins
in a homogeneous, isotropic, infinite slab for one time step.

7.6 Weak decoupling calculations

We use BURST to do a self-consistent calculation of weak decoupling and BBN.

The neutrinos are in thermal equilibrium with the electrons and positrons until a user–

defined temperature, which we label the input temperature Tin. The comoving temperature

and plasma temperature are equal for all temperatures greater than the input temperature:

T = Tcm≥ Tin. At Tin, we turn on the collision integrals and evolve the neutrino occupation

probabilities. We end the transport calculation once the relict electron–positron pairs have

annihilated, leaving only the surplus electrons to maintain charge neutrality. The terminal

temperature is T ∼ 12 keV, or Tcm ∼ 9 keV. For all the plots shown in this section, the

run parameters are εmax = 20.0, Nbins = 100, Tin = 8 MeV, and (net/frs)(tol) = 30.0.
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7.6.1 Convergence tests

Table 7.2 shows a summary of preliminary transport runs. The first column (Nbins)

gives the number of bins used in the run for the neutrino spectra. The second column

(εmax) gives the maximum value of ε used for the neutrino binning. The third column (Tin)

gives the input temperature when the transport rates are turned on. The fourth column

((net/frs)(tol)) gives the tolerance threshold. The fifth column (Neff) gives the calculation

of Neff at Tcm ∼ 1keV using Eq.(7.7). The sixth column (Tcm/T ) gives the ratio of the

comoving to plasma temperatures. The seventh colmn gives the final entropy–per–baryon.

Columns eight and nine give the nucleosynthesis calculations for helium and deuterium.
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7.6.2 Error Monitoring

To monitor the errors in the collision integrals, we use the sum rules from Sec.7.5.

Fig.7.2 shows the number and energy sum rules plotted against comoving temperature.

As in Equations (7.35) and (7.36), the sum rules are wrt the processes of Tb.7.1 only

involving neutrinos. We maintain accuracy to better than one part in 106 over the entire

run. Both sum rules seem to exhibit discontinuities at the same temperatures in the form of

steps in Fig.7.2. Actually, the scaled errors in the sum rules are both continuous over the

entire temperature range. However, at certain temperatures, for example Tcm = 0.53 MeV,

the scaled errors change rapidly and cause a step–like feature when drawing the plot. We

speculate that the rapid changes are only numerical, and due to the ε-values falling into

different cases with changing mε (see Apps.F, G, and H). Future work will investigate

the errors in more detail.

7.6.3 Neutrino spectra

Figures 7.3 to 7.6 show relative changes in the neutrino spectra. Fig.7.3 shows δ f

plotted against Tcm for ε = 3,5,7, while Fig.7.5 shows δ f plotted against ε at a comoving

temperature Tcm = 9.221 keV. Fig.7.6 shows the normalized change in the differential

energy density:

∆

(
dρ

dε

)

ρ
=

[
ε3

2π2 f (ε)− ε3

2π2 f (eq)(ε)

]

1
2π2

∫
dxx3 f (eq)(x)

(7.41)

=

ε3

2π2 [ f (ε)− f (eq)(ε)]

7
8

π2

30

(7.42)

=
240
14π4 ε

3[ f (ε)− f (eq)(ε)]. (7.43)
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Figure 7.2: The total error in each sum rule plotted against the comoving temperature.
The notation corresponds to Equations (7.35) and (7.36). For this run, εmax = 20.0,
Nbins = 100, Tin = 8 MeV, and (net/frs)(tol) = 30.0.

We only show curves for the electron and muon–flavor neutrinos. The tau flavor is

identical to the muon flavor. The anti-neutrino behavior is nearly identical to the neutrino

behavior for all flavors. Fig.7.4 show plots of the difference in relative change for

neutrinos and anti-neutrinos:

δ f ≡ δ fν−δ fν̄ =
fν− fν̄

f (eq) . (7.44)

For each ε-value in Fig.7.3, the relative change in the electron–flavor (νe) is larger

than the relative change in the muon–flavor (νµ) neutrino sea. The annihilation and

scattering rates with electrons and positrons are faster due to the addition of the charged–
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current diagrams for νe over νµ. In addition to the larger perturbation of the spectra, the

charged–current processes keep νe in thermal contact with the charged leptons longer

than νµ. We see this by noticing the crossing of the ε = 5, νe curve with the ε = 7, νµ

curve at Tcm ∼ 0.8 MeV. Although the curves are for different ε-values, the νµ freeze–out

is occuring at a slightly earlier epoch than the νe freeze–out. The ε = 5 νe curve continues

to rise at a more rapid rate and crosses the ε = 7, νµ curve. Fig.(4) of Ref.[116] also

exhibits a crossing between the ε = 5, νe curve and the ε = 7, νµ curve. Comparing

Fig.7.3 with Figs.(3a) and (3b) of DHS, we see a similar behavior between BURST and

DHS. Our relative changes are larger for both νe and νµ.
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ε = 7.00

solid : νe
dashed : νµ

Figure 7.3: The relative change in the occupation probabilitiy plotted against comoving
temperature Tcm. Three abscissas are plotted: at ε = 3,5,7. The solid lines are for
electron–flavor neutrinos, and the dashed lines are for muon–flavor neutrinos. For this
run, εmax = 20.0, Nbins = 100, Tin = 8 MeV, and (net/frs)(tol) = 30.0.
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The asymmetry between neutrinos and anti-neutrinos is small. The non-zero

baryon number induces a slight excess of electrons over positrons to compensate for the

presence of protons. Fig.7.4 shows the difference in relative change of νe and νe, and

also νµ and νµ. The electron–flavor shows an enhanced effect over the muon–flavor for

all ε-values. For both flavors at all ε-values in Fig.7.4, the relative changes are positive.

The negative differences for ε = 3 indicate there is an abundance of anti-neutrinos over

neutrinos, independent of flavor.
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ε = 7.00

solid : νe
dashed : νµ

Figure 7.4: The difference in relative changes in the occupation probabilities of ν and
ν plotted against comoving temperature Tcm. Three abscissas are plotted: at ε = 3,5,7.
The solid lines are for electron–flavor neutrinos, and the dashed lines are for muon–flavor
neutrinos. The νe experience a larger change than the νµ. For this run, εmax = 20.0,
Nbins = 100, Tin = 8 MeV, and (net/frs)(tol) = 30.0.

Fig.7.5 also shows that the νe have a larger relative change than the νµ. The

spectra are plotted at a temperature of Tcm = 9.221 keV, after the end of weak decoupling.
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An interesting artifact of Fig.7.5 is the negative relative change for ε . 1. We make

a conjecture that the elastic–scattering processes in rows 6 – 10 of Tb.7.1 deplete the

low–energy occupation probabilities by upscattering. Fig.(5) of Ref.[116] also seems to

show a negative value in the relative change from equilibrium at small ε-values. This is

not explicitly mentioned by the authors of DHS, but Fig.(5) of DHS seems to show the

same phenomenon for small ε-values. We mention that again, our relative changes are

larger than those of DHS for both νe and νµ.

0 2 4 6 8 10
ε = Eν/Tcm

−1

0

1

2

3

4

5

6

7
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10
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δf

Tcm = 9.221e−3 MeV

νe

νµ

Figure 7.5: The relative change in the occupation probabilitiy plotted against ε. The
larger change is the electron–flavor neutrinos, over the muon–flavor neutrinos. The
anti-neutrino evolution is nearly identical to the neutrino evolution for all flavors. For
this run, εmax = 20.0, Nbins = 100, Tin = 8 MeV, and (net/frs)(tol) = 30.0.

The last spectra we show is in Fig.7.6. The comoving temperature in Fig.7.6 is

the same as in Fig.7.5. Although Fig.7.5 shows the divergence from equilibrium of the
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occupation probabilities increases for increasing ε-values, the probability is so small in

the high–ε bins that the large changes from equilibrium have little effect on the total

energy density. Fig.7.6 shows where the largest change in the energy–density spectrum

occurs. In effect, Fig.7.6 is Fig.7.5 multiplied by ε3. The peak of the normalized change

in the differential energy density is located at ε ∼ 5, for both νe and νµ. Fig.(6) of

Ref.[116] also shows a peak at an ε∼ 5.
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Figure 7.6: The normalized change in the differential energy density as a function of ε.
The larger change is the electron–flavor neutrinos, over the muon–flavor neutrinos. The
anti-neutrino evolution is nearly identical to the neutrino evolution for all flavors. For
this run, εmax = 20.0, Nbins = 100, Tin = 8 MeV, and (net/frs)(tol) = 30.0.
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7.6.4 Entropy and Neff

The baryons and plasma constituents only interact with the neutrinos via gravita-

tion at temperatures below the weak–decoupling and weak freeze–out scales. Therefore,

we take the entropy–per–baryon, s, to be only the entropy in the plasma constituents

which are thermally–coupled to the baryons. In the early universe, the entropy is dom-

inated by relativistic species. The entropy is equivalent to the baryon density, which

we obtain from CMB measurements of the temperature power spectrum. At photon

decoupling, the only relativistic species coupled to the baryons is the photons. Ref.[2]

gives the baryon density as ωb = 0.022068, equivalent to s = 5.929× 109. For the

temperatures we investigate at weak decoupling, photons, electrons, and positrons are

all present. Although the charged leptons are not ultra-relativistic, both species carry

entropy. To first order, when electron–positron pairs begin to annihilate (the epoch of

e±–annihilation), the heat produced from the annihilations stays within the plasma –

thereby maintaining the same value of the entropy. This is true to first order, ignoring the

effects of weak–decoupling and nucleosynthesis.

The non-sharp weak–decoupling epoch precipitates a flow of heat from the elctro-

magnetic plasma to the neutrino seas. The heat flow (∂ρν/∂t)|a,T is directly proportional

to the change in the entropy via the classical thermodynamic relation:

dS =
dQ
T

=⇒ ds
dt

=
1

nbT
∂ρν

∂t

∣∣∣∣
a,T

. (7.45)

There is also a heat flow due to nucleosynthesis, which we are ignoring. To reiterate, the

change in energy density of the charged leptons stays within the plasma by heating the

photons, and does not change the entropy. Fig.7.7 shows the temperature ranges spanning

both the weak–decoupling and e±–annihilation epochs. The curve labeled Entropy is the

evolution of s wrt Tcm. The curve labeled Ratio is the evolution of the temperature ratio
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Tcm/T wrt Tcm. The entropy curve illuminates the weak–decoupling epoch. The ratio

curve illuminates the e±–annihilation epoch.
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Figure 7.7: The entropy and temperature ratio as functions of comoving temperature.
The red line is the evolution of the entropy per baryon, s, in the plasma as a function of
comoving temperature, Tcm. The green line is the evolution of the ratio of comoving
temperature to plasma temperature, Tcm/T as a function of Tcm. The blue dashed line is
the entropy value as given by Ref.[2]. The black dashed line is the temperature ratio
Tcm/T = (4/11)1/3. The first shaded line at high temperature corresponds to Tin. The
final temperature where the transport code finished is at the second shaded line. For this
run, εmax = 20.0, Nbins = 100, Tin = 8 MeV, and (net/frs)(tol) = 30.0.

Clearly the curves of Fig.7.7 are not coincident. However, there is a non-zero over-

lap between the two epochs, with weak decoupling beginning prior to e±–annihilation.

Furthermore, the weak–freeze–out and BBN epochs overlap both curves in Fig.7.7. The

treatment of all four epochs requires a self-consistent calculation of the Boltzmann

equations for weak, electromagnetic, and nuclear processes.
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If we integrate the curves of Fig.7.6, we find relative changes in the energy density

of:

δρνe = 0.0156, (7.46)

δρνµ = 0.0068. (7.47)

The relative change in the neutrino energy density is:

δρν = 0.0156+2×0.0068 = 0.0292, (7.48)

where we have multiplied δρνµ by 2 to account for the changes in the tau–flavor of

neutrinos, and have not included anti-neutrinos. The value 0.0292 is wrt the equilibrium

energy density for a temperature ratio Tcm/T = 0.7146. If we want the relative change

wrt an equilibrium energy density for a temperature ratio Tcm/T = (4/11)1/3, labeled as

δρ(4/11)1/3 , we need to add 1 to each neutrino species, multiply by the ratio of temperature

ratios to the fourth power, and subtract 1 for each neutrino species to yield:

δρ(4/11)1/3 = [(1+0.0156)+2× (1+0.0068)]×
(

0.7146
(4/11)1/3

)4

−3 = 0.0427. (7.49)

Eq.(7.49) is equivalent to the change in Neff as defined by Eq.(7.7). We use ∆Neff = 0.043

to quantify the change in the radiation energy density from weak decoupling.
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7.6.5 Nucleosynthesis

Assuming a sharp weak–decoupling epoch, the values for the primordial mass

fraction of helium and relative abundance of deuterium (wrt to hydrogen) are:

YP = 0.2425, (7.50)

D/H = 2.615×10−5, (7.51)

as calculated with the BBN network detailed in Ch.2. From our neutrino–energy–

transport calculations, we find altered abundances of:

YP = 0.2426 =⇒ δ(YP)' 4×10−4, (7.52)

D/H = 2.628×10−5 =⇒ δ(D/H)' 5×10−3. (7.53)

Helium is sensitive to the neutron–to–proton ratio which is being altered by the presence

of high–energy, electron–flavor, anti-neutrinos. Deuterium is sensitive to the baryon num-

ber which is changing due to heat flow out of the plasma during neutrino transport. Our

preliminary calculations indicate that deuterium is more sensitive to weak–decoupling

than helium.

7.7 Conclusion

The calculations detailed in Sec.7.6 are preliminary. The changes from Neff = 3

do not include the finite temperature QED effects from renormalization of the electron

and photon masses as given in Refs.[30, 117]. In addition, other plasma effects, such

as electron–positron screening, may also affect a small change in Neff. The ultimate

goal will be to include the QED effects, and then to expand the current Boltzmann–
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solver code into a quantum–mechanical code using the QKEs of Ref.[12]. If the QKEs

lead to an equilibration between νe and νµ (as highlighted in Figures 7.3 to 7.6), we

would expect a decrease in Neff due to the lack of a charged–current diagram in the νµ

scattering processes. However, the QKE problem is inherently non-linear and requires a

sophisticated calculation to verify quantitative and qualitative predictions.

BURST is a non-perturbative Boltzmann–solver code, similar to the code used

in DHS. DHS calculated Neff = 3.034, while we obtained Neff = 3.043, a difference of

∼ 30%. We conclude this chapter with possible reasons for disagreement between DHS

and BURST.

BBN makes a difference. BURST includes the heat density from nucleosynthesis,

and a non-zero electron chemical potential. The inclusion of these terms may alter Neff.

The binding–energy release from the formation of helium heats the plasma, and lowers

the temperature ratio Tcm/T . The lower ratio would decrease Neff. However, the higher

plasma temperature leads to more scattering as the charged leptons are more energetic.

This has the opposite effect and raises Neff. Therefore, we cannot determine how the

binding–energy release from nucleosynthesis would alter Neff a priori. We can perhaps

glean the magnitude of the effect by examining the electron chemical potential. A non-

zero chemical potential implies a larger total charged–lepton energy density. Fig.7.4

shows that the induced asymmetry between neutrinos and anti-neutrinos is orders of

magnitude smaller than the changes from equilibrium, and therefore much too small to

account for a 30% change. We opine that the changes from nucleosnythesis would be

roughly the same order of magnitude as the changes from the charged–lepton asymmetry,

and hence believe the inclusion of BBN is unlikely to be the cause of our high value of

Neff.

The ODE driver is inadequate. Our driver to integrate the integral–differential,

Boltzmann equations of Eq.(7.1) is similar to Ref.[26]. The algorithm is based off of an
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explicit RK2 method, and the driver uses an adaptive time step. The author of Ref.[26]

realized that the explicit RK2 method would not be adequate for the nuclear–reaction

Boltzmann equations with a reasonable time step size constrained by the technology of

the era. Although the nuclear reactions are non-linear, Ref.[26] linearized the Boltzmann

equations and used the Jacobian matrix to recast the explicit RK2 method as a semi-

implicit method. The neutrino-transport Boltzmann equations are also non-linear, yet

have similar forms to the nuclear reactions which are 2×2. However, the task at hand

is to determine the departures from FD equilibrium, not the flavor content of thermal–

equilibrium neutrinos, which is the analog of the nucleosynthesis problem. Therefore,

the linearization procedure of Ref.[26] is inadequate for our purposes. We therefore

must devolve our algorithm to the explicit RK2 method, used to integrate the plasma

temperature, scale factor, and electron chemical potential. DHS specifically mentions

that their results are sensitive to the number of grid points in x, equivalent to the number

of steps in time. DHS uses on order 4K points in x, where BURST uses on order 40K

steps in time to maintain accuracy. The number of time steps may still not be enough,

suggesting that we should use a different ODE driver.

Mistakes in the collision–integral coding. The coding of the collision terms

of Eq.(7.21) is a major undertaking. It is quite possible that there could be mistakes

in the code. Fig.7.2 shows errors much smaller than 30%. The errors in Fig.7.2 are at

a specific time step and thus not cumulative. There are roughly 40K time steps in the

weak–decoupling calculation. If we take the fractional error in the second sum rule for

each time step to be ∼ 2×10−7, and assume the errors add incoherently at each time

step, the cumulative error is about 1%, smaller than the discrepancy with DHS by an

order of magnitude. In addition, the curves of Figures 7.3, 7.5 and 7.6 all have the same

shape as DHS and Ref.[116]. It would be highly unlikely that mistakes in the collision

integrals of BURST produce results which are scaled versions of the accepted behavior.
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Imprecision in the temperature derivative from Bessel functions. When we

evolve the plasma temperature derivative through the weak–decoupling epoch, we can

neither treat the charged leptons as ultra-relativistic nor ultra-massive. To compute the

integrals of energy density and pressure for the charged leptons, we use modified Bessel

functions of the second kind. We use two limits to calculate the Bessel functions: mε > 2;

and mε < 2. For weak decoupling, mε ∼ 2, the value where our approximations are the

least accurate.

Errors in extrapolation. As mentioned in Sec.7.4.3, we have underestimated

the occupation probabilities when extrapolating for εmax < ε < 300.0. There is very little

energy density above εmax = 20. We use Boole’s rule to integrate the neutrino energy

density, and ignore the occupation probabilities for ε > εmax. The correct extrapolation

would only be relevant during the calculation of the collision integrals and would lead

to upscattering of the neutrinos. In the first case, the scattering would raise the energy

density if the neutrino upscattered to an ε-value smaller than εmax. In the second case,

the upscattering would lower the energy density if the neutrino upscattered to an ε-value

larger than εmax. The vanishing amount of probability density with increasing ε would

suggest this is a small error in either case.

Not enough runs to exhibit convergence. We have only included the results of

three runs, identical to one another except for different input temperatures. We attempted

to use the same computational parameters as DHS. We used an input temperature Tin =

8 MeV, whereas DHS used Tin = 10 MeV as the highest input temperature. The number

of bins and maximum ε-value used in the binning are the same between us and DHS.

We used a tolerance threshold of (net/frs)(tol) = 30.0. DHS does not explicitly mention a

tolerance threshold. Our value for Neff will most likely change when we do more runs.
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Daniel Plaschke for useful conversations with respect to cosmology, neutrino physics,



203

Fortran 90, and parallel computing. We acknowledge the Integrated Computing Network

at Los Alamos National Laboratory for supercomputer time.

Chapter 7, in full, is a reprint of the material being prepared for submission of

publication: Fuller, G. M.; Grohs, E.; Kishimoto, C. K.; Paris, M. W.; Vlasenko, A.

“Energy transport in neutrino decoupling and big bang nucleosynthesis”. The dissertation

author is the primary investigator and author of this paper.



Chapter 8

Conclusion

8.1 Summary

Our work included analysis on BBN, dilution, recombination, the νMR effect,

BSM physics, and neutrino energy transport. We used a nuclear reaction network to study

the departures from NSE so we can make predictions of the primordial abundances. We

showed that the predictions made by our codes agree within two–sigma of observations.

When investigating dilution, we presented the framework on how to calculate heavy–

particle decay during weak decoupling and BBN. We were able to give estimates on

changes to the abundances. In addition, dilution and other sectors of sterile neutrino

physics challenged the interpretation of the quantity Neff. This led to the epiphany of using

the sound horizon and photon diffusion length to develop the quantity Ñeff. The calculation

of the photon difusion length required an extensive calculation of recombination. We

showed how the role of neutrino rest mass in recombination produced counter intuitive

effects when considering BSM physics, i.e. the νMR effect. Our results thus far were

only revealed when we followed the neutrino spectra. The calculation of the non-thermal

distortions to the spectra is a difficult computation in which we have made significant

204
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progress. There is still much work remaining to solve the weak–decoupling problem.

8.2 Outlook

Cosmological considerations are a key route to exploring BSM physics. This

is especially true for the neutrino sector, where there are many outstanding questions

and where laboratory experiments are limited in what aspects of this physics can be

addressed. In this work we have argued that a self consistent treatment of BSM issues,

across all epochs from weak decoupling to photon decoupling, is the best way to take

advantage of the expected coming increase in precision of CMB measurements and

observationally-inferred primordial abundances of the light elements. We employ a

limited prescription to link the salient features of self consistency between early-time

neutrino dynamics and the surface of last scattering. We couple the weak decoupling and

nucleosynthesis of early times to CMB observables, including baryon-to-photon ratio

(equivalently ωb), sound horizon, and photon diffusion length.

We have shown that such a self consistent treatment is necessary, in part because

new neutrino physics can alter the relationships between different cosmological epochs.

For example, ωb and other CMB observables affect the calculated yields of deuterium and

helium. In addition, the calculated relic neutrino energy spectra after weak decoupling

affects the predicted value of Ñeff at photon decoupling. The principal tool in our analysis

is the suite of BURST codes for nucleosynthesis and neutrino interactions and energy

transport.

A case in point is our investigation of the relationship between neutrino rest

masses, i.e. ∑mν, and the four potential observables ωb, Ñeff, YP, and D/H. This analysis

reveals the “neutrino-mass/recombination” (νMR) effect first described in Ref. [58]. The

νMR effect is below the threshold of current CMB capabilities, but may not be in future
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observations [70].

There have been spectacular advances in the measurements/observations of neu-

trino properties. We know the neutrino mass-squared differences and three of the four

parameters in the unitary transformation between the energy eigenstates (mass states)

and the weak interaction eigenstates (flavor states) of the three active neutrinos (only the

CP-violating phase remains unmeasured). As active neutrinos mix in vacuum and have

non-zero rest masses, the question indubitably arises of whether there exist “sterile” neu-

trino states. If indeed sterile neutrinos do exist, we acknowledge that the parameter space

of mass, vacuum mixing angle, and number is enormous. However, sterile neutrinos

could have profound effects in all of the epochs under study in this work. This possibility

makes a self consistent treatment of these effects a powerful basis for constraining sterile

neutrino states.

In this work we have considered scenarios for both “light” (mass ∼ 1eV) and

“heavy” (mass ∼ 0.1−1GeV) sterile neutrinos. In the former case we consider cases

where the sterile neutrino relic energy spectra are Fermi-Dirac black-body shaped, though

with a temperature parameter Ts differing from that characterizing the relic energy

spectra of active neutrino species. We show here that the νMR effect has interesting

consequences and that this case demands a self consistent treatment of recombination and

BBN. Additionally, heavy sterile neutrino decay out of equilibrium can lead to dilution

and high energy relic active neutrinos, and both of these features potentially can have

dramatic and constrainable effects on CMB-epoch observables. This implies that CMB

observations can indirectly probe the CνB and explore active-sterile mass/vacuum-mixing

parameter space unavailable to current accelerator-based experiments.

We have also studied the effects of non-zero lepton numbers on the relationship

between CMB observables, nucleosynthesis, and neutrino physics. Our conclusion is that

the primordial deuterium abundance is a potentially powerful probe of lepton number.
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However, an eventual CMB-only measurement of the primordial helium abundance YP

will be the most powerful probe of lepton number and many other issues. Determining

YP from CMB observables will require a sophisticated self-consistent approach to BBN,

neutrino physics, and photon decoupling transport physics.

Finally, our study has revealed a potential tension between Ñeff, ωb, and the

primordial deuterium abundance, D/H, inferred from high redshift QSO absorption

systems. In fact, if the advent of 30-m class telescopes in the near future allows for a

decrease in errors in observationally-inferred D/H to the ∼ 1% level, while observed

ωb and Ñeff maintain their respective current central values, then tension is unavoidable.

This may signal BSM or non-CSM physics, likely in the neutrino sector, or it could

point to not understanding systematics in the damped Lyman-α cloud measurements of

the isotope-shifted hydrogen absorption lines. We advocate using future instruments to

explore the rich physics of weak decoupling, nucleosynthesis, and photon decoupling to

discover what role BSM neutrino physics has in these epochs.

8.3 Future Work

The BURST code is still under development. The goal is to have a version of

BURST suitable for public release in the Fall of 2018. BURST will include the following

physics:

1. A unitary nuclear reaction network.

2. A neutrino energy and flavor transport network.

3. An independent three–level computation of recombination.

4. A Boltzmann–equation treatment of the advent of LSS in BSM physics scenarios.

5. A call to a CMB Boltzmann code to calculate power spectra.
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It will be available to members of the community who wish to test BSM physics in the

cosmological laboratory. The code is a modular architecture using Fortran90/95 and

OPENMPI.

With BURST, we will be able to investigate multiple physical phenomena. We

now know the QKEs in an analytical form. Ref.[12] presents the QKEs in a general

context, but also with the goal of applying the techniques to the core–collapse supernova

(CCSN) problem. Coding the QKEs into a CCSN computation has not been done, and

is a daunting undertaking. However, the early universe provides a medium with a high

degree of symmetry, simplifying the problem immensely. Once we have a working QKE

code, we will have the ability to follow the evolution of active–neutrino lepton numbers,

and sterile–neutrino–phase–space occupation probabilities. An early universe QKE code

will provide the proof of concept that the QKEs are indeed solvable. We can further

develop our methods to employ QKE techniques in other exotic environments which

have much less symmetry, such as CCSN and neutron star mergers.

Work on neutrino magnetic moments[119] has shown intriguing possibilities

for postponement of weak decoupling and alteration of primordial abundances and Neff.

The summed–squared–amplitudes for neutrino–electron interactions through a magnetic

moment are similar to Klein–Nishina amplitudes. BURST will be able to integrate those

Boltzmann equations to calculate scattering rates and give accurate predictions of YP, D/H,

Neff, and ∑mν. A self-consistent treatment of heavy–particle decay has implications for

sterile–neutrino[16] and axion[120] dark matter. BURST is suitable for ΛCDM. However,

the code has the flexibility to study significant deviations of the fundamental constants

from their accepted values. Theories of the multiverse predict an infinite number of

alternate universes where the fundamental constants could differ from the values of our

universe[121, 122].
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Section 8.2 is a reprint of some of the material as it appears in “Probing neutrino

physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and

photon decoupling epochs.” Grohs, E.; Fuller, G. M.; Kishimoto, C. K.; Paris, M. W.,

J. Cosmology Astropart., 5 (May 2015) 17. The dissertation author was the primary

investigator and author of this paper.



Appendix A

Nucleosynthesis linearization

procedure

The reaction of interest is:

Ni(
AiXzi)+N j(

A jXz j)↔ Nk(
AkXzk)+Nl(

Al Xzl). (A.1)

The symbols in Eq.(A.1) have the following meaning:

Nm : The number of nuclides of species m in the reaction (A.2)

Am : The atomic mass number of species m (A.3)

zm : The atomic number of species m. (A.4)
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We adopt the convention in Eq.(A.1) that Ai ≥ A j and Al ≥ Ak. The rate of destruc-

tion/creation of nuclide i is:

dni

dt

∣∣∣∣
i j→kl

=−Ni
nNi

i nN j
j

Ni!N j!
Rkl,i j (destruction) (A.5)

dni

dt

∣∣∣∣
kl→i j

= Ni
nNk

k nNl
l

Nk!Nl!
Ri j,kl (creation), (A.6)

where nm is the number density of species m, Rkl,i j is the reaction coefficient for projectile

j on target i synthesizing products k and l, and Ri j,kl is the same quantity as the previous

except with opposite projectile, target, and products. The overall Ni factor corresponds

to how many i particles the reaction creates/destroys, and the factorial terms are sym-

metrization factors. We have already made the Boltzmann approximation in Eqs.(A.5)

and (A.6). In the case that Ni = N j = 1, the reaction coefficient Rkl,i j = 〈σv〉kl,i j, the

thermally averaged product of cross section and relative velocity for projectile j and

target i. In terms of abundances, the net rate for the change in Yi for the specific Rxn.(A.1)

is:
dYi

dt

∣∣∣∣
i j↔kl

= Ni


−

Y Ni
i Y N j

j

Ni!N j!
[i j]kl +

Y Nl
l Y Nk

k
Nl!Nk!

[lk]i j


 , (A.7)

where [i j]kl is the reaction coefficient multiplied by the proper amount of factors of nb,

the baryon density. It is customary to call [i j]kl the reaction rate. Eq.(A.7) is for only

one specific process, namely i j↔ kl. To find the total change in the abundance Yi for all

reactions involving Yi, we sum over the different projectiles and products[26]:

dYi

dt
= ∑

j,k,l
Ni


−

Y Ni
i Y N j

j

Ni!N j!
[i j]kl +

Y Nl
l Y Nk

k
Nl!Nk!

[lk]i j


 . (A.8)

Eq.(A.8) is exactly how it appears in Ref.[26]. There are three points to note in Eq.(A.8).

First, it is tempting to bring the number Ni outside of the summation because the index
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i is a free index. However, Ni is paricular to the reaction i j↔ kl. In fact, all of the

quantities in Eq.(A.8) are particular to the specific reaction, and must remain within the

inner summation. Second, Eq.(A.8) assumes that for a set of {i, j,k, l} nuclides, there

is at most one reaction relating those nuclides. In other words, there is only one set of

{Ni,N j,Nk,Nl} for the transmutation i j↔ kl. Third, it would seem to imply that the

summation limits of Eq.(A.8) are from 1 to the number of nuclides, Nnuc. This is not the

case. We explicitly give the limits on the summations:

dYi

dt
=

Nnuc

∑
j=1

Nnuc

∑
k=1

Nnuc

∑
l=k

Ni


−

Y Ni
i Y N j

j

Ni!N j!
[i j]kl +

Y Nl
l Y Nk

k
Nl!Nk!

[lk]i j


 , (A.9)

where the limits are explicit to avoid double-counting. Eq.(A.9) uses the convention

when j = i, N j = 0 and Ni ≥ 1. The same applies to k = l: Nk = 0 and Nl ≥ 1. There are

many impossibilities in Eq.(A.9). For example, the reaction d +n↔ p+7 Be is allowed

in Eq.(A.9), but is physically impossible. In this case, [i j]kl = [lk]i j = 0. Eq.(A.9) is

non-linear. We will linearize it for a specific ODE integration algorithm.

We investigate the linear differential equation:

Y
′
=−C ·Y, (A.10)

where Y is a vector of dependent variables, Y′ is the first derivative of Y with respect to

the independent variable, and C is a positive-definite matrix independent of any of the

components of Y. For our purposes, the independent variable is time t, and the dependent

variables are the abundances. To numerically integrate Eq.(A.10), we step through time
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with index h. To first order, an explicit method gives:

Y(h+1) = Y(h)+∆tY(h)′ (A.11)

Y(h+1) = Y(h)−∆tC ·Y(h) (A.12)

= (1−∆tC) ·Y(h). (A.13)

If the largest eigenvalue of C is λmax, then Eq.(A.13) is unstable if:

∆t >
2

λmax
. (A.14)

Therefore, we investigate the following implicit equation:

Y(h+1) = Y(h)+∆tY(h+1)′ (A.15)

Y(h+1) = Y(h)−∆tC ·Y(h+1) (A.16)

=⇒ (1+∆tC) ·Y(h+1) = Y(h) (A.17)

=⇒ Y(h+1) = (1+∆tC)−1 ·Y(h), (A.18)

which is stable for all eigenvalues of C. We must construct the matrix (1+∆tC) and

invert it to find the dependent values at the next time step. We will use the symbol f for

the vector of derivatives of Eq.(A.9):

fi(Y)≡ dYi

dt
. (A.19)

Eq.(A.9) and by extension Eq.(A.19) are non-linear in Yi. To linearize the derivatives of

Y, we use Newton’s method[108]:

Y(h+1) = Y(h)+∆t
[

f(Y(h))+
∂f
∂Y

∣∣∣∣
Y=Y(h)

· (Y(h+1)−Y(h))

]
. (A.20)
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We need to solve for the expression in brackets. Subtracting the bracketed expression

from Eq.(A.20) will give us the (1+∆tC) matrix on the left-hand-side. We adopt the

following notation:

Y = Y(h+1) (A.21)

Ỹ = Y(h). (A.22)

Consider a single component, i, of the vector expression in brackets in Eq.(A.20):

fi(Ỹ)+
∂ fi

∂Y

∣∣∣∣
Y=Ỹ
· (Y− Ỹ) = fi(Ỹ)+

Nnuc

∑
m=1

∂ fi

∂Ym

∣∣∣∣
Y=Ỹ

(Y m− Ỹm). (A.23)

We need to compute the partial derivative:

∂ fi

∂Ym
=

∂

∂Ym

Nnuc

∑
j=1

Nnuc

∑
k=1

Nnuc

∑
l=k

(
−Ni[i j]kl

Ni!N j!
Y Ni

i Y N j
j +

Ni[lk]i j

Nl!Nk!
Y Nl

l Y Nk
k

)
(A.24)

= ∑

[
−Ni[i j]kl

Ni!N j!
(NiY

Ni−1
i Y N j

j δim +N jY
N j−1
j Y Ni

i δ jm)

+
Ni[lk]i j

Nl!Nk!
(NkY

Nk−1
k Y Nl

l δkm +NlY
Nl−1
l Y Nk

k δlm)

]
(A.25)
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The summation in Eq.(A.23) becomes something akin to:

'
Nnuc

∑
m=1

∑

[
−Ni[i j]kl

Ni!N j!
(NiỸ

Ni−1
i Ỹ N j

j δim +N jỸ
N j−1
j Ỹ Ni

i δ jm)(Y m− Ỹm)

+
Ni[lk]i j

Nl!Nk!
(NkỸ

Nk−1
k Ỹ Nl

l δkm +NlỸ
Nl−1
l Ỹ Nk

k δlm)(Y m− Ỹm)

]
(A.26)

= ∑
Nnuc

∑
m=1

[
−Ni[i j]kl

Ni!N j!
(NiỸ

Ni−1
i Ỹ N j

j δim +N jỸ
N j−1
j Ỹ Ni

i δ jm)(Y m− Ỹm)

+
Ni[lk]i j

Nl!Nk!
(NkỸ

Nk−1
k Ỹ Nl

l δkm +NlỸ
Nl−1
l Ỹ Nk

k δlm)(Y m− Ỹm)

]
(A.27)

= ∑

{
−Ni[i j]kl

Ni!N j!
[NiỸ

Ni−1
i Ỹ N j

j (Y i− Ỹi)+N jỸ
N j−1
j Ỹ Ni

i (Y j− Ỹj)]

+
Ni[lk]i j

Nl!Nk!
[NkỸ

Nk−1
k Ỹ Nl

l (Y k− Ỹk)+NlỸ
Nl−1
l Ỹ Nk

k (Y l− Ỹl)]

}
(A.28)

= ∑

{
−Ni[i j]kl

Ni!N j!
[NiỸ

Ni−1
i Ỹ N j

j Y i +N jỸ
N j−1
j Ỹ Ni

i Y j− (Ni +N j)Ỹ
Ni
i Ỹ N j

j ]

+
Ni[lk]i j

Nl!Nk!
[NkỸ

Nk−1
k Ỹ Nl

l Y k +NlỸ
Nl−1
l Ỹ Nk

k Y l− (Nk +Nl)Ỹ
Nk
k Ỹ Nl

l ]

}
. (A.29)

We have used the symbol' instead of = on Eq.(A.26) because Eq.(A.26) glosses over an

important point. We are linearizing the expression in brackets in Eq.(A.20). We are only

looking at the ith component in Eq.(A.23). This process produces terms in the summation

that are linear in Y i, Y j, Y k, and Y l . If we consider two separate free indicies, i and i
′
,

they each have an expression like Eq.(A.29). For the expression for i, the dummy indicies

j,k, l may assume the index i
′
for a specific reaction. We label that reaction Ri jkl = Rii′kl

where the index j assumed i
′

in this example. Conversely, in the expression for i
′
, the

dummy indicies j,k, l will assume the index i for the reaction Ri′ ikl . This is tantamount

to calling i the target and i
′
the projectile in Rii′kl , and vice-versa for Ri′ ikl . There is no

difference physically, i.e. Rii′kl = Ri′ ikl and the terms in the summation are simply index

permutations and thus identical. Therefore, we have double-counted in Eq.(A.29). To

correct for the double-counting in the i, j indicies, we need to divide each factor in the



216

first bracketed expression of Eq.(A.29) by Ni +N j. To correct for double-counting in the

k, l indicies, we divide each factor in the second bracketed expression of Eq.(A.29) by

Nk +Nl . leaving us with:

= ∑

{
− Ni[i j]kl

Ni!N j!(Ni +N j)
[NiỸ

Ni−1
i Ỹ N j

j Y i +N jỸ
N j−1
j Ỹ Ni

i Y j− (Ni +N j)Ỹ
Ni
i Ỹ N j

j ]

+
Ni[lk]i j

Nl!Nk!(Nk +Nl)
[NkỸ

Nk−1
k Ỹ Nl

l Y k +NlỸ
Nl−1
l Ỹ Nk

k Y l− (Nk +Nl)Ỹ
Nk
k Ỹ Nl

l ]

}
(A.30)

= ∑

{
− Ni[i j]kl

Ni!N j!(Ni +N j)
[NiỸ

Ni−1
i Ỹ N j

j Y i +N jỸ
N j−1
j Ỹ Ni

i Y j]

+
Ni[lk]i j

Nl!Nk!(Nk +Nl)
[NkỸ

Nk−1
k Ỹ Nl

l Y k +NlỸ
Nl−1
l Ỹ Nk

k Y l]

}

−∑Ni


−

Y Ni
i Y N j

j

Ni!N j!
[i j]kl−

Y Nl
l Y Nk

k
Nl!Nk!

[lk]i j


 (A.31)

= ∑

{
− Ni[i j]kl

Ni!N j!(Ni +N j)
[NiỸ

Ni−1
i Ỹ N j

j Y i +N jỸ
N j−1
j Ỹ Ni

i Y j]

+
Ni[lk]i j

Nl!Nk!(Nk +Nl)
[NkỸ

Nk−1
k Ỹ Nl

l Y k +NlỸ
Nl−1
l Ỹ Nk

k Y l]

}
− fi(Y), (A.32)

implying that the expression for Newton’s formula for the i(th) component is:

fi(Ỹ)+
∂ fi

∂Y

∣∣∣∣
Y=Ỹ
· (Y− Ỹ) = ∑

{
− Ni[i j]kl

Ni!N j!(Ni +N j)
[NiỸ

Ni−1
i Ỹ N j

j Y i +N jỸ
N j−1
j Ỹ Ni

i Y j]

+
Ni[lk]i j

Nl!Nk!(Nk +Nl)
[NkỸ

Nk−1
k Ỹ Nl

l Y k +NlỸ
Nl−1
l Ỹ Nk

k Y l]

}
.

(A.33)

Eq.(A.33) is linear in Y and the same expression in Ref.[26].

We acknowledge Mark Paris for useful discussions.



Appendix B

Charged lepton annihilation into

photons

B.1 Determining the integral over u

We are interested in the following process:

e−(1)+ e+(2)→ γ(3)+ γ(4). (B.1)

The matrix element for this process is the Klein-Nishina matrix element and looks like:

〈|M |2〉 ∼ λ(Q1 ·Q2)(Q1 ·P3). (B.2)

We will adopt the notation that Qi is the four-momentum of a massive particle and

Pj is the four-momentum of a massless particle. λ is a constant and is related to the

fine-structure constant and the electron mass. There are other terms in the Klein-Nishina

matrix element, but those other terms have a similar form to Eq.B.2. Unfortunately,

Eq.B.2 cannot be simplified using conservation of four-momentum like was done when
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using neutrino matrix elements. Thus, we will attempt to derive a new expression for the

transport rates.

To understand the form of Eq.B.2, we need to define the angles between the

three-vectors. Let’s define the angle θ2 such that:

Q1 ·Q2 = E1E2−q1q2 cosθ2, (B.3)

where Ei is the energy and qi is the magnitude of the three-momentum of particle i. For

P3, let’s define θ3 as the angle between~q1 +~q2 and ~p3:

(~q1 +~q2) ·~p3 = |~q1 +~q2|p3 cosθ3. (B.4)

Using Eq.B.4 for our definition of θ3, we arrive at the following expression for the

four-momenta product:

Q1 ·P3 = E1 p3−
q1 p3

|~q1 +~q2|
[cosθ3(q1 +q2 cosθ2)+ sinθ2 sinθ3 sinφ3q2]. (B.5)

To see how we got Eq.B.5, let’s consider the following geometry. Start with~q1 pointing

along the z-axis. ~q2 makes an angle θ2 with~q1, so let’s assume that~q2 is in the z-x plane

with no y-component. Hence,~q1 +~q2 lies in the z-x plane with no y-component. We will

label the unit vector in the direction of~q1 +~q2 as â, which is:

â =
q1 + cosθ2q2

|~q1 +~q2|
ẑ+

sinθ2q2

|~q1 +~q2|
x̂. (B.6)

Now, ~p3 is rotated an angle θ3 from ~q1 +~q2, so in general ~p3 has non-zero x, y, and z

components. Let’s decompose ~p3 into components parallel and perpendicular to~q1 +~q2

using the fact that ~p3 makes an angle θ3 with~q1 +~q2. Define the plane Na as the plane
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normal to â. Define φ3 to be the angle the projection of ~p3 in the Na plane makes with

the ŷ axis. To write the decomposition of ~p3, we need a unit vector which lies in the Na

plane and is perpendicular to ŷ. We will define that vector as b̂:

b̂≡ sinθ2q2

|~q1 +~q2|
ẑ− q1 +q2 cosθ2

|~q1 +~q2|
x̂. (B.7)

This leaves us with the following expression for ~p3:

~p3 =p3 cosθ3â+ p3 sinθ3 cosφ3ŷ+ p3 sinθ3 sinφ3b̂

=

[
p3 cosθ3(q1 +q2 cosθ2)

|~q1 +~q2|
+

p3 sinθ3 sinφ3q2 sinθ2

|~q1 +~q2|

]
ẑ

+ p3 sinθ3 cosφ3ŷ

+

[
p3 cosθ3q2 sinθ2

|~q1 +~q2|
− p3 sinθ3 sinφ3(q1 +q2 cosθ2)

|~q1 +~q2|

]
x̂

Thus, after calculating the 3-vector dot product between~q1 and ~p3, we find:

~q1 ·~p3 =
q1 p3

|~q1 +~q2|
[cosθ3(q1 +q2 cosθ2)+ sinθ2 sinθ3 sinφ3q2], (B.8)

which is the result in Eq.B.5. Eq.B.5 is not a simple clean equation. It contains dependen-

cies on q2 and p3 which does not present a problem since those will be dummy variables

of integration. It contains a non-linear dependence on cosθ2. It also has a non-linear

dependence on cosθ3. We will use a delta function to integrate out the dependence of

cosθ3, and thus will have to properly use the substitution in the sinθ3 terms. The most

concerning aspect of Eq.B.5 is the azimuthal dependence on φ3. This cannot be elimi-

nated at this point, suggesting that the rate integral will appear to be four-dimensional.

What follows is working through the mathematics to write the scattering integral akin to

neutrino–neutrino scattering, but with important modifications.
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Our general expression for 2×2 scattering is:

D f1

Dt
=

∫ s
2E1

d3q2

(2π)32E2

d3 p3

(2π)32p3

d3 p4

(2π)32p4

×〈|M |2〉(2π)4
δ

4(Q1 +Q2−P3−P4)F(E1,E2, p3, p4), (B.9)

where s is a multiplicity factor and:

F(E1,E2, p3, p4) = (1− f1(E1))(1− f2(E2)) f3(p3) f4(p4)

− f1(E1) f2(E2)(1+ f3(p3))(1+ f4(p4)). (B.10)

fi(Ei) is the occupation probability density of species i at energy Ei. Keep in mind the +

signs in F are due to the fact that photons are bosons. Eq.B.9 now becomes:

D f1

Dt
=

s
24(2π)5E1

∫ d3q2

E2

∫ d3 p3

p3

∫ d3 p4

p4
〈|M |2〉

×δ(E1 +E2− p3− p4)δ
3(~q1 +~q2−~p3−~p4)F(E1,E2, p3, p4).

(B.11)

Using the spatial component of the delta function over d3 p4, Eq.B.11 becomes:

D f1

Dt
=

s
24(2π)5E1

∫ d3q2

E2

∫ d3 p3

p3

×
(

1
u
〈|M |2〉δ(E1 +E2− p3−u)F(E1,E2, p3,u)

)∣∣∣∣
u=|~q1+~q2−~p3|

.

(B.12)

u is a function of q1,q2, p3,θ2,andθ3 in general, but is independent of φ3. There are still

six integrals remaining in Eq.B.12. We can eliminate one of the remaining six integrals

by using the last remaining delta-function factor. Specifically, let us eliminate d cosθ3
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by using a u-substitution with the conveniently named function u. Our matrix element

depends on cosθ3, so we will have to be careful that we do the proper substitution into

〈|M |〉2. Write u as the following:

u2 = |~q1 +~q2−~p3|2 = |~q1 +~q2|2 + p2
3−2|~q1 +~q2|p3 cosθ3, (B.13)

from how we defined θ3 in Eq.B.4. Since we are concerned only with the integral over

d cosθ3, we treat q2, p3,andθ2 as constants. Taking the derivative of u2:

2udu = 0+0−2|~q1 +~q2|p3 d cosθ3

=⇒ d cosθ3 =−
u

|~q1 +~q2|p3
du.

Eq.B.12 now appears as:

D f1

Dt
=

s
24(2π)5E1

∫ d3q2

E2

∫
dφ3

∫ p2
3d p3

p3

×
1∫
−1

d cosθ3
1
u
〈|M |2〉δ(E1 +E2− p3−u)F(E1,E2, p3,u) (B.14)

=
s

24(2π)5E1

∫ d3q2

E2

∫
dφ3

∫ p2
3d p3

p3

×
a∫

b

(
− u
|~q1 +~q2|p3

du
)

1
u
〈|M |2〉δ(E1 +E2− p3−u)F(E1,E2, p3,u) (B.15)

=
s

24(2π)5E1

∫ d3q2

E2|~q1 +~q2|
∫

dφ3

∫
d p3

×
b∫

a

du〈|M |2〉δ(E1 +E2− p3−u)F(p1, p2, p3,u). (B.16)
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From the u-substitution, our expression for 〈|M |2〉 now looks like the following:

〈|M |2〉 ∼λ(E1E2−q1q2 cosθ2)

×
{

E1 p3−
q1 p3

|~q1 +~q2|
[cosθ3(q1 +q2 cosθ2)+ sinθ2 sinθ3 sinφ3q2]

}
(B.17)

=λ(E1E2−q1q2 cosθ2)

×
{

E1 p3−
q1 p3

|~q1 +~q2|

[( |~q1 +~q2|2 + p2
3−u2

2|~q1 +~q2|p3

)
(q1 + cosθ2q2)

+ sinθ2

√

1−
( |~q1 +~q2|2 + p2

3−u2

2|~q1 +~q2|p3

)2

sinφ3q2





 (B.18)

≡λ(E1E2−q1q2 cosθ2)

×
{

E1 p3−
q1 p3

|~q1 +~q2|

×
[( |~q1 +~q2|2 + p2

3−u2

2|~q1 +~q2|p3

)
(q1 + cosθ2q2)+Asinφ3

]}
, (B.19)

where A is a function dependent on q1,q2, p3,andθ2, but not on φ3. Everything in the

above expression is an input variable or an integration variable, besides u, which we can

write as u = E1 +E2− p3. The new limits of
∫

du are:

a = u(cosθ3 =+1) = ||~q1 +~q2|− p3|,

b = u(cosθ3 =−1) = |~q1 +~q2|+ p3.

The
∫

d p3 is over infinity, but the
∫

du is over a finite interval. Therefore, there may be

(or may not be) values of p3 which constrain u to be inside (or outside) the range [a,b].

Thus, for the overall rate integral to be non-zero: a < u and u < b.
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B.2 Case 1: a < u

B.2.1 Case 1(i): |~q1 +~q2|> p3

For the delta function to be non-zero, write u as u = E1 +E2− p3. This implies:

|~q1 +~q2|− p3 < E1 +E2− p3 =⇒ |~q1 +~q2|< E1 +E2,

which is simply the triangle inequality and the fact that electrons have rest mass. Hence

this subcase provides no new information.

B.2.2 Case 1(ii): p3 > |~q1 +~q2|

We have:

p3−|~q1 +~q2|< E1 +E2− p3

=⇒ 2p3 < E1 +E2 + |~q1 +~q2|

=⇒ p3 <
1
2
(E1 +E2 + |~q1 +~q2|)≡ pmax,

which defines pmax.

B.3 Case 2: u < b

We have:

E1 +E2− p3 < |~q1 +~q2|+ p3

=⇒ E1 +E2−|~q1 +~q2|< 2p3

=⇒ p3 >
1
2
(E1 +E2−|~q1 +~q2|)≡ pmin.
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The triangle inequality and the non-zero rest mass of the electron ensure pmin > 0.

B.4 Combining integrals over p3 and u

Therefore, we can combine
∫

d p3
∫

du to produce the following expression for

our scattering integral:

D f1

Dt
=

s
24(2π)5E1

∫ d3q2

E2|~q1 +~q2|
∫

dφ3

pmax∫
pmin

d p3〈|M |2〉F(E1,E2, p3,E1 +E2− p3).

(B.20)

Let x ≡ cosθ2, implying |~q1 +~q2|2 = q2
1 + q2

2 + 2q1q2x. Since there are no identical

particles in the final state, let s = 1:

D f1

Dt
=

1
24(2π)5E1

∫ q2
2dq2

E2

∫ dx
|~q1 +~q2|

∫
dφ2

∫
dφ3

×
pmax∫

pmin

d p3〈|M |2〉F(E1,E2, p3,E1 +E2− p3) (B.21)

=
1

24(2π)4E1

∫ q2
2dq2

E2

∫ dx√
q2

1 +q2
2 +2q1q2x

∫
dφ3

×
pmax∫

pmin

d p3〈|M |2〉F(E1,E2, p3,E1 +E2− p3). (B.22)
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The limits on
∫

d p3 do not depend on φ3. Thus, we can change the order of
∫

dφ3 and∫
d p3 so that we can integrate out the φ3 dependence:

D f1

Dt
=

1
24(2π)4E1

∫ q2
2dq2

E2

∫ dx√
q2

1 +q2
2 +2q1q2x

pmax∫
pmin

d p3F(E1,E2, p3,E1 +E2− p3)

×
∫

dφ3〈|M |2〉 (B.23)

=
λ

24(2π)4E1

∫ q2
2dq2

E2

∫
(E1E2−q1q2x)dx√

q2
1 +q2

2 +2q1q2x

pmax∫
pmin

d p3F(E1,E2, p3,E1 +E2− p3)

×
2π∫

0

dφ3

{
E1 p3−

q1 p3

|~q1 +~q2|

[( |~q1 +~q2|2 + p2
3−u2

2|~q1 +~q2|p3

)
(q1 + cosθ2q2)+Asinφ3

]}

(B.24)

=
λ

24(2π)4E1

∫ q2
2dq2

E2

∫
(E1E2−q1q2x)dx√

q2
1 +q2

2 +2q1q2x

pmax∫
pmin

d p3F(E1,E2, p3,E1 +E2− p3)

×
{

E1 p32π− q1 p3

|~q1 +~q2|

[( |~q1 +~q2|2 + p2
3−u2

2|~q1 +~q2|p3

)
(q1 + cosθ2q2)2π+A ·0

]}

(B.25)

=
λ

16(2π)3E1

∫ q2
2dq2

E2

∫
(E1E2−q1q2x)dx√

q2
1 +q2

2 +2q1q2x

pmax∫
pmin

d p3F(E1,E2, p3,E1 +E2− p3)

×
{

E1 p3−q1(q1 +q2x)
q2

1 +q2
2 +2q1q2x+ p2

3− (E1 +E2− p3)
2

2(q2
1 +q2

2 +2q1q2x)

}
(B.26)

=
λ

16(2π)3E1

∫ q2
2dq2

E2

∫
(E1E2−q1q2x)dx√

q2
1 +q2

2 +2q1q2x

pmax∫
pmin

d p3F(E1,E2, p3,E1 +E2− p3)

×
{

E1 p3−q1(q1 +q2x)
2q1q2x−2m2

e−2E1E2 +2E1 p3 +2E2 p3

2(q2
1 +q2

2 +2q1q2x)

}
. (B.27)

The Klein-Nishina matrix element may have powers of Q1 ·P3, or rational expres-

sions involving Q1 ·P3. Whatever the form is, it should be possible to integrate out the φ3

dependence because the limits of
∫

d p3 do not depend on φ3. Thus, the final expression
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is a triple integral (and not a quadruple integral).



Appendix C

Dilution decay spectra

C.1 Decay into a charged pion and electron

C.1.1 Spectra for pion decay

To begin, we consider the simultaneous decays:

νs→ π
++ e−, (C.1)

π
+→ µ++νµ. (C.2)

We wish to determine the resulting spectrum of the νµ. The proper calculation requires a

Boltzmann equation. However, we will bypass this route and assume all the species are

dilute at the pertinent energies.

To determine the spectrum of νµ, we need to know the spectrum of the parent

particle (the π+) and the grandparent particle (the νs). We will work in the reference

frame of the νs, implying a null spectrum with number density ns and energy ms. The νs

particle has an inherent lifetime, which we will write as a rate, namely Γ. νs decays into

two particles, implying both particles must be monoenergetic. To determine the energy

227
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of the π+, we use energy and momentum conservation:

ms = Eπ +Ee =⇒ Ee = ms−Eπ (C.3)

0 = ~pπ +~pe =⇒ pπ = pe =
√

E2
e −m2

e . (C.4)

If we substitute Eq.(C.3) into the square of Eq.(C.4), and solve for Eπ, we find:

p2
π = E2

π−m2
π = (ms−Eπ)

2−m2
e =⇒ E(1) ≡ m2

s +m2
π−m2

e
2ms

= Eπ. (C.5)

We can write the π+ spectrum as:

dnπ

dEπ dΩπ dt
= Γns

δ(Eπ−E(1))

4π
. (C.6)

Simply put, Eq.(C.6) states that the amount of π+ coming into energy bin Eπ, solid angle

Ωπ, per unit time is equal to the creation rate of π+ (i.e. Γns) multiplied by the probability

density the π+ has energy Eπ (i.e. δ(Eπ−E(1))) and solid angle Ωπ (i.e. 1/4π). The

decay has no preferred direction, hence why the probability density for the solid angle is

independent of Ωπ.

To determine the spectrum of νµ, we consider the reference frame where the π+ is

at rest. In this reference frame, the decay particles νµ and µ+ are monoenergetic implying

the νµ has energy:

E(2) ≡
m2

π−m2
µ

2mπ

. (C.7)

We have used analogous equations of Eqs.(C.3) and (C.4) to derive Eq.(C.7), except we

have taken the mass of νµ to be negligible. The decay spectrum for νµ follows from
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analogy with Eq.(C.6):

dnν

dE ′ν dΩ
′
ν dt ′

=
dnπ

dt
dt
dt ′

δ(E
′
ν−E(2))

4π
. (C.8)

We have intentionally inserted primes on the kinematic variables in Eq.(C.8) to delineate

the reference frame where the π+ is at rest (primed) from the reference frame where

the νs is at rest (unprimed). For the time variable, we do not use the quantity dnπ/dt
′

because we will assume the π+ immediately decays in the unprimed frame, implying that

the decay rate of the π+ in the primed frame is infintely fast.

We can combine Eqs.(C.6) and (C.8) if we write the spectrum of νµ as the

following:

dnν

dE ′ν dΩ
′
ν dEπ dΩπ dt ′

=
dnπ

dEπ dΩπ dt
dt
dt ′

δ(E
′
ν−E(2))

4π

= Γns
dt
dt ′

δ(Eπ−E(1))

4π

δ(E
′
ν−E(2))

4π
. (C.9)

Both sides of Eq.(C.9) involve multiple reference frames. Let us take the primed reference

frame moving with speed v in the unprimed frame of reference such that the π+ is at rest

in the primed frame. If we take the x
′

and y
′

axes parallel to the x and y axis, respectively,

then the z and z
′

axes are coincident. By boosting in the z direction, we can relate the

energy in the primed reference frame to that in the unprimed frame:

E
′
ν = γEν− γvp(z)ν , (C.10)

where:

γ =
1√

1− v2
, (C.11)

and p(z)ν is the z component of the νµ momentum. We carefully distinguished between
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momentum and energy in Eq.(C.10). The neutrino mass is still negligible in the unprimed

reference frame, so Eν = pν. Let us define the angle θν to be the angle between the

3-momentum vector of νµ and the z axis, implying p(z)ν = Eν cosθν. We are boosting

in the direction of the π+ which we have assumed is moving along the z axis. In the

unprimed frame, the π+ has energy and momentum:

Eπ = γmπ =⇒ γ =
Eπ

mπ

(C.12)

pπ = γvmπ =⇒ γv =
pπ

mπ

. (C.13)

Using Eqs.(C.12) and (C.13) in the expression for (C.10) yields:

E
′
ν =

Eπ

mπ

Eν−
pπ

mπ

Eν cosθν =
Eν

mπ

(Eπ− pπ cosθν). (C.14)

With Eq.(C.14), we can write the argument of δ(E
′
ν−E(2)) in terms of quantities in

the unprimed reference frame, implying all of the quantities on the right-hand-side of

Eq.(C.9) are in terms of the unprimed frame.

Our expression for the left-hand-side of Eq.(C.9) still involves quantities in terms

of the primed frame. We can eliminate those quantities with the proper change of

coordinates, i.e.:

dnν

dEν dΩν dEπ dΩπ dt
=

dnν

dE ′ν dΩ
′
ν dEπ dΩπ dt ′

dE
′
ν

dEν

dΩ
′
ν

dΩν

dt
′

dt
. (C.15)

Using Eq.(C.14):

E
′
ν =

Eν

mπ

(Eπ− pπ cosθν) =⇒ dE
′
ν

dEν

=
1

mπ

(Eπ− pπ cosθν). (C.16)
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For the solid angles, let us define ξ = cosθ such that:

dΩ = sinθdθdφ≡ dξdφ. (C.17)

The coordinate transformation for dΩν becomes:

dΩ
′
ν

dΩν

=
dξ
′
ν

dξν

dφ
′
ν

dφν

=
dξ
′
ν

dξν

, (C.18)

where dφ
′
/dφ = 1 as φ,φ

′
describe angles in the x-y plane and are unaffected by a boost

in the z direction. We can write ξ
′
ν as a function of ξν using the following:

ξ
′
ν = cosθ

′
ν =

p(z)
′

ν

p′ν
=

p(z)
′

ν

E ′ν
=

γEνξν− γvEν

γEν− γvEνξν

=
Eπξν− pπ

Eπ− pπξν

, (C.19)

where we have used the Lorentz transformation for the momenta in the numerator, the fact

that Eν = pν, and Eqs.(C.12) and (C.13) for γ and γv. Taking the derivative of Eq.(C.19)

with respect to ξν yields:

dξ
′
ν

dξν

=
(Eπ− pπξν)Eπ− (Eπξν− pπ)(−pπ)

(Eπ− pπξν)2 =
E2

π− p2
π

(Eπ− pπξν)2 =
m2

π

(Eπ− pπξν)2 . (C.20)

We can now write Eq.(C.15) as:

dnν

dEν dΩν dEπ dΩπ dt
=

dnπ

dEπ dΩπ dt
dt
dt ′

δ(E
′
ν−E(2))

4π

dE
′
ν

dEν

dξ
′
ν

dξν

dt
′

dt
(C.21)

= Γns
δ(Eπ−E(1))

4π

δ[ Eν

mπ
(Eπ− pπξν)−E(2)]

4π

× 1
mπ

(Eπ− pπξν)
m2

π

(Eπ− pπξν)2 (C.22)

= Γns
δ(Eπ−E(1))

4π

δ[ Eν

mπ
(Eπ− pπξν)−E(2)]

4π

mπ

Eπ− pπξν

. (C.23)
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Our initial objective was to determine the spectrum of the νµ, which we can do by

integrating over Eq.(C.23):

dnν

dEν dΩν dt
=

∫
dEπ

∫
dΩπ

dnν

dEν dΩν dEπ dΩπ dt
(C.24)

=
∫

dEπ

∫
dΩπΓns

δ(Eπ−E(1))

4π

δ[ Eν

mπ
(Eπ− pπξν)−E(2)]

4π

mπ

Eπ− pπξν

(C.25)

= Γns

∫
dEπδ(Eπ−E(1))

δ[ Eν

mπ
(Eπ− pπξν)−E(2)]

4π

mπ

Eπ− pπξν

∫
dΩπ

1
4π

(C.26)

= Γns
δ[ Eν

mπ
(E(1)− p(1)ξν)−E(2)]

4π

mπ

E(1)− p(1)ξν

, (C.27)

where p(1) =
√

E(1)2−m2
π. We can calculate the spectrum over all solid angles by
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integrating Eq.(C.27) over dΩν:

dnν

dEν dt
=

∫
dΩν

dnν

dEν dΩν dt
(C.28)

=
∫

dΩνΓns
δ[ Eν

mπ
(E(1)− p(1)ξν)−E(2)]

4π

mπ

E(1)− p(1)ξν

= Γns

∫ dφν

2π

1
2

∫
dξνδ

[
Eν

mπ

(E(1)− p(1)ξν)−E(2)
]

mπ

E(1)− p(1)ξν

= Γns
1
2

1∫
−1

dξνδ

[
Eν

mπ

E(1)−E(2)− Eν p(1)

mπ

ξν

]
mπ

E(1)− p(1)ξν

= Γns
1
2

Eν p(1)/mπ∫
−Eν p(1)/mπ

du
mπ

Eν p(1)
δ

[
Eν

mπ

E(1)−E(2)−u
]

mπ

E(1)− p(1) mπ

Eν p(1)
u

= Γns
1
2

mπ

Eν p(1)
mπ

E(1)− mπ

Eν
( Eν

mπ
E(1)−E(2))

×θ

[
Eν

mπ

E(1)−E(2)−
(
−Eν p(1)

mπ

)]
θ

[
Eν p(1)

mπ

−
(

Eν

mπ

E(1)−E(2)
)]

= Γns
1
2

mπ

Eν p(1)
Eν

E(2)
θ

[
Eν

mπ

(E(1)+ p(1))−E(2)
]

θ

[
E(2)− Eν

mπ

(E(1)− p(1))
]

= Γns
mπ

2E(2)p(1)
θ

[
Eν−E(2) mπ

E(1)+ p(1)

]
θ

[
E(2) mπ

E(1)− p(1)
−Eν

]

= Γns
mπ

2E(2)p(1)
θ

[
Eν−E(2)E(1)− p(1)

mπ

]
θ

[
E(2)E(1)+ p(1)

mπ

−Eν

]
, (C.29)

where the θ functions are defined as:

θ(x) =





1 if x > 0

0 otherwise
. (C.30)
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Finally, we can calculate the total rate by integrating Eq.(C.29) over all energies Eν:

dnν

dt
=

∫
dEν

dnν

dEν dt
(C.31)

=
∫

dEνΓns
mπ

2E(2)p(1)
θ

[
Eν−E(2)E(1)− p(1)

mπ

]
θ

[
E(2)E(1)+ p(1)

mπ

−Eν

]
(C.32)

= Γns
mπ

2E(2)p(1)

∫
dEνθ

[
Eν−E(2)E(1)− p(1)

mπ

]
θ

[
E(2)E(1)+ p(1)

mπ

−Eν

]
(C.33)

= Γns
mπ

2E(2)p(1)

(
E(2)E(1)+ p(1)

mπ

−E(2)E(1)− p(1)

mπ

)
(C.34)

= Γns
mπ

2E(2)p(1)
E(2)

mπ

(2p(1)) (C.35)

= Γns. (C.36)

C.1.2 Spectra for muon decay

Eq.(C.29) gives the decay spectrum for the νµ integrated over the solid angle. The

spectrum for µ+ is identical with Eµ = E(1)−Eν:

dnµ

dEµ dt
= Γns

mπ

2E(2)p(1)
θ

[
(E(1)−Eµ)−E(2)E(1)− p(1)

mπ

]

×θ

[
E(2)E(1)+ p(1)

mπ

− (E(1)−Eµ)

]
(C.37)

= Γns
mπ

2E(2)p(1)
θ

[
Eµ−

(
E(1)−E(2)E(1)+ p(1)

mπ

)]

×θ

[
E(1)−E(2)E(1)− p(1)

mπ

−Eµ

]
(C.38)

≡ Γns
mπ

2E(2)p(1)
θ
[
Eµ−E (min)

µ
]

θ
[
E (max)

µ −Eµ
]

(C.39)

=⇒ dnµ

dEµ dΩµ dt
= Γns

mπ

2E(2)p(1)
1

4π
θ
[
Eµ−E (min)

µ
]

θ
[
E (max)

µ −Eµ
]

(C.40)

(C.41)
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The µ+ decays into three particles: µ+→ ν̄µ +e++νe. We will focus on the spectrum of

the νe, which we call:
dnνe

dE ′νe dΩ
′
νe dt ′

≡ dnµ

dt
dt
dt ′

1
4π

d fνe

dE ′νe

, (C.42)

where dnµ/dt is the creation rate of µ+, and d fνe/dE
′
νe

is the probability density of

creating a νe with energy E
′
νe

. We reuse the primed reference frame for the frame where

µ+ is at rest. The unprimed reference frame is the frame where the νs is at rest. For µ+

decay:
d fνe

dE ′νe

=
2

mµG(x2
0)

(1− x2
0− y

′
)2y2′

1− y′
, (C.43)

where y
′
= 2E

′
νe
/mµ, x0 = me/mµ, and

G(x) =
1

12
(1−8x−12x2 lnx+8x3− x4). (C.44)

We rewrite the spectrum of νe as:

dnνe

dE ′νe dΩ
′
νe dEµ dΩµ dt ′

=
dnµ

dEµ dΩµ dt
dt
dt ′

1
4π

d fνe

dE ′νe

, (C.45)
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and transform into the unprimed frame through:

dnνe

dEνe dΩνe dEµ dΩµ dt
=

dnνe

dE ′νe dΩ
′
νe dEµ dΩµ dt ′

dE
′
νe

dEνe

dΩ
′
νe

dΩνe

dt
′

dt
(C.46)

=
dnµ

dEµ dΩµ dt
dt
dt ′

1
4π

d fνe

dE ′νe

dE
′
νe

dEνe

dΩ
′
νe

dΩνe

dt
′

dt
(C.47)

= Γns
mπ

2E(2)p(1)
1

4π
θ
[
Eµ−E (min)

µ
]

θ
[
E (max)

µ −Eµ
]

× 1
4π

d fνe

dE ′νe

dE
′
νe

dEνe

dΩ
′
νe

dΩνe

(C.48)

= Γns
mπ

2E(2)p(1)
1

4π
θ
[
Eµ−E (min)

µ
]

θ
[
E (max)

µ −Eµ
]

× 1
4π

d fνe

dE ′νe

mµ

Eµ− pµξνe

, (C.49)

where we have used the Lorentz transformation E
′
νe
=

Eνe
mµ

(Eµ− pµξνe). We want the

spectrum for the νe integrated over solid angle:

dnνe

dEνe dt
=

∫
dΩµ

∫
dEµ

∫
dΩνe

dnνe

dEνe dΩνe dEµ dΩµ dt
. (C.50)

The
∫

dΩµ is trivial. The theta functions change the limits of
∫

dEµ, implying:

dnνe

dEνe dt
= 4π

E(max)
µ∫

E(min)
µ

dEµ 2π

1∫
−1

dξνeΓns
mπ

2E(2)p(1)
1

4π

1
4π

d fνe

dE ′νe

mµ

Eµ− pµξνe

(C.51)

= Γns
mπ

2E(2)p(1)

E(max)
µ∫

E(min)
µ

dEµ

1∫
−1

dξνe

d fνe

dE ′νe

mµ

2(Eµ− pµξνe)
(C.52)

To solve
∫

dξνe in Eq.(C.52), we can use a u-substitution by utilizing the Lorentz trans-

formation:

E
′
νe
=

Eνe

mµ
(Eµ− pµξνe) =⇒ dξνe =−

mµ

Eνe pµ
dE

′
νe
. (C.53)
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Using the substitution in Eq.(C.52), we are left with:

dnνe

dEνe dt
= Γns

mπ

2E(2)p(1)

E(max)
µ∫

E(min)
µ

dEµ

E(min)’
νe∫

E(max)’
νe

(
− mµ

Eνe pµ

)
dE

′
νe

d fνe

dE ′νe

Eνe

2E ′νe

(C.54)

= Γns
mπmµ

4E(2)p(1)

E(max)
µ∫

E(min)
µ

dEµ
1
pµ

E(max)’
νe∫

E(min)’
νe

dE
′
νe

d fνe

dE ′νe

1
E ′νe

, (C.55)

where:

E (min)’
νe

=
Eνe

mµ
(Eµ− pµ) (C.56)

E (max)’
νe

=
Eνe

mµ
(Eµ + pµ). (C.57)

By using the u-substitution, we can use Eq.(C.43) without having to write the y
′

in terms

of Eνe,ξνe ,Eµ and pµ using the Lorentz transformation.

C.2 Decay into a charged pion and muon

The relevant decays are:

νs→ π
++µ− (C.58)

µ−→ νµ + ν̄e + e−. (C.59)

We do not consider the decay of the π+ because that is analogous to the previous

section, except for different expressions for E(1) and p(1) involving mµ instead of me. To

determine the spectrum of the νe, we use the same expression for the probability density
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of Eq.(C.43):

dnνe

dE ′
νe

dΩ
′
νe

dEµ dΩµ dt ′
=

dnµ

dEµ dΩµ dt
dt
dt ′

1
4π

d fνe

dE ′
νe

(C.60)

= Γns
δ(Eµ− (ms−E(1)))

4π

dt
dt ′

1
4π

d fνe

dE ′
νe

, (C.61)

where:

E(1) =
m2

s +m2
π−m2

µ

2ms
, (C.62)

and Γ is the decay rate of νs→ π++µ−. We use the change of coordinates,

dE
′
νe

dEνe

dΩ
′
νe

dΩνe

=
mµ

Eµ− pµξνe

, (C.63)

to write the spectrum of νe integrated over solid angle as:

dnνe

dEνe dt
=

∫
dΩµ

∫
dEµ

∫
dΩνe

dnνe

dEνe dΩνe dEµ dΩµ dt
(C.64)

= 4π

∫
dEµ 2π

1∫
−1

dξνeΓns
δ(Eµ− (ms−E(1)))

4π

1
4π

d fνe

dE ′
νe

mµ

Eµ− pµξνe

(C.65)

= Γns

∫
dEµ δ(Eµ− (ms−E(1)))

1
2

1∫
−1

dξνe

d fνe

dE ′
νe

mµ

Eµ− pµξνe

(C.66)

= Γns
mµ

2

∫
dEµ δ(Eµ− (ms−E(1)))

1
pµ

E(max)’
νe∫

E(min)’
νe

dE
′
νe

d fνe

dE ′
νe

1
E ′

νe

, (C.67)

where:

E (min)’
νe

≡ Eνe

mµ
(Eµ− pµ) (C.68)

E (max)’
νe

≡ Eνe

mµ
(Eµ + pµ). (C.69)



239

Define E(3) such that:

E(3) ≡ ms−E(1) =
m2

s +m2
µ−m2

π

2ms
(C.70)

p(3) ≡
√

E(3)2−m2
µ. (C.71)

Then Eq.(C.67) becomes:

dnνe

dEνe dt
= Γns

mµ

2

∫
dEµ δ(Eµ−E(3))

1
pµ

E(max)’
νe∫

E(min)’
νe

dE
′
νe

d fνe

dE ′
νe

1
E ′

νe

(C.72)

= Γns
mµ

2p(3)

Ẽ(max)’
νe∫

Ẽ(min)’
νe

dE
′
νe

d fνe

dE ′
νe

1
E ′

νe

, (C.73)

where:

Ẽ (min)’
νe

≡ Eνe

mµ
(E(3)− p(3)) (C.74)

Ẽ (max)’
νe

≡ Eνe

mµ
(E(3)+ p(3)). (C.75)

We acknowledge Chad Kishimoto for indispensable discussions.



Appendix D

Comparison of integration methods

D.1 CK Method

Begin with the expression for the integral for the νeνe↔ νeνe process in the CK

method:

C =
κ

32(2π)3

∫
d p2 p1 p3

2

∫ 1

−1
dx

(1− x)2
√

p2
1 + p2

2 +2p1 p2x
(D.1)

×
∫ p+

p−
d p3F (p1, p2, p3, p1 + p2− p3) , (D.2)

where p± =

(
p1 + p2±

√
p2

1 + p2
2 +2p1 p2x

)
/2. Let’s only look at the last two inte-

grals, over x and p3:

ICK ≡
∫ 1

−1
dx

(1− x)2
√

p2
1 + p2

2 +2p1 p2x

∫ p+

p−
d p3F (p1, p2, p3, p1 + p2− p3) . (D.3)
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We will take F (p1, p2, p3, p1 + p2− p3) = 1 so as to make ICK analytical.

ICK =
∫ 1

−1
dx

(1− x)2
√

p2
1 + p2

2 +2p1 p2x

∫ p+

p−
d p3

=
∫ 1

−1
dx

(1− x)2
√

p2
1 + p2

2 +2p1 p2x
(p+− p−)

=
∫ 1

−1
dx

(1− x)2
√

p2
1 + p2

2 +2p1 p2x

√
p2

1 + p2
2 +2p1 p2x

=
∫ 1

−1
dx(1− x)2

=
8
3
. (D.4)

D.2 AV Method

The expression for the collision integral in the AV method is

C =
κ

32(2π)3

∫
∞

0
d p2 p1 p3

2

∫ p1+p2

0
d p3 F (p1, p2, p3, p1 + p2− p3)W (p1, p2, p3) ,(D.5)

where the weight W is defined as follows:

W ≡
∫ 1

x0(p1,p2,p3)
dx

(1− x)2
√

p2
1 + p2

2 +2p1 p2x
, (D.6)

where x0 = Max
(
−1,1− 2p3(p1+p2−p3)

p1 p2

)
. The exact expression for W in terms of x0 is:

W =
p1 + p2

15p3
1 p3

2

[
2
(

p4
1 + p4

2
)
+8
(

p3
1 p2 + p1 p3

2
)
+12p2

1 p2
2
]
−

√
p2

1 + p2
2 +2p1 p2x0

15p3
1 p3

2

×
[
2
(

p4
1 + p4

2
)
+2
(

p3
1 p2 + p1 p3

2
)
(5− x0)+ p2

1 p2
2
(
3x2

0−10x0 +19
)]
. (D.7)



242

Again, only consider the integral over p3 and the W function:

IAV ≡
∫ p1+p2

0
d p3 F (p1, p2, p3, p1 + p2− p3)W (p1, p2, p3) . (D.8)

We do not have an exact expression for x0. To obtain an exact expression, consider the

following argument. Let x0 = Max(−1,x1(p1, p2, p3)) where x1 ≡ 1− 2p3(p1+p2−p3)
p1 p2

.

We are integrating over p3 in IAV, with a lower limit of 0 and an upper limit of p1 + p2.

At both limits, x1(p3 = 0) = x1(p3 = p1+ p2) = 1. Furthermore, x1(p3 = p1) = x1(p3 =

p2) =−1. x1 is quadratic in p3, implying that x1 can only be equal to −1 in at most two

unique p3 values (assuming fixed p1 and p2).

D.2.1 Case 1: p1 > p2

Since p1 > p2 and x1 =−1 in only two places, we can write Eq.D.8 as:

IAV =
∫ p2

0
d p3 F (p1, p2, p3, p1 + p2− p3)W (x1)

+
∫ p1

p2

d p3 F (p1, p2, p3, p1 + p2− p3)W (−1)

+
∫ p1+p2

p1

d p3 F (p1, p2, p3, p1 + p2− p3)W (x1) , (D.9)

where we have written the argument of W as the number to use in the Max(−1,x1)

expression. Again, to make the integral analytic, we set F (p1, p2, p3, p1 + p2− p3) = 1,

giving:

IAV =
∫ p2

0
d p3 W (x1)+

∫ p1

p2

d p3 W (−1)+
∫ p1+p2

p1

d p3 W (x1) . (D.10)
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The expression for W involves two terms: a product of polynomials and roots of polyno-

mials of p3; and a term constant in p3. Let’s call those terms Wp and Wc:

Wp(x1(p3))≡−

√
p2

1 + p2
2 +2p1 p2x1

15p3
1 p3

2

×
[
2
(

p4
1 + p4

2
)
+2
(

p3
1 p2 + p1 p3

2
)
(5− x1)+ p2

1 p2
2
(
3x2

1−10x1 +19
)]
,

(D.11)

Wc ≡
p1 + p2

15p3
1 p3

2

[
2
(

p4
1 + p4

2
)
+8
(

p3
1 p2 + p1 p3

2
)
+12p2

1 p2
2
]
. (D.12)

Hence:

IAV =
∫ p2

0
d p3 Wp (x1)+

∫ p1

p2

d p3 Wp (−1)+
∫ p1+p2

p1

d p3 Wp (x1)+
∫ p1+p2

0
d p3 Wc

≡ I1 + I2 + I3 + I4

(D.13)

I1 Integral

We use the u-substitution x1 = x1(p3) to simplify the integral:

x1 = 1− 2p3(p1 + p2− p3)

p1 p2
=⇒ dx1 =−

2
p1 p2

(p1 + p2−2p3)d p3 (D.14)

=⇒ d p3 =
p1 p2

2(2p3− p1− p2)
dx1. (D.15)
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The limits of the integral over x1 become: x1(p3 = 0) = 1 and x1(p3 = p2) = −1. We

need to solve for p3 as a function of x1:

x1 = 1− 2p3(p1 + p2− p3)

p1 p2
=⇒ 2p3(p1 + p2− p3) = p1 p2(1− x1) (D.16)

=⇒ p2
3− p3(p1 + p2)+

p1 p2

2
(1− x1) = 0 (D.17)

=⇒ p3 =
p1 + p2

2
± 1

2

√
(p1 + p2)2 +2p1 p2(x1−1)

(D.18)

=⇒ p3 =
p1 + p2

2
± 1

2

√
p2

1 + p2
2 +2p1 p2x1. (D.19)

Recall that the limits of integration are +1 to −1. To reproduce the original p3 limits,

observe:

p3(x1 = 1) = 0 =
p1 + p2

2
± 1

2

√
p2

1 + p2
2 +2p1 p2 =

p1 + p2

2
± p1 + p2

2
(D.20)

p3(x1 =−1) = p2 =
p1 + p2

2
± 1

2

√
p2

1 + p2
2−2p1 p2 =

p1 + p2

2
± p1− p2

2
, (D.21)

where we are working under the assumption that p1 > p2. Therefore, we will take the

negative sign from the quadratic-formula solution:

p3 =
p1 + p2

2
− 1

2

√
p2

1 + p2
2 +2p1 p2x1 (D.22)

=⇒ d p3 =
p1 p2

2(2p3− p1− p2)
dx1 (D.23)

=− p1 p2

2
√

p2
1 + p2

2 +2p1 p2x1

dx1. (D.24)
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Thus, our expression for I1 after the u-substitution becomes:

I1 =
∫ p2

0
d p3 Wp (x1) (D.25)

=
∫ −1

1
dx1


− p1 p2

2
√

p2
1 + p2

2 +2p1 p2x1





−

√
p2

1 + p2
2 +2p1 p2x1

15p3
1 p3

2

×
[
2
(

p4
1 + p4

2
)
+2
(

p3
1 p2 + p1 p3

2
)
(5− x1)+ p2

1 p2
2
(
3x2

1−10x1 +19
)]


 (D.26)

=− 1
30p2

1 p2
2

×
∫ 1

−1
dx1
[
2
(

p4
1 + p4

2
)
+2
(

p3
1 p2 + p1 p3

2
)
(5− x1)+ p2

1 p2
2
(
3x2

1−10x1 +19
)]

(D.27)

=− 1
30p2

1 p2
2

×
[

2
(

p4
1 + p4

2
)

x1 +2
(

p3
1 p2 + p1 p3

2
)(

5x1−
1
2

x2
1

)
+ p2

1 p2
2
(
x3

1−5x2
1 +19x1

)]∣∣∣
1

−1

(D.28)

=− 1
30p2

1 p2
2

[
4
(

p4
1 + p4

2
)
+20

(
p3

1 p2 + p1 p3
2
)
+40p2

1 p2
2
]

(D.29)

=− 2
15p2

1 p2
2

[(
p4

1 + p4
2
)
+5
(

p3
1 p2 + p1 p3

2
)
+10p2

1 p2
2
]
. (D.30)
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I3 Integral

We use the same u-substitution and solve for p3 in the same way as the I1 integral:

I3 =
∫ p1+p2

p1

d p3 Wp (x1) (D.31)

x1 = 1− 2p3(p1 + p2− p3)

p1 p2
(D.32)

d p3 =
p1 p2

2(2p3− p1− p2)
dx1 (D.33)

p3 =
p1 + p2

2
± 1

2

√
p2

1 + p2
2 +2p1 p2x1. (D.34)

Again, the limits of I3 over x1 become: x1(p3 = p1) =−1 and x1(p3 = p1 + p2) = 1. To

recover the p3 limits in Eq.D.34, we need to take the positive sign in the quadratic-formula

solution. Thus:

d p3 =
p1 p2

2
√

p2
1 + p2

2 +2p1 p2x1

dx1 (D.35)

=⇒ I3 =
∫ 1

−1


 p1 p2

2
√

p2
1 + p2

2 +2p1 p2x1


dx1Wp (x1) (D.36)

= I1. (D.37)
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I2 Integral

x0 =−1 in the I2 integral. Thus, Wp does not contain any p3 dependence, imply-

ing:

I2 =
∫ p1

p2

d p3 Wp (−1) (D.38)

= (p1− p2)



−

√
p2

1 + p2
2−2p1 p2

15p3
1 p3

2
(D.39)

×
[
2
(

p4
1 + p4

2
)
+2
(

p3
1 p2 + p1 p3

2
)
(5− (−1))+ p2

1 p2
2 (3+10+19)

]


 (D.40)

=−(p1− p2)
2

15p3
1 p3

2

[
2
(

p4
1 + p4

2
)
+12

(
p3

1 p2 + p1 p3
2
)
+32p2

1 p2
2
]

(D.41)

I4 Integral

I4 =
∫ p1+p2

0
d p3 Wc (D.42)

= (p1 + p2)
p1 + p2

15p3
1 p3

2

[
2
(

p4
1 + p4

2
)
+8
(

p3
1 p2 + p1 p3

2
)
+12p2

1 p2
2
]

(D.43)

=
(p1 + p2)

2

15p3
1 p3

2

[
2
(

p4
1 + p4

2
)
+8
(

p3
1 p2 + p1 p3

2
)
+12p2

1 p2
2
]
. (D.44)
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IAV Integral

Let’s add I4 to I2:

I4 + I2 =+
(p1 + p2)

2

15p3
1 p3

2

[
2
(

p4
1 + p4

2
)
+8
(

p3
1 p2 + p1 p3

2
)
+12p2

1 p2
2
]

− (p1− p2)
2

15p3
1 p3

2

[
2
(

p4
1 + p4

2
)
+12

(
p3

1 p2 + p1 p3
2
)
+32p2

1 p2
2
]

(D.45)

=+
p2

1

15p3
1 p3

2

[
−4
(

p3
1 p2 + p1 p3

2
)
−20p2

1 p2
2
]

+
p2

2

15p3
1 p3

2

[
−4
(

p3
1 p2 + p1 p3

2
)
−20p2

1 p2
2
]

+
2p1 p2

15p3
1 p3

2

[
4
(

p4
1 + p4

2
)
+20

(
p3

1 p2 + p1 p3
2
)
+44p2

1 p2
2
]

(D.46)

=
1

15p3
1 p3

2

[
4p5

1 p2 +20p4
1 p2

2 +80p3
1 p3

2 +20p2
1 p4

2 +4p1 p5
2

]
(D.47)

=
4

15p2
1 p2

2

[
p4

1 +5p3
1 p2 +20p2

1 p2
2 +5p1 p3

2 + p4
2
]
. (D.48)

I3 is equal to I1, so let’s add 2I1 to Eq.D.48, which is Eq.D.13:

IAV = I4 + I2 +2I1 =
4

15p2
1 p2

2

[
p4

1 +5p3
1 p2 +20p2

1 p2
2 +5p1 p3

2 + p4
2
]

+2
{
− 2

15p2
1 p2

2

[(
p4

1 + p4
2
)
+5
(

p3
1 p2 + p1 p3

2
)
+10p2

1 p2
2
]}

(D.49)

= +
4

15p2
1 p2

2

[
10p2

1 p2
2
]

(D.50)

=
8
3
, (D.51)

which agrees with Eq.D.4.
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D.2.2 Case 2: p2 > p1

The expressions above are symmetric between p1 and p2 except for a few p1− p2

expressions from square roots. Those expressions would become p2− p1 if p2 > p1. The

result is the same in both cases.

D.2.3 Case 3: p1 = p2

In this case, I1 = I3, and I4 have all of the same values as in Case 1. I2 = 0 in this

case. Thus:

IAV = I4 +2I1 = +
(p1 + p2)

2

15p3
1 p3

2

[
2
(

p4
1 + p4

2
)
+8
(

p3
1 p2 + p1 p3

2
)
+12p2

1 p2
2
]

+2
{
− 2

15p2
1 p2

2

[(
p4

1 + p4
2
)
+5
(

p3
1 p2 + p1 p3

2
)
+10p2

1 p2
2
]}

(D.52)

= +
4p2

1

15p6
1

[
2
(
2p4

1
)
+8
(
2p4

1
)
+12p4

1
]

− 4
15p4

1

[(
2p4

1
)
+5
(
2p4

1
)
+10p4

1
]

(D.53)

=
8
3
. (D.54)

We acknowledge Chad Kishimoto and Alexey Vlasenko for useful discussions.



Appendix E

Neutrino annihilation into other

neutrinos

E.1 Finding integral limits over u

To find the matrix element for neutrino-neutrino annihilation into other neutrinos,

we begin with elastic scattering of neutrinos of differing flavor: νi(1)+ν j(2)→ νi(3)+

ν j(4) where i 6= j. The matrix element for this process is:

〈|M|2〉= λ(P1 ·P2)(P3 ·P4)

Pi is the 4-momentum of each particle. λ is a constant and equal to 32G2
F . If we permute

the second and third particles, we get the pertinent reaction: νi(1)+ ν̄i(2)→ ν̄ j(3)+ν j(4)

with matrix element:

〈|M|2〉= λ(P1 ·P3)(P2 ·P4)

250



251

Conservation of linear momentum and energy imply: P1+P2 = P3+P4. Taking the inner

product of both sides with themselves gives:

P2
1 +P2

2 +2P1 ·P2 = P2
3 +P2

4 +2P3 ·P4

P2
i = m2

i = 0 in the limit that the neutrinos are ultra-relativistic. Thus, we are left with

P1 ·P2 = P3 ·P4.

To simplify the matrix element expression, observe the following:

P2 ·P4 = P2 · (P1 +P2−P3)

= P2 ·P1 +P2
2 −P2 ·P3

= P3 ·P4 +0−P2 ·P3

= P3 ·P4 +P2
3 −P3 ·P2

= P3 · (P4 +P3−P2)

= P3 ·P1

So we can now simplify the matrix element as:

〈|M|2〉= λ(P1 ·P3)
2
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Keep in mind the following prescription when labeling indicies:

P1 : νi

P2 : ν̄i

P3 : ν̄ j

P4 : ν j

What follows is working through the mathematics to write the scattering integral akin to

neutrino-antineutrino scattering.

Our general expression for 2×2 scattering is:

D f1

Dt
=

∫ s
2E1

d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

×〈|M|2〉(2π)4
δ

4(P1 +P2−P3−P4)F(E1,E2,E3,E4), (E.1)

where s is a multiplicity factor and

F(E1,E2,E3,E4) = (1− f1(E1))(1− f2(E2)) f3(E3) f4(E4)

− f1(E1) f2(E2)(1− f3(E3))(1− f4(E4)). (E.2)

fi(Ei) is the occupation probability density of species i at energy Ei. As an example, for

fermions in thermal and chemical equilibrium:

f (E) =
1

e(E−µ)/T +1

δ4(P1 +P2−P3−P4) is a four-dimensional delta function denoting conservation of
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energy and linear momentum, i.e.:

δ
4(P1 +P2−P3−P4) = δ(E1 +E2−E3−E4)δ

3(~p1 +~p2−~p3−~p4)

Our scattering integral now becomes:

D f1

Dt
=

sλ

24(2π)5 p1

∫ d3 p2

p2

∫ d3 p3

p3
(P1 ·P3)

2

×
∫ d3 p4

p4
δ(p1 + p2− p3− p4)δ

3(~p1 +~p2−~p3−~p4)F(p1, p2, p3, p4) (E.3)

Since neutrinos are ultra-relativistic, we have dropped the distinction between energy

and the magnitude of the linear momentum. Using the spatial component of the delta

function over d3 p4:

D f1

Dt
=

sλ

24(2π)5 p1

∫ d3 p2

p2

×
∫ d3 p3

p3
(P1 ·P3)

2 1
u

δ(p1 + p2− p3−u)F(p1, p2, p3,u)
∣∣∣∣
u=|~p1+~p2−~p3|

(E.4)

u is a function of p1, p2, p3,θ2,andθ3 in general. There are still six integrals remaining in

our scattering integral. Two of the integrals are trivial integrations around the azimuthal

angles φ2 and φ3. We can eliminate one of the remaining four integrals by using the

last remaining delta-function factor. Specifically, let us eliminate d cosθ2 by using a

u-substitution with the conveniently named function u. First, write u as the following:

u2 = |~p1 +~p2−~p3|2 = |~p1−~p3|2 + p2
2 +2|~p1−~p3|p2 cosθ2

where we pick θ2 to be the angle between ~p2 and ~p1−~p3. Since we are concerned only

with the integral over d cosθ2, we treat p2, p3,andθ3 as constants. Taking the derivative
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of u2:

2udu = 0+0+2|~p1−~p3|p2 d cosθ2

=⇒ d cosθ2 =
u

|~p1−~p3|p2
du

Our scattering integral now appears as:

D f1

Dt
=

sλ

24(2π)5 p1

∫ d3 p3

p3
(P1 ·P3)

2
∫

dφ2

∫ p2
2d p2

p2

×
1∫
−1

d cosθ2
1
u

δ(p1 + p2− p3−u)F(p1, p2, p3,u) (E.5)

=
sλ

24(2π)5 p1

∫ d3 p3

p3
(P1 ·P3)

2(2π)
∫

p2 d p2

×
b∫

a

u
|~p1−~p3|p2

du
1
u

δ(p1 + p2− p3−u)F(p1, p2, p3,u) (E.6)

=
sλ

24(2π)4 p1

∫ d3 p3

p3|~p1−~p3|
(P1 ·P3)

2
∫

d p2

×
b∫

a

duδ(p1 + p2− p3−u)F(p1, p2, p3,u), (E.7)

where the new limits of
∫

du are:

a = u(cosθ2 =−1) = ||~p1−~p3|− p2|, (E.8)

b = u(cosθ2 = 1) = |~p1−~p3|+ p2 (E.9)

The
∫

d p2 is over infinity, but the
∫

du is over a finite interval. Therefore, there may be

(or may not be) values of p2 which constrain u to be inside (or outside) the range [a,b].

Thus, for the integral to be non-zero: a < u and u < b.
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E.2 Case 1: a < u

E.2.1 Case 1(i): |~p1−~p3|> p2

For the delta function to be non-zero, write u as u = p1 + p2− p3. This implies:

|~p1−~p3|− p2 < p1 + p2− p3.

Solving for p2 yields:

p2 >
1
2
(|~p1−~p3|− (p1− p3))≡ pmin.

By the triangle inequality: |~p1−~p3| ≥ p1− p3 =⇒ pmin ≥ 0.

E.2.2 Case 1(ii): p2 > |~p1−~p3|

In this case, we have:

p2−|~p1−~p3|< p1 + p2− p3

=⇒ −|~p1−~p3|< p1− p3

=⇒ |~p1−~p3|> p3− p1

The last expression is the triangle inequality. Thus, this sub-case provides no new

information.
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E.2.3 Case 2: u < b

In this case, we have:

p1 + p2− p3 < |~p1−~p3|+ p2

=⇒ p1− p3 < |~p1−~p3|.

The last expression is the triangle inequality. Thus, this case provides no new information.

E.3 Combining the integrals over p2 and u

We can combine
∫

d p2
∫

du to produce the following expression for our scattering

integral:

D f1

Dt
=

sλ

24(2π)4 p1

∫ d3 p3

p3|~p1−~p3|
(P1 ·P3)

2
∞∫

pmin

d p2F(p1, p2, p3, p1 + p2− p3).

Let θ3 be the angle between ~p1 and ~p3. This implies that:

|~p1−~p3|=
√

p2
1 + p2

3−2p1 p3 cosθ3,

and

P1 ·P3 = p1 p3−~p1 ·~p3 = p1 p3(1− cosθ3).
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Let x≡ cosθ3:

D f1

Dt
=

sλ

24(2π)4 p1

∫ p2
3 d p3

p3

∫ p2
1 p2

3(1− x)2
√

p2
1 + p2

3−2p1 p3x
dx

∫
dφ3

×
∞∫

pmin

d p2F(p1, p2, p3, p1 + p2− p3). (E.10)

Since there are no identical particles in the final state, let s = 1. Thus:

D f1

Dt
=

λ

16(2π)3 p1

∫
p3

3 d p3

∫
(1− x)2

√
p2

1 + p2
3−2p1 p3x

dx

×
∞∫

pmin

d p2F(p1, p2, p3, p1 + p2− p3). (E.11)

We thank Chad Kishimoto for useful discussions.



Appendix F

First integral of elastic scattering

The reaction of interest is annihilation of electron neutrino and anti-neutrino into

an e± pair:

νe(1)+ e−(2)→ e−(3)+νe(4) (F.1)

The numbering scheme ensures the fourth particle is massless. We will use q’s to denote

the magnitude of three-momenta for massive particles, E’s to denote energies of massive

particles, and p’s to denote the energy/momentum magnitude for massless particles.

We start with the three-dimensional integral expression for the process in Eq.(H.1):

R1 ≡
1

16(2π)3

∞∫
me

dE2
q2

p1

1∫
−1

dx
M1(p1E2− p1q2x)√

p2
1 +q2

2 +2p1q2x

Emax∫
Emin

dE3F [p1,E2,E3, p1 +E2−E3].

(F.2)
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Eq.(F.36) uses the following defitnitions:

M1(ξ)≡ 32G2
F(1+2sin2

θW )2
(

ξ
2− 2sin2

θW

1+2sin2
θW

m2
eξ

)
(F.3)

Emin,max ≡
1
2

(
p1 +E2∓|~p1 +~q2|+

m2
e

p1 +E2∓|~p1 +~q2|

)
(F.4)

F [p1,E2,E3, p4]≡ (1− f1(p1))(1− f2(E2)) f3(E3) f4(p4)

− f1(p1) f2(E2)(1− f3(E3))(1− f4(p4)), (F.5)

where GF is the Fermi coupling constant, θW is the Weinberg angle, me is the electron

rest mass, and fi(Ei) is the occupation probability of species i at energy Ei.

We use the method of AV to write the third integral of Eq.(F.36) in terms of step

functions θ:

R1 =
1

16(2π)3

∞∫
me

dE2
q2

p1

1∫
−1

dx
M1(p1E2− p1q2x)√

p2
1 +q2

2 +2p1q2x

×
∞∫

me

dE3F [p1,E2,E3, p1 +E2−E3]θ(E3−Emin)θ(Emax−E3) (F.6)

=
1

16(2π)3

∞∫
m3

dE2
q2

p1

p1+E2∫
me

dE3F [p1,E2,E3, p1 +E2−E3]

×
1∫
−1

dx
M1(p1E2− p1q2x)√

p2
1 +q2

2 +2p1q2x
θ(E3−Emin)θ(Emax−E3). (F.7)

At this point, we will use a change of variables to simplify the integrand in the integral

over x:

y≡ |~p1 +~q2|=
√

p2
1 +q2

2 +2p1q2x (F.8)

=⇒ dx = dy
y

p1q2
(F.9)
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The argument in M1 changes to:

p1E2− p1q2x = p1E2−
1
2
(y2− p2

1−q2
2) (F.10)

=
1
2
(p2

1 +2p1E2 +q2
2)−

1
2

y2 (F.11)

=
1
2
[(p1 +E2)

2−m2
e ]−

1
2

y2 (F.12)

Eq.(F.7) becomes:

R1 =
1

16(2π)3

∞∫
me

dE2
q2

p1

p1+E2∫
me

dE3F [p1,E2,E3, p1 +E2−E3] (F.13)

×
p1+q2∫
|p1−q2|

ydy
p1q2

M1{1
2 [(p1 +E2)

2−m2
e ]− 1

2y2}
y

θ(E3−Emin)θ(Emax−E3)

(F.14)

=
1

16(2π)3

∞∫
me

dE2
1
p2

1

p1+E2∫
me

dE3F [p1,E2,E3, p1 +E2−E3] (F.15)

×
p1+q2∫
|p1−q2|

dyM1{
1
2
[(p1 +E2)

2−m2
e ]−

1
2

y2}θ(E3−Emin)θ(Emax−E3).

(F.16)

Let’s focus on the first θ function, θ(E3−Emin). The argument must be positive

to have a non-trivial integrand:

E3−Emin > 0 (F.17)

=⇒ E3−
1
2

(
p1 +E2− y+

m2
e

p1 +E2− y

)
> 0 (F.18)

=⇒ (2E3− p1−E2 + y)(p1 +E2− y)−m2
e > 0 (F.19)

=⇒ y2−2y(p1 +E2−E3)+(p1 +E2)
2−2E3(p1 +E2)+m2

e < 0 (F.20)
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We can solve for y if we set Eq.(G.54) equal to zero:

y = p1 +E2−E3±
1
2

√
4(p1 +E2−E3)2−4[(p1 +E2)2−2E3(p1 +E2)+m2

e ] (F.21)

= p1 +E2−E3±
√

E2
3 −m2

e (F.22)

= p1 +E2−E3±q3 (F.23)

Thus:

y < p1 +E2−E3 +q3 & y > p1 +E2−E3−q3. (F.24)

For the second θ function, we have:

Emax−E3 > 0 (F.25)

=⇒ 1
2

(
p1 +E2 + y+

m2
e

p1 +E2 + y

)
−E3 > 0 (F.26)

=⇒ (p1 +E2 + y−2E3)(p1 +E2 + y)+m2
e > 0 (F.27)

=⇒ y2 +2y(p1 +E2−E3)+(p1 +E2)
2−2E3(p1 +E2)+m2

e > 0 (F.28)

Solving for y by setting Eq.(G.61) to zero:

y < E3−q3− p1−E2 & y > E3 +q3− p1−E2. (F.29)

y≥ 0 so the first inequality of Eq.(G.62) is extraneous. Eq.(G.58) and Eq.(G.62) imply:

y < p1 +E2−E3 +q3 & y > |p1 +E2−E3−q3|. (F.30)
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The limits of Eq.(F.30) change Eq.(F.16) to:

R1 =
1

16(2π)3

∞∫
me

dE2
1
p2

1

p1+E2∫
me

dE3F [p1,E2,E3, p1 +E2−E3]

×
ymax∫

ymin

dyM1{
1
2
[(p1 +E2)

2−m2
e ]−

1
2

y2} (F.31)

where:

ymin = max(|p1−q2|, |p1 +E2−E3−q3|) (F.32)

ymax = min(p1 +q2, p1 +E2−E3 +q3). (F.33)

It will prove useful to consider two different cases for p1:

p1

me
<

1
2

(F.34)

p1

me
>

1
2

(F.35)

In addition, when writing R1, we will drop the integrands and overall multiplicative factor

for notational simplicity, yielding:

R1 =

∞∫
me

dE2

p1+E2∫
me

dE3

ymax∫
ymin

dy (F.36)
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F.1 Case 1: p1
me

< 1
2

Our goal is to determine the transition points on
∫

dE3 when the limits change

for
∫

dy. The expression for R1 is:

R(1)
1 =

E(3)
cut∫

me

dE2

p1+E2∫
me

dE3

ymax∫
b1

dy+
∞∫

E(3)
cut

dE2

p1+E2∫
me

dE3

ymax∫
b2

dy, (F.37)

where: 



b1 = max(p1−q2, |p1 +E2−E3−q3|)

b2 = max(q2− p1, |p1 +E2−E3−q3|)
. (F.38)

We begin by investigating the transition point for the top limit ymax:

p1 +q2 = p1 +E2−E3 +q3 (F.39)

=⇒ E3 = E2 (F.40)

=⇒ ymax =





p1 +E2−E3 +q3 if E3 < E2

p1 +q2 if E3 > E2

. (F.41)

For b1, we have the first possibility:

p1−q2 = p1 +E2−E3−q3 (F.42)

=⇒ E3 = E2 (F.43)
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and a second possibility:

p1−q2 = E3 +q3− p1−E2 (F.44)

=⇒ 2p1 +E2−q2−E3 = q3. (F.45)

For Eq.(F.45) to be valid, 2p1 +E2−q2 > me. If p1
me

< 1
2 , then:

2p1 +E2−q2 = me (F.46)

=⇒ 2p1 +E2−me = q2 (F.47)

=⇒ 4p2
1 +4p1(E2−me)+E2

2 −2E2me +m2
e = E2

2 −m2
e (F.48)

=⇒ 4p2
1−4p1me +2m2

e = E2(2me−4p1) (F.49)

=⇒ 4p2
1−4p1me +2m2

e

2me−4p1
= E2 (F.50)

=⇒ E(1)
cut ≡ me +

2p2
1

me−2p1
= E2 (F.51)

=⇒





2p1 +E2−q2 > me if E2 < E(1)
cut

2p1 +E2−q2 < me if E2 > E(1)
cut

. (F.52)

E(1)
cut provides a cut point on

∫
dE2. Comparing E(1)

cut to E(3)
cut :

E(1)
cut ∼ E(3)

cut (F.53)

=⇒ me +
2p2

1
me−2p1

∼
√

p2
1 +m2

e (F.54)

=⇒ m2
e +

2p2
1me

me−2p1
+

4p4
1

(me−2p1)2 ∼ p2
1 +m2

e (F.55)

=⇒ 2p2
1me(me−2p1)+4p4

1 ∼ p2
1(me−2p1)

2 (F.56)

=⇒ 4p2
1−4p1me +2m2

e ∼ 4p2
1−4p1me +m2

e . (F.57)
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Thus, E(1)
cut > E(3)

cut for p1
me

< 1
2 . For E2 < E(1)

cut , Eq.(F.45) gives:

2p1 +E2−q2−E3 =
√

E2
3 −m2

e (F.58)

=⇒ (2p1 +E2−q2)
2−2E3(2p1 +E2−q2)+E2

3 = E2
3 −m2

e (F.59)

=⇒ E(2)
trans ≡

1
2

(
2p1 +E2−q2 +

m2
e

2p1 +E2−q2

)
= E3 (F.60)

. We need to compare E(2)
trans to the other transition point, i.e. E3 = E2:

E(2)
trans ∼ E2 (F.61)

=⇒ 1
2

(
2p1 +E2−q2 +

m2
e

2p1 +E2−q2

)
∼ E2 (F.62)

=⇒ 2p1−q2 +
m2

e
2p1 +E2−q2

∼ E2 (F.63)

=⇒ (2p1−q2)(2p1 +E2−q2)+m2
e ∼ E2(2p1 +E2−q2) (F.64)

=⇒ 4p2
1 +2p1E2−4p1q2−E2q2 +q2

2 +m2
e ∼ 2p1E2 +E2

2 −E2q2 (F.65)

=⇒ 4p2
1−4p1q2 ∼ 0 (F.66)

=⇒ E(3)
cut ∼ E2 (F.67)

=⇒





E2 < E(2)
trans if E2 < E(3)

cut

E2 > E(2)
trans if E2 > E(3)

cut

(F.68)
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We also need to compare E(2)
trans to p1 +E2, the top limit of

∫
dE3:

E(2)
trans ∼ p1 +E2 (F.69)

=⇒ 1
2

(
2p1 +E2−q2 +

m2
e

2p1 +E2−q2

)
∼ p1 +E2 (F.70)

=⇒ −q2 +
m2

e
2p1 +E2−q2

∼ E2 (F.71)

=⇒ −q2(2p1 +E2−q2)+m2
e ∼ E2(2p1 +E2−q2) (F.72)

=⇒ −2p1q2−E2q2 +q2
2 +m2

e ∼ 2p1E2 +E2
2 −E2q2 (F.73)

=⇒ −2p1q2 ∼ 2p1E2. (F.74)

E(2)
trans < p1 +E2 in all cases. Therefore, for E2 < E(3)

cut :

b1 =





p1 +E2−E3−q3 me < E3 < E2

p1−q2 E2 < E3 < E(2)
trans

E3 +q3− p1−E2 E(2)
trans < E3

. (F.75)

We can write down the integral expression for R(1)
1 if we know the terminus of

∫
dE3. We

determine this point by equating the bottom and top limits of
∫

dy:

E3 +q3− p1−E2 = p1 +q2 (F.76)

=⇒ q3 = 2p1 +E2 +q2−E3 (F.77)

=⇒ E2
3 −m2

e = (2p1 +E2 +q2)
2−2E3(2p1 +E2 +q2)+E2

3 (F.78)

=⇒ E3 =
1
2

(
2p1 +E2 +q2 +

m2
e

2p1 +E2 +q2

)
≡ E(1)

lim (F.79)
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We need to compare E(1)
lim to p1 +E2:

E(1)
lim ∼ p1 +E2 (F.80)

=⇒ 1
2

(
2p1 +E2 +q2 +

m2
e

2p1 +E2 +q2

)
∼ p1 +E2 (F.81)

=⇒ q2 +
m2

e
2p1 +E2 +q2

∼ E2 (F.82)

=⇒ q2(2p1 +E2 +q2)+m2
e ∼ E2(2p1 +E2 +q2) (F.83)

=⇒ 2p1q2 +E2q2 +q2
2 +m2

e ∼ 2p1E2 +E2
2 +E2q2 (F.84)

=⇒ 2p1q2 ∼ 2p1E2 (F.85)

(F.86)

Thus, E(1)
lim < p1 +E2 always. At this point, the expression for R(1)

1 is:

R(1)
1 =

E(3)
cut∫

me

dE2




E2∫
me

dE3

p1+E2−E3+q3∫
p1+E2−E3−q3

dy+

E(2)
trans∫

E2

dE3

p1+E2−E3+q3∫
p1−q2

dy

+

E(1)
lim∫

E(2)
trans

dE3

p1+q2∫
E3+q3−p1−E2

dy




+

E(1)
cut∫

E(3)
cut

dE2

p1+E2∫
me

dE3

ymax∫
b2

dy

+

∞∫
E(1)

cut

dE2

p1+E2∫
me

dE3

ymax∫
b3

dy. (F.87)

where we have broken up the interval E2 > E(3)
cut into two intervals to anticipate when

Eq.(F.45) is no longer valid.
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To determine the transition point for b2, we start with:

q2− p1 = p1 +E2−E3−q3 (F.88)

=⇒ q3 = 2p1 +E2−q2−E3 (F.89)

Eq.(F.89) is identical to Eq.(F.45), implying:





p1 +E2−E3−q3 > q2− p1 if E3 < E(2)
trans

p1 +E2−E3−q3 < q2− p1 if E3 > E(2)
trans

(F.90)

The transition point E2 also holds, and E(2)
trans < E2 for b2. For E2 > E(1)

cut , there is no E(2)
trans.

We investigate where the initial starting value of
∫

dE2 is, by equating the bottom and

top limits of the first
∫

dy:

p1 +E2−E3 +q3 = q2− p1 (F.91)

=⇒ q3 = E3−2p1−E2 +q2 (F.92)

=⇒ E3 =
1
2

(
2p1 +E2−q2 +

m2
e

2p1 +E2−q2

)
≡ E(2)

lim (F.93)

We need to ensure that E(2)
lim is larger than me. To begin, we consider the derivative of

E(2)
lim with respect to E2:

∂E(2)
lim

∂E2
=

1
2

[
1− E2

q2
− m2

e
(2p1 +E2−q2)2

(
1− E2

q2

)]
= 0 (F.94)

=⇒ (2p1 +E2−q2)
2 = m2

e (F.95)

=⇒ 2p1 +E2−me = q2 (F.96)

=⇒ E(1)
cut = E2 (F.97)
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E(1)
cut is a local min. Calculating the momentum when E2 = E(1)

cut yields:

q2(E2 = E(1)
cut ) =

[(
me +

2p2
1

me−2p1

)
−m2

e

]1/2

(F.98)

=

[
m2

e +
4p2

1me

me−2p1
+

4p4
1

(me−2p1)2 −m2
e

]1/2

(F.99)

=
2p1

me−2p1

[
me(me−2p1)+ p2

1
]

(F.100)

=
2p1(me− p1)

me−2p1
(F.101)

which implies the difference between E2 and q2 when E2 = E(1)
cut is:

(E2−q2)(E2 = E(1)
cut ) = me +

2p2
1

me−2p1
− 2p1(me− p1)

me−2p1
(F.102)

=
me(me−2p1)+2p2

1−2p1(me− p1)

me−2p1
(F.103)

=
m2

e−4p1me +4p2
1

me−2p1
(F.104)

= me−2p1. (F.105)

Finally, the value of E(2)
lim when E2 = E(1)

cut is:

E(2)
lim (E2 = E(1)

cut ) =
1
2

(
2p1 +me−2p1 +

m2
e

2p1 +me−2p1

)
= me (F.106)



270

Therefore, E(2)
lim > me. We are left with the following equation for R(1)

1 :

R(1)
1 =

E(3)
cut∫

me

dE2




E2∫
me

dE3

p1+E2−E3+q3∫
p1+E2−E3−q3

dy

+

E(2)
trans∫

E2

dE3

p1+q2∫
p1−q2

dy+

E(1)
lim∫

E(2)
trans

dE3

p1+q2∫
E3+q3−p1−E2

dy




+

E(1)
cut∫

E(3)
cut

dE2




E(2)
trans∫

me

dE3

p1+E2−E3+q3∫
p1+E2−E3−q3

dy

+

E2∫
E(2)

trans

dE3

p1+E2−E3+q3∫
q2−p1

dy+

E(1)
lim∫

E2

dE3

p1+q2∫
E3+q3−p1−E2

dy




+

∞∫
E(1)

cut

dE2




E2∫
E(2)

lim

dE3

p1+E2−E3+q3∫
q2−p1

dy+

E(1)
lim∫

E2

dE3

p1+q2∫
E3+q3−p1−E2

dy


 . (F.107)

F.2 Case 2: p1
me

> 1
2

E(1)
cut is not relevant in this case because 2p1 +E2−q2 > me for all E2. Therefore,

E(2)
lim is not applicable and we can just change the limit on the second

∫
dE2 of Eq.(F.107)
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to find R(2)
1 :

R(2)
1 =

E(3)
cut∫

me

dE2




E2∫
me

dE3

p1+E2−E3+q3∫
p1+E2−E3−q3

dy

+

E(2)
trans∫

E2

dE3

p1+E2−E3+q3∫
p1−q2

dy+

E(1)
lim∫

E(2)
trans

dE3

p1+q2∫
E3+q3−p1−E2

dy




+

∞∫
E(3)

cut

dE2




E(2)
trans∫

me

dE3

p1+E2−E3+q3∫
p1+E2−E3−q3

dy (F.108)

+

E2∫
E(2)

trans

dE3

p1+E2−E3+q3∫
q2−p1

dy+

E(1)
lim∫

E2

dE3

p1+q2∫
E3+q3−p1−E2

dy


 . (F.109)



Appendix G

Second integral of elastic scattering

G.1 Determining triple integral involving M2(P1 ·Q3)

The reaction of interest is elastic scattering of electron neutrinos with electrons:

νe(1)+ e−(2)→ e−(3)+νe(4) (G.1)

The numbering scheme ensures the fourth particle is massless. We will use q’s to denote

the magnitude of three-momenta for massive particles, E’s to denote energies of massive

particles, and p’s to denote the energy/momentum magnitude for massless particles.

We use capital P and Q to denote four-momenta of massless and massive particles,

respectively. After using the three-dimensional delta function to reduce the
∫

d3 p4 and

the u substitution u = p4, CK finds:

R2 =
1

16(2π)4

∫ q2dq2d3q3

p1E2E3|~p1−~q3|
M2(P1 ·Q3)

b∫
a

duδ(p1+E2−E3−u)F(p1,E2,E3,u),

(G.2)

272



273

with limits of integration:

a = ||~p1−~q3|−q2| (G.3)

b = |~p1−~q3|+q2, (G.4)

summed-squared-matrix element:

M2(ξ)≡ 128G2
F sin4

θW

(
ξ

2 +
1+2sin2

θW

2sin2
θW

m2
eξ

)
, (G.5)

and occupation probability expression:

F(p1,E2,E3, p4)≡ (1− f1(p1))(1− f2(E2)) f3(E3) f4(p4)

− f1(p1) f2(E2)(1− f3(E3))(1− f4(p4)). (G.6)

GF is the Fermi coupling constant, θW is the Weinberg angle, me is the electron rest mass,

and fi(Ei) is the occupation probability of species i at energy Ei. Eq. (G.2) contains

two integrals over angles involving q3: trivial integration over azimuthal angle φ3; and

non-trivial integration over elevation angle θ3 in P1 ·Q3. Let us define θ3 as the angle

between ~p1 and~q3 expounding Eq.(G.2) as:

R2 =
1

16(2π)4

2π∫
0

dφ3

∞∫
0

dq3
q2

3
p1E3

π∫
0

sinθ3dθ3
M2(P1 ·Q3)

|~p1−~q3|

×
∞∫

0

q2dq2
1

E2

b∫
a

duδ(p1 +E2−E3−u)F(p1,E2,E3,u) (G.7)

≡ 1
16(2π)3

∞∫
me

dE3
q3

p1

1∫
−1

dx
M2(P1 ·Q3)

|~p1−~q3|

∞∫
me

dE2

b∫
a

duδ(p1 +E2−E3−u)F (G.8)
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where we made a change of variables using x ≡ cosθ3, converted the integrals over

momentum q2,q3 into integrals over energy E2,E3, and dropped the arguments of F for

convenience. We make a change of variables to simplify the integrand in the integral

over x:

y≡ |~p1−~q3|=
√

p2
1 +q2

3−2p1q3x (G.9)

=⇒ dx =−dy
y

p1q3
(G.10)

The argument in M2 changes to:

p1E3− p1q3x = p1E3−
1
2
(p2

1 +q2
3− y2) (G.11)

=
1
2

y2− 1
2
(p2

1−2p1E3 +q2
3) (G.12)

=
1
2

y2− 1
2
[(p1−E3)

2−m2
e ] (G.13)

This leaves us with the following expression for Eq.(G.8):

R2 =
1

16(2π)3

∞∫
me

dE3
q3

p1

|p1−q3|∫
p1+q3

(
− ydy

p1q3

)
M2
{1

2y2− 1
2 [(p1−E3)

2−m2
e ]
}

y

×
∞∫

me

dE2

b∫
a

duδ(p1 +E2−E3−u)F (G.14)

=
1

16(2π)3

∞∫
me

dE3
1
p2

1

p1+q3∫
|p1−q3|

dyM2

{
1
2

y2− 1
2
[(p1−E3)

2−m2
e ]

}

×
∞∫

me

dE2

b∫
a

duδ(p1 +E2−E3−u)F. (G.15)

(G.16)
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The integral over u is non-zero when

|y−q2|< p1 +E2−E3 < y+q2, (G.17)

for y≡ |~p1−~q3|.

First, consider the case that y > q2 =⇒ E2 <
√

y2 +m2
e . We have:

y−q2 < p1 +E2−E3 < y+q2 (G.18)

=⇒ −q2 < E2− (E3− p1 + y)< q2 (G.19)

=⇒ E2
2 −2E2(E3− p1 + y)+(E3− p1 + y)2 < q2

2 = E2
2 −m2

e (G.20)

=⇒ (E3− p1 + y)2 +m2
e < 2E2(E3− p1 + y) (G.21)

=⇒ E2 >
1
2

(
E3− p1 + y+

m2
e

E3− p1 + y

)
≡ Emin (G.22)

Observe that E3− p1+y>E3− p1+(p1−q3) =E3−q3 > 0. Therefore, E3− p1+y> 0.

Note two important points. Firstly, in this case, Emin < E2 <
√

y2 +m2
e . Secondly,

Emin > me. To see this, fix p1 and E3 and solve for y when Emin = me:

Emin = me (G.23)

=⇒ 1
2

(
E3− p1 + y+

m2
e

E3− p1 + y

)
= me (G.24)

=⇒ (E3− p1 + y)2−2me(E3− p1 + y)+m2
e = 0 (G.25)

=⇒ (E3− p1 + y−me)
2 = 0 (G.26)

=⇒ y = p1−E3 +me (G.27)

The above value y = p1−E3+m3 may or may not fall into the range of
∫

dy. Regardless,
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taking the derivative of Emin with respect to y yields:

∂Emin

∂y
=

1
2

(
1− m2

e
(E3− p1 + y)2

)
(G.28)

The derivative is equal to zero when y = p1−E3+me, less than zero when y < p1−E3+

me, and greater than zero when y > p1−E3 +me. Therefore, me is a global minimum of

Emin.

Second, consider the case y < q2 =⇒ E2 >
√

y2 +m2
e . We have:

q2− y < p1 +E2−E3 < y+q2 (G.29)

=⇒ −q2 < q2−2y < E2− (E3− p1 + y)< q2 (G.30)

=⇒ −q2 < E2− (E3− p1 + y)< q2 (G.31)

=⇒ E2 > Emin (G.32)

Also, consider the first inequality by itself:

q2− y < p1 +E2−E3 (G.33)

=⇒ q2 < E2− (E3− p1− y) (G.34)

=⇒ q2
2 = E2

2 −m2
e < E2

2 −2E2(E3− p1− y)+(E3− p1− y)2 (G.35)

=⇒ 2E2(E3− p1− y)< (E3− p1− y)2 +m2
e (G.36)

If E3− p1− y < 0, then there is no constraint on E2. If E3− p1− y > 0:

E2 <
1
2

(
E3− p1− y+

m2
e

E3− p1− y

)
≡ E (B)

max. (G.37)
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We will define Emax as the following:

Emax ≡





E (B)
max if E3− p1− y > 0

∞ if E3− p1− y < 0
(G.38)

The minimum limit on
∫

dE2 was Emin when E2 <
√

y2 +m2
e or E2 >

√
y2 +m2

e . There-

fore, the minimum limit on
∫

dE2 is always Emin. This leaves us with the following

expression for R2:

R2 =
1

16(2π)3

∞∫
me

dE3
1
p2

1

p1+q3∫
|p1−q3|

dyM2

{
1
2

y2− 1
2
[(p1−E3)

2−m2
e ]

} Emax∫
Emin

dE2 F (G.39)

There may be a case where Emin = E (B)
max:

1
2

(
E3− p1 + y+

m2
e

E3− p1 + y

)
=

1
2

(
E3− p1− y+

m2
e

E3− p1− y

)
(G.40)

=⇒ 2y = m2
e

(
1

E3− p1− y
− 1

E3− p1 + y

)
(G.41)

=⇒ 2y = m2
e

2y
(E3− p1)2− y2 (G.42)

Ignoring the y = 0 solution for the time being, we find:

y =
√
(E3− p1)2−m2

e (G.43)

For Emax = E (B)
max, y< E3− p1 which

√
(E3− p1)2−m2

e satsfies.
√

(E3− p1)2−m2
e must
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fall within the range in
∫

dy, i.e. |p1−q3|<
√

(E3− p1)2−m2
e . However:

√
(E3− p1)2−m2

e =
√

p2
1−2p1E3 +E2

3 −m2
e (G.44)

=
√

p2
1−2p1E3 +q2

3 (G.45)

<
√

p2
1−2p1q3 +q2

3 (G.46)

= |p1−q3| (G.47)

Therefore, y never assumes the value
√

(E3− p1)2−m2
e and E (B)

max > Emin for all y <

E3− p1. If y = 0, then E (B)
max = Emin. However, this can only happen when q3 = p1 so we

neglect it. Eq.(G.39) is a three-dimensional integral for R2. We will reduce R2 to two

dimensions by eliminating
∫

dy since F has no angular dependence.

G.2 Writing
∫

dE2 in terms of θ functions

We have two distinct
∫

dE2, which we can write in terms of θ functions:

E(B)
max∫

Emin

dE2 =

∞∫
me

dE2θ(E2−Emin)θ(E (B)
max−E2), (G.48)

∞∫
Emin

dE2 =

∞∫
me

dE2θ(E2−Emin). (G.49)

We define the θ function as:

θ(x) =





1 if x > 0

0 if x < 0.
(G.50)
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Let’s first consider θ(E2−Emin):

E2−Emin = E2−
1
2

(
E3− p1 + y+

m2
e

E3− p1 + y

)
> 0 (G.51)

=⇒ (2E2−E3 + p1− y)(E3− p1 + y)−m2
e > 0 (G.52)

=⇒ − y2 +2y(E2 + p1−E3)− (E3− p1)
2 +2E2(E3− p1)−m2

e > 0 (G.53)

=⇒ y2−2y(E2 + p1−E3)+(E3− p1)
2−2E2(E3− p1)+m2

e < 0 (G.54)

We can solve for y if we set Eq.(G.54) to zero:

y = p1 +E2−E3±
1
2

√
4[(E2− (E3− p1)]2−4[(E3− p1)2−2E2(E3− p1)+m2

e ]

(G.55)

= p1 +E2−E3±
√

E2
2 −m2

e (G.56)

= p1 +E2−E3±q2 (G.57)

For E2−Emin > 0:

y < p1−E3 +E2 +q2 & y > p1−E3 +E2−q2. (G.58)

The second θ function of Eq.(G.48) implies the following:

E (B)
max−E2 =

1
2

(
E3− p1− y+

m2
e

E3− p1− y

)
−E2 > 0 (G.59)

=⇒ (E3− p1− y−2E2)(E3− p1− y)+m2
e > 0 (G.60)

=⇒ y2−2y(E3− p1−E2)+(E3− p1)
2−2E2(E3− p1)+m2

e > 0 (G.61)
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Solving for y by setting Eq.(G.61) to zero:

y < E3− p1−E2−q2 & y > E3− p1−E2 +q2. (G.62)

y≥ 0 so the first inequality of Eq.(G.62) is extraneous.

We cannot move forward with the step functions because we do not have a specific

expression for Emax on
∫

dE2. We have two cases, and the qualifier depends on the value

y. We must determine the conditions when we assume a given value for Emax. Clearly,

there is a transition point when y = E3− p1. We want to know at what values of E3 does

E3− p1 equal the limits of
∫

dy. Consider the top limit:

E3− p1 = p1 +q3 (G.63)

=⇒ E3−2p1 = q3 (G.64)

For Eq.(G.64) to be meaningful, 2p1 < me =⇒ p1 < me
2 . Solving Eq.(G.64) for E3

yields:

E2
3 −4p1E3 +4p2

1 = E2
3 −m2

e (G.65)

=⇒ E(1)
cut ≡ p1 +

m2
e

4p1
= E3 (G.66)

Similarily, for the bottom limit:

E3− p1 = |p1−q3| (G.67)

=⇒ E3− p1 = p1−q3 (G.68)

=⇒ q3 = 2p1−E3 (G.69)

We do not consider the case |p1− q3| = q3− p1 as that never produces equality with
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E3− p1. For Eq.(G.69) to be meaningful, 2p1 > me =⇒ p1 >
me
2 . Solving Eq.(G.69)

for E3 yields the same quantity in Eq.(H.37): E3 = E(1)
cut . It will prove useful to consider

five different cases for p1:

p1

me
<

√
5−1
4

(G.70)
√

5−1
4

<
p1

me
<

1
2
√

2
(G.71)

1
2
√

2
<

p1

me
<

1
2

(G.72)

1
2
<

p1

me
<

3
4

(G.73)

3
4
<

p1

me
(G.74)

In addition, when writing R2, we will drop the integrands and overall multiplicative factor

for notational simplicity, yielding:

R2 =

∞∫
me

dE3

p1+q3∫
|p1−q3|

dy
Emax∫

Emin

dE2 (G.75)
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G.3 Finding limits of
∫

dy

G.3.1 Case 1: p1
me

<
√

5−1
4

We have a cut point at E3 = E(1)
cut :

R(1)
2 =

E(1)
cut∫

me

dE3

p1+q3∫
|p1−q3|

dy
Emax∫

Emin

dE2 +

∞∫
E(1)

cut

dE3

p1+q3∫
|p1−q3|

dy
Emax∫

Emin

dE2 (G.76)

=

E(1)
cut∫

me

dE3

p1+q3∫
|p1−q3|

dy

E(B)
max∫

Emin

dE2 +

∞∫
E(1)

cut

dE3




E3−p1∫
|p1−q3|

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




(G.77)

(G.78)

Let us define E(3)
cut as the cut point where p1 = q3, i.e.

E(3)
cut ≡

√
p2

1 +m2
e . (G.79)



283

Equality between E(1)
cut and E(3)

cut occurs when:

E(1)
cut = E(3)

cut (G.80)

=⇒ p1 +
m2

e
4p1

=
√

p2
1 +m2

e (G.81)

=⇒ 4p2
1 +m2

e = 4p1

√
p2

1 +m2
e (G.82)

=⇒ 16p4
1 +8p2

1m2
e +m4

e = 16p4
1 +16p2

1m2
e (G.83)

=⇒ m4
e = 8p2

1m2
e (G.84)

=⇒ me

2
√

2
= p1 (G.85)

=⇒





E(1)
cut > E(3)

cut if p1 <
me

2
√

2

E(1)
cut < E(3)

cut if p1 >
me

2
√

2

(G.86)

Eq.(G.77) becomes:

R(1)
2 =

E(3)
cut∫

me

dE3

p1+q3∫
p1−q3

dy

E(B)
max∫

Emin

dE2 +

E(1)
cut∫

E(3)
cut

dE3

p1+q3∫
q3−p1

dy

E(B)
max∫

Emin

dE2

+

∞∫
E(1)

cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2


 (G.87)

We will consider separately each of the four integrals of Eq.(G.120).
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First Integral

We have the following expression for the first integral of Eq.(G.120):

I1 ≡
E(3)

cut∫
me

dE3

p1+q3∫
p1−q3

dy

E(B)
max∫

Emin

dE2 (G.88)

=

E(3)
cut∫

me

dE3

p1+q3∫
p1−q3

dy
∞∫

me

dE2θ(E2−Emin)θ(E (B)
max−E2) (G.89)

=

E(3)
cut∫

me

dE3

∞∫
me

dE2

t1∫
b1

dy (G.90)

where:





t1 = min(p1 +q3, p1−E3 +E2 +q2)

b1 = max(p1−q3, p1−E3 +E2−q2,E3− p1−E2 +q2)

(G.91)

Before we continue with finding the transition points for t1 and b1, we need to make

a few observations. We will keep the integrals over energy, and not momentum. The

equations tend to be simpler if solving for E as compared to q. Also, we will solve for

E2 instead of E3, implying that
∫

dE2 is within
∫

dE3. There will be many cases when

the top limit of
∫

dE2 is unbounded.

The top limit goes through a transition point at E2 = E3,

t1 =





p1−E3 +E2 +q2 if E2 < E3

p1 +q3 if E2 > E3

(G.92)
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The bottom limit goes through one transition point at E2 = E3,

b1 =





p1−E3 +E2−q2 if E2 < E3

p1−q3 if E2 > E3

, (G.93)

and another transition point when p1−q3 = E3− p1−E2 +q2. This occurs when:

p1−q3 = E3− p1−E2 +q2 (G.94)

=⇒ 2p1−E3−q3 +E2 = q2 (G.95)

Eq.(H.112) is physically meaningful if −me < 2p1−E3−q3 < 0. The first inequality is

equivalent to:

q3 < 2p1 +me−E3 (G.96)

=⇒ E2
3 −m2

e < 4p2
1 +4p1me +m2

e−2E3(2p1 +me)+E2
3 (G.97)

=⇒ E3 <
4p2

1 +4p1me +2m2
e

2(2p1 +me)
(G.98)

=⇒ E3 < p1 +me
p1 +me

2p1 +me
≡ E(2)

cut (G.99)

Therefore, for Eq.(H.112) to be physically meaningful, E3 < E(2)
cut . p1 <

me
2 so the second

inequality holds. We investigate the possibility when the second inequality does not hold,

i.e. if p1 >
me
2 :

2p1−E3−q3 < 0 (G.100)

=⇒ 2p1−E3 < q3 (G.101)

=⇒ E(1)
cut < E3. (G.102)
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The expression for I1 is an integral over me < E3 < E(3)
cut . We can compare E(2)

cut to E(3)
cut to

see if Eq.(H.112) is physically meaningful:

E(3)
cut ∼ E(2)

cut (G.103)

=⇒
√

p2
1 +m2

e ∼ p1 +me
p1 +me

2p1 +me
(G.104)

=⇒ p2
1 +m2

e ∼ p2
1 +2p1me

p1 +me

2p1 +me
+m2

e
(p1 +me)

2

(2p1 +me)2 (G.105)

=⇒ m2
e(2p1 +me)

2 ∼ 2p1me(2p1 +me)(p1 +me)+m2
e(p1 +me)

2 (G.106)

=⇒ 4p2
1me +4p1m2

e +m3
e ∼ 4p3

1 +6p2
1me +2p1m2

e + p2
1me +2p1m2

e +m3
e (G.107)

=⇒ 0∼ 4p3
1 +3p2

1me (G.108)

Thus, E(3)
cut < E(2)

cut for all p1 > 0. Eq.(H.112) is indeed physically meaningful:

− (E3 +q3−2p1)+E2 = q2 (G.109)

=⇒ (E3 +q3−2p1)
2−2E2(E3 +q3−2p1)+E2

2 = E2
2 −m2

e (G.110)

=⇒ E(2)
trans ≡

1
2

(
E3 +q3−2p1 +

m2
e

E3 +q3−2p1

)
= E2 (G.111)
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We need to investigate when E3 = E(2)
trans:

E3 =
1
2

(
E3 +q3−2p1 +

m2
e

E3 +q3−2p1

)
(G.112)

=⇒ 2E3(E3 +q3−2p1) = (E3 +q3−2p1)
2 +m2

e (G.113)

=⇒ 2E2
3 +2E3q3−4p1E3 = E2

3 +2E3q3−4p1E3 +q2
3−4p1q3 +4p2

1 +m2
e (G.114)

=⇒ E2
3 = E2

3 −m2
e−4p1q3 +4p2

1 +m2
e (G.115)

=⇒ 4p1q3 = 4p2
1 (G.116)

=⇒ E3 = E(3)
cut (G.117)

=⇒





E3 < E(2)
trans if E3 < E(3)

cut

E3 > E(2)
trans if E3 > E(3)

cut

(G.118)

For the bottom limit:

b1 =





p1−E3 +E2−q2 if E2 < E3

p1−q3 if E3 < E2 < E(2)
trans

E3− p1−E2 +q2 if E2 > E(2)
trans

. (G.119)

We have the following expression for I1:

I1 =

E(3)
cut∫

me

dE3




E3∫
me

dE3

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE3

p1+q3∫
p1−q3

dy+
∞∫

E(2)
trans

dE3

p1+q3∫
E3−p1−E2+q2

dy


 .

(G.120)

However, Eq.(G.120) is incorrect as the limits on the last
∫

dy may be equal, implying
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that the last
∫

dE2 must have a finite upper bound:

E3− p1−E2 +q2 = p1 +q3 (G.121)

=⇒ q2 = E2 +2p1−E3 +q3 (G.122)

For Eq.(H.78) to be physically meaningful,−me < 2p1−E3+q3 < 0. The first inequality

is always true. The second inequality implies E3 < E(1)
cut and p1 < me

2 which are also

satisfied in this case. Solving Eq.(H.78) for E2:

E2
2 −m2

e = E2
2 −2E2(E3−q3−2p1)+(E3−q3−2p1)

2 (G.123)

=⇒ E2 =
1
2

(
E3−q3−2p1 +

m2
e

E3−q3−2p1

)
≡ E(1)

lim (G.124)

Finally, I1 becomes:

I1 =

E(3)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy


 .

(G.125)
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Here is a summary of the validity of the expressions used in Eq.(G.125):





E3 < E(2)
trans if E3 < E(3)

cut

E3 > E(2)
trans if E3 > E(3)

cut




if p1
me

< 1
2 and E3 < E(2)

cut =⇒ E(2)
trans defined

if p1
me

> 1
2 and E(1)

cut < E3 < E(2)
cut =⇒ E(2)

trans defined

if E3 > E(2)
cut =⇒ E(2)

trans not defined




if E3 < E(1)
cut and p1

me
< 1

2 =⇒ E(1)
lim defined

else =⇒ E(1)
lim not defined

E(3)
cut < E(2)

cut for all p1 > 0 (G.126)

Second Integral

We have the following expression for the second integral of Eq.(G.120):

I2 ≡
E(1)

cut∫
E(3)

cut

dE3

p1+q3∫
q3−p1

dy

E(B)
max∫

Emin

dE2 (G.127)

=

E(1)
cut∫

E(3)
cut

dE3

∞∫
me

dE2

t2∫
b2

dy (G.128)

where:





t1 = min(p1 +q3, p1−E3 +E2 +q2)

b1 = max(q3− p1, p1−E3 +E2−q2,E3− p1−E2 +q2)

. (G.129)
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Before we continue, we need to determine how E(1)
cut and E(2)

cut compare:

E(1)
cut ∼ E(2)

cut (G.130)

=⇒ p1 +
m2

e
4p1
∼ p1 +me

p1 +me

2p1 +me
(G.131)

=⇒ me(2p1 +me)∼ 4p1(p1 +me) (G.132)

=⇒ 0∼ 4p2
1 +2p1me−m2

e (G.133)

=⇒ me
±
√

5−1
4

∼ p1. (G.134)

The negative solution is extraneous, implying





E(2)
cut < E(1)

cut if p1
me

<
√

5−1
4

E(2)
cut > E(1)

cut if p1
me

>
√

5−1
4

. (G.135)

Hence, we write I2 as:

I2 =

E(2)
cut∫

E(3)
cut

dE3

∞∫
me

dE2

t2∫
b2

dy+

E(1)
cut∫

E(2)
cut

dE3

∞∫
me

dE2

t2∫
b2

dy. (G.136)

The top limit goes through a transition point at E2 = E3. The bottom limit goes

through one transition point at E2 = E3. For the integral of E(3)
cut < E3 < E(2)

cut , the bottom

limit goes through a transition point at E2 = E(2)
trans < E3. For the integral of E(2)

cut < E3 <

E(1)
cut , E(2)

trans is not defined. However, notice how the top limit (p1−E3 +E2 + q2) and

bottom limit (q3− p1) compare:

p1−E3 +E2 +q2 ∼ q3− p1 (G.137)

=⇒ q2 ∼−E2 +E3 +q3−2p1. (G.138)
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For Eq.(H.144) to be physically meaningful, E3 +q3−2p1 > me =⇒ E3 > E(2)
cut , which

is the case for this integral. Solving for E2 in Eq.(H.144):

q2 ∼−E2 +E3 +q3−2p1 (G.139)

=⇒ E2 ∼
1
2

(
E3 +q3−2p1 +

m2
e

E3 +q3−2p1

)
≡ E(2)

lim (G.140)

=⇒





p1−E3 +E2 +q2 < q3− p1 if E2 < E(2)
lim

p1−E3 +E2 +q2 > q3− p1 if E2 > E(2)
lim

. (G.141)

Note that E(2)
lim has the same form as E(2)

trans. However, the expressions are derived from

different equations under different conditions. We are left with the following expression

for I2:

I2 =

E(2)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(1)
cut∫

E(2)
cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 (G.142)

Here is another summary of the validity of the expressions used in Eq.(G.125):





if E3 < E(2)
cut =⇒ E(2)

trans defined

if E3 > E(2)
cut =⇒ E(2)

lim defined
(G.143)
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Third Integral

We have the following expression for the third integral of Eq.(G.120):

I3 ≡
∞∫

E(1)
cut

dE3

E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 (G.144)

=

∞∫
E(1)

cut

dE3

∞∫
me

dE2

t3∫
b3

dy (G.145)

where:





t3 = min(E3− p1, p1−E3 +E2 +q2)

b3 = max(q3− p1, p1−E3 +E2−q2,E3− p1−E2 +q2)

(G.146)

The bottom limit has a transition point at E2 = E3 and a limit point at E2 = E(2)
lim . For the

top limit:

E3− p1 = p1−E3 +E2 +q2 (G.147)

=⇒ 2(E3− p1)−E2 = q2 (G.148)

For Eq.(G.148) to be physically meaningful:

2(E3− p1)> me (G.149)

=⇒ E3 > p1 +
me

2
≡ E(4)

cut (G.150)
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Clearly, for p1 <
me
2 the above inequality is satisfied. Solving Eq.(G.148) for E2:

2(E3− p1)−E2 = q2 (G.151)

=⇒ 4(E3− p1)
2−4E2(E3− p1)+E2

2 = E2
2 −m2

e (G.152)

=⇒ E(3)
trans ≡ E3− p1 +

m2
e

4(E3− p1)
= E2 (G.153)

We observe how E3 and E(3)
trans compare to one another:

E3 ∼ E(3)
trans (G.154)

=⇒ E3 ∼ E3− p1 +
m2

e
4(E3− p1)

(G.155)

=⇒ 4(E3− p1)p1 ∼ m2
e (G.156)

=⇒ E3 ∼ p1 +
m2

e
4p1

= E(1)
cut (G.157)

Thus, if E3 > E(1)
cut , then E3 > E(3)

trans. We now have an expression for I3:

I3 =

∞∫
E(1)

cut

dE3




E(3)
trans∫

E(2)
lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E3∫
E(3)

trans

dE2

E3−p1∫
q3−p1

dy+
∞∫

E3

dE2

E3−p1∫
E3−p1−E2+q2

dy


 .

(G.158)

We need to determine how E(1)
cut and E(4)

cut compare for general p1:

E(1)
cut ∼ E(4)

cut (G.159)

=⇒ p1 +
m2

e
4p1
∼ p1 +

me

2
(G.160)

=⇒ me

2
∼ p1 (G.161)
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Also, we compare E(4)
cut with E(3)

cut :

E(4)
cut ∼ E(3)

cut (G.162)

=⇒ p1 +
me

2
∼
√

p2
1 +m2

e (G.163)

=⇒ p2
1 + p1me +

m2
e

4
∼ p2

1 +m2
e (G.164)

=⇒ p1 ∼ me
3
4
, (G.165)

(G.166)

and E(4)
cut with E(2)

cut :

E(4)
cut ∼ E(2)

cut (G.167)

=⇒ p1 +
me

2
∼ p1 +me

p1 +me

2p1 +me
(G.168)

=⇒ 2p1 +me ∼ 2(p1 +me). (G.169)

The cut hierarchy is:

E(4)
cut < E(3)

cut < E(2)
cut < E(1)

cut if
p1

me
<

√
5−1
4

(G.170)

E(4)
cut < E(3)

cut < E(1)
cut < E(2)

cut if

√
5−1
4

<
p1

me
<

1
2
√

2
(G.171)

E(4)
cut < E(1)

cut < E(3)
cut < E(2)

cut if
1

2
√

2
<

p1

me
<

1
2

(G.172)

E(1)
cut < E(4)

cut < E(3)
cut < E(2)

cut if
1
2
<

p1

me
<

3
4

(G.173)

E(1)
cut < E(3)

cut < E(4)
cut < E(2)

cut if
3
4
<

p1

me
(G.174)
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Fourth Integral

We have the following expression for the fourth integral of Eq.(G.120):

I4 ≡
∞∫

E(1)
cut

dE3

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2 (G.175)

=

∞∫
E(1)

cut

dE3

∞∫
me

dE2

t4∫
b4

dy (G.176)

where: 



t4 = min(p1 +q3, p1−E3 +E2 +q2)

b4 = max(E3− p1, p1−E3 +E2−q2)

(G.177)

The transition point for the top limit is E2 = E3. For the bottom limit:

E3− p1 ∼ p1−E3 +E2−q2 (G.178)

=⇒ q2 ∼ E2 +2(p1−E3) (G.179)

For Eq.(G.179) to be physically meaningful,−me < 2(p1−E3) =⇒ E3 < p1+
me
2 =E(4)

cut

which does not hold. There is no transition point for the bottom limit. Observe the

comparison between the bottom and top limits:

E3− p1 ∼ p1−E3 +E2 +q2 (G.180)

=⇒ 2(E3− p1)−E2 ∼ q2 (G.181)

=⇒ E(3)
lim ≡ E3− p1 +

m2
e

4(E3− p1)
= E2 (G.182)

Note that E(3)
lim is derived from the same equation Eq.(G.151) as E(3)

trans. However, we give

it a different label as it is used in a limiting context instead of a transition context.
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I4 becomes:

I4 =

∞∫
E(1)

cut

dE3




E3∫
E(3)

lim

dE2

p1−E3+E2+q2∫
E3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1

dy


 (G.183)

Here is another summary of the validity of E(3)
trans and E(3)

lim :





if E2 < E(3)
trans =⇒ p1−E3 +E2 +q2 < E3− p1

if E2 > E(3)
trans =⇒ p1−E3 +E2 +q2 > E3− p1

if E3 > E(4)
cut =⇒ p1−E3 +E2−q2 < E3− p1 =⇒ E(3)

lim defined

.
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Combined expression for R2 in case 1

The combined expression for R2 = I1 + I2 + I3 + I4 is:

R(1)
2 =

E(3)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(1)
cut∫

E(2)
cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(1)

cut

dE3




E(3)
trans∫

E(2)
lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E3∫
E(3)

trans

dE2

E3−p1∫
q3−p1

dy+
∞∫

E3

dE2

E3−p1∫
E3−p1−E2+q2

dy

+

E3∫
E(3)

lim

dE2

p1−E3+E2+q2∫
E3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1

dy


 . (G.184)
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We can use the fact that E(3)
trans = E(3)

lim to combine the expressions within
∫

dE3 for

E3 > E(1)
cut :

R(1)
2 =

E(3)
cut∫

me

dE3




E3∫
me

dE3

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE3

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE3

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(1)
cut∫

E(2)
cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(1)

cut

dE3




E(3)
trans∫

E(2)
lim

dE2

p1−E3+E2+q2∫
q3−p1

dy

+

E3∫
E(3)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 , (G.185)
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yielding:

R(1)
2 =

E(3)
cut∫

me

dE3




E3∫
me

dE3

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE3

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE3

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(1)
cut∫

E(2)
cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(1)

cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 . (G.186)
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Here is a summary of the validity of the quantities in Eq.(G.186):





E3 < E(2)
trans if E3 < E(3)

cut

E3 > E(2)
trans if E3 > E(3)

cut




if p1
me

< 1
2 and E3 < E(2)

cut =⇒ E(2)
trans defined

if p1
me

> 1
2 and E(1)

cut < E3 < E(2)
cut =⇒ E(2)

trans defined

if E3 > E(2)
cut =⇒ E(2)

trans not defined




E3 < E(1)
cut =⇒ E(3)

trans not applicable

E3 > E(1)
cut =⇒ E(3)

trans applicable

E3 < E(4)
cut =⇒ E(3)

trans not defined

E(3)
trans < E3





if E2 < E(3)
trans =⇒ p1−E3 +E2 +q2 < E3− p1

if E2 > E(3)
trans =⇒ p1−E3 +E2 +q2 > E3− p1

if E3 > E(4)
cut =⇒ p1−E3 +E2−q2 < E3− p1 =⇒ E(3)

lim defined




if E3 < E(1)
cut and p1

me
< 1

2 =⇒ E(1)
lim defined

else =⇒ E(1)
lim not defined





E(3)
cut < E(2)

cut

E(4)
cut < E(2)

cut

(G.187)
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G.3.2 Case 2:
√

5−1
4 < p1

me
< 1

2
√

2

The cut hierarchy is:

E(4)
cut < E(3)

cut < E(1)
cut < E(2)

cut (G.188)

which gives us the following for R2:

R(2)
2 =

E(3)
cut∫

me

dE3

p1+q3∫
p1−q3

dy

E(B)
max∫

Emin

dE2 +

E(1)
cut∫

E(3)
cut

dE3

p1+q3∫
q3−p1

dy

E(B)
max∫

Emin

dE2

+

E(2)
cut∫

E(1)
cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2


 (G.189)

+

∞∫
E(2)

cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2


 (G.190)

We will consider separately each of the six integrals of Eq.(G.190).

First and Second Integrals

These integrals are similar to those of Case 1.

I1 ≡
E(3)

cut∫
me

dE3

p1+q3∫
p1−q3

dy

E(B)
max∫

Emin

dE2 (G.191)

=

E(3)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




(G.192)
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I2 ≡
E(1)

cut∫
E(3)

cut

dE3

p1+q3∫
q3−p1

dy

E(B)
max∫

Emin

dE2 (G.193)

=

E(1)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 . (G.194)

Third Integral

The expression for I3 is:

I3 ≡
E(2)

cut∫
E(1)

cut

dE3

E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 (G.195)

=

E(2)
cut∫

E(1)
cut

dE3

∞∫
me

dE2

t3∫
b3

dy (G.196)

The transition points on
∫

dE2 are E3,E
(2)
trans and E(3)

trans. E(3)
trans < E3, and in this integral,

E(2)
trans < E3. We need to compare E(2)

trans and E(3)
trans:

E(3)
trans ∼ E(2)

trans (G.197)

=⇒ E(3)
trans−E(2)

trans ∼ 0 (G.198)

=⇒ 0∼ m4
e +4p1m2

e(E3− p1)−16p1(E3− p1)
3 (G.199)

=⇒ E3 ∼ E? (G.200)
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We will not use the quantity E? in our analysis. Instead, we use a Boole’s rule integration

and change the limits as a function of E3:

I3 =

E(2)
cut∫

E(1)
cut

dE3




E(1)
sort∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
sort∫

E(1)
sort

dE2

tsort∫
bsort

dy

+

E3∫
E(2)

sort

dE2

E3−p1∫
q3−p1

dy+
∞∫

E3

dE2

E3−p1∫
E3−p1−E2+q2

dy


 (G.201)

where:

E(1)
sort = min(E(2)

trans,E
(3)
trans) (G.202)

E(2)
sort = max(E(2)

trans,E
(3)
trans) (G.203)

bsort =





p1−E3 +E2−q2 if E(1)
sort = E(3)

trans

q3− p1 if E(1)
sort = E(2)

trans

(G.204)

tsort =





E3− p1 if E(1)
sort = E(3)

trans

p1−E3 +E2 +q2 if E(1)
sort = E(2)

trans

(G.205)

Fourth Integral

The expression for I4 is:

I4 ≡
E(2)

cut∫
E(1)

cut

dE3

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2 (G.206)

=

E(2)
cut∫

E(1)
cut

dE3

∞∫
me

dE2

t4∫
b4

dy (G.207)
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This integral is similar to the fourth integral of Case 1:

I4 =

E(2)
cut∫

E(1)
cut

dE3




E3∫
E(3)

lim

dE2

p1−E3+E2+q2∫
E3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1

dy


 (G.208)

Fifth Integral

The expression for I5 is:

I5 ≡
∞∫

E(2)
cut

dE3

E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 (G.209)

=

∞∫
E(2)

cut

dE3

∞∫
me

dE2

t5∫
b5

dy. (G.210)

This integral is similar to the third integral of Case 1:

I5 =

∞∫
E(2)

cut

dE3




E(3)
trans∫

E(2)
lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E3∫
E(3)

trans

dE2

E3−p1∫
q3−p1

dy+
∞∫

E3

dE2

E3−p1∫
E3−p1−E2+q2

dy


 .

(G.211)

Sixth Integral

The expression for I6 is:

I6 ≡
∞∫

E(2)
cut

dE3

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2 (G.212)

=

∞∫
E(2)

cut

dE3

∞∫
me

dE2

t6∫
b6

dy. (G.213)
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This integral is identical to the fourth integral except for a change in the limits of
∫

dE3:

I6 =

∞∫
E(2)

cut

dE3




E3∫
E(3)

lim

dE2

p1−E3+E2+q2∫
E3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1

dy


 (G.214)

Combined expression for R2 in case 2

The combined expression for R2 = I1 + I2 +(I3 + I4)+(I5 + I6) is:

R(2)
2 =

E(3)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(1)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(1)
cut

dE3




E(1)
sort∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
sort∫

E(1)
sort

dE2

tsort∫
bsort

dy+

E3∫
E(2)

sort

dE2

E3−p1∫
q3−p1

dy

+

∞∫
E3

dE2

E3−p1∫
E3−p1−E2+q2

dy+

E3∫
E(3)

lim

dE2

p1−E3+E2+q2∫
E3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1

dy




+

∞∫
E(2)

cut

dE3




E(3)
trans∫

E(2)
lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E3∫
E(3)

trans

dE2

E3−p1∫
q3−p1

dy+
∞∫

E3

dE2

E3−p1∫
E3−p1−E2+q2

dy

+

E3∫
E(3)

lim

dE2

p1−E3+E2+q2∫
E3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1

dy



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Combining the integrals on
∫

dE3 for E3 > E(2)
cut is equivalent to case 1. For E(1)

cut < E3 <

E(2)
cut , we need to change the top limit of tsort to p1−E3 +E2 +q2:

R(2)
2 =

E(3)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(1)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(1)
cut

dE3




E(1)
sort∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
sort∫

E(1)
sort

dE2

p1−E3+E2+q2∫
bsort

dy

+

E3∫
E(2)

sort

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(2)

cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 . (G.215)
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Furthermore, Eq.(G.215) eliminates the need for E(3)
trans, thereby eliminating the E(1)

sort, E(2)
sort,

and bsort notation:

R(2)
2 =

E(3)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(1)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+

E(1)
lim∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(1)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(2)

cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 (G.216)

Therefore, there is no need for Boole’s rule on
∫

dE3 for E(1)
cut < E3 < E(2)

cut .

G.3.3 Case 3: 1
2
√

2
< p1

me
< 1

2

The cut hierarchy is:

E(4)
cut < E(1)

cut < E(3)
cut < E(2)

cut (G.217)
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which gives us the following for R2:

R(3)
2 =

E(1)
cut∫

me

dE3

p1+q3∫
p1−q3

dy

E(B)
max∫

Emin

dE2

+

E(3)
cut∫

E(1)
cut

dE3




E3−p1∫
p1−q3

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




+

E(2)
cut∫

E(3)
cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




+

∞∫
E(2)

cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2


 . (G.218)

The first, third, fourth, fifth, sixth, and seventh integrals are similar to what has been

done in the previous two cases. The second integral is similar to the fourth and sixth

integrals, except that the bottom limit on
∫

dy is p1−q3. In this case, E(2)
trans is defined and

E(3)
trans < E3 < E(2)

trans, so there is no need for E? on the second integral. After combining
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integrals with E3− p1 in the top and bottom limits, the expression for R2 is:

R(3)
2 =

E(1)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+

E(1)
lim∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(3)
cut∫

E(1)
cut

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(2)

cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 (G.219)

G.3.4 Case 4: 1
2 < p1

me
< 3

4

The cut hierarchy is:

E(1)
cut < E(4)

cut < E(3)
cut < E(2)

cut (G.220)
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which gives us the following for R2:

R(4)
2 =

E(1)
cut∫

me

dE3

p1+q3∫
p1−q3

dy

E(B)
max∫

Emin

dE2

+

E(4)
cut∫

E(1)
cut

dE3




E3−p1∫
p1−q3

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




+

E(3)
cut∫

E(4)
cut

dE3




E3−p1∫
p1−q3

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




+

E(2)
cut∫

E(3)
cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




+

∞∫
E(2)

cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2


 (G.221)

Eq.(G.221) is identical to case 3, except for two issues: (1)the integral for me < E3 < E(1)
cut

neither contains the expressions for E(2)
trans nor E(1)

lim ; (2)there is a subcase where E(4)
cut <

E3 < E(3)
cut . For the second issue, Eq.(G.148) is not physically meaningful (implying no

transition point for the top limit of
∫

dE2 involving E3− p1), and Eq.(G.179) is physically

meaningful (implying a limit point for the bottom limit, i.e. E(3)
lim ). The implications are:





E3− p1 < p1−E3 +E2−q2 for E2 < E(3)
lim

E3− p1 > p1−E3 +E2−q2 for E2 > E(3)
lim

E3− p1 < p1−E3 +E2 +q2 for all E(4)
cut < E3 < E(3)

cut

. (G.222)
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We have the following expression for Eq.(G.221):

R(4)
2 =

E(1)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+
∞∫

E3

dE2

p1+q3∫
p1−q3

dy




+

E(4)
cut∫

E(1)
cut

dE3




E3∫
E(3)

lim

dE2

E3−p1∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

E3−p1∫
p1−q3

dy

+

∞∫
E(2)

trans

dE2

E3−p1∫
E3−p1−E2+q2

dy+

E(3)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(3)

trans

dE2

p1−E3+E2+q2∫
E3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1

dy




+

E(3)
cut∫

E(4)
cut

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(2)

cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 . (G.223)
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Eq.(G.223) simplifies to:

R(4)
2 =

E(1)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+
∞∫

E3

dE2

p1+q3∫
p1−q3

dy




+

E(4)
cut∫

E(1)
cut

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(3)
cut∫

E(4)
cut

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(2)

cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 (G.224)
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The arguments are identical for
∫

dE3 for E(1)
cut < E3 < E(4)

cut and E(4)
cut < E3 < E(3)

cut so we

can combine them into the final expression for R(4)
2 :

=

E(1)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+
∞∫

E3

dE2

p1+q3∫
p1−q3

dy




+

E(3)
cut∫

E(1)
cut

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(2)
cut∫

E(3)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(2)

cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 (G.225)

G.3.5 Case 5: 3
4 < p1

me

The cut hierarchy is:

E(1)
cut < E(3)

cut < E(4)
cut < E(2)

cut (G.226)
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which gives us the following for R2:

R(5)
2 =

E(1)
cut∫

me

dE3

p1+q3∫
p1−q3

dy

E(B)
max∫

Emin

dE2 (G.227)

+

E(3)
cut∫

E(1)
cut

dE3




E3−p1∫
p1−q3

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




+

E(4)
cut∫

E(3)
cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




+

E(2)
cut∫

E(4)
cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2




+

∞∫
E(2)

cut

dE3




E3−p1∫
q3−p1

dy

E(B)
max∫

Emin

dE2 +

p1+q3∫
E3−p1

dy
∞∫

Emin

dE2


 (G.228)
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We have the following expression for Eq.(G.228):

R(5)
2 =

E(1)
cut∫

me

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy+
∞∫

E3

dE2

p1+q3∫
p1−q3

dy




+

E(3)
cut∫

E(1)
cut

dE3




E3∫
me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E(2)
trans∫

E3

dE2

p1+q3∫
p1−q3

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

E(4)
cut∫

E(3)
cut

dE3




E(2)
trans∫

E(3)
lim

dE2

E3−p1∫
p1−E3+E2−q2

dy+

E3∫
E(2)

trans

dE2

E3−p1∫
q3−p1

dy

+

∞∫
E3

dE2

E3−p1∫
E3−p1−E2+q2

dy+

E(3)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(3)

trans

dE2

p1−E3+E2+q2∫
E3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1

dy




+

E(2)
cut∫

E(4)
cut

dE3




E(2)
trans∫

me

dE2

p1−E3+E2+q2∫
p1−E3+E2−q2

dy

+

E3∫
E(2)

trans

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy




+

∞∫
E(2)

cut

dE3




E3∫
E(2)

lim

dE2

p1−E3+E2+q2∫
q3−p1

dy+
∞∫

E3

dE2

p1+q3∫
E3−p1−E2+q2

dy


 (G.229)
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There exists potential danger that E(1)
sort and E(2)

sort would need to be used in concert with∫
dE3 for E(3)

cut < E3 < E(4)
cut . However, substituting E3 = E(4)

cut into Eq.(G.199), we see

that E? > E(4)
cut . Therefore, we can combine the integrals for

∫
dE3 with E(3)

cut < E3 < E(4)
cut

and we obtain R(5)
2 = R(4)

2 , eliminating the need for case 5.

G.4 Summary

Cases 4 and 5 are identical to case 3. There is no need for Boole’s rule on any∫
dE3. The quantities E(4)

cut , E(3)
trans, and E(3)

lim are superfluous. Here is a new summary of

the validity of the quantities in Eq.(G.219):





E3 < E(2)
trans if E3 < E(3)

cut

E3 > E(2)
trans if E3 > E(3)

cut




if p1
me

< 1
2 and E3 < E(2)

cut =⇒ E(2)
trans defined

if p1
me

> 1
2 and E(1)

cut < E3 < E(2)
cut =⇒ E(2)

trans defined

if E3 > E(2)
cut =⇒ E(2)

trans not defined




if E3 < E(1)
cut and p1

me
< 1

2 =⇒ E(1)
lim defined

else =⇒ E(1)
lim not defined

E(3)
cut < E(2)

cut (G.230)

(G.231)



Appendix H

Charged lepton annihilation into

neutrinos

The reaction of interest is annihilation of a neutrino and anti-neutrino into an e±

pair:

ν(1)+ ν̄(4)→ e−(3)+ e+(2) (H.1)

The numbering scheme ensures the fourth particle is massless. We will use q’s to denote

the magnitude of three-momenta for massive particles, E’s to denote energies of massive

particles, and p’s to denote the energy/momentum magnitude for massless particles. Four

vectors are denoted P and Q for massless and massive particles, respectively. Energy

conservation states p1 + p4 = E2 +E3.
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H.1 Electron neutrinos

We start with the summed-squared-matrix element for the reaction in Eq.(H.1)

for the case of electron neutrinos:

〈|M |2〉= 32G2
F(1+2sin2

θw)
2
[
(P1 ·Q2)

2 +
2sin2

θw

1+2sin2
θw

m2
e(P1 ·Q2)

]

+128G2
F sin4

θw

[
(P1 ·Q3)

2 +
1+2sin2

θw

2sin2
θw

m2
e(P1 ·Q3)

]
(H.2)

≡ L1(P1 ·Q2)+L2(P1 ·Q3), (H.3)

where GF is the Fermi coupling constant, θw is the Weinberg angle, and me is the electron

mass. We begin by focusing on L1.

H.2 L1(P1 ·Q2)

We define R1 to be the collision term in the Boltzmann equation:

R1 =
1

16(2π)5

∫ d3q2 d3q3 d3 p4

p1E2E3 p4
L1(P1 ·Q2)δ

4(P1 +P4−Q2−Q3)F(p1, p4,E2,E3),

(H.4)

where:

F(p1, p4,E2,E3) = f2(E2) f3(E3)(1− f1(p1))(1− f4(p4))

− f1(p1) f4(p4)(1− f2(E2))(1− f3(E3)), (H.5)
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and fi(Ei) is the occupation probability for species i at energy Ei. We use the three-

dimensional delta function to eliminate the integral over p4:

R1 =
1

16(2π)5

∫ d3q2 d3q3

p1E2E3 p4

×L1(P1 ·Q2)δ(p1 + p4−E2−E3)F(p1, p4,E2,E3)

∣∣∣∣
p4=|~q2+~q3−~p1|

.

(H.6)

We will write |~q2 +~q3−~p1|= |~p1−~q2−~q3| so that the + sign is on ~p1. To use the last

delta function, we will use a u-substitution to eliminate the
∫

dθ3. We set:

u2 = p2
4 (H.7)

= |~p1−~q2−~q3|2 (H.8)

= |~p1−~q2|2 +q2
3−2|~p1−~q2|q3 cosθ3, (H.9)

where θ3 is defined to be the angle between ~p1−~q2 and~q3. We have:

2udu = 2p4du =−2|~p1−~q2|q3(−sinθ3)dθ3 (H.10)

=⇒ sinθ3 dθ3 =
p4du

|~p1−~q2|q3
(H.11)



320

The expression for Eq.(H.6) becomes:

R1 =
1

16(2π)5

∫ d3q2 d3q3

p1E2E3 p4
L1(P1 ·Q2)δ(p1 + p4−E2−E3)F(p1, p4,E2,E3) (H.12)

=
1

16(2π)5

∫ d3q2

p1E2
L1(P1 ·Q2)

×
2π∫

0

dφ3

∞∫
0

dq3
q2

3
E3

π∫
0

sinθ3dθ3
1
p4

δ(p1 + p4−E2−E3)F(p1, p4,E2,E3) (H.13)

=
1

16(2π)5

∫ d3q2

p1E2
L1(P1 ·Q2)

× (2π)

∞∫
me

dE3 q3

u(θ3=π)∫
u(θ3=0)

p4du
|~p1−~q2|q3

1
p4

δ(p1 + p4−E2−E3)F(p1, p4,E2,E3)

(H.14)

=
1

16(2π)4

∫ d3q2

p1E2

L1(P1 ·Q2)

|~p1−~q2|

∞∫
me

dE3

b∫
a

duδ(p1 +u−E2−E3)F(p1,u,E2,E3),

(H.15)

where:

a = u(θ3 = 0) = ||~p1−~q2|−q3| (H.16)

b = u(θ3 = π) = |~p1−~q2|+q3. (H.17)

We reduce
∫

d3q2 to simplify Eq.(H.15):

R1 =
1

16(2π)4

2π∫
0

dφ2

∞∫
0

dq2
q2

2
p1E2

π∫
0

sinθ2 dθ2
L1(P1 ·Q2)

|~p1−~q2|

×
∞∫

me

dE3

b∫
a

duδ(p1 +u−E2−E3)F(p1,u,E2,E3). (H.18)
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We define the angle θ2 as the angle between ~p1 and~q2. We make a change of variables

to simplify the integrand in the integral over θ2:

y≡ |~p1−~q2|=
√

p2
1 +q2

2−2p1q2 cosθ2 (H.19)

=⇒ sinθ2 dθ2 = dy
y

p1q2
(H.20)

The argument in L1 changes to:

P1 ·Q2 = p1E2− p1q2 cosθ2 (H.21)

= p1E2−
1
2
(p2

1 +q2
2− y2) (H.22)

=
1
2

y2− 1
2
(p2

1−2p1E2 +q2
2) (H.23)

=
1
2

y2− 1
2
[(p1−E2)

2−m2
e ] (H.24)

Eq.(H.18) becomes:

R1 =
1

16(2π)4

2π∫
0

dφ2

∞∫
0

dq2
q2

2
p1E2

p1+q2∫
|p1−q2|

dy
y

p1q2

L1{1
2y2− 1

2 [(p1−E2)
2−m2

e ]}
y

×
∞∫

me

dE3

b∫
a

duδ(p1 +u−E2−E3)F(p1,u,E2,E3) (H.25)

=
1

16(2π)4 (2π)

∞∫
me

dE2
1
p2

1

p1+q2∫
|p1−q2|

dyL1

∞∫
me

dE3

b∫
a

duδ(p1 +u−E2−E3)F (H.26)

=
1

16(2π)3

∞∫
me

dE2
1
p2

1

p1+q2∫
|p1−q2|

dyL1

∞∫
me

dE3

b∫
a

duδ(p1 +u−E2−E3)F (H.27)
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where we have dropped the arguments for L1 and F for notational simplicity. It will

prove useful to consider the different cases for p1:

p1

me
<

1
2

(H.28)

1
2
<

p1

me
<

1+
√

5
4

(H.29)

1+
√

5
4

<
p1

me
<1 (H.30)

1 <
p1

me
(H.31)

In addition, when writing R1, we will drop the integrands and overall multiplicative factor

for notational simplicity, yielding:

R2 =

∞∫
me

dE2

p1+q2∫
|p1−q2|

dy
∞∫

me

dE3

b∫
a

du (H.32)

H.2.1 Case 1: p1
me

< 1
2

Eliminating
∫

du

The goal is to determine what values of E3 give non-zero
∫

du for Eq.(H.27). We

first consider when equality is assumed between the two y values p1 +q2 and E2− p1:

p1 +q2 = E2− p1 (H.33)

=⇒ q2 = E2−2p1 (H.34)
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For Eq.(H.34) to be physically meaningful, p1 <
me
2 which it is in this case. Therefore:

q2
2 = (E2−2p1)

2 (H.35)

=⇒ E2
2 −m2

e = E2
2 −4p1E2 +4p2

1 (H.36)

=⇒ E2 = p1 +
m2

e
4p1
≡ E(1)

cut (H.37)

=⇒





p1 +q2 < E2− p1 if E2 < E(1)
cut

p1 +q2 > E2− p1 if E2 > E(1)
cut

. (H.38)

Before we eliminate
∫

du, notice the following for general p1:

q2(E2 = E(1)
cut ) =

√(
p1 +

m2
e

4p1

)2

−m2
e (H.39)

=
1

4p1

√
(4p2

1 +m2
e)

2−16p2
1m2

e (H.40)

=
1

4p1

√
16p4

1 +8p2
1m2

e +m4
e−16p2

1m2
e (H.41)

=
1

4p1

√
16p4

1−8p2
1m2

e +m4
e (H.42)

=
|4p2

1−m2
e |

4p1
. (H.43)

If p1
me

> 1
2 , then q2(E2 = E(1)

cut )< p1. For p1
me

< 1
2 , E2− p1 > |p1−q2| for all q2.

For
∫

du to be non-zero, the argument of the delta function must fall in between

the limits of
∫

du, implying:

a < u < b (H.44)

=⇒ |y−q3|< E3 +E2− p1 < y+q3 (H.45)
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We will simultaneously consider the two cases. First, when y < q3:

q3− y < E3 +E2− p1 < y+q3 (H.46)

=⇒ −q3 < q3−2y < E3− (p1−E2 + y)< q3 (H.47)

=⇒ −q3 < E3− (p1−E2 + y)< q3. (H.48)

Second, when y > q3. Then:

y−q3 < E3 +E2− p1 < y+q3 (H.49)

=⇒ −q3 < E3− (p1−E2 + y)< q3. (H.50)

For Eq.(H.48) or (H.50) to be physically meaningful:

p1−E2 + y > 0 (H.51)

=⇒ y > E2− p1 (H.52)

=⇒ E2 > E(1)
cut (H.53)

If E2 < E(1)
cut , then there does not exist any y < q3 or y > q3 such that E3 produces a u

which falls within the range of
∫

du. Therefore, E(1)
cut is the lower limit of

∫
dE2. To

determine the limits of
∫

dE3, we return to Eq.(H.48):

−q3 < E3− (p1−E2 + y)< q3 (H.54)

=⇒ E2
3 −2E3(p1−E2 + y)+(p1−E2 + y)2 < q2

3 = E2
3 −m2

e (H.55)

=⇒ Emin ≡
1
2

[
p1−E2 + y+

m2
e

p1−E2 + y

]
< E3 (H.56)
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Emin is always greater than me. We investigate further the case y < q3:

q3− y < E3 +E2− p1 (H.57)

=⇒ q3 < E3 +E2− p1 + y (H.58)

Notice:

E2− p1 + y > E2− p1 + |p1−q2| (H.59)

> E2− p1 + p1−q2 (H.60)

= E2−q2 (H.61)

> 0 (H.62)

Eq.(H.58) is true for all E3 and provides no useful information. The expression for R(1)
1

becomes:

R(1)
1 =

∞∫
E(1)

cut

dE2

p1+q2∫
E2−p1

dy
∞∫

Emin

dE3. (H.63)

The
∫

dy is normally bounded below by |p1−q2|, but E2− p1 > |p1−q2| for all p1
me

< 1
2

and all q2.

Writing
∫

dE3 in terms of θ functions

We will use a θ function to write
∫

dE3 over the maximum range:

∞∫
Emin

dE3 =

∞∫
me

dE3 θ(E3−Emin) (H.64)
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For
∫

dE3 to be non-zero, the argument of the θ function must be positive, implying:

E3−Emin > 0 (H.65)

=⇒ E3−
1
2

[
p1−E2 + y+

m2
e

p1−E2 + y

]
> 0 (H.66)

=⇒ (2E3− p1 +E2− y)(p1−E2 + y)−m2
e > 0 (H.67)

=⇒ − y2 +2y(E3− p1 +E2)− (p1−E2)
2 +2E3(p1−E2)−m2

e > 0 (H.68)

If we set Eq.(H.68) to zero, and solve for y, we obtain:

y =
2(E3− p1 +E2)

2

± 1
2

√
4(E3− p1 +E2)2 +4[−(p1−E2)2 +2E3(p1−E2)−m2

e ] (H.69)

= E3− p1 +E2

±
√

E2
3 −2E3(p1−E2)+(p1−E2)2− (p1−E2)2 +2E3(p1−E2)−m2

e (H.70)

= E3− p1 +E2±q3. (H.71)

For Eq.(H.68) to be satisfied:

y < E2− p1 +E3 +q3 & y > E2− p1 +E3−q3. (H.72)

We can write Eq.(H.63) as:

R(1)
1 =

∞∫
E(1)

cut

dE2

∞∫
me

dE3

t1∫
b1

dy, (H.73)
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where: 



b1 = max(E2− p1,E2− p1 +E3−q3)

t1 = min(p1 +q2,E2− p1 +E3 +q3)

(H.74)

Finding limits of
∫

dy

There is no transition point for b1 as E2− p1+E3−q3 > E2− p1. For t1, there is

a transition point when:

p1 +q2 = E2− p1 +E3 +q3 (H.75)

=⇒ 2p1−E2 +q2−E3 = q3 (H.76)

For Eq.(H.76) to be physically meaningful, 2p1−E2+q2 > me =⇒ q2 > E2+me−2p1

which is impossible for this case. Therefore, there is no transition point as p1 + q2 <

E2− p1 +E3 +q3. There is a limit point when p1 +q2 = E2− p1 +E3−q3:

p1 +q2 = E2− p1 +E3−q3 (H.77)

=⇒ q3 = E3− (2p1−E2 +q2) (H.78)

For Eq.(H.78) to be physically meaningful 0 < 2p1−E2 + q2 < me. Both conditions

hold as E2 > E(1)
cut and p1

me
< 1

2 . Solving Eq.(H.78) for E3 yields:

E2
3 −m2

e = E2
3 −2E3(2p1−E2 +q2)+(2p1−E2 +q2)

2 (H.79)

=⇒ E3 =
1
2

(
2p1−E2 +q2 +

m2
e

2p1−E2 +q2

)
≡ E(1)

lim , (H.80)

implying that p1 +q2 > E2− p1 +E3−q3 if E3 > E(1)
lim .
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We write Eq.(H.73) as:

R(1)
1 =

∞∫
E(1)

cut

dE2

∞∫
E(1)

lim

dE3

p1+q2∫
E2−p1+E3−q3

dy (H.81)

H.2.2 Case 2: 1
2 < p1

me
< 1+

√
5

4

Eliminating
∫

du

We begin by considering equality between the two y values p1−q2 and E2− p1:

p1−q2 = E2− p1 (H.82)

=⇒ 2p1−E2 = q2 (H.83)

For Eq.(H.83) to be physically meaningful, p1
me

> 1
2 , which it is in this case. Thus:





p1−q2 > E2− p1 if E2 < E(1)
cut

p1−q2 < E2− p1 if E2 > E(1)
cut

. (H.84)

Therefore, the expression for R(2)
1 becomes:

R(2)
1 =

E(1)
cut∫

me

dE2

p1+q2∫
p1−q2

dy
∞∫

Emin

dE3 +

∞∫
E(1)

cut

dE2

p1+q2∫
E2−p1

dy
∞∫

Emin

dE3 (H.85)

Finding limits of
∫

dy

For θ(E3−Emin), we have the following condition:

y < E2− p1 +E3 +q3 & y > E2− p1 +E3−q3. (H.86)
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Eq.(H.85) becomes:

R(2)
1 =

E(1)
cut∫

me

dE2

∞∫
me

dE3

t2∫
b2

dy+
∞∫

E(1)
cut

dE2

∞∫
me

dE3

t3∫
b3

dy (H.87)

where:





b2 = max(p1−q2,E2− p1 +E3−q3)

t2 = min(p1 +q2,E2− p1 +E3 +q3)

(H.88)





b3 = max(E2− p1,E2− p1 +E3−q3)

t3 = min(p1 +q2,E2− p1 +E3 +q3)

. (H.89)

For b2, we have:

p1−q2 = E2− p1 +E3−q3 (H.90)

=⇒ q3 = E3− (2p1−E2−q2) (H.91)

For Eq.(H.91) to be meaningful, 0 < 2p1−E2−q2 < me. The first condition is satisfied

since E2 < E(1)
cut . For the second condition:

2p1−E2−q2 < me (H.92)

=⇒ 2p1−me−E2 < q2 (H.93)
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If p1 < me, then Eq.(H.93) always holds. Before determining the transition point for b2,

we want to investigate the conditions when Eq.(H.93) does not hold, when p1 > me:

2p1−me−E2 = q2 (H.94)

=⇒ (2p1−me)
2−2E2(2p1−me)+E2

2 = E2
2 −m2

e (H.95)

=⇒ E(2)
cut ≡

1
2

(
2p1−me +

m2
e

2p1−me

)
= E2 (H.96)

=⇒





2p1−me−E2 < q2 if E2 > E(2)
cut

2p1−me−E2 > q2 if E2 < E(2)
cut

(H.97)

We need to compare E(1)
cut to E(2)

cut :

E(1)
cut ∼ E(2)

cut (H.98)

=⇒ p1 +
m2

e
4p1
∼ 1

2

(
2p1−me +

m2
e

2p1−me

)
(H.99)

=⇒ 4p2
1(2p1−me)+m2

e(2p1−me)∼ 2p1(2p1−me)
2 +2p1m2

e (H.100)

=⇒ 8p3
1−4p2

1me +2p1m2
e−m3

e ∼ 8p3
1−8p2

1me +2p1m2
e +2p1m2

e (H.101)

=⇒ 4p2
1me−2p1m2

e−m3
e ∼ 0 (H.102)

=⇒ 4p2
1−2p1me−m2

e ∼ 0 (H.103)

=⇒ p1 ∼−
−2me

8
± 1

8

√
4m2

e−16(−m2
e) (H.104)

=⇒ p1

me
∼ 1

4
±
√

5
4

(H.105)

The negative solution is extraneous. For the positive solution:





E(1)
cut < E(2)

cut if p1
me

< 1+
√

5
4

E(1)
cut > E(2)

cut if p1
me

> 1+
√

5
4

(H.106)
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However, this E(2)
cut (as opposed to the one below) is only applicable in the case p1

me
> 1 >

1+
√

5
4 . Hence, E(1)

cut > E(2)
cut for all p1 > me. We return to determining the transition point

for b2:

q3 = E3− (2p1−E2−q2) (H.107)

=⇒ E2
3 −m2

e = E2
3 −2E3(2p1−E2−q2)+(2p1−E2−q2)

2 (H.108)

=⇒ E3 =
1
2

(
2p1−E2−q2 +

m2
e

2p1−E2−q2

)
≡ E(1)

trans (H.109)

=⇒





E2− p1 +E3−q3 > p1−q2 if E3 < E(1)
trans

E2− p1 +E3−q3 < p1−q2 if E3 > E(1)
trans

(H.110)

For t2, we have:

p1 +q2 = E2− p1 +E3 +q3 (H.111)

=⇒ 2p1−E2 +q2−E3 = q3 (H.112)

For Eq.(H.112) to be meaningful, 2p1−E2 +q2 > me =⇒ q2 > E2−2p1 +me, which

implies 0 < 2p1−me < me =⇒ 1
2 < p1

me
< 1. Thus:





2p1−E2 +q2 < me if E2 < E(2)
cut

2p1−E2 +q2 > me if E2 > E(2)
cut

(H.113)

We exercise caution that E(2)
cut obtained above has the same form as the E(2)

cut obtained

from Eq.(H.93), but that the conditions are different for the two expressions. Since

1
2 < p1

me
< 1+

√
5

4 , E(1)
cut < E(2)

cut and thus for t2, E2 < E(2)
cut implying 2p1−E2 + q2 < me.

Hence p1 +q2 < E2− p1 +E3 +q3.

For the
∫

dy limit b3, E2− p1 +E3− q3 > E2− p1. For t3, we refer back to
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Eq.(H.76):

2p1−E2 +q2−E3 = q3, (H.114)

with condition 2p1−E2 +q2 > me =⇒ q2 > E2 +me−2p1 =⇒ E2 > E(2)
cut . If that is

the case, then:

2p1−E2 +q2−E3 = q3 (H.115)

=⇒ (2p1−E2 +q2)
2−2E3(2p1−E2 +q2)+E2

3 = E2
3 −m2

e (H.116)

=⇒ E(2)
trans ≡

1
2

(
2p1−E2 +q2 +

m2
e

2p1−E2 +q2

)
= E3 (H.117)

Thus, there is a transtion point for t3 when E2 > E(2)
cut :

t3 =





p1 +q2 if E2 < E(2)
cut

E2− p1 +E3 +q3 if E2 > E(2)
cut and E3 < E(2)

trans

p1 +q2 if E2 > E(2)
cut and E3 > E(2)

trans

. (H.118)

Note that E(2)
trans has the same form as E(1)

lim , however the expressions were derived from

different equations under different conditions.

We need to check for limit points:

p1 +q2 = E2− p1 +E3−q3 (H.119)

=⇒ q3 = E3 +E2−2p1−q2. (H.120)

For Eq.(H.120) to be physically meaningful, 2p1−E2 + q2 < me =⇒ E2 < E(2)
cut . If
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E2 < E(2)
cut , then there is a limit point at E3 = E(1)

lim . Eq.(H.85) becomes:

R(2)
1 =

E(1)
cut∫

me

dE2




E(1)
trans∫

E(1)
lim

dE3

p1+q2∫
E2−p1+E3−q3

dy+
∞∫

E(1)
trans

dE3

p1+q2∫
p1−q2

dy




+

E(2)
cut∫

E(1)
cut

dE2




∞∫
E(1)

lim

dE3

p1+q2∫
E2−p1+E3−q3

dy




+

∞∫
E(2)

cut

dE2




E(2)
trans∫

me

dE3

E2−p1+E3+q3∫
E2−p1+E3−q3

dy+
∞∫

E(2)
trans

dE3

p1+q2∫
E2−p1+E3−q3

dy


 (H.121)

H.2.3 Case 3: 1+
√

5
4 < p1

me
< 1

For this case, E(2)
cut < E(1)

cut . Eq.(H.85) becomes:

R(3)
1 =

E(2)
cut∫

me

dE2

∞∫
me

dE3

t2∫
b2

dy+

E(1)
cut∫

E(2)
cut

dE2

∞∫
me

dE3

t2∫
b2

dy+
∞∫

E(1)
cut

dE2

∞∫
me

dE3

t3∫
b3

dy. (H.122)

For there to be a transition point for b2, the conditions must be that E2 < E(1)
cut , and

p1 < me. For there to be a transition point for t2, the conditions must be that E2 > E(2)
cut

and p1
me

> 1
2 .
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We need to compare E(1)
trans to E(2)

trans:

E(1)
trans ∼ E(2)

trans (H.123)

=⇒ 1
2

(
2p1−E2−q2 +

m2
e

2p1−E2−q2

)
∼ 1

2

(
2p1−E2 +q2 +

m2
e

2p1−E2 +q2

)

(H.124)

=⇒ m2
e

2p1−E2−q2
∼ 2q2 +

m2
e

2p1−E2 +q2
(H.125)

=⇒ m2
e(2p1−E2 +q2)∼ 2q2(2p1−E2−q2)(2p1−E2 +q2)+m2

e(2p1−E2−q2)

(H.126)

=⇒ 2q2m2
e ∼ 2q2[(2p1−E2)

2−q2
2] (H.127)

=⇒ 2q2m2
e ∼ 2q2(4p2

1−4p1E2 +m2
e) (H.128)

=⇒ 4p1E2 ∼ 4p2
1. (H.129)

In this case, p1 < me =⇒ E(1)
trans > E(2)

trans. For t3, there is a transition point when E2 > E(2)
cut .

There is a limit point for E3 = E(1)
lim if E2 < E(2)

cut . Thus, Eq.(H.122) becomes:

R(3)
1 =

E(2)
cut∫

me

dE2




E(1)
trans∫

E(1)
lim

dE3

p1+q2∫
E2−p1+E3−q3

dy +

∞∫
E(1)

trans

dE3

p1+q2∫
p1−q2

dy




+

E(1)
cut∫

E(2)
cut

dE2




E(2)
trans∫

me

dE3

E2−p1+E3+q3∫
E2−p1+E3−q3

dy

+

E(1)
trans∫

E(2)
trans

dE3

p1+q2∫
E2−p1+E3−q3

dy+
∞∫

E(1)
trans

dE3

p1+q2∫
p1−q2

dy


 (H.130)

+

∞∫
E(1)

cut

dE2




E(2)
trans∫

me

dE3

E2−p1+E3+q3∫
E2−p1+E3−q3

dy+
∞∫

E(2)
trans

dE3

p1+q2∫
E2−p1+E3−q3

dy


 . (H.131)
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H.2.4 Case 4: 1 < p1
me

For this case, we have the same initial expression for R(4)
1 as we do for R(3)

1 in

terms of
∫

dE2
∫

dy
∫

dE3. However, some of our transitions no longer satisfy conditions

because p1 > me.

For b2:

p1−q2 = E2− p1 +E3−q3 (H.132)

=⇒ q3 = E3− (2p1−E2−q2). (H.133)

For Eq.(H.133) to be physically meaningful 0 < 2p1−E2−q2 < me. The first condition

holds if E2 < E(1)
cut . The second condition only holds for E2 > E(2)

cut . Thus, b2 has a

transition point (E(1)
trans) for E(2)

cut < E2 < E(1)
cut .

For t2:

p1 +q2 = E2− p1 +E3 +q3 (H.134)

=⇒ 2p1−E2 +q2−E3 = q3. (H.135)

For Eq.(H.135) to be physically meaningful, 2p1−E2 +q2 > me which is always true if

p1 > me. Thus, t2 (and t3) has a transition point for all E2.

There is a possibility that E(2)
trans could be larger than E(1)

trans for p1 > me. Eq.(H.129)

shows that E(1)
trans = E(2)

trans when E2 = p1. E(1)
cut is always larger than p1. Comparing E(2)

cut to
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p1:

1
2

(
2p1−me +

m2
e

2p1−me

)
∼ p1 (H.136)

=⇒ m2
e

2p1−me
∼ me (H.137)

=⇒ me ∼ 2p1−me (H.138)

=⇒ me ∼ p1. (H.139)

Therefore, E(2)
cut < p1 < E(1)

cut and:





E(1)
trans < E(2)

trans if E2 < p1

E(1)
trans > E(2)

trans if E2 > p1

. (H.140)

For the limit point:

p1 +q2 = E2− p1 +E3−q3 (H.141)

=⇒ q3 = E3 +E2−2p1−q2. (H.142)

For Eq.(H.142) to be physically meaningful, 2p1−E2 +q2 < me which is impossible for

p1 > me. A new possibility for a limit point arises if:

p1−q2 = E2− p1 +E3 +q3 (H.143)

=⇒ 2p1−E2−q2−E3 = q3. (H.144)

For Eq.(H.144) to be physically meaninfgul, 2p1−E2−q2 >me =⇒ E(2)
cut > E2. Solving
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Eq.(H.144) for E3:

(2p1−E2−q2)
2−2E3(2p1−E2−q2)+E2

3 = E2
3 −m2

e (H.145)

=⇒ E(2)
lim =

1
2

(
2p1−E2−q2 +

m2
e

2p1−E2−q2

)
= E3. (H.146)

Note that E(2)
lim has the same form as E(1)

trans, but it is derived from a different equation under

different conditions. The expression for R(4)
1 becomes:

R(4)
1 =

E(2)
cut∫

me

dE2




E(2)
trans∫

E(2)
lim

dE3

E2−p1+E3+q3∫
p1−q2

dy+
∞∫

E(2)
trans

dE3

p1+q2∫
p1−q2

dy




+

p1∫
E(2)

cut

dE2




E(1)
trans∫

me

dE3

E2−p1+E3+q3∫
E2−p1+E3−q3

dy

+

E(2)
trans∫

E(1)
trans

dE3

E2−p1+E3+q3∫
p1−q2

dy+
∞∫

E(2)
trans

dE3

p1+q2∫
p1−q2

dy




+

E(1)
cut∫

p1

dE2




E(2)
trans∫

me

dE3

E2−p1+E3+q3∫
E2−p1+E3−q3

dy

+

E(1)
trans∫

E(2)
trans

dE3

p1+q2∫
E2−p1+E3−q3

dy+
∞∫

E(1)
trans

dE3

p1+q2∫
p1−q2

dy




+

∞∫
E(1)

cut

dE2




E(2)
trans∫

me

dE3

E2−p1+E3+q3∫
E2−p1+E3−q3

dy+
∞∫

E(2)
trans

dE3

p1+q2∫
E2−p1+E3−q3

dy


 . (H.147)
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H.3 L2(P1 ·Q3)

Our energy conservation equation is p1+ p4 = E2+E3. The treatment for L2(P1 ·

Q3) is identical to L1(P1 ·Q2) with the permutation 2↔ 3. We write the expressions for

R2 with the permutation for the four different cases.

For p1
me

< 1
2 :

R(1)
2 =

∞∫
E(1)

cut

dE3

∞∫
E(1)

lim

dE2

p1+q3∫
E3−p1+E2−q2

dy (H.148)

For 1
2 < p1

me
< 1+

√
5

4 :

R(2)
2 =

E(1)
cut∫

me

dE3




E(1)
trans∫

E(1)
lim

dE2

p1+q3∫
E3−p1+E2−q2

dy+
∞∫

E(1)
trans

dE2

p1+q3∫
p1−q3

dy




+

E(2)
cut∫

E(1)
cut

dE3




∞∫
E(1)

lim

dE2

p1+q3∫
E3−p1+E2−q2

dy




+

∞∫
E(2)

cut

dE3




E(2)
trans∫

me

dE2

E3−p1+E2+q2∫
E3−p1+E2−q2

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1+E2−q2

dy


 (H.149)
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For 1+
√

5
4 < p1

me
< 1:

R(3)
2 =

E(2)
cut∫

me

dE3




E(1)
trans∫

E(1)
lim

dE2

p1+q3∫
E3−p1+E2−q2

dy+
∞∫

E(1)
trans

dE2

p1+q3∫
p1−q3

dy




+

E(1)
cut∫

E(2)
cut

dE3




E(2)
trans∫

me

dE2

E3−p1+E2+q2∫
E3−p1+E2−q2

dy

+

E(1)
trans∫

E(2)
trans

dE2

p1+q3∫
E3−p1+E2−q2

dy+
∞∫

E(1)
trans

dE2

p1+q3∫
p1−q3

dy




+

∞∫
E(1)

cut

dE3




E(2)
trans∫

me

dE2

E3−p1+E2+q2∫
E3−p1+E2−q2

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1+E2−q2

dy


 . (H.150)
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For 1 < p1
me

:

R(4)
2 =

E(2)
cut∫

me

dE3




E(2)
trans∫

E(2)
lim

dE2

E3−p1+E2+q2∫
p1−q3

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
p1−q3

dy




+

p1∫
E(2)

cut

dE3




E(1)
trans∫

me

dE2

E3−p1+E2+q2∫
E3−p1+E2−q2

dy

+

E(2)
trans∫

E(1)
trans

dE2

E3−p1+E2+q2∫
p1−q3

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
p1−q3

dy




+

E(1)
cut∫

p1

dE3




E(2)
trans∫

me

dE2

E3−p1+E2+q2∫
E3−p1+E2−q2

dy

+

E(1)
trans∫

E(2)
trans

dE2

p1+q3∫
E3−p1+E2−q2

dy+
∞∫

E(1)
trans

dE2

p1+q3∫
p1−q3

dy




+

∞∫
E(1)

cut

dE3




E(2)
trans∫

me

dE2

E3−p1+E2+q2∫
E3−p1+E2−q2

dy+
∞∫

E(2)
trans

dE2

p1+q3∫
E3−p1+E2−q2

dy


 . (H.151)
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The above integrals use the following expressions:

E(1)
cut = p1 +

m2
e

4p1
(H.152)

E(2)
cut =

1
2

(
2p1−me +

m2
e

2p1−me

)
(H.153)

E(1)
trans =

1
2

(
2p1−E3−q3 +

m2
e

2p1−E3−q3

)
(H.154)

E(2)
trans =

1
2

(
2p1−E3 +q3 +

m2
e

2p1−E3 +q3

)
(H.155)

E(1)
lim = E(2)

trans (H.156)

E(2)
lim = E(1)

trans (H.157)

H.4 Combining L1 and L2 into a single integral

The kinematics are identical for R1 and R2 except for the permutation 2↔ 3. For

this section, we will focus only on case 1, since it involves the fewest cut, limit, and

transition points. The other three cases will follow from analogy. The total expression
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for the derivative is:

d f1

dt
= R1 +R2 (H.158)

=
1

16(2π)3

∞∫
E(1)

cut

dE2
1
p2

1

∞∫
E(1)2

lim

dE3 F(p1,E2 +E3− p1,E2,E3)

×
p1+q2∫

E2−p1+E3−q3

dyL1{
1
2

y2− 1
2
[(p1−E2)

2−m2
e ]}

+
1

16(2π)3

∞∫
E(1)

cut

dE3
1
p2

1

∞∫
E(1)3

lim

dE2 F(p1,E2 +E3− p1,E2,E3)

×
p1+q3∫

E3−p1+E2−q2

dyL2{
1
2

y2− 1
2
[(p1−E3)

2−m2
e ]}, (H.159)

where:

E(1)2
lim =

1
2

(
2p1−E2 +q2 +

m2
e

2p1−E2 +q2

)
(H.160)

E(1)3
lim =

1
2

(
2p1−E3 +q3 +

m2
e

2p1−E3 +q3

)
. (H.161)

We can combine R1 and R2 if we use generic expressions for the dummy variables

E2 and E3. For R1, let E2 = Eout for the outer integral and E3 = Ein for the inner integral.
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For R2, permute the indicies 2 and 3 to yield E3 = Eout and E2 = Ein. Eq.(H.159) becomes:

d f1

dt
=

1
16(2π)3

∞∫
E(1)

cut

dEout
1
p2

1

∞∫
E(1)o

lim

dEin F(p1,Eout +Ein− p1,Eout,Ein)

×
p1+qout∫

Eout−p1+Ein−qin

dyL1{
1
2

y2− 1
2
[(p1−Eout)

2−m2
e ]}

+
1

16(2π)3

∞∫
E(1)

cut

dEout
1
p2

1

∞∫
E(1)o

lim

dEin F(p1,Ein +Eout− p1,Ein,Eout)

×
p1+qout∫

Eout−p1+Ein−qin

dyL2{
1
2

y2− 1
2
[(p1−Eout)

2−m2
e ]}, (H.162)

where:

E (1)o
lim =

1
2

(
2p1−Eout +qout +

m2
e

2p1−Eout +qout

)
(H.163)

qout ≡
√

E2
out−m2

e (H.164)

qin ≡
√

E2
in−m2

e . (H.165)

We see that the limits for R1 and R2 on Eq.(H.162) are identical, although the arguments

are not. It is tempting to combine the integrals and use the fact that E2 and E3 are on the

same sides of the energy conservation equation to write F(...,Eout,Ein) = F(...,Ein,Eout).

However, we cannot do this. The second particle refers to a e+ and the third particle refers

to a e−. In general, each species has a different chemical potential and so the occupation

probability at a given energy is different, and the F factor is different. Therefore, when
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we combine the integrals over Eout and Ein in Eq.(H.162), we arrive at:

d f1

dt
=

1
16(2π)3

∞∫
E(1)

cut

dEout
1
p2

1

∞∫
E(1)o

lim

dEin× (H.166)


F(p1,Eout +Ein− p1,Eout,Ein)

p1+qout∫
Eout−p1+Ein−qin

dyL1{
1
2

y2− 1
2
[(p1−Eout)

2−m2
e ]}

+ F(p1,Eout +Ein− p1,Ein,Eout)

p1+qout∫
Eout−p1+Ein−qin

dyL2{
1
2

y2− 1
2
[(p1−Eout)

2−m2
e ]}




(H.167)

H.5 µ and τ neutrinos

For non-electron neutrinos, the summed-squared-matrix element is slightly differ-

ent due to the absence of a charged current diagram:

〈|M |2〉= 32G2
F(2sin2

θw−1)2
[
(P1 ·Q2)

2 +
2sin2

θw

2sin2
θw−1

m2
e(P1 ·Q2)

]

+128G2
F sin4

θw

[
(P1 ·Q3)

2 +
2sin2

θw−1
2sin2

θw
m2

e(P1 ·Q3)

]
. (H.168)

In other words, Eq.(H.168) is identical to Eq.(H.2) except for the swap 2sin2
θ2 +1→

2sin2
θw−1. The kinematics for finding the derivative are identical.

H.6 Annihilation for an anti-neutrino

When calculating the derivatives for annihilation, we assumed that particle 1 was

a neutrino. If there is an asymmetry in the neutrino sector, we have to separately consider

annihilation when particle 1 is an anti-neutrino. For the time being, only consider the
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electron flavor of neutrinos. The reaction of interest is:

ν̄e(1)+νe(4)→ e−(3)+ e+(2). (H.169)

To calculate the summed-squared-matrix element, we permute 1↔ 4:

〈|M |2〉= 32G2
F(1+2sin2

θw)
2
[
(P4 ·Q2)

2 +
2sin2

θw

1+2sin2
θw

m2
e(P4 ·Q2)

]

+128G2
F sin4

θw

[
(P4 ·Q3)

2 +
1+2sin2

θw

2sin2
θw

m2
e(P4 ·Q3)

]
. (H.170)

By conservation of four-momentum:

P1 +P4 = Q2 +Q3 (H.171)

=⇒ P4−Q2 = Q3−P1 (H.172)

=⇒ (P4−Q2)
2 = (Q3−P1)

2 (H.173)

=⇒ P2
4 +Q2

2−2P4 ·Q2 = P2
1 +Q2

3−2P1 ·Q3 (H.174)

=⇒ 0+m2
e−2P4 ·Q2 = 0+m2

e−2P1 ·Q3 (H.175)

=⇒ P4 ·Q2 = P1 ·Q3 (H.176)

A symmetrical argument shows P4 ·Q3 =P1 ·Q2. The expression for Eq.(H.170) becomes:

〈|M |2〉= 32G2
F(1+2sin2

θw)
2
[
(P1 ·Q3)

2 +
2sin2

θw

1+2sin2
θw

m2
e(P1 ·Q3)

]

+128G2
F sin4

θw

[
(P1 ·Q2)

2 +
1+2sin2

θw

2sin2
θw

m2
e(P1 ·Q2)

]
(H.177)

= L2(P1 ·Q2)+L1(P1 ·Q3). (H.178)

Thus, when we consider the annihilaion into the anti-neutrino, we need to permute

L1↔ L2. Both expressions have the same general form, i.e. L(1,2)(ξ)∼C1(ξ
2 +C2ξ) so
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the kinematics are identical to what has been done before.
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