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Under consideration for publication in J. Fluid Mech. 1

The evaporating meniscus in a channel

By S. J. S. MORRIS

Department of Mechanical Engineering,
University of California, Berkeley CA 94720

morris@me.berkeley.edu

(Received ?? and in revised form ??)

We consider the evaporating meniscus of a perfectly wetting liquid in a channel whose
superheated walls are at common temperature. Heat °ows from the walls to the phase
interface by pure conduction; there, evaporation induces a small{scale liquid °ow concen-
trated near the contact lines. Liquid is continually fed to the channel, so that the interface
is stationary, but distorted by the pressure di®erences caused by the small{scale °ow. To
determine the heat °ow, we make a systematic analysis of this free{boundary problem
in the limit of vanishing capillary number based on the velocity of the induced °ow. Be-
cause surface tension is then large, the induced °ow can distort the phase interface only
in a small inner region near the contact lines; the e®ect is to create an apparent contact
angle £ depending on capillary number. Though, in general, there can be signi¯cant
heat °ow within that small inner region, the presence of an additional small parameter
in the problem implies that, in practice, heat °ow is signi¯cant only within the large
outer region where the interface shape is determined by hydrostatics and £. We derive a
formula for the heat °ow, and show that the channel geometry a®ects the heat °ow only
through the value of the interface curvature at the contact line. Consequently, the heat
°ow relation for a channel can be applied to other geometries.

1. Introduction

The problem of the evaporating meniscus in a channel occurs in discussions of micro
heat pipes, and steady vapour bubbles in channels (Ha & Peterson 1998, Ajaev & Homsy
2001). In both cases, the evaporation rate is controlled by large temperature gradients
near the apparent contact line, and so the thermal ¯eld is nearly two dimensional within
each section normal to that line. In steady state, the interface is stationary relative to
the wall, so there is no velocity singularity due to a moving contact line. However, there
is potentially a thermal singularity. If the solid were isothermal, and the interface tem-
perature equalled the saturation temperature To at which the phases coexist at common
pressure, the boundary temperature for the liquid would be discontinuous at the contact
line. Two mechanisms smooth that discontinuity.
First, because the liquid is chosen to be perfectly wetting in these applications, the

part of the solid seeming unwetted to the eye is actually coated by a uniform ¯lm, typ-
ically a few tens of molecules thick. That wetting ¯lm exists because the solid attracts
the liquid by van der Waals forces more strongly than it does the vapour. As a result,
the phase interface turns parallel to the wall on approaching it. Further, the strong at-
traction between solid and liquid allows liquid within the ¯lm to coexist with its vapour
outside, even though the wall temperature Tw exceeds To. Wetting physics thus removes
the thermal singularity by introducing a minimum ¯lm thickness Hs, and by allowing the
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interface temperature to vary smoothly from Tw to To. Secondly, the interface tempera-
ture must exceed To to drive evaporation, and must therefore vary with position because
the evaporation rate decreases with distance from the contact region. By allowing the
interface temperature to vary, evaporation kinetics relax the singularity.
Because the interface in the contact region is distorted by the induced liquid °ow, the

domain for conduction heat transfer is shaped by a liquid °ow whose strength depends on
the evaporation rate. The accepted nonlinear theory of the stationary, perfectly wetting,
evaporating meniscus therefore couples wetting physics to evaporation kinetics, thin ¯lm
heat conduction and lubrication theory (Potash & Wayner 1972, Moosman & Homsy
1980). The resulting free{boundary problem contains three parameters. One of these, here
denoted by ², is the ratio of the large scale curvature to the characteristic curvature in the
small region where the large scale interface joins the °at wetting ¯lm. Existing analysis
(Morris 2001) shows that although the static contact angle vanishes for a perfectly wetting
system, an apparent contact angle exists in the limit ² ! 0. This angle £ is a property
of the small scale induced °ow; it is determined chie°y by the capillary number based on
the characteristic velocity of that °ow, and vanishes with capillary number. Because the
nonlinear theory is based on the assumption of vanishing interface slope, it holds only if
the capillary number is small, as was ¯rst pointed out in Morris (2001, p.18).
To ¯nd the heat °ow, Stephan & Busse (1992) and Schonberg et al (1995) informally use

the separation of scales allowing the existence of £. Those authors divide the meniscus at
an arbitrarily chosen point. In a small region near the apparent contact line, the nonlinear
theory is used to ¯nd £, and the local heat °ow. Outside that contact region, the induced
°ow is assumed too weak to distort the interface, whose shape is thus determined by£ and
hydrostatics; the capillary number of the induced °ow is thus implicitly taken as small.
The outer heat °ow is found by solving the conduction equation subject to a simpli¯ed
interfacial condition on T . That method is informal, as di®erent simpli¯cations are used
without explanation. Despite those simpli¯cations, the heat °ow across the wall is not
found explicitly as a function of superheat; both the inner and outer contributions are
computed, and the outer heat °ow is a functional of large{scale geometry.
Here, we make a systematic analysis of the free{boundary problem in the limit of

vanishing capillary number for a channel whose superheated walls are at common uniform
temperature. We derive a formula giving the heat °ow q¤ per unit width across one wall,
and we show that the same formula can be used to ¯nd the heat °ow per unit length of
contact line for any geometry in which the interface curves away from the wall, as in a
channel. We then specialize our analysis to the case in which the wetting ¯lm thickness
Hs (de¯ned precisely by equation 15), evaporative heat transfer coe±cient h (de¯ned by
equation 1), and liquid conductivity K satisfy ¯ = hHs=K ! 0; that limit of vanishing
micro scale Biot number ¯ is common in applications. By combining existing theory
given in Morris (2001) with our new heat °ow relation, we prove that for ¯ ! 0, the
dimensionless heat °ow q¤=K(Tw¡To) is uniquely determined by £, and the macro scale
Biot number de¯ned in terms of the gap thickness 2a by B = ha=K.
At this point, we will have used the free{boundary problem to show that, in practice,

the heat °ow is determined by purely macroscopic variables, rather than by the micro-
physics included in that model to resolve the thermal contact line singularity. However,
because the resulting heat °ow relation involves only phenomenological variables, its
derivation should be possible without invoking microphysics.
We use existing theory to obtain such a derivation. In Morris (2000, x2), self{consistency

arguments are used to derive conditions under which there is negligible heat °ow at the
scale on which the contact angle is established. Those arguments result in a set of three
conditions on £ (treated as a parameter), material properties and the superheat. When
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these conditions hold, the heat °ow can be found by solving the conduction equation for
the domain bounded by a circular arc with contact angle £; on that arc, Newton's law of
cooling holds with a predicted heat transfer coe±cient. Because the derivation uses only
self{consistency arguments, and is independent of microphysics, this conduction model
can be used for ¯nite £, even if the system is partially wetting. For the special case of
a perfectly wetting system, it is shown in Morris (2001, p.27) that the self{consistency
conditions on £ are equivalent to the single condition of vanishing micro scale Biot num-
ber ¯. The conduction model and the nonlinear theory thus have a common region of
validity, namely for those perfectly wetting systems in which both ¯ and £ are small.
In x2, we use the conduction model to ¯nd the heat °ow for large B, and arbitrary

£ · ¼=2. (In practice, B ranges from 40 to about 105. The limits B ! 1 and ¯ ! 0
are consistent because the wetting ¯lm thickness Hs is small compared with the channel
thickness 2a.) We verify our general results for large B against an exact solution of the
conduction model for £ = ¼=2. In x3, we analyse the free{boundary problem, and in x4
we prove that the formulae derived from the two models are asymptotically identical in
their common range of validity. In x5, we give numerical examples showing that the two
models agree for parameter values usual in applications, and we show that our predictions
agree with the simulation by Schonberg et al (1995). In x6, we summarize the picture of
the evaporating meniscus developed in these papers.

2. Heat °ow predicted by the conduction model

Figure 1 shows the evaporating meniscus in a channel of gap thickness 2a. The phase
interface separates the liquid from its pure vapour phase, which is at uniform pressure
Po. The uniform wall temperature Tw = To+¢T , where To is the saturation temperature
at pressure Po, and ¢T is the superheat. The (large scale) phase interface is a circular
arc with contact angle £. The arc CP is the osculating parabola at C; i.e. the parabolic
arc with the same contact angle and curvature as the actual interface. (At B there is a
separate osculating parabola, not shown in the ¯gure.) Liquid of conductivity K ¯lls the
region D to the right of the interface. The latent heat of evaporation is Q. Within the
vapour, the sound speed, density and speci¯c heat ratio are respectively c, ½v and °; also
¸ =

p
2°=¼. Material properties are taken as uniform.

In Morris (2000, x2), the kinetic equation and interfacial energy balance are simpli¯ed
by using scaling to show that, in practice, Newton's law of cooling holds on the interface
at scales where there is signi¯cant heat °ow. That is

K@T¤=@n¤ + h(T¤ ¡ To) = 0; h = ¸½vQ
2=(c To) (1a; b)

is the evaporative heat transfer coe±cient (Cammenga 1980, p.495), T¤ is the dimensional
temperature and n¤ is normal distance into the vapour. The following must be true for
(1) to hold. (i) All heat conducted from the wall to the interface must be absorbed there
as latent heat of vaporization. (ii) The evaporation rate at a point on the interface must
be independent of the local liquid pressure, so that the Kelvin e®ect is negligible. (iii)
The vapour must be dynamically passive. Examples in Morris (2000, table 1) show that
these conditions commonly hold at the scale where there is signi¯cant heat °ow.
We also assume that pressure variations due to the induced °ow are too small to distort

the interface at the scale where heat °ow occurs. In Morris (2000, p.64), this is shown to
be a good approximation if Ca¿ £4; that condition holds in practice, and for a perfectly
wetting system, it is shown in Morris (2001, p.18) to be valid in the limit ¯ ! 0. We
stress that, at the scale where heat °ow occurs, the pressure variations at issue occur
within the thin ¯lm, not within the half space occupied by vapour.
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Figure 1. De¯nition sketch.

We de¯ne dimensionless variables (without asterisks) by T = (T¤¡To)=¢T and (x; y) =
(x¤; y¤)=a. The governing equations are

r2T = 0 withinD; on jyj = 1; T = 1; (2a; b)

on x2 + 2x tan£ + y2 = 1; (x+ tan£)
@T

@x
+ y

@T

@y
= B T sec£: (2c; d)

Throughout this work, r2 = @2=@x2+ @2=@y2, the macro scale Biot number B = ha=K,
and the heat °ow per unit width across one wall q = q¤=(K¢T ). In (2a), we assume heat
°ow by pure conduction; this is a good approximation if the Peclet number based on the
volumetric evaporation rate and thermal di®usivity is small, as is usually so.
To ¯nd q for large B, we let x1 be a small ¯xed positive number, and write

q = qi + qo; qi = ¡
Z x1

0

@T

@y

¯̄̄
y=¡1

dx; qo = ¡
Z 1

x1

@T

@y

¯̄̄
y=¡1

dx; (2e)

without approximation. We will prove that because x1 is ¯xed, for B ! 1 the outer
heat °ow qo can be found by setting the interface temperature equal to the constant
saturation temperature. However, very near the contact line, T must be allowed to vary
along the interface, for otherwise the °ux is non{integrable at the contact line. Within
that small contact region, other simpli¯cations are possible and allow the inner heat °ow
qi to be found explicitly. In addition to this inner and outer spatial structure in T (x; y),
the function q(£) has itself an inner and outer structure in £, as we now show.

2.1. Outer solution for the function q(£): B !1 with ¯xed £6= 0
The outer (spatial) limit is B !1 with (x; y) ¯xed, and not at the contact lines, shown
as points B and C in ¯gure 1. In this limit, (2) becomes

r2T = 0 withinD; on jyj = 1; T = 1; (3a; b)

on x2 + 2x tan£ + y2 = 1; T = 0: (3c; d)

This problem describes conduction heat °ow from the isothermal channel walls to a
circular arc on which the dimensional temperature equals the saturation temperature.
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In appendix B, we solve (3) by conformal mapping, and show that with error o(1) in
the small quantity x1, the outer heat °ow qo across the wall between x1 and 1 is given
by

£qo = ¡ ln x1
2£

¡ 2 ln
·p
¼
¡(1 + £

¼ )

¡(12 +
£
¼ )

¸
; (4)

where ¡(z) denotes the usual gamma function. The logarithm occurs in (4) because the
boundary temperature is discontinuous at the contact line by (3b) and (3d), and the ¯lm
thickness vanishes linearly near the contact line. Together these e®ects give a °ux » x¡11 ,
so that the heat °ow (integrated °ux) varies as ¡ lnx1.
The °ux singularity makes it inconsistent to use the simpli¯ed interfacial condition

(3d) too near the contact line. For the lower contact line in ¯gure 1, the size of that inner
region is found by balancing terms in (2d) to show that 1 + y » 1=B, and x » 1=B.
We therefore de¯ne inner variables by x̂ = B x; ŷ = B(1 + y); and de¯ne the inner

limit as B !1 with (x̂; ŷ) ¯xed. In that limit, (2) becomes

@2T

@x̂2
+
@2T

@ŷ2
= 0 withinD; on ŷ = 0; T = 1; (5a; b)

on ŷ = x̂ tan£; sin£
@T

@x̂
¡ cos£ @T

@ŷ
= T: (5c; d)

This problem describes conduction heat °ow from an isothermal wall across a liquid
wedge to a linear interface on which Newton's law of cooling holds. The interface is
linear in this small region because the ¯lm is now thin compared with the interfacial
radius of curvature. In (5), £ is independent of B, but may be small.
There is no elementary solution of (5) for arbitrary £, but in Morris (2000, appendix

A) a regular perturbation expansion in £ is used to show that the inner heat °ow qi
across the wall between x = 0 and x1 is given by

£qi = ln(B£x1) + 1
18£

2
¡
1¡ 7

150£
2
¢
+O(£6): (6)

Figure 4 of Morris (2000) shows that this expression gives the di®erence £qi¡ ln(Bx1) to
within 0:7% even for £ = ¼=2; of course, the error in qi is much less than that because
B !1, so that qi is determined chie°y by the term in lnB.
The heat °ow across one wall q = qi + qo without approximation. By substituting for

qi and qo from (4) and (6), we ¯nd that for B !1 with ¯xed non{zero £,

£q = ln (2B£2) + 1
18£

2
¡
1¡ 7

150£
2
¢¡ 2 ln·p¼ ¡(1 + £

¼ )

¡(12 +
£
¼ )

¸
+ o
¡
1
¢
: (7)

We see that q is independent of the location x1 at which we divide the interval 0 · x <1;
the dependence on x1 in the equation for qo exactly cancels that in the expression for
qi because the inner and outer problems (3) and (5) are equally valid in the region
B¡1 ¿ x¿ 1.

2.2. Inner solution for the function q(£): B !1 with £ = O(B¡1=2)
Because the inner interface is taken as linear to derive (7), the result fails when £ is
small enough for the linear and quadratic terms to balance in the Taylor expansion of
¯lm thickness about x = 0. That failure occurs when £x » x2; then x » £ and the
thickness » £2. For the left and right sides of Newton's law (2d) to balance, the Biot
number based on that thickness must be of order unity, i.e. £2B » 1.
For such small values of £, a new analysis of (2) is necessary. We de¯ne new inner
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variables for the lower contact line in ¯gure 1 by ·x = x=£ and ·y = (1+y)=£2, and de¯ne
a new inner limit by B ! 1 (¯xed £2B, ·x, ·y). In that limit, (2) becomes

@2T

@·y2
= 0 withinD; on ·y = 0; T = 1; (8a; b)

on ·y = ·x+ 1
2 ·x

2;
@T

@·y
+£2B T = 0: (8c; d)

This problem describes conduction heat °ow across a quasi{parallel ¯lm to a parabolic
arc on which Newton's law of cooling applies.
By solving (8), the inner heat °ow across the wall between ·x = 0 and ·x = x1=£ is

qi =
2

A£ tanh
¡1A¡ 2

x1
+ o
¡
1
¢
; A2 = 1¡ 2=(£2B): (9a; b)

Equation (9) holds for B ! 1 with £2B ¯xed, but arbitrary; although A is imaginary
for £2B < 2, qi remains real by the identity tanh¡1 iz = i tan¡1 z. The ¯rst term in (9)
is large compared with the second, because £ = O(B¡1=2), but x1 and A are ¯xed.
The outer limit is B ! 1 with x, y and £2B ¯xed. Newton's law (2d) again requires

the interface to be isothermal, but now £ = 0 for the outer problem. From appendix B,
the heat °ow across the wall between x1 and in¯nity to the semicircular interface

qo =
2

x1
¡ 4

¼
ln 2 + o

¡
1
¢
: (10)

The x1{dependence here di®ers from that in (4), because the outer ¯lm thickness now
vanishes quadratically rather than linearly with distance from the contact line. The
second term in (10) is small compared with the ¯rst because x1 is small.
The heat °ow across one wall q = qi + qo, without approximation. For B ! 1 with

£2B ¯xed, qi and qo are given by (9) and (10), so

q =
2

A£ tanh
¡1A¡ 4

¼
ln 2 + o

¡
1
¢
; (11)

and q is again independent of x1. The ¯rst term in (11) is large compared with the second
because £ = O(B¡1=2); the large term represents the heat °ow across the parabola
osculating with the interface at the contact line, and the smaller second term corrects
for the shape of the outer interface. The correction is negative because the actual ¯lm is
thicker than that below the osculating parabolic, as illustrated in ¯gure 1.

2.3. Composite expansion giving q(£) for £ · ¼=2 and B !1
Equations (7) and (11) have a common region of validity B¡1 ¿ £2 ¿ 1. In the ¯rst
case, £2B À 1 so A ! 1, and (11) reduces to

£q » ln(2B£2)¡ 4

¼
£ ln 2: (12)

Because (7) also reduces to (12) for £2 ¿ 1, the composite expansion is formed by adding
(11) to (7), then subtracting the common part (12).
The heat °ow q across one wall is thus given by

£q =
2

A tanh
¡1A+ 1

18£
2
¡
1¡ 7

150£
2
¢¡ 2 ln·p¼ ¡(1 + £

¼ )

¡(12 +
£
¼ )

¸
+ o
¡
1
¢
; (13)

where A is de¯ned by (9). The ¯rst term in (13) gives the heat °ow for £ ! 0 across
the osculating parabola, i.e. the arc with the same curvature and contact angle at the
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Figure 2. Structure of the free{boundary problem for the contact region on the lower wall in
the double limit £2

s ! 0, ²! 0. Coordinates x, y are shown in ¯gure 1. For the slope unit £s,
see (15); the apparent contact angle £ is proportional to £s.

contact line as the circular arc interface. The second term is the correction to the inner
heat °ow for ¯nite £; and the last term is the correction necessary because the outer
interface is not parabolic.
Equation (13) holds for all £ < ¼=2 and B ! 1. It is veri¯ed by an exact solution

of (2) for £ = ¼=2 (see appendix A). The exact result has the large{B asymptote (A6),
namely ¼q=2 = ln(4B=¼)+°E+o(1), where Euler's constant °E = 0:577+. For £ = ¼=2,
equation (13) di®ers only trivially from (A6), in that the additive constant is given as
0:573 rather than by its true value °E.

3. Heat °ow predicted by the free{boundary problem

The liquid viscosity and density are ¹ and ½`, and surface tension is ¾. The disjoining,
or resultant van der Waals, force per unit area acting on an interfacial element is A=Y 3¤
where Y¤ is the dimensional ¯lm thickness and A is the dispersion constant. As in the
conduction model, the pressure in the vapour is taken as uniform. Using the evaporative
heat transfer coe±cient h, we de¯ne a velocity scale Vs for liquid °ow normal to the
interface and a capillary number Ca by

Vs = h¢T=(½`Q); Ca = ¹Vs=¾: (14a; b)

(This scaling di®ers from that used in the local analysis in Morris (2001): there, all scales
are based on the di®erence Tw ¡ T1 between Tw and the temperature T1 far from the
wall; here, because the channel has ¯nite thickness, we use the superheat Tw ¡ To.)
Figure 2 outlines the structure which we shall establish for the contact region on the

lower wall. The solid curve shows the actual interface shape, and broken curves show the
outer limits of the solutions in subregions Ia and Ib. For vanishing capillary number,
Ca ! 0, the problem has an inner and outer structure. In the outer region II in the
¯gure, the interface is a circular arc because the capillary pressure ¾=a is large compared
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with the characteristic °ow pressure ¹Vs=a. The thermal boundary condition on that
circular arc, and the contact angle, are determined by analysing the contact region I.
In region I, the interface is perturbed by the induced °ow, so that the coupled tem-

perature, pressure and velocity ¯elds are found, together with the interface shape, by
solving a free{boundary problem due to Potash & Wayner (1972), and Moosman &
Homsy (1980). The dimensional form of that problem is given in Morris (2001, p.6). To
describe its dimensionless form, given as (20) below, we de¯ne the scales

Ps = ½`Q¢T=To; Hs = (A=Ps)
1=3; Ls = (¾Hs=Ps)

1=2; £s = Hs=Ls: (15a¡d)
Below (20), we show that Ps is the pressure di®erence across the interface of the uniform
wetting ¯lm shown on the left side of ¯gure 2, and described in x1; alsoHs is the thickness
of that uniform ¯lm; and Ls is the horizontal scale at which a pressure di®erence Ps is
balanced by surface tension. The contact angle £ is proportional to the slope unit £s.
We let ¢P be the pressure di®erence across the interface far from the wall; since £¿ 1,

¢P is given in terms of the gap thickness 2a by ¢P = ¾=a. The following parameters
appear when the governing equations described above are non{dimensionalized:

² = ¢P=Ps; ¯ = hHs=K; f = 3¹L2sVs=(PsH
3
s ); (16a; b; c)

as de¯ned in Morris (2001). By (15d), ² = L2s=(aHs) is the ratio of the curvature a
¡1 of

the outer interface to the curvature scale Hs=L
2
s within the contact region. Also, ¯ is the

micro scale Biot number de¯ned in x1. Lastly, f is the ratio to Ps of the pressure scale
¹L2sVs=H

3
s of the induced °ow.

From the de¯nitions (16), it follows that

£s = (3Ca=f)
1=4; ²£2s = Hs=a; ²B£2s = ¯: (17a; b; c)

The important identity (17a) shows that the slope unit vanishes with Ca, so that a small{
slope analysis of the contact region is appropriate for Ca ! 0 with ¯xed f and ¯. We
use (17b) below, and we use (17c) in x4.
To describe the contact region on the lower wall, we de¯ne the dimensionless liquid

pressure P , ¯lm thickness Y and x{coordinate by

P = (P¤ ¡ Po)=Ps; Y = (y¤ + a)=Hs; X = x¤=Ls: (18a; b; c)

In (18b) and throughout our analysis of the free{boundary problem, y denotes interface
location, rather than a coordinate as in x2; the change is appropriate because here only
the interface location is signi¯cant, and use of a similar symbol facilitates comparison
with the conduction model. By combining (18) with (17b)

X = x=(²£s); Y = (1 + y)=(²£2s): (19a; b)

This relates the new dimensionless variables to those de¯ned in x2. For X and Y » 1,
(19) implies that x » ²£s and 1 + y » ²£2s , as in ¯gure 2 above.

3.1. Boundary value problem for region I

We de¯ne the inner limit as £2s ! 0 with Y ¯xed. Moosman & Homsy (1980) show that,
with error O(£2s), in this limit the ¯lm thickness Y and liquid pressure P satisfy

d

dX

³
Y 3
dP

dX

´
= f

1 + P

1 + ¯Y
; ¡P = d2Y

dX2
+
1

Y 3
; (20a; b)

as X ! ¡1; dY
dX

! 0; as X ! 1; P ! ¡²: (20c; d)
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The domain is ¡1 < X <1, because there is no contact line for this perfectly wetting
system. (This dimensionless version of the problem di®ers slightly from that in Morris
(2001) owing to the present choice of To and Po as reference temperature and pressure.)
We interpret (20). First, the normal stress balance (20b) states that in this creeping

°ow, the pressure force on an interfacial element balances the resultant force due to
surface tension and van der Waals forces. Because the interface curves away from the
wall, the gas pressure exceeds the pressure in the liquid, making P < 0. Secondly, (20a)
results by combining a mass balance with an interfacial energy balance, one{dimensional
heat conduction and evaporation kinetics. This balance states that the liquid °ow rate
varies along the ¯lm owing to the evaporative mass °ux expressed by the right side of
the equation; that term varies inversely with Y because the heat °ux decreases with
increasing ¯lm thickness, and also depends on liquid pressure owing to the Kelvin e®ect,
i.e. evaporation is impeded because the gas pressure exceeds that in the liquid. The °uid
motion and the heat °ow are coupled through the pressure ¯eld; the inclusion of this
coupling distinguishes the free{boundary problem from the conduction model.
The dimensionless interface temperature is de¯ned by Ti = (Ti¤ ¡ To)=¢T , and is

determined as part of the solution of the free{boundary problem. It does not explicitly
enter (20), because it has been eliminated algebraically. By equations (6a) and (6b) of
Morris (2001), Ti is given in terms of the ¯lm thickness and liquid pressure by

Ti = (1¡ ¯PY )
±
(1 + ¯Y ): (21)

We can now discuss the qualitative nature of the solution of (20). As X ! ¡1, the
¯lm thickness becomes uniform by (20c). Equation (20b) then forces P to be constant,
and (20a) imposes the stronger condition P ! ¡1; so Y ! 1. Consequently, Ps is the
pressure di®erence across the equilibrium wetting ¯lm, and Hs is the thickness of that
¯lm. Next, as X is increased from ¡1, Y increases, and P rises above -1, allowing liquid
to evaporate. Evaporation ceases as X ! 1, because (20d) and (20b) together require
Y » ²X2=2; this parabolic growth makes the right side of (20a) vanish as 1=X2, and so
makes the total evaporation from the contact region I integrable at in¯nity.
In applications, it is usual that ² ¿ ¯ ¿ 1 and f » 1 (see table 1 below, and table 1

of Morris 2001). In the limit ² ! 0 (with ¯, f ¯xed), region I has additional inner and
outer structure, which we now derive.

3.1.1. Region Ia: inner limit ²! 0 (X, ¯, f ¯xed)

The inner problem is the special case of (20) with the outer boundary condition (20d)
replaced by the new boundary condition P ! 0 as X ! 1. Then, as shown in Morris
(2001, p.11), equation (20) admits a solution such that as X !1,

dY

dX
= b¡ f

2¯b4
lnX

X
+O(X¡1); Y 3

dP

dX
=
f

¯b
ln
³X
±

´
+ o(1): (22a; b)

The integration constants b and ± are found by solving the inner problem numerically;
examples are given in table 1 below. Because dY=dX approaches a limit at the outer
edge of this region, the apparent contact angle is established here; speci¯cally,

£ = b(3Ca=f)1=4; (22c)

where we have used (17a). As noted in Morris (2001), the contact angle here is a property
of the small{scale °ow; unlike the dynamic contact angle of a spreading isothermal drop,
it is independent of large scale geometry.
The linear growth in ¯lm thickness predicted by (22a) causes the heat °ux to decay

as 1=X, and as a result, the total evaporation varies as lnX, as stated by (22b). To treat
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¯ f b ln ±

0.029 0.23 1.23 2.98
0.014 1.08 1.90 3.39
0.0064 5.00 2.89 3.81

Table 1. Integration constants b and ± obtained by solving the inner problem.
Values of ¯ and f are for the conditions of Schonberg et al (1995).

that unbounded growth, Stephan & Busse (1992), and Schonberg et al (1995) use the
free{boundary problem to compute only the heat °ow across a ¯nite part of the meniscus
where the slope is small. They ¯nd the rest by numerically solving an outer conduction
problem in which the detailed shape of the interface is incorporated, and then patching
the two solutions together, in the sense of Van Dyke (1975).
In our matched asymptotic analysis, we incorporate the outer geometry in two steps.

We ¯rst show that the e®ect of interface curvature must be included by approximating
the interface as a parabolic arc with the same contact angle and curvature as the actual
interface at the contact line Because the interface curves away from the wall, the heat
°ux decays faster than X¡1, and is integrable at in¯nity. We then calculate the small
correction needed because the outer circular arc interface is not parabolic for all X.
We now estimate the size of the intermediate region Ib in which the interface is ap-

proximately parabolic. For any ² > 0, the inner solution becomes inconsistent for large
X, because (20d) and (20b) then require Y » ²X2=2. For that outer parabolic interface
to match smoothly to the outer limit (22) of the inner solution, bX » ²X2. Consequently,
interface curvature is essential where ²X » 1, so that Y » ²¡1.
We therefore de¯ne intermediate variables by

·X = ²X; ·Y = ²Y; ·P = P=²: (23a; b; c)

It is implicit in these de¯nitions that ² > 0, so that the interface curves away from the
wall. By (19), ·X = x=£s and ·Y = (1+ y)=£

2
s , so that ·X and ·Y di®er from the variables

·x and ·y of x2.2 only because the de¯nitions are now based on the known slope unit £s
rather than on the parameter £. Because ·X and ·Y are of unity in this region, x » £s
and 1 + y » £2s , as illustrated in ¯gure 2.

3.1.2. Region Ib: intermediate limit ²! 0, ( ·X;¯; f ¯xed)

By writing (20) in terms of the new variables, without approximation,

d

d ·X

³
·Y 3
d ·P

d ·X

´
= ²f

1 + ² ·P

²+ ¯ ·Y
; ¡ ·P = d2 ·Y

d ·X2
+ ²2=·Y 3; (24a; b)

as ·X ! ¡1; ·Y ! ²; as ·X !1; ·P ! ¡1: (24c; d)

From the right side of (24a), we see that for ² ! 0 with ¯ ¯xed (possibly small), the
evaporative mass °ux in this region is O(²).
We seek the solution of (24) in the form of the asymptotic series

·Y = ·Y0 + ²ln ² ·Y1 + ² ·Y2 + o(²); ·P = ¡1 + ²ln ² ·P1 + ² ·P2 + o(²); (25a; b)

where the coe±cients ·Y0; ·P1; ¢ ¢ ¢ are independent of ². At leading order in this series, ·Y
and ·P are O(1) by the choice of scales. At the next order, the gauge function is found
by matching to the inner solution; for large X, the outer limit (22) of the inner solution
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requires P = O(X¡2 lnX); consequently P = O(²2 ln ²) for X » 1=². The choice of ² ln ²
as gauge function in (25) follows because ·P = P=².
We derive matching conditions on the mass °ow Y 3dP=dX. By (25)

Y 3
dP

dX
= ·Y 30

nd ·P1
d ·X

ln ² +
d ·P2

d ·X

o
+ o
¡
1
¢
: (26)

But by (22b), at the outer edge of region I,

¯b

f
Y 3
dP

dX
= ¡ ln ²+ ln

³ ·X
±

´
+ o
¡
1
¢
:

The matching conditions obtained from these expressions are

lim
·X!0

¯b

f
·Y 30
d ·P1

d ·X
= ¡1; lim

·X!0

n¯b
f
·Y 30
d ·P2

d ·X
¡ ln ·X

o
= ¡ ln ±: (27a; b)

We obtain di®erential equations for the coe±cients ·Y0; ·P1; ¢ ¢ ¢ by substituting the trial
series (25) into the governing equations (24) to show that

d2 ·Y0
dX2

= 1;
d

d ·X

³
·Y 30
d ·P1

d ·X

´
= 0;

d

d ·X

³
·Y 30
d ·P2

d ·X

´
= f=(¯ ·Y0) : (28a; b; c)

The domain is 0 < ·X <1, because ·X ! 0 in the inner limit ²! 0 with X ¯xed.
By (28a), the curvature is constant at leading order because far from the contact

region, the induced °ow is weak. The mass °ow rate is determined by (28b) and (28c);
it is uniform at leading order, but varies at second order owing to the evaporative mass
°ux f=(¯ ·Y0).
We ¯nd the mass °ow at leading order by integrating (28b), then applying (27a) to

show that

¯b

f
·Y 30
d ·P1

d ·X
= ¡1; (29)

for all ·X. By (26), the corresponding mass °ow Y 3dP=dX = ¡(f=¯b) ln ² + O(1). This
is exactly what would be obtained by substituting X » ²¡1 in the outer limit (22b) of
the inner solution; in e®ect, because the mass °ow is uniform in this region to a ¯rst
approximation, analysis of the region simply imposes a cut{o® scale X » ²¡1 allowing
us to estimate the total evaporation from the inner solution (22b).
To evaluate the correction (28c) to the mass °ow, we need ·Yo. By integrating (28a),

then matching to the outer limit (22a) of the inner ¯lm thickness, we obtain

·Y0 = b ~X +
1
2
·X2: (30)

We see that the interface is parabolic in region Ib, with contact angle imposed by region
Ia. The ¯lm thickness vanishes at the apparent contact line ·X = 0 because, as depicted
in ¯gure 2, the inner thickness is small, i.e. O(²), relative to that in region Ib.
The additional evaporation occurring in region Ib is found by integrating (28c), then

applying (27b) to show that

¯b

f
·Y 30
d ·P2

d ·X
= ln 2b¡ ln ± ¡ ln

³
1 +

2b
·X

´
: (31)

The term¡ ln ± comes from the matching condition (27b), and so accounts for evaporation
in the inner region Ia. Other terms in (31) account for evaporation in region Ib. As
·X ! 1, (31) approaches a limit because the ¯lm thickness grows faster than ·X at
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in¯nity. The heat °ow across the contact region is integrable at in¯nity, as claimed above
(23).
The heat °ow across the ¯lm between ¡1 and ¯xed location x1 ¿ 1 is given by

£q = ¯bY 3dP=(fdX), as shown in Morris (2001, equation 9); physically, the heat °ow q is
related to the liquid °ow rate Y 3dP=dX because all liquid °owing into the contact region
is evaporated, and all heat crossing the wall is absorbed as latent heat of evaporation.
By (26), (29) and (31) the heat °ow across the contact region I

qI =
1

£
ln
³2b
²±

´
¡ 2

x1
+ ¢ ¢ ¢ : (32)

We have used (19a) in the form ·X1 = x1=£s, and we have also used the fact that ·X1 is
large because x1 is ¯xed, but £s ! 0.

3.2. Region II: outer semicircular interface

This region is de¯ned by the outer limit £2 ! 0 with x and y ¯xed. To solve the outer
conduction problem, we need the interface shape, contact angle, and a thermal boundary
condition on the interface. The interface is a circular arc because the liquid pressure is
uniform far from the contact line in the limit of vanishing capillary number. Next, the
contact angle is zero because the slope is independent of Ca on the outer meniscus away
from the wall, whereas the slope in the ¯lm vanishes with Ca. Lastly, the dimensional
interface temperature Ti¤ = To because in terms of the variables (23), the interface
temperature Ti = ²(1 ¡ ¯ ·P ·Y )=(¯ ·Y + ²), which approaches ² as ·Y ! 1, by (24d). For
² ! 0, the dimensionless interface temperature therefore vanishes outside the contact
region, so that Ti¤ = To, as claimed above. It follows that the outer temperature T
satis¯es the outer problem (3) with £ = 0; consequently, the outer heat °ow across the
wall from x1 to in¯nity is given by (10).

3.3. Total heat °ow q across one wall

By adding (32) to (10), the dimensionless heat °ow across one wall is given in the double
limit Ca! 0, ²! 0 (with ¯xed ¯ and f) by

q =
1

£
ln
³2b
²±

´
¡ 4

¼
ln 2 + o(1); £ = (3Ca=f)1=4b; (33a; b)

where (22c) is repeated as (33b). This result holds only if ² > 0, so that the interface
curves away from the wall. The integration constants b(¯; f) and ±(¯; f) are de¯ned by
(22); they are found by solving the inner problem de¯ned in x3.1.1, and are therefore
independent of large scale geometry.
Equations (33a) and (33b) are two simultaneous equations giving q = q¤=K¢T and £

in terms of the parameters Ca, ¯, ² and f . Of course, (33a) does not imply an inverse
relation between £ and the dimensional heat °ow q¤, because £ is a function of ¢T by
(33b), and q¤ is also normalized against ¢T . We give the correct scaling relation between
q¤ and £ in x4.
The ¯rst term in (33) represents the heat °ow across the contact region extending

from the equilibrium ¯lm out to the part of the ¯lm that is parabolic on the scale of the
channel thickness. The total heat °ow in that contact region increases with the horizontal
scale Ls and varies inversely with ¯lm thickness Hs; consequently the heat °ow varies
inversely with £s (for ¯xed ¢T ). In addition, as expressed by the logarithmic term in
(33a), smaller curvatures on the outer interface result in higher total °ows because the
heat °ow across the contact region is made ¯nite only by the curvature of the interface
away from the wall. (If the curvature of the interface is taken as zero far from the wall,
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we return to a local analysis in which the heat °ow grows inde¯nitely with distance
without approaching a limit, as in the inner problem 22b.) The second term in (33) is
the correction accounting for the non{parabolic shape of the interface in the rest of the
channel. That geometrically speci¯c correction is negligibly small in the double limit
£! 0, ²! 0.
The heat °ow across any evaporating meniscus that curves away from the wall is

therefore given approximately by the ¯rst term in (33a). A numerical example shows
that this approximation to be accurate in practice. In table 2 below, we show that for
the conditions of Schonberg et al (1995), the full equation (33) predicts that £q + 3:00.
The correction ¡ 4

¼ ln 2 in (33b) represents only about 14% of the total heat °ow; that
correction is even smaller for the small value of ² in the example of Stephan & Busse
(1992). We conclude that to a good approximation, the heat °ow is determined by the
contact region alone, and the correction for the outer meniscus is unnecessary. This
method for calculating the heat °ow across the meniscus was ¯rst given, without proof,
in Morris & Moreno (1997).

4. Identity of the models for vanishing micro scale Biot number ¯

Because the derivation of (33) requires only that ² ¿ ¯, the result can be used even
if ¯ is also small. Further simpli¯cation is then possible, because the inner problem for
region Ia then has itself an inner and outer structure, whose analysis shows that ¯b± ! 1
as ¯ ! 0. (See equation 20 of Morris (2001), and the lines below it; `0 there corresponds
to ± here.) On substituting for ± in (33), and using (17c) in the form ²B£2 = ¯b2, we
¯nd that

q =
1

£
ln(2B£2)¡ 4

¼
ln 2 + o(1); (34)

which is identical with the prediction (12) of the conduction model for £2B ! 1. (We
arrive at the asymptote (12), rather than its parent (11) because in deriving (33), we
assumed for simplicity that ²¿ ¯; as a result, £2B = ¯b2=² is large.) We conclude that
for vanishing ¯, the dimensionless heat °ow q = q¤=(K¢T ) is uniquely determined by
the phenomenological variables B and £.
To illustrate (34), we use it to give a scaling argument showing how £ varies with the

dimensional heat °ow q¤ across the wall. Because, by (21) of Morris (2001), £ » (¢T )1=4
to within a factor depending on ln¢T , it follows from (34) that q¤ » £3 ln(2£2B), where
the second term in (34) has been taken as negligible. Consequently, the contact angle
increases with heat °ow, as observed experimentally by Kim (1994).

5. Comparison of predicted heat °ows for small non{zero ¯

Figure 3 shows the comparison of the two heat °ow models analysed here. As de¯ned
following (2), the dimensionless heat °ow from one wall to the interface q = q¤=(K¢T ),
and the macro scale Biot number B = ha=K. Heavy curves show the solution (13)
of the conduction model for B ! 1. The ¯gure includes two tests of the numerical
accuracy of that solution. First, for £ = ¼=2, the large B{solution (13) agrees to within
1% with the exact expression (A5) given in appendix A. Secondly, the ¯gure shows the
development, with increasing B, of overlap between the small{£ expansion (11) and the
¯xed{£ expansion (7). Even in case (a), for the smallest value of B = 40, the curves for
(7) and (11) blend quite smoothly at £ + 0:7, the discrepancy between those curves and
that for the composite expansion (13) being only about 6%. In case (c), for the largest
value B = 5000, the curve for (7) is graphically identical with that for (13), and the
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Figure 3. Heat °ow q = q¤=(K¢T ) as a function of £ and B = ha=K. Curves, conduction
model for (a) B = 40, (b) 500, (c) 5000: heavy curves, composite expansion (13); light curves,
¯xed{£ expansion (7); broken curves, small{£ expansion (11); broken lines, small{£ limit (35);
², equation (A 5). Symbols, free{boundary problem: ±, equation (33); ?, Schonberg et al (1995).

£ 103² Equ (33) Schonberg/equ(33)

0.484 4.10 2.99 0.90
0.511 4.03 3.01 0.83
0.528 3.99 3.00 0.80

Table 2. £q for Schonberg's conditions given in table 1. ² is found using radius R = a= cos£.

curves for (7) and (11) overlap for 0 < £ < 0:6. We conclude that (13) predicts the heat
°ow accurately even for B as low as 40.
Open symbols in the ¯gure show the prediction (33) of the nonlinear theory for the

values of ¯, ² and f given in tables 1 and 2. Those values are for the conditions of
Schonberg et al (1995). Because the micro scale Biot number ¯ is small in their examples,
the conduction theory and the nonlinear theory should predict the same heat °ow. Points
computed from (33) agree closely with the prediction of curve (a) from the conduction
theory for B = 40. That curve corresponds closely to their examples, for which h = 4:4
MW/(m2K), and B = 40:7. (Values of ² in table 2 below and this value of B are based on
scales di®ering by a factor of cos£, and therefore satisfy only approximately the small{£
relation ¯b2 = ²B£2 implied by (17c).) Because our new results (13) and (33) give the
same heat °ow to within a few percent, we conclude that for these representative values
of ¯, there is indeed negligible heat °ow in the innermost region determining £.
The ¯gure also shows the results of Schonberg et al (1995). They ¯nd q by dividing

the meniscus in two, as discussed in x1 above. Though their method gives a heat °ow
whose accuracy is limited only by the resolution of the numerical scheme, they ¯nd £
from the slope at the arbitrarily chosen patching point. Because they patch at very small
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thicknesses, the contact angle is not fully established and is underestimated; for their
conditions, we compute angles about 20% larger than theirs. To plot their heat °ows, we
use their values of q, but our values for £ given in table 2. When plotted in this way,
their results are in fair agreement with (33).
The behaviour of q near the origin in ¯gure 3 is also interesting. By (13),

lim
£!0

q = ¼
p
B=2; (35)

for small £, the heat °ow is algebraically large in the large parameter B rather merely
logarithmically large, as (34) shows to be the case for ¯xed £6= 0. Physically, small con-
tact angles correspond to a larger heat °ows, if all else is equal, because the ¯lm remains
thin over large horizontal distances. The asymptote (35) is approached in experiments by
Kim (1994). In my analysis of those experiments, I show that in one case the macro scale
Biot number B = 3300, and the measured contact angle £ = 0:014 (Morris 2001, table
2, row 4). For those values, (13) predicts that q = 95, which is within 25% of the limiting
value of 128 given by the asymptote (35). It is interesting that this dimensionless heat
°ow is » 25 times that in the example of Schonberg et al (1995) shown in ¯gure 3. Of
course, in the experiments, the corresponding dimensional heat °ow is only a fraction of
a milliwatt, because the small contact angle results from an extremely small superheat of
less than a millikelvin. However, the example suggests that very large heat °ows might
be possible if the wall could be designed to keep £ small even at larger superheats.

6. Discussion

In this paper, we use two models to predict the heat °ow in a channel. Our main new
results are (13) and (33), which we derive respectively from the conduction model, and
the free{boundary problem. We prove that those formulas become identical in the double
limit of vanishing micro scale Biot number ¯ and contact angle. From this result, it follows
that the heat °ow across an evaporating, perfectly wetting meniscus then occurs by pure
conduction in a geometry that is established by the apparent contact angle. Because
the conduction model can be derived by self{consistency arguments, as shown in Morris
(2000), the essential function of the free{boundary model is to provide a relation between
£ and the capillary number of the induced °ow. Lastly, we prove that when £ is small,
the heat °ow across any meniscus that curves away from the wall, like that in a channel,
is determined purely by the contact region. Consequently we were able to prove that
large scale geometry a®ects the heat °ow only through the interface curvature at the
apparent contact line, so that there is a universal relation between the heat °ow, £,
interface curvature, superheat and material properties. This universal relation extends
our new results from the channel to other geometries.
For simplicity, we analyse the free{boundary problem only for the case ²¿ ¯; for that

limit, the universal relation is obtained by deleting the second term from (33). For the
conduction model, the corresponding formula for q is

£Aq = 2 tanh¡1A; A2 = 1¡ 2=(£2B); (36a; b)

by (13) and (9b). Here B = hR=K, where R is the interface radius of curvature at
the apparent contact line. (A procedure for estimating R from measured ¯lm thickness
pro¯les is given in xx3,10 of Morris 2001; there, (36) is used, without proof, to analyse
experiments by Kim 1994.) Although (36) could be derived by modelling the evaporating
meniscus as a quasi{parallel ¯lm bounded by a parabolic interface on which Newton's
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law of cooling holds, we have derived that simple model from a more generally accepted
model, and have provided an estimate of the error made by using (36).
In addition to providing formulas for the heat °ow and contact angle, these analyses

yield the following robust model of the evaporating meniscus of a perfectly wetting sys-
tem. Because the microscale Biot number ¯ is small in practice, heat °ow occurs at a
scale large compared with that on which the contact angle £ is established. As a result,
the heat °ow is uniquely speci¯ed by macroscopic variables, speci¯cally by £ and the
macro scale Biot number B. Microphysics a®ects only the relation between £ and the
capillary number Ca of the induced °ow. As shown in Morris (2001, x8), for ¯ ! 0 the
contact angle £ = Ca1=4fn(B), where the parameter B depends on a length scale set
by microphysics, and vanishes with ¯. Because limB!0 fn(B) does not exist, £ is not
uniquely determined by Ca, and microphysics must be included in formulating the free{
boundary problem. However, because fn(B) diverges only weakly as B ! 0, the relation
between £ and Ca is insensitive to the precise way in which microphysics is incorporated.
That insensitivity results because both Ca and ¯ are small. In the analogous theory of
isothermal spreading of a drop, spreading rates are known to be insensitive to the speci¯c
microphysical mechanism invoked to relax the velocity singularity at the moving contact
line. The papers in this series extend that result to include evaporation.
Insensitivity to microphysical detail is important here, because several premises of the

nonlinear theory can fail at the smallest scales of motion if the superheat is su±ciently
large. One example, out of several possible, is that the continuum hypothesis can fail
for the vapour because the molecular free path ¤ is independent of superheat, whereas
the minimum °ow scale decreases with increasing superheat. (The continuum hypothesis
is not at issue at the larger scales where heat °ow occurs; see examples in table 1 of
Morris 2000.) The two scales become comparable at superheats occurring in some appli-
cations; in the study by Schonberg et al (1995), ¤ »10 nm, and the superheat ¢T » 5K
corresponds to Ls »1 nm. Although the vapour is taken as dynamically passive in the
free{boundary problem, the continuum hypothesis is still needed because the treatment
of evaporation kinetics assumes the existence of a well{de¯ned gas pressure. In fact, the
failure of the continuum hypothesis has an additional signi¯cance, because by using self{
consistency arguments like those in Morris (2000, x2.3), it can be shown that the vapour
is dynamically passive at the smallest scales only if the continuum hypothesis holds there.
Because many of the assumptions of the free{boundary model can fail at the smallest
scales, it is important that the small scale motion a®ects the contact angle only weakly,
and has no direct e®ect on the heat °ow. This conclusion also holds for partially wetting
systems, as we will show in a paper to follow.

I thank the referees and the associate editor for helpful comments.

Appendix A. Exact solution of (2) for £ = ¼=2

Liquid now occupies the strip x > 0, jyj < 1. Let
Â(x; y) = ¡@T=@x+ B T: (A1)

By (2), Â satis¯es

r2Â = 0 withinD; on jyj = 1; Â = B; (A 2a; b)

on x = 0; Â = 0: (A2c)

Problems (2) and (A2) are equivalent, because it can be shown that if Â satis¯es (A2),
and T is ¯nite at in¯nity, then the function T obtained by integrating (A 1) satis¯es (2).
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By integrating (A1), and requiring T to be ¯nite at in¯nity,

T (x; y) = eBx
Z 1

x

e¡B»Â(»; y) d»: (A3)

Though Â is discontinuous at the vertices of the strip, T (0; y) is continuous because it is
obtained by integrating the ¯nite quantity Â along a path of constant y from the uniform
state T = 1 at in¯nity.

The °ow q across one wall equals that across half the interface, so q = B R 1
0
T (0; y) dy.

By using (A3), interchanging the order of integration, then integrating by parts in »,

q =

Z 1

0

e¡B»
Z 1

0

@Â

@»
(»; y) dy d»: (A4)

By using the solution of (A2) given in Carslaw & Jaeger (1959, p.164) to evaluate the
inner integral,

q =
2

¼

Z 1

0

e¡³ ln coth
³¼³
4B
´
d³: (A5)

This result is used in ¯gure 3.
For B !1, the argument of the logarithm in (A5) can be replaced by 4B=(¼³), giving

¼

2
q = ln

³4B
¼

´
+ °E + o

¡
1
¢
; °E = ¡

Z 1

0

e¡x lnxdx (A6)

is Euler's constant. This result is used below (13). It can be shown numerically that q
approaches this asymptote to within 5% for B > 2.

Appendix B. Exact solution of (3) by conformal mapping

Figure 4 shows the geometry of the mapping. With z = x+iy, we show that a function
w(z) = u+ iv exists such that curve ABCD in the z{plane maps to the line Imw = 0.
In the ¯gure, primed and unprimed letters correspond to points and their images. To
discuss the map, we take the origin for z on the upper wall, at a distance 2 tan£ to the
left of B.
Let the hypergeometric function

F (a; b; c; w) =
¡(c)

¡(b)¡(c¡ b)
Z 1

0

tb¡1(1¡ t)c¡b¡1(1¡ wt)¡a dt; (B 1)

as in Abramowitz & Stegun (1970, equation 15.3.1). The parameters a, b and c are
dummies occurring only in (B1). Also zp = exp(p ln z), where the branch cut for ln z is
along the negative real axis, so ¡¼ < arg z · ¼. F is singly valued in the w{plane cut
along the real axis from 1 to 1, and is real if a, b, c and w are real with w < 1.
Then, the function

z =
2
p
¼ sec¼®

¡(1¡ ®)¡( 12 + ®)
F (12 ;

1
2 ¡ ®; 1¡ ®;w)

F (12 ;
1
2 ¡ ®; 1; 1¡ w)

(B 2)

maps the half plane Imw > 0 onto the domain ABCD in ¯gure 4. The contact angle
£ = ¼®.
The claim follows from the properties of the Schwarzian triangle function discussed

by Nehari (1975, p.207). That function maps the half plane Imw > 0 onto a curvilinear
triangle whose sides are circular arcs with angles ®¼, ¯¼, °¼ at the vertices. To obtain
the special case (B 2) of his map, we set ° = 0 to make the walls parallel, and then
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Figure 4. The conformal mapping used to solve (3).

set ¯ = ®. However, (B 2) di®ers from his map in two respects. To make z our physical
coordinate, we have interchanged z and w in his function. We have also multiplied his
function by 2 sec¼® to make the gap thickness 2, as in ¯gure 4. Because his result holds
for ®+ ¯ + ° < 1, (B 2) is valid for ® < 1=2, i.e. for £ < ¼=2.
Nehari shows that (B 2) maps the half plane Imw > 0 onto the domain ABCD, but

does not determine the channel thickness. To prove that thickness is 2, we show that
C0D0 maps onto the half line Im z = ¡2, Re z > 2 tan£. Our claim then follows because
Nehari shows that the interval A0B0 maps onto Im z = 0, Re z > 2 tan£.

B.1. Proof that the channel thickness is 2

We ¯rst show that for real w > 1, the function in the numerator of (B 3),

F ( 12 ;
1
2¡®; 1¡®;w) = w®¡

1
2

n
F (12 ;

1
2¡®; 1¡®; 1w )¡ i

p
¼
¡(1¡ ®)
¡(12 ¡ ®)

F ( 12 ;
1
2¡®; 1; 1¡ 1

w )
o
:

(B 3)
For real w > 1, this gives the real and imaginary parts of the left side because the
functions on the right side are then real{valued, by the remark above (B 2).
To prove (B3), we note that the integrand de¯ning the function on the left side is real

if 0 < t < 1=w, but imaginary if 1=w < t < 1. The contribution of these subintervals
to the integral can be expressed in terms of hypergeometric functions by substituting
¿ = wt for 0 < t < 1=w, and ¿ 0 = (wt¡ 1)=(w ¡ 1) for 1=w < t < 1. So

F ( 12 ;
1
2¡®; 1¡®;w) = w®

n
w¡

1
2F ( 12 ;

1
2¡®; 1¡®; 1w )¡i

p
¼
¡(1¡ ®)
¡( 12 ¡ ®)

F ( 12+®;
1
2 ; 1; 1¡w)

o
:

(B 4)
Equation (B3) follows on using identity (15.3.5) of Abramowitz & Stegun to express the
last term in (B 4) in terms of a hypergeometric function with argument 1¡ 1=w.
To complete the proof that for real w > 1, Imz = ¡2, we write the denominator of

(B 2) in terms of a hypergeometric function with argument 1 ¡ 1=w, i.e. the same as



The evaporating meniscus in a channel 19

that of the imaginary part of (B 3). By using identity (15.3.3), then identity (15.3.4) of
Abramowitz & Stegun, the function in the denominator of (B 2)

F ( 12 ;
1
2 ¡ ®; 1; 1¡ w) = w®¡

1
2F ( 12 ;

1
2 ¡ ®; 1; 1¡ 1

w ): (B 5)

By (B3) and (B 5),

z =
2
p
¼ sec¼®

¡(1¡ ®)¡(12 + ®)
F ( 12 ;

1
2 ¡ ®; 1¡ ®; 1w )

F ( 12 ;
1
2 ¡ ®; 1; 1¡ 1

w )
¡ 2i: (B 6)

It follows that Im z = ¡2 for real w > 1, because the ¯rst term on the right is then real
by the remark above (B 2). The channel thickness is therefore 2, as claimed.
It remains to show that points C 0 and C correspond, i.e. as w!1, z ! 2(tan£¡ i).

That follows since F (12 ;
1
2 ¡®; 1¡®; 0) = 1, and F (12 ; 12 ¡®; 1; 1) = ¡(®)=

¡p
¼¡(12 +®)

¢
,

by equation (15.1.20) of Abramowitz & Stegun. The claim follows on using the re°ection
formula for ¡(z).

B.2. Behaviour of the map near the contact line

This behaviour is needed to ¯nd the heat °ow. It di®ers according as the ¯lm thickness
vanishes linearly or quadratically with distance near the contact line, i.e. according as
® > 0, or ® = 0. In either case, as w ! 0 the numerator of (B 2) is proportional to

F (12 ;
1
2 ¡ ®; 1¡ ®;w) = 1 +O(w);

but the behaviour of the denominator changes.

B.2.1. Case 0 < ® < 1=2.

In this case, as w ! 0, the function in the denominator

p
¼F ( 12 ;

1
2 ¡ ®; 1; 1¡ w) =

¡(®)

¡( 12 + ®)
+

¡(¡®)
¡(12 ¡ ®)

w® +O(w);

by identity (15.3.6) of Abramowitz & Stegun.
By combining the asymptotes for F , then using the binomial theorem, and the re°ec-

tion formula for ¡(z), we ¯nd that as w ! 0 with 0 < ® < 1=2,

z ¡ 2 tan¼® = C(®)w® +O(w); C(®) = 2®

·
¡(12 + ®)

¡(1 + ®)

¸2
: (B 7)

So, as shown in ¯gure 4a, the contact line at w = 0 is located at z = 2 tan¼® in the
z{plane. Further, since (z ¡ 2 tan¼®)=w® ! C as w ! 0, the sector subtending angle
£ = ¼® at the contact line in the z{plane maps into a half plane.
In the rest of this appendix, we return to the notation in the text, where x is mea-

sured from the contact line, as shown in ¯gure 1. By (B7), on the axis Imw = 0, the
corresponding distance from the contact line in the z{plane

x = C(®)u® +O(u): (B 8)

B.2.2. Case ® = 0.

The denominator of (B 2) is now proportional to

¼F (12 ;
1
2 ; 1; 1¡ w) = ln(16=w) +O(w lnw);

by Abramowitz & Stegun (1970, equation 15.3.10). So, as w! 0,

z =
2¼

ln(16=w)
+O(w lnw): (B 9)
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This is the counterpart for ® = 0 of (B 7). In particular, w = 0 corresponds to z = 0.
Also, by letting w = rei¼ in (B 9) and expanding for r ! 0, we ¯nd that the negative
Rew axis near the origin corresponds to the parabola y = ¡1

2x
2 near B.

On the positive z{axis near the origin, (B 9) requires

lnu » ¡2¼=x+ 4 ln 2: (B 10)

As stated above (B8), x is now measured from the contact line as in ¯gure 1.

B.3. Heat °ow de¯ned by the outer problem (3)

In the image plane, T satis¯es @2T=@u2 + @2T=@v2 = 0 for Imw > 0. The boundary
conditions are that on the positive u{axis, T = 1 while on the negative u{axis, T = 0.
The solution of that boundary value problem is T = 1¡Á=¼, where Á is the angle P 0B0C 0
in ¯gure 4b; i.e.

T = Im
n
i¡ 1

¼
lnw

o
: (B 11)

As stated below (B1), the branch cut for lnw is such that ¡¼ < argw · ¼.
We ¯nd the heat °ow qo across the interval x1 < x < 1 on one wall, where x1 is a

small ¯xed positive number. In Carslaw & Jaeger (p.449), it is shown that the total heat
°ow across the isotherm I1I2 is jS1¡S2j where S is the harmonic conjugate of T , namely
the real{valued function such that S + iT is analytic in z. By (B11), S = ¡ 1

¼ ln jwj, so
the heat °ow across the interval u1 < u < 1 corresponding to x1 < x <1 is

qo = ¡ 1
¼
lnu1; u1 = w(x1): (B 12)

To calculate qo, only the behaviour of the map near the contact line B is needed.
By combining (B8), (B 10) and (B 12), we ¯nd that with error o(1) for x1 ¿ 1,

£qo = ¡ ln x1
2£

¡ 2 ln
·p
¼
¡(1 + £

¼ )

¡(12 +
£
¼ )

¸
; for 0 < £ < ¼=2; (B 13a)

whereas

qo =
2

x1
¡ 4

¼
ln 2; for £ = 0: (B 13b)

Equation (B 13a) is restated as (4), and (B13b) as (10).
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