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Original Article

Automated Crystal Orientation Mapping in py4DSTEM using Sparse
Correlation Matching

Colin Ophus1* , Steven E. Zeltmann2, Alexandra Bruefach2, Alexander Rakowski1, Benjamin H. Savitzky1,

Andrew M. Minor1,2 and Mary C. Scott1,2
1National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA and 2Department
of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA

Abstract

Crystalline materials used in technological applications are often complex assemblies composed of multiple phases and differently oriented
grains. Robust identification of the phases and orientation relationships from these samples is crucial, but the information extracted from
the diffraction condition probed by an electron beam is often incomplete. We have developed an automated crystal orientation mapping
(ACOM) procedure which uses a converged electron probe to collect diffraction patterns from multiple locations across a complex sample.
We provide an algorithm to determine the orientation of each diffraction pattern based on a fast sparse correlation method. We demonstrate
the speed and accuracy of our method by indexing diffraction patterns generated using both kinematical and dynamical simulations. We
have also measured orientation maps from an experimental dataset consisting of a complex polycrystalline twisted helical AuAgPd nano-
wire. From these maps we identify twin planes between adjacent grains, which may be responsible for the twisted helical structure. All of our
methods are made freely available as open source code, including tutorials which can be easily adapted to perform ACOMmeasurements on
diffraction pattern datasets.

Key words: automated crystal orientation mapping (ACOM), four-dimensional scanning transmission electron microscopy (4D-STEM),
nanobeam electron diffraction (NBED), open-source software, scanning electron nanodiffraction (SEND)
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Introduction

Polycrystalline materials are ubiquitous in technological applica-
tions. An ideal crystal structure can be fully defined with a
small number of parameters: the three vectors defining its unit
cell, and the position and species of each atom inside the unit
cell (Borchardt-Ott, 2011). To fully describe crystalline materials
in the real world however, we require a description of both the
crystal lattice, and all defects present in a given material. These
include point defects such as dopants, vacancies, or interstitials
(Dederichs et al., 1978), line defects such as dislocations (LeSar,
2014), planar defects including internal boundaries and surfaces
(Tang et al., 2006), and volume defects such as precipitates
(Kleiven & Akola, 2020). Strain fields in the surrounding material
can be induced by each of these defects, or generated by the boun-
dary or growth conditions of the material such as in thin film
stresses (Janssen, 2007). One large subset of crystalline materials
are polycrystalline phases, which consist of many small crystalline
grains, arranged in either a random or organized fashion. Many

material properties such as mechanical strength (Thompson,
2000), optical response (Park et al., 2019; Londoño-Calderon et al.,
2021), or th\ermal or electrical conductivity (Castro-Méndez et al.,
2019) are strongly modulated by the density and orientation of
the boundaries between crystalline grains (Thompson & Carel,
1995). Thus, characterizing the orientation of polycrystalline grains
is essential to understanding these materials.

The two primary tools used to study the orientation of poly-
crystalline materials are electron backscatter diffraction (EBSD)
in scanning electron microscopy (SEM), and transmission elec-
tron microscopy (TEM). EBSD can measure the orientation of
crystalline grains with very high accuracy, but has limited resolu-
tion and is primarily sensitive to the surface of materials
(Humphreys, 2001; Wright et al., 2011, 2015). Alternatively, we
can directly measure the atomic-scale structure and therefore
the orientation of polycrystalline grains, either by using plane
wave imaging in TEM (Li et al., 2020), or by focusing the probe
down to subatomic dimensions and scanning over the sample sur-
face in scanning TEM (STEM; Peter et al., 2018). This is possible
due to the widespread deployment of aberration correction for
both TEM and STEM instruments (Linck et al., 2016; Ramasse,
2017). Atomic resolution imaging, however, strictly limits the
achievable field-of-view, and requires relatively thin samples,
and thus is primarily suited for measuring polycrystalline grain
orientations of 2D materials (Ophus et al., 2015; Qi et al., 2020).
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Another approach to orientation mapping in TEM is to use
diffraction space measurements. For crystalline materials, diffrac-
tion patterns will contain Bragg spots with spacing inversely pro-
portional to the spacing of atomic planes which are approximately
perpendicular to the beam direction (described by both the Laue
condition and Bragg equations; Fultz & Howe, 2012). To generate
a spatially resolved orientation map, we can focus a STEM probe
down to dimensions of 0.5–50 nm, scan it over the sample sur-
face, and record the diffraction pattern for each probe position.
This technique is referred to as nanobeam electron diffraction
(NBED; Ozdol et al., 2015), scanning electron nanobeam diffrac-
tion (SEND; Tao et al., 2009), or four-dimensional scanning
transmission electron microscopy (4D-STEM) (we choose this
nomenclature for this text) due to the 4D shape of the collected
data (Bustillo et al., 2021). 4D-STEM experiments are increasingly
enabled by fast direct electron detectors, as these cameras allow
for much faster recording and much larger fields of view
(Ophus, 2019; Nord et al., 2020; Paterson et al., 2020).

By performing template matching of diffraction pattern libraries
on 4D-STEM datasets, we can map the orientation of all crystalline
grains with sufficient diffraction signal. This method is usually
named automated crystal orientation mapping (ACOM) and has
been used by many authors in materials science studies (Zaefferer
& Schwarzer, 1994; Rauch & Dupuy, 2005; Wu & Zaefferer,
2009; Kobler et al., 2013; Londoño-Calderon et al., 2020;
MacLaren et al., 2020; Jeong et al., 2021; Zuo & Zhu, 2021).
ACOM experiments in 4D-STEM are highly flexible; two recent
examples include Lang et al. (2021) implementing ACOMmeasure-
ments in liquid cell experiments, and Wu et al. (2021) adapting the
ACOM method to a scanning confocal electron diffraction (SCED)
experimental configuration. ACOM is also routinely combined with
precession electron diffraction, where the STEM beam is continu-
ally rotated around a cone incident onto the sample, in order to
excite more diffraction spots and thus produce more interpretable
diffraction patterns (Rauch et al., 2010; Brunetti et al., 2011;
Moeck et al., 2011; Eggeman et al., 2015). Recently, Mehta et al.
(2020) have combined simulations with machine learning segmen-
tation to map orientations of 2D materials, and Yuan et al. (2021)
have used machine learning methods to improve the resolution and
sensitivity of orientation maps by training on simulated data. For
more information, Zaefferer (2011) has provided a review of
ACOM methods in SEM and TEM.

In this study, we introduce a new sparse correlation framework for
fast calculation of orientation maps from 4D-STEM datasets. Our
method is based on template matching of diffraction patterns along
only the populated radial bands of a reference crystal’s reciprocal lat-
tice, and uses direct sampling of the first two Euler angles (which, in
the convention we have adopted, correspond to the zone axis), and a
fast Fourier transform correlation step to solve for the final Euler
angle (in our convention, the in-plane rotation of the pattern). We
test our method on both kinematical calculations, and simulated dif-
fraction experiments incorporating dynamical diffraction. Finally, we
generate orientation maps of polycrystalline AuAgPd helically twisted
nanowires, and use clustering to segment the polycrystalline structure,
and map the shared (111) twin planes of adjacent grains.

Methods

Overview

The problem we are solving is to identify the relative orientation
between a given diffraction pattern measurement and a parent ref-
erence crystal. We solve this problem with three steps:

1. First, we generate a diffraction pattern library which covers all
unique crystal orientations using kinematical simulation. This
library, stored in a sparse polar coordinate representation P, is
called an “orientation plan.”

2. We find all diffracted spots/disks in each diffraction pattern,
and convert them into the same sparse polar coordinate repre-
sentation X.

3. We determine the best fit orientation(s) by finding the maxi-
mum value(s) of the correlation C between the diffraction pat-
terns and the orientation plan.

All of the previously discussed ACOM implementations work
in essentially the same way, that is, by precomputing the diffrac-
tion library in some form, and then comparing each diffraction
pattern to this library using a cost function based on some
form of correlation. Performing template matching directly on
diffraction patterns, which may contain millions of pixels, against
a library of similarly sized patterns, is computationally expensive.
However, the underlying information we are interested in, that is,
the projected lattice in the pattern, is typically composed of at
most a few dozen non-zero points. Our sparse correlation method
involves reducing the diffraction patterns to a simpler representa-
tion where the correlation can be evaluated rapidly, by first detect-
ing the positions of the Bragg disks in the pattern, then
segmenting the data into radial bands, and only evaluating the
correlation in the populated bands.

The primary advances of this paper are listed as follows: (1)
We use Fourier transforms along the annular direction in polar
coordinates for both the diffraction library and diffraction pat-
terns to efficiently solve for the in-plane image rotation. For a
full polar coordinate transform, only a small number of radial
bins will contain reciprocal lattice points, and thus, the output
is sparse along the radial direction. We utilize this sparsity by
only evaluating the polar coordinate correlations on radial shells
that contain reciprocal lattice points of the reference structure,
making the calculations much faster. (2) We give users fine-
grained control over the relative weighting of diffraction peak
radii and intensities in the correlation calculation, as well defining
a kernel size which can be increased to allow more pattern distor-
tion, or decreased to reduce the chance of false positive signals
from grains with close orientations. (3) We automatically deter-
mine the symmetry-reduced range of allowed zone axes from
the input crystal. (4) We provide all methods and codes as an
open source implementation for the community to freely use
and modify. Below we detail each of the steps for our orientation
matching algorithm, and their required input calculations.

Structure Factor Calculations

The structure factors of a given crystalline material are defined as
the complex coefficients of the Fourier transform of an infinite
crystal (Spence, 1993). We require these coefficients in order to
simulate kinematical diffraction patterns, and thus, we briefly out-
line their calculation procedure here.

First, we define the reference crystal structure. This structure
consists of two components, the first being its unit cell defined
by its lattice vectors a, b, and c composed of positions in
r = (x, y, z), the 3D real space coordinate system. The second com-
ponent of a crystal structure is an array with dimensions [N , 4]
containing the fractional atomic positions pn = (pa, pb, pc)n and
atomic number Zn, for the nth index of N total atoms in the
unit cell. Together these positions and atomic numbers are referred
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to as the atomic basis. Because pn is given in terms of the lattice
vectors, all fractional positions have values inside the range [0, 1).
The unit cell and real space Cartesian coordinates of the (face
centered cubic) fcc Au structure are plotted in Figure 1a.

All subsequent calculations are performed in reciprocal space
(also known as Fourier space or diffraction space). Thus, the
next step is to compute the reciprocal lattice vectors, defined by
Gibbs (1884)

a∗ = b× c
a · [b× c]

= b× c
V

,

b∗ = c × a
b · [c × a]

= c × a
V

,

c∗ = a× b
c · [a× b]

= a× b
V

,

(1)

where × represents the vector cross product and V is the unit cell
volume in real space. Note that this definition does not include
factors of 2p, and therefore, all reciprocal coordinates have spatial
frequency units.

Next, we calculate the position of all reciprocal lattice points
required for our kinematical diffraction calculation, given by

ghkl = ha∗ + kb∗ + lc∗, (2)

where h, k, and l are integers representing the reciprocal lattice
index points corresponding to the Miller indices (h, k, l). We
include only points where |qhkl| , kmax, where q = (qx , qy , qz)
are the 3D coordinates in reciprocal space, that is those which
fall inside a sphere given by the maximum scattering vector
kmax. To find all reciprocal lattice coordinates, we first determine
the shortest vector given by linear combinations of (a∗, b∗, c∗),
and divide kmax by this vector length to give the range for
(h, k, l). We then tile (h, k, l) in both the positive and negative
directions up to this value, and then remove all points with vector
lengths larger than kmax.

The reciprocal lattice defined above represents all possible
coordinates where the structure factor coefficients Vg(q) could
be non-zero. The structure factor coefficients depend only the
atomic basis and are given by

Fhkl = 1
V

∑N
n=1

fn(|ghkl|) exp [− 2pi(h, k, l) · pn], (3)

where fn are the the single-atom scattering factors for the nth
atom, which describe the scattering amplitude for a single atom
isolated in space. There are multiple ways to parameterize fn,
but here we have chosen to use the factors defined by Lobato &
Van Dyck (2014) which are implemented in py4DSTEM.
Figure 1b shows the atomic scattering factor for an Au atom.

We have now defined all structure factor coefficients for a per-
fect infinite crystal as

Vg(q) = Fhkl, if q = ghkl,
0, otherwise.

{
(4)

Figure 1c shows the structure factors of fcc Au, where the marker
size denotes the intensity (magnitude squared) of the Fhkl values.

Calculation of Kinematical Diffraction Patterns

Here, we briefly review the theory of kinematical diffraction of
finite crystals, following De Graef (2003). We can fully describe
an electron plane wave by its wavevector k, which points in the
direction of the electron beam and has a length given by
|k| = 1/l, where l is the (relativistically corrected) electron wave-
length. Bragg diffraction of the electron wave along a direction k′

occurs when electrons scatter from equally spaced planes in the
crystal, described in reciprocal space as

k′ = k + ghkl. (5)

For elastic scattering, k′ has the same length as k, and so scattering
can only occur along the spherical surface known as the Ewald
sphere construction (Ewald, 1921). For a perfect infinite crystal,
scattering will seemingly almost never happen since it requires
intersection of the Ewald sphere with the infinitesimally small
points of the reciprocal lattice vectors. However, real samples
have finite dimensions, and thus, in reciprocal space, their lattice
points will be convolved by a shape factor D(q). Therefore, diffrac-
tion can still occur, as long as equation (5) is approximately
satisfied.

If the sample foil is tilted an angle a away from the beam
direction, the vector between a reciprocal lattice point g and its
closest point on the Ewald sphere has a length equal to

sg = −g · (2k + g)
2|k + g| cos (a) . (6)

The sg term is known as the excitation error of a given reciprocal
lattice point g . When the excitation error sg = 0, the Bragg con-
dition is exactly satisfied. When the length of sg is on the same
scale as the extent of the shape factor, the Bragg condition is
approximately satisfied.

A typical TEM sample can be approximately described as a
slab or foil which is infinite in two dimensions, and with some
thickness t along the normal direction. The shape function of
such a sample is equal to

D(qz) = sin (pqzt)
pqz

. (7)

Because this expression is convolved with each reciprocal lattice
point, we can replace qz with the distance between the Ewald
sphere and the reciprocal lattice point. For the orientation map-
ping application considered in this paper, we assume that
a = 0, and that the sample thickness t is unknown. Instead, we
replace equation (7) with the approximation

D(qz) = exp − qz2

2s2

( )
, (8)

where s represents the excitation error tolerance for a given dif-
fraction spot to be included. We chose this expression for the
shape function because it decreases monotonically with increasing
distance between the diffraction spot and the Ewald sphere qz ,
and produces smooth output correlograms.

To calculate a kinematic diffraction pattern for a given ori-
entation w, we loop through all reciprocal lattice points and
use equation (6) to calculate the excitation errors. The intensity
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of each diffraction spot is given by the intensity of the structure
factor |Fhkl|2, reduced by a factor defined by either equation (7)
or equation (8). We define the position of the diffraction spots
in the imaging plane by finding two vectors perpendicular to
the beam direction, and projecting the diffraction vectors q
into this plane. The result is the intensity of each spot Im, and its
two spatial coordinates (qmx , qmy ), or alternatively their polar coor-

dinates qm = �������������
qmx

2 + qmy
2

√
and gm = arctan2(qmy , qmx ). Note that

the in-plane rotation angle is arbitrarily defined for kinematical
calculations in the forward direction. The resulting diffraction
patterns are defined by the list of M Bragg peaks, each defined
by a triplet (qmx , qmy , Im) in Cartesian or (qm, gm, Im) in polar
coordinates.

Figure 1e shows diffraction patterns for fcc Au, along five dif-
ferent zone axes (orientation directions). Each pattern includes
Bragg spots out to a maximum scattering angle of
kmax = 1.5 Å

−1
, and each spot is labeled by the (hkl) indices.

The marker size shown for each spot scales with the amplitude
of each spot’s structure factor, decreased by equation (8) using
s = 0.02 Å

−1
.

Generation of an Orientation Plan

The orientation of a crystal can be uniquely defined by a
[3× 3]-size matrix ↔

m , which rotates vectors d0 in the sample
coordinate system to vectors d in the parent crystal coordinate
system

dx
dy
dz

⎡
⎢⎣

⎤
⎥⎦ =

ux vx wx

uy vy wy

uz vz wz

⎡
⎢⎣

⎤
⎥⎦

d0x
d0y
d0z

⎡
⎢⎣

⎤
⎥⎦

d = ↔
m d0,

(9)

where the first two columns of ↔m given by u and v represent the
orientation of the in-plane x- and y-axis directions of the parent
crystal coordinate system, respectively, and the third column w
defines the zone axis or out-plane-direction. The orientation
matrix can be defined in many different ways, but we have chosen
to use a Z − X − Z Euler angle scheme (Rowenhorst et al., 2015),

Fig. 1. ACOM using correlation matching in py4DSTEM. (a) Structure of fcc Au. (b) Atomic scattering factor of Au. (c) Structure factors for fcc Au. (d) Zone axes
included in orientation plan. (e) Diffraction patterns for various orientations, and (f) corresponding orientation plan slices. (g) Correlogram maxima for each pat-
tern in (e) as a function of zone axis, and (h) corresponding in-plane rotation correlation. Highest correlation scores are shown in (g) and (h) using red circles.
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defined as

↔
m =

C1 −S1 0
S1 C1 0
0 0 1

⎡
⎣

⎤
⎦ 1 0 0

0 C2 S2
0 −S2 C2

⎡
⎣

⎤
⎦ C3 −S3 0

S3 C3 0
0 0 1

⎡
⎣

⎤
⎦, (10)

where C1 = cos (f1), S1 = sin (f1), C2 = cos (u2), S2 = sin (u2),
C3 = cos (f3), and S3 = sin (f3). The Euler angles (f1, u2, f3)
chosen are fairly arbitrarily, as are the signs of rotation matrices
given above.

In order to determine the orientation ↔
m of a given diffraction

pattern, we use a two-step procedure. The first step is to calculate
an orientation plan P((f1, u2), f3, qs) for a given reference crystal.
The second step, which is defined in the following section, is to
generate a correlogram from each reference crystal, from which
we directly determine the correct orientation.

The first two Euler angles f1 and u2 represent points on the
unit sphere which will become the zone axis of a given orienta-
tion. The first step in generating an orientation plan is to select
three vectors delimiting the extrema of the unique,
symmetry-reduced zone axes possible for a given crystal.
Figure 1d shows these boundary vectors for fcc Au, which are
given by the directions [001], [011], and [111]. We next choose
a sampling rate or angular step size, and generate a grid of zone
axes to test. We define a 2D grid of vectors on the unit sphere
which span the boundary vectors by using spherical linear inter-
polation (SLERP) formula defined by Shoemake (1985). These points
with a step size of 2◦ are shown in Figure 1d. The rotation matrices
which transform the zone axis vector (along the z-axis) are given by
the matrix inverse of the first two terms in equation (10).

We then examine the vector lengths of all non-zero reciprocal lat-
tice points ghkl and find all unique spherical shell radii qs. These radii
will become the first dimension of our orientation correlogram,
where each radius is assigned one index s. We loop through all
included zone axes, and calculate a polar coordinate representation
of the kinematical diffraction patterns. Wu & Zaefferer (2009)
pointed out that a polar transformation can make the in-plane rota-
tion matching step more efficient, as the pattern rotation becomes a
simple translation. We will further speed up the in-plane matching
by using Fourier correlation along the angular dimension after the
polar transformation (De Castro & Morandi, 1987).

For each zone axis, the first step to compute the plan is to
rotate all structure factor coordinates by the matrix inverse of
the first two terms in equation (10). Next, we compute the exci-
tation errors sg for all peaks assuming a [0, 0, 1] projection direc-
tion, and the in-plane rotation angle of all peaks gq. The intensity
values of the orientation plan for all qs shells and in-plane rotation
values f3 are defined using the expression

P0((f1, u2), f3, qs) =
∑

{g : |g|=qs}

qs
g|Vg |v

×max 1− 1
d

������������������������������������������
s2g + [mod(f3 − gg + p, 2p)− p]2qs2

√
, 0

{ }
,

(11)

where d is the correlation kernel size, g and v represent the power
law scaling for the radial and peak amplitude terms respectively,
max ( . . . ) is the maximum function, which returns the maximum
of its two arguments, mod( . . . ) is the modulo operator, and the
summation includes only those peaks g which belong to a given

radial value qs. We have used the combined indexing notation
for (f1, u2) to indicate that in practice, this dimension of the cor-
relation plan contains all zone axes, and thus, the entire array has
only three dimensions. The correlation kernel size d defines the
azimuthal extent of the correlation signal for each reciprocal lat-
tice point. Note that equations (8) and (7) are not used for the
calculation of orientation plans.

We normalize each zone axis projection using the function

A(f1, u2) =
1��������������������������������∑

f3

∑
qs P0((f1, u2), f3, qs)

2
√ ,

yielding the final normalized orientation plan

P((f1, u2), f3, qs) = A(f1, u2)P0((f1, u2), f3, qs). (12)

By default, we have weighted each term in the orientation plan
with the prefactor qs|Vg |, that is, setting g = v = 1. The qs
term gives slightly more weight to higher scattering angles,
while the |Vg | term is used to weight the correlation in favor of
peaks with higher structure factor amplitudes, which was found
to be more reliable than weighting the orientation plan by
|Vg |2, which weights each peak by its structure factor intensity.

Figure 1f shows 2D slices of the 3D orientation plan, for the
five diffraction patterns shown in Figure 1e. The in-plane rota-
tional symmetry of each radial band is obvious for the low
index zone axes, for example, for the [001]-orientated crystal,
the first row of the corresponding orientation plan consists of
four spots which maintains the fourfold symmetry of the diffrac-
tion pattern and can be indexed as [020], [200], [0�20], and [�200].
The final step is to take the 1D Fourier transform along the
f3-axis in preparation for the Fourier correlation step defined
in the next section.

Correlation Pattern Matching

For each diffraction pattern measurement, we first measure the
location and intensity of each Bragg disk by using the template
matching procedure outlined by Savitzky et al. (2021). The result
is a set of M experimental diffraction peaks defined by the triplets
(qm, gm, Im) in polar coordinates. Note that while all ACOM
approaches we are aware of store the diffraction libraries in vector
format (Rauch & Dupuy, 2005), here we also reduce the experi-
mental data to a list of peak position and intensity vectors. This
has the effect of deconvolving the probe shape from the diffracted
disk, and thus improving the resolution. From the experimental
peaks, we calculate the sparse polar diffraction image X(f3, qs)
using the expression:

X(f3, qs)=
∑

{qm : |qm−qs|,d}

qm
gIm

v/2

×max 1− 1
d

������������������������������������������������
(qm−qs)

2+ [mod(f3−gm+p, 2p)−p]2qs2
√

, 0

{ }
.

(13)

Note that the polar coordinates qs and f3 used in this expression
are identical to those used in the orientation plan calculation. The
measured diffraction intensity is not normalized, as realistic sam-
ple thicknesses we expect the intensity to vary significantly from
the kinematically predicted values.
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By default, we again use prefactors weighted by the peak radius
and estimated peak amplitude given by the square root of the
measured disk intensities. However, if the dataset being analyzed
contains a large number of different sample thicknesses, multiple
scattering can cause strong oscillations in the peak amplitude val-
ues. The intensity weighting factor v provides a similar effect as
the “gamma correction” used in many diffraction template match-
ing routines (Cautaerts et al., 2021), but acts on the measured disk
intensities rather than the original diffraction pattern. As we will
see in the simulations below, in these situations the best results
may be achieved by setting v = 0, that is ignoring peak intensity
and weighting only by the peak radii. Note that in the diffraction
image, the correlation kernel size d again gives the azimuthal
extent of the correlation signal. However, in equation (13), it
also sets the range over which peaks are included in a given radial
bin, and the fraction of the intensity assigned to each radial bin.
To prevent experimental disk position errors from causing
peaks to be assigned erroneously when the radial bins are near
to one another (such as due to different reflections with nearly
similar spacing), experimental peaks can be included in multiple
radial bins if they fall within the correlation kernel size of multiple
bins. The kernel size d can be optimized for each type of sample: if
the sample contains crystals with large lattice distortions, a larger
kernel size can be used to increase the tolerance. Alternatively, if a
sample consists of many overlapping grains, then the kernel size
can be decreased to lower the probability of false positive matches
for nearby orientations.

Finally, we calculate the correlation C((f1, u2), f3) of this
image with the orientation plan using the expression

C((f1, u2), f3)

=
∑
qs

F−1{F {P((f1, u2), f3, qs)}
∗F {X(f3, qs)}},

(14)

where F and F−1 are 1D forward and inverse fast Fourier trans-
forms (FFTs), respectively, along the f3-direction, and the ∗ oper-
ator represents taking the complex conjugate. We use this
correlation over f3 to efficiently calculate the in-plane rotation
of the diffraction patterns. The maximum value in the correlo-
gram will ideally correspond to the most probable orientation
of the crystal. In order to account for mirror symmetry of the
2D diffraction patterns, we can also compute the correlation

Cmirror((f1, u2), f3)

=
∑
qs

F−1{F {P((f1, u2), f3, qs)}
∗F {X(f3, qs)}

∗}, (15)

where the mirror operation is accomplished by taking the com-
plex conjugate of F {X(f3, qs)}. For each zone axis (f1, u2), we
take the maximum value of C and Cmirror in order to account
for this symmetry. Figures 1g and 1h show five output correlo-
grams, for the five diffraction patterns shown in Figure 1e. For
each zone axis (f1, u2), we have computed the maximum corre-
lation value, which are plotted as a 2D array in Figure 1g. In
each case, the highest value corresponds to the correct orientation.

Note that to calculate the correlation values, we have re-binned
the vector peak data from both the orientation plan and experi-
mental peaks into a polar coordinate image with sparse radial
bins. It is also possible to perform the correlations of equations
(14) and (15) directly on the inputs into equation (11) and exper-
imental peaks (qm, gm, Im). However, in our numerical tests,

correlations computed from vector inputs were slower than the
image correlation approach for all ranges of parameters tested.
We attribute this to two factors: first, the polar coordinate images
we use have a very small number of radial bins since we only oper-
ate on shells which contain reciprocal lattice vectors. Second, cal-
culating the correlation of all in-plane rotations using Fourier
transforms is highly efficient due to the high speed of the fast
Fourier transform. This is why we have elected to compute the
orientation correlations using radially sparse polar coordinate
images.

Figure 1h shows the correlation values along the f3-axis, for
the (f1, u2) bins with the highest correlation value in Figure 1g.
The symmetry of the correlation values in Figure 1h reflect the
symmetry of the underlying patterns. For the [0, 0, 1], [0, 1, 1],
and [1, 1, 1], diffraction patterns, the in-plane angle f3 correla-
tion signals have fourfold, twofold, and sixfold rotational symme-
try, respectively. By contrast, the asymmetric diffraction patterns
with zone axes [1, 1, 3], and [1, 3, 5] have only a single best
in-plane orientation match.

The above default values are designed for matching of kine-
matical diffraction patterns. However, thermal excitation and
multiple scattering can lead to non-zero intensities of the “kine-
matically forbidden peaks,” that is diffraction signals at reciprocal
lattice points where the structure factor is zero. In order to include
forbidden peaks, we can include all points where V = 0 in equa-
tion (4) by setting the structure factor threshold to zero. In a
future update of the code, we will use dynamical (i.e., including
multiple scattering) structure factor calculations to include
peaks which are likely to be excited by multiple scattering.
Additionally, we can set v = 0 in equations (11) and (13), which
removes the dependence of the correlation function on the peak
intensities entirely, and uses only the peak positions. These steps
will calculate the orientation correlation score using only the posi-
tion of all scattering vectors, including the forbidden peaks.

Matching of Overlapping Diffraction Patterns

In order to match multiple overlapping crystal signals, we have
implemented an iterative detection process. First, we use the
above algorithm to determine the best fit orientation for a given
pattern. Next, the forward diffraction pattern is calculated for
this orientation. We then loop through all experimental peaks,
and any within a user-specified deletion radius are removed
from the pattern. By default, this deletion radius is set to half of
the correlation kernel size, that is, 0.5d. This value can be modi-
fied by the user depending on how close together the diffraction
peaks are for a given experiment. Peaks which are outside of the
deletion radius, but within the correlation kernel size, have their
intensities reduced by a factor defined by the linear distance
between the experimental and simulated peaks divided by the dis-
tance between the correlation kernel size and the deletion radius.
Then, the ACOM correlation matching procedure is repeated
until the desired number of matches have been found, or no fur-
ther orientations are found. Note that while we could update the
correlation score after peak deletion, we output the original mag-
nitude of the full pattern correlogram in order to accurately cal-
culate the probability of multiple matches.

ACOM Integration into py4DSTEM

The ACOM pattern matching described has been implemented
into the py4DSTEM python toolkit written by Savitzky et al.
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(2021). A typical ACOM workflow starts with using py4DSTEM to
import the 4D dataset and one or more images of the vacuum
probe. We then use a correlation template matching procedure
to find the positions of all diffracted disks at each probe position
(Pekin et al., 2017). We use the correlation intensity of each
detected peak as an estimate of the peak’s intensity. The resulting
set of M peaks defined by the values (qm, gm, Im) are stored as a
PointList object in py4DSTEM. Because the number of peaks
detected at each probe position can vary, we store the full set of
all detected peaks in a PointListArray object in py4DSTEM,
which provides an interface to the ragged structured numpy data.

Most experimental datasets contain some degree of ellipticity,
and the absolute pixel size must be calibrated. We perform these
corrections on the set of measured diffraction disks using the
py4DSTEM calibration routines defined by Savitzky et al. (2021).
We know that the correlation approach is relatively robust against
both ellipticity and small errors in the reciprocal space pixel size.
However, precise phase mapping may require us to distinguish
between crystals with similar lattice parameters; these experiments
will require accurate calibration.

We perform ACOM in py4DSTEM by first creating a Crystal
object, either by specifying the atomic basis directly, or by using
the pymatgen package (Ong et al., 2013) to import structural
data from crystallographic information files (CIFs), or the
Materials Project database (Jain et al., 2013). The Crystal object
is used to calculate the structure factors and generate an orienta-
tion plan. The final step is to use the orientation plan to deter-
mine the best match (or matches) for each probe position, from
the list of calibrated diffraction peaks. If the sample contains mul-
tiple phases, we perform the orientation plan calculation and cor-
relation matching for each unique crystal structure.

In addition to specifying the orientation plan spanning three
vectors as in Figure 1, we define additional methods to describe
the space of possible orientations. One such example is fiber tex-
ture, where we assume the crystals are all orientated near a single
zone axis known as the fiber axis, shown in Figures 2a and 2b. We
can vary the angular range of zone axes included away from the
fiber axis as in Figure 2a, as well as choose the azimuthal range
around this axis as in Figure 2b to account for symmetry around
the fiber axis. Alternatively, an “automatic” option is provided,
which uses pymatgen to determine the symmetry of the structure
and automatically choose the span of symmetrically unique zone
axes which should be included in the orientation plan, based on
the point group symmetry (De Graef, 2003). This is shown for
a selection of different Materials Project database entries in
Figure 2c.

Simulations of Diffraction Patterns from Thick Samples

One important metric for the performance of an orientation map-
ping algorithm is how well it performs when the diffraction pat-
terns contain significant amounts of multiple scattering. We have
therefore used our ACOM algorithm to measure the orientation
of simulated diffraction patterns from samples tilted along
many directions, over a wide range of thicknesses. We performed
these simulations using the multislice algorithm (Cowley &
Moodie, 1957), and methods defined by Kirkland (2020) and
Ophus (2017). These methods are implemented in the
Prismatic simulation code by Rangel DaCosta et al. (2021). The
diffraction patterns were generated using a acceleration potential
of 300 keV, a 0.5 mrad convergence semiangle, with real space
and reciprocal pixel sizes of 0.05 Å and 0.01 Å

−1
, respectively,

with four frozen phonons. In total, we have simulated 3,750 dif-
fraction patterns from Cu, Ag, and Au fcc crystals, over 25 zone
axes ([0, 0, 1] to [3, 4, 4] excluding symmetrically redundant
reflections) and thicknesses up to 100 nm with a 2-nm step size.

Chemical Synthesis of Twisted AuAgPd Nanowires

The performed synthesis was reproduced with minor modifica-
tions from a known method given by Wang et al. (2011). All
reagents were purchased from Sigma-Aldrich. We prepared the
following solutions: 500 mM of Polyvinylpyrrolidone (PVP,
MW 40,000) in Dimethylformamide (DMF), 50 mM Gold(III)
chloride trihydrate (HAuCl4 · 3H2O, >49.0% Au Basis) in DMF,
50 mM Silver nitrate (AgNO3) in deionized (DI) water (resistivity
>18MV/cm), and 400 mM L-ascorbic acid (>99.0%, crystalline)
in DI water. We created the reaction solution in a 4 mL glass
vial (washed 3× with DI water and acetone) by mixing 800mL
DMF, 100 mL PVP, 20mL HAuCl4, and 20mL AgNO3. We

Fig. 2. Examples of alternative orientation plan types in py4DSTEM. Fiber texture
examples where (a) orientations fully orbit around a single zone axis (the fiber
axis), or (b) contain only a symmetry-reduced wedge of zone axes which orbit around
the fiber axis. (c) Examples of orientation plans generated directly from Materials
Project entries (Jain et al., 2013), using pymatgen symmetries (Ong et al., 2013).
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mixed the solution for approximately 2 s using a Vortex-Genie 2
Mixer set to a value of 10, which spins the reaction solution at a
speed of approximately 3,200 rpm, then added 100 mL of
L-ascorbic acid solution drop-wise to the mixture while gently
swirling by hand. At this point, the color changed from pale yel-
low to clear. We left the solution at room temperature for 7 days,
at which point the solution was light brown/purple. The primary
product of this reaction was straight, ultrathin Au–Ag nanowires
(2 nm in diameter).

To twist the underlying ultrathin Au–Ag nanowires, we pre-
pared solutions of 1.875 mM L-ascorbic acid and 2 mM
H2PdCl2 in DI water. In a 4 mL glass vial (3× washed with DI
water/acetone), we added 50mL of the Au–Ag reacted solution
to 640 mL of the L-ascorbic acid solution. Finally, we added
60 mL of the H2PdCl4 solution and allowed the sample to incu-
bate for at least 30 min. We purified the reaction solution by cen-
trifuging the product down at 7,500 rpm for 4 min. We decanted
the supernatant, and then rinsed the reaction with DI water three
times and re-dispersed in DI water. We prepared TEM samples of
this material by depositing 10mL of purified nanowire solution
onto 400 mesh formvar/ultrathin carbon grids.

4D-STEM Experiments with Patterned Apertures

We collected the experimental data using a double aberration-
corrected modified FEI Titan 80-300 microscope (the TEAM I
instrument at the National Center for Electron Microscopy within
Lawrence Berkeley National Laboratory). This microscope is
equipped with a Gatan K3 detector and Continuum spectrometer
and was set to collect diffraction patterns integrated over 0.05 s,
with 4× binning giving a calibrated pixel size of 0.00424 Å−1.
We used an accelerating voltage of 300 keV, an energy slit of 20

eV, and a spot size of 6. The beam current was 6 pA. We used
a 10 mm bullseye aperture (probe size of approximately 1 nm)
to form the STEM probe in order to improve detection precision
of the Bragg disks (Zeltmann et al., 2020). We used a convergence
semiangle of 2 mrad, with a camera length of 1.05 m. We recorded
the experimental dataset using a probe step size of 5 Å, with a
total of 286 and 124 steps in the x- and y-directions.

Results and Discussion

ACOM of Kinematical Calculated Diffraction Patterns

For the first test of our correlation method, we applied it to the
same patterns calculated to generate an orientation plan for fcc
Au. Next, we measured the calculation time and angular error
between the measured and ground truth zone axes for each pat-
tern. The results are plotted in Figure 3 for different maximum
scattering angles kmax, and angular sampling of 1◦ and 2◦.

The results in Figure 3 show that the angular error in zone axis
orientation is relatively insensitive to the angular sampling.
However, the angular error drops by a factor of 10 from approx-
imately ≈3◦ to ≈0.3◦ when increasing the maximum scattering
angle included from kmax = 1 to 1.5 Å−1, and by another factor
of 2–3 when increasing kmax to 2 Å−1. This is unsurprising, as
examining Figure 1e shows that there is a large number of visible
Bragg spots outside of kmax = 1 Å−1, and because Bragg disks at
higher scattering angles provide better angular precision relative
to low k disks. This result emphasizes the importance of recording
as many diffraction orders as possible when performing orienta-
tion matching of 4D-STEM data. More spots can be included by
collecting data out to higher scattering angles, or by reducing the
convergence semiangle to bring weakly diffracting peaks above
the noise floor. Setting kmax beyond the highest angle detected

Fig. 3. Zone axis misorientation as a function of sampling and maximum scattering angle for kinematical simulations. The mean tilt error and the number of pat-
terns matched per second are shown in the inset for each panel.
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disks will not yield any additional precision but will make the ori-
entation plan larger, so kmax should be chosen to correspond to
the highest scattering angle peaks detected in an experiment.

The inset calculation times reported are for the single-threaded
ACOM implementation in py4DSTEM, running in Anaconda
(Anaconda Software Distribution, 2020) on a laptop with an
Intel Core i7-10875H processor, running at 2.30 GHz. The calcu-
lation times can be increased by an order of magnitude or more
when running in parallel, or by using a GPU to perform the
matrix multiplication and Fourier transform steps.

ACOM of Overlapping Diffraction Patterns

A common feature of polycrystalline samples is overlapping
grains along the beam direction, leading to overlapping diffraction
patterns. To demonstrate the ability of our method to work with
overlapping grains, we have generated a combined set of diffrac-
tion patterns with three low index zone axes and random in-plane
rotations, plotted in Figure 4a. Figures 4b–4d shows the first three
matches returned by our ACOM code using a kernel size of
d = 0.08 Å, a zone axis step size of 1◦, and a prefactor of
qs|Vg |. The multi-pattern peak deletion radius was slightly
decreased from the default value of 0.04 to 0.02 Å to prevent
removal of adjacent peaks as matches are assigned. Our ACOM
code has correctly returned three zone axes which match the
ground truth values. This example also demonstrates a procedure
which could be used to map the location and orientation of mul-
tiple phases, even when the diffraction patterns overlap.

ACOM of Dynamical Simulated Diffraction Patterns

In diffraction experiments using thick specimens, strong dynam-
ical diffraction effects such as multiple scattering can occur. This
effect is especially pronounced in diffraction experiments along
low index zone axes, where the diffracted peak intensities oscillate
as a function of thickness. In order to test the effect of oscillating
peak intensities on our ACOM method, we have simulated dif-
fraction patterns for Cu, Ag, and Au fcc crystals, along multiple
zone axes. Some example diffraction patterns for the [011] zone
axis of Au are plotted in Figure 5a. We see that all diffraction
spots have intensities which oscillate multiple times as a function
of thickness.

We performed ACOM by generating orientation plans with an
angular sampling of 2◦, a correlation kernel size of 0.08 Å−1, and
maximum scattering angles of kmax = 1.0, 1.5, and 2.0 Å−1. We
kept the radial prefactor of weighting set to g = 1, and tested
peak amplitude prefactors of v = 1.0, 0.5, and 0.0. The average
zone axis angular misorientation as a function of thickness is plot-
ted in Figure 5b. In total, we performed orientation matching on
3,750 diffraction patterns, and a total of 33,750 correlation
matches on a workstation with an AMD Ryzen Threadripper
3960X CPU (2.2 GHz, baseclock). The typical number of patterns
matched per second were of �80–90, 45–55, and 25–30 patterns/s
for kmax values of 1.0, 1.5, and 2.0 Å−1, respectively.

As expected, the errors are higher than those achieved under
kinematic conditions, and the trend for smaller errors with larger
kmax is also preserved (mean errors of 7.25◦, 3.09◦, and 1.39◦ for
kmax values 1.0, 1.5, and 2.0 Å−1, respectively, g = 1, v = 0.25).
We did not observe any dependence of the orientation accuracy
on the simulation thickness. Despite the correlation prefactor
|Vg| performing well for the examples shown in Figure 1, for
the dynamical diffraction simulations along zone axes it was out-

performed by prefactors of both
�����|Vg |

√
(v = 0.5) and omitting

the peak amplitude prefactor altogether (v = 0). We, therefore,
suggest that when mapping samples with a large range of thick-
nesses, or many crystals aligned to low index zone axes, the posi-
tion of the diffracted peaks is significantly more important than

Fig. 4. ACOM of overlapping diffraction patterns. (a) Three overlapping diffraction
patterns with randomly chosen in-plane rotations. (b) First match, (c) second
match, and (d) third match returned by ACOM code. The fitted zone axes and corre-
lation scores are inset into fits.
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their amplitudes or intensities. One possible method to increase
the average accuracy for a randomly orientated sample while
using higher amplitude prefactors is to perform an experiment
which recovers more kinematical values for the diffracted peak
intensities, for example by precessing the electron beam when
recording diffraction patterns (Midgley & Eggeman, 2015; Jeong

et al., 2021). A precession experiment could however make the
diffraction patterns of some grains more dynamical, and thus
worsen the orientation accuracy for some probe positions. We
note that there is likely no global optimal choice of orientation
mapping hyperparameters for all materials and thicknesses, and
this may be a worthwhile topic for future investigations.

Fig. 5. Dynamical simulated diffraction patterns. (a) Example diffraction patterns for Au oriented to the [011] zone axis for 10–80 nm thick slices. (b) Plots showing
the mean zone axis misorientation in degrees as a function of thickness for Cu, Ag, and Au. Each plot shows the errors for correlation prefactors of qs|Vg| (red) and
qs (blue).

Fig. 6. 4D-STEM scan of twisted polycrystalline AuAgPd nanowires. (a) Diffraction image of probe over vacuum, showing the bullseye pattern. (b) Maximum of each
pixel in diffraction space over all probe positions. (c) Histogram of all peak locations detected by correlation in py4DSTEM of (a) with each pattern included in (b).
(d) HAADF-STEM image of the sample. (e) 1D histogram of scattering vectors, with fcc AuAg inverse plane spacings overlaid.
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4D-STEM ACOM of Twisted AuAgPd Nanowires

We have tested our ACOM algorithm with a 4D-STEM dataset
collected for an AuAgPd nanowires. These nanowires are mor-
phologically twisted into double helices via a colloidal growth pro-
cess as previously reported by Wang et al. (2011). An image of the
vacuum bullseye STEM probe is shown in Figure 6a. For each
detector pixel, we have calculated the maximum value across all
STEM probe positions to generate a maximum diffraction pattern,
shown in Figure 6b. The beamstop used to block the center beam
is visible, as well as various crystalline diffraction rings out to
approximately 1.4 Å−1.

After performing the correlation peak finding algorithm in
py4DSTEM, we have an estimated position and intensity of all
detected Bragg peaks. A 2D histogram of these peaks, known as
a Bragg vector map, is plotted in Figure 6c. Sharp polycrystalline
diffraction rings are clearly visible, as well as false positives gener-
ated by the beamstop edge. These false positives were manually
removed by using a mask generated from an image of the beam-
stop. A high-angle annular dark-field (HAADF) image was simul-
taneously recorded during the 4D-STEM data collection, which is
shown in Figure 6d.

The final experimental pre-processing steps are to calibrate the
diffraction pattern center, the elliptical distortions, and the abso-
lute pixel size. We performed these steps by fitting an ellipse to
the (022) diffraction ring, and by assuming a lattice constant of

4.08 Å, corresponding to the fcc Au structure (Maeland &
Flanagan, 1964). This process is explained in more detail by
Savitzky et al. (2021). We assumed that the Ag lattice constant
is similar to that of Au. Despite the presence of Pd in the nano-
wires, there was no significant presence of secondary grains cor-
responding to the smaller lattice of fcc Pd grains. An intensity
histogram of the corrected Bragg peak scattering angles are
shown in Figure 6e. We have overlaid the five smallest scattering
angles of Au on Figure 6e to show the accuracy of the correction.

We have performed ACOM on the AuAgPd nanowire sample,
with the results shown in Figure 7 shown for up to three matches
for each diffraction pattern. For each probe position, the sum of
the maximum detected correlation signals for up to three matches
are shown in Figure 7a. The structure is in good agreement with
Figure 6, though with additional modulations due to some grains
generating more diffraction signal than others. Using a correlation
intensity threshold of 0.5, we have plotted the number of match-
ing patterns in Figure 7b. The threshold of 0.5 was arbitrary cho-
sen as a lower bound for a potential match, as the correlation
values are scaled by the experimental intensity. Examples of two
matches to a single diffraction pattern are plotted in Figure 7c.
In this figure, the correlation score for the first matched pattern
was higher than the second. The second match found shows
some deformation between the measured and simulated Bragg
peak positions, and matches fewer peaks. It, therefore, produces
a lower correlation score, which can be used to threshold the

Fig. 7. Orientation mapping of polycrystalline AuAgPd nanowires. (a) Total of measured correlation signal for each probe position. (b) Estimated number of pat-
terns indexed for each probe position. (c) Example of two orientations indexed from a single diffraction pattern, collected at the position indicated by the arrow
shown in (b), with correlation scores inset. (d) Orientation maps of the three highest correlation signals for each probe position. A legend for the crystallographic
orientation is shown above, and arrows indicate the direction of the x- and y-axes, while the zone axis direction is out of the page.
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results as in Figure 7d. Note that the threshold values for inclu-
sion of any given match into the orientation maps is always
user-defined.

Figure 7d shows the 3D orientations plotted as inverse pole fig-
ures for all probe positions, with the three best matches shown.
Each image is masked by the total correlation signal, so that
low correlation values are colored black. Almost every diffraction
pattern with Bragg disks detected was indexed for at least one ori-
entation with high confidence. Additionally, the patterns are very
consistent, with a large number of adjacent probe positions
recording the same orientation. Some secondary grains are also
clearly visible in the second-best match, while very few patterns
have been assigned a third match with high confidence.

In order to investigate the grain organization of the AuAgPd
nanowires, we have performed clustering analysis on the orienta-
tion maps. Grains with similar orientations have been clustered
together by looping through each probe position and comparing
its orientation to its neighbors. Grains with at least 10 contiguous
probe positions are shown in Figure 8a. (111) planes which lie in
the image plane are overlaid onto the grain strucure, colored by
their orientation. Confirming our observations in Figure 7d,
only a few grains with substantial overlap were reliably identified.
This might be due to the low thickness of the sample (only a sin-
gle grain along the beam direction), some grains not being ori-
ented close enough to a zone axis to be detected, or multiple
scattering deviations in the diffracted signal. There is a noticable
bias in the orientation of the (111) planes, which tend to be ori-
ented horizontally near the growth direction of the nanowires.

One hypothesis for the growth mode of these twisted nano-
wires is that adjacent grains are connected by (111) twin planes,
forming local helical structures to give the observed twisted struc-
tures. To test this hypothesis, we determined the position of (111)
planes from Figure 8a which are shared by two overlapping grains.
Figure 8b shows the location of these shared (111) planes (with
plane normal differences below 8◦), colored by the normal vector
of the plane. Many shared (111) planes were detected, most with
normal vectors aligned to the wire growth direction. These obser-
vations support the hypothesis that these nanowires are composed
of grains connected by (111) twin planes.

These experimental observations demonstrate the efficacy of
our ACOM method. In order to improve these results, we will
need to collect diffraction data with a wider angular range. This
can be achieved by using precession electron diffraction
(Rouviere et al., 2013), multibeam electron diffraction (Hong
et al., 2021), or by tilting the sample or beam and recording mul-
tiple 4D-STEM datasets (Meng & Zuo, 2016).

Conclusion

We have introduced an efficient and accurate method to perform
automated crystal orientation mapping, using a sparse correlation
matching procedure. We have implemented our methods into the
open source py4DSTEM toolkit, and demonstrated the accuracy of
our method using simulated diffraction patterns, where we show
that lowering or removing the peak-intensity weighting can improve
the accuracy for thick samples with substantial dynamical diffrac-
tion. We also applied ACOM to an experimental scan of a complex
helical polycrystalline nanowire, where we were able to identify
shared twin planes between adjacent grains which may be responsi-
ble for the twisted helical geometry. All of our methods have been
made freely available to the microscopy community as open source
codes. We believe that our implementation of ACOM is efficient
and accurate enough to be incorporated into automated online
TEM software (Spurgeon et al., 2021). In the future, we will improve
our ACOMmethod using machine learning methods (Munshi et al.,
2021), and we will extend our ACOM methods to include multi-
beam electron diffraction experiments (Hong et al., 2021).

Source Code and Data Availability. All code used in this manuscript is
available on the py4DSTEM GitHub repository, and the tutorial notebooks
are available on the py4DSTEM tutorial repository. The experimental dataset
used in this paper is available as https://drive.google.com/drive/folders/1_fXB
c2DO4qOeXyA3idml-ehaqf1y8Mke?usp=sharing, and the simulated datasets
are available at https://drive.google.com/drive/folders/1oZ3Q2rTMqoqtvzNlz
deyIbYHaV6wUz11?usp=sharing.
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