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ABSTRACT 

In order to determine the sensitivity of gamma-ray angular correlation 

patterns from solute macromolecules labeled with rotational tracers such as 

lllmCd, a theoretical study was made of the behavior expected under certain 

conditions. A nucleus of spin 5/2, acted upon by an axially symmetric electric 

field gradient, and bound to a rodlike macromolecule, was considered. Under 

static conditions (no molecular rotation), the time-dependent correlation pat-

term is quite sensitive to molecular orientation and, for oriented molecules, 

to the angle between the axis of the field-gradient tensor and the molecular 

axis. A general equation and results for selected geometric configurations are 

given. When molecular rotation is allowed, a classical model is applicable if 

the rotation is sufficiently slow. This model is used to calcUlate relaxation 

curves for several geometrical configurations under the condition that the 

macromolecules rotate about their long axes. These curves are shown to have 

considerable diagnostic value. Finally, the applicability of rotational tracers 

in the light of these results is discussed. 



'W 

'~ 

-1-

I. INTRODUCTION 

Gamma-ray angular-correlation patterns from solute molecules labeled 

with radioisotopes--or "rotational tracers"--have been .shown to be sensitive 

. . 1-4 
to molecular properties. The rotational tracer method is of interest because 

of its extremely high sensitivity, the high penetrating power of y rays, the 

relatively small disruption caused by binding a single tracer atom to a large 

molecule, and the rigor of angular correlation theory. As more sophisticated 

experiments become. possible it is desirable to examine theoretically the sensi-

tivity of y-ray correlation patterns to molecular orientation and dynamics, and 

to evaluate the various possible experimental configurations systematically. 

The results of such a study are reported in this paper. 

The theory of perturbed angular correlations is.briefly reviewed in 

Sec. II. It is applied to the case of a spin-5/2 nucleus in an axially-sym-

metric electric field gradient. This spin was chosen because states of spin 

5/2 in 133cs and 111cd have been used in the rotational tracer work to date. 

Much of the material in Sec. II can be found in the review articles by Steffen 

and Frauenfelder. 5 It is included here in order to give a specific account of 

the assumptions upon which the results in Sees. III and IV are based, thus 

defining the extent of their validity. 

Section III deals with the effects of static electric quadrupole inter-

actions on the angular correlation pattern from a macromolecule labeled with a 

spin-5/2 rotational tracer. Macromolecules are considered whose shapes can be 

characterized by a single preferred axis (e.g., rods or discs). An equation is 

derived that relates the correlation pattern to molecular orientation and local 

properties of the tracer atom. Explicit calculations are presented for several 

experimental configurations. 
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Dynamical effects are considered in Sec. IV. A classical relaxation 

model is given that is applicable to solute macromolecules under certain con

ditions. The model is applied to several of the configurations considered in 

Sec. III. Conclusions are drawn in Sec. V. 

-. 
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II. TJME-INDEPENDENT QUADRUpOLE PERTURBATIONS 

In this section the theory of angular correlations perturbed by static 

quadrupole interactions is discussed and applied to a particular case. Detailed 

treatments of this problem were given by Abragam 
6 . 7 

and Pound . and by Alder, et al. 

The development given below follows the exposition and notation of Steffen and 

Frauenfelder. 5 The general expression for perturbed angular correlations 

(Eq. (1)) is specialized in several steps to an expression (Eq. (16)) for f
2
(t), 

the rank-two perturbation coefficient arising from static quadrupole inter-

action of a spin-5/2 nucleus with an axially-symmetric electric field gradient. 

'fQe assumptions embodied in each step of specialization are states, in order to 

facilitate future applications to different systems. 

The nuclear level scheme for a perturbed angular correlation experiment 

is illustrated in Fig. l. A nucleus decays from an initial nuclear level to 

an intermediate level of spin I, emitting a y quantum ( y 1 ) . While in this 

intermediate level the nucleus interacts with extranuclear fields. The inter-

action; described by a hyperfine-structure Hamiltonian K, starts acting at the 

instant of formation of the intermediate level (time t = 0) and continues to 

act until this level decays by emission of the second y quantum (y
2

). The 

nuclear mean life TN is usually in the 10-S - 10-
6 sec range in cases for 

which the rotational tracer method is most useful. Both y1 and y
2 

are detected 

and recorded, as in the time-interval between their emission. The three pro-

cesses involving the intermediate level--formation, perturbation, and decay--are 

separable. The angular correlation between the two quanta y
1 

and y
2

, emitted in the 
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Here A. 
J 

and qj 
q. 

denote tensor rank and components, YAJ(e.,~.) is a spherical 
j J J 

.· -+ . 
harmonic in the angles between k. and an arbitrary co-ordinate frame, which we 

J 

shall refer to later as the "atomic frame", and AA. (j) is a nuclear radiation 
J 

parameter that depends only on the nuclear 

with the jth transition. The perturbation 

spins and multipolarities associated 
qlq2 

factors GA A (t) contain a complete 
l 2 

description of the intermediate-state perturbations. They are in fact trans-

formation coefficients for statistical tensors 
A pq describing nuclear orien-

tation in the intermediate state. If these tensors are defined in terms of the 

d •t. t . 8 ens1 y rna r1x, · 

\ ( )I-m'+q-A 1-
~ -1 . v2A+l 

m 

then the perturbation coefficients obey the relation9 

(2) 

(3) 

I 

An explicit expression for G~~ 1 (t) may be written in terms of the time-evolution 

operator ~(t). This operator obeys the Schrodinger Equation. If K is time~ 

independent, ~(t) may be written in terms of K as 

.. 
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A (t) 
.. tK(t) 

= e (4) 

It follows that5 

q q 
G l 2(t) = L (-l)2I+ml +m2 [(2X

1 
+ l)(2X

2 
+ 1)]1 / 2 

XlX2 . 
mlm2 

(m~ 
I ::) (m~ 

I 
A ) * 2 . 

X <m2 jA(t)jm
1 

><m2jA(t)jm
1

) . (5) 
-ml . 2 -m2 q2 

In general K can be diagonalized by a unitary transformation U. If K has 

axial symmetry the problem is appreciably simplified, because then U = l and 

<m2 jA(t)jm
1

) = o o e- i/h E,nt, where E is the energy of the state 
. mm1 mm2 m 

jim) in the diagonal representation. This relation, together with Eq. (5), 

requires q
1 

= q2 . In the remainder of this paper K will be taken as axially 

symmetrical. The perturbation factor then takes the form5 

L [ ( 2Xl + l )( 2X2 + l) ]
1

/ 
2 

m 
(

I I X1) ( I I 

m'-m q m1-m 

~E ,-E )t 
e m m • (6) 

Specializing to axially-syrnmetric quadrupole interactions, the energy eigen-

values may be written 

2 
= e qQ [3m2- I(I+l)] 

Em 4r(2I-l) 

t . 10 Thus for h1s case 

w 
_.s. [ 3m2 - I ( I+ l ) ) 
fl ' 

(7) 
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Substitution of Eq. (8) into Eq. (1) would yield a general formal expression for 

( -+ -+ ) . the angular correlation function W k
1

,k
2
,t in thepresence of a static axially-

symmetric quadrupole perturbation. In order to use this result in the most 

general cases, however, it would be necessary to know the values of the radia-

tion parameters AA
1

(1) and AA
2

(2) of the two transitions separately. This 

information is usually not available because it cannot be. obtained from unper-

turbed angular correlation studies on the same cascade, which yield only pro-

ducts of the form A, (1) AA (2). Fortunately in many cascades this problem does 
1\l 1 

not arise because A takes only the values 0 and 2, and interference.· terms of 

the form G6~ or G~6 vanish (Eq. (8)). This leaves only A
0

(1) A0 (2) and 

A2(1) A2(2), which can be written A00 and A22 for brevity. The unperturbed 

correlation forsuch a cascade is given by 

e-t/TN 
- 4r-----'- [ 1 + A22P2 (cos 8) ] 

7TTN 

Here the normalization condition 

J27T j· 7T foo -+ -+ 
W(k1 ,k2 , t) dt sin8 d 8 d<f> = 1 

0 0 0 

(9) 

(10) 

has been used to set A
00 

= 1. In most cases A22 is determined experimentally fr~m 

unperturbed correlation measurements. From Eqs. (1), (8), and (9), the angular 

correlation for axially-symmetric quadrupole perturbations and A = 2 can be max 

written 
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(11) 

-+ -+ 
where the response function r2(kl,k2,t) has the form 

I 

r2 (i~1 ,k2 ,t) = ~ I~ G~~(t) Y~(e1 ,<t>1 t Y~(e2 ,<t>2 ) 
q 

,...... <. •o 
(I I 

= \ )_ ~- m'-m L ... 
q m 

)

2 
2 . 2 ,2 * 

3J.(m -m )wQt Yq(e ,., ) Yq(e ,., ) 
e 2 1'~1 2 2'~2 

q 
' 

. (12) 

The oscillations of G~~(t) in time can be written 

Gqq(t) 
22 = Ls22 

nq cos nw
0

t ( 13) 

n 

The factors 

8
22 [ ri :r = 5 nq 

m'-m Iiml I 

(14) 

have been tabulated by Alder, et al. 7 The frequency w
0 

corresponds to the 

smallest energy-level separation in the quadrupole pattern. The sum in Eq. (14) 

is taken over all-pairs for which m-:-m' = q. For half-integer spins w
0 

= 6wQ' 

and the index n in Eq. (13) takes all positive integer values11 

n = lm2-m,2j/2. 

The spin-5/2, T
112 

= 84 nsec leve1
12 

at 247 keV in 
111

cd and the spin-5/2, 

T112 = 6.3 nsec leve1
12 

at 81 keV in 133cs have been used in rotational tracer 
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experiments to date. The following discussion wilJ_ be made explicitly for a 

spin-5/2 level, perturbed by an axially-symmetric field gradient, and detected 

by a cascade with A. = 2. Some generality is lost by this restriction, but · max 

the qualitative conclusions reached should apply for other spins. The object 

of this paper is to evaluate thesensitivity of perturbed angular correlations 

to molecular properties for a realistic case. The shortest path is taken to 

this end, using relatively pedestrian mathematical techniques, at the expense 

of developing further formalism. 

For spin I = 5/2, n 

Goo = 1 
22 

-1-1( ). = G22 t 

takes the values n = 0, 1, 2, 3, and 7 

. ( 15) 

Finally, the explicit expression for the response function, which will be the 

basic equation for the rest of this paper, is 

Here the angles 8.¢. express the k. direction to the ith detector in a coordinate 
~ ~ ~ 

frame in which the symmetry axis of the electric field gradient tensor serves as 

:~ 
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the z axis.. This relationship i.s illustrated in Fig .. 2. This wiil. be cl:>lled 

the atomic frame, and the cart~sian axes in this frame will be denoted- by xyz; 

·,· / 
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III. STATIC INTERACTIONS IN CRYSTALS AND ORIENTED MOLECULES 

From Eq. (16) it is evident that the choice of experimental geometry 

-+ -+ 
will strongly affect the form of r2 (~ ,k2

;t). It is important to choose an 

optimum geometry in which r 2 is sensitive to the molecular parameters of inter-
. . 

est. The best choice of. geometry is often not obvious, however, particularly 

when studying a system for which certain structural information is missing. For 

example, in studying an assembly of molecules with unknown orientation, one would 

not know the relative orientation of the atomic and laboratory coordinate sys-

terns. Thus the angles 8
1

, ¢1 ~ 8
2

, and ¢
2 

would be unknown (although relations 

among them would be known). Before attacking this complicated case it is use-

ful first to consider the well-known case of a crystalline source. 

A. CrystalJ,.ine Sources 

The variety of forms for r
2
(t) that are encompassed by Eq. (16) may 

easily be displayed by selecting sets of angles (8p ¢
1

, 82 ~ ¢2 ) that emphasize 

oscillations of particular frequencies. The set (0 0 7T. TI), which will be called 

Geometry 1, yields the time-independent result 

(17) 

-+ -+ 
In fact it is well known that orientation of either ~··or k2 along the symmetry 

. 5 
axis of a 'static Hamiltonian will yield a r 

2
(t) of the "unperturbed" form. 

For the set of angles (~ 0 ~ 7T), which will be called Geometry 2, the 

frequency 3w
0 

is prominent: 

(18) 
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The intermediate frequency 2w0 is best displayed in Geometry 3(3'), with angles 

(r 0 ± r H-). For these cases 

(19) 

Here G.eometry 3 takes the + sign, and Geometry 3' the - sign. 

In some geometries r 2(t) vanishes identically. These geometries may be 

useful for normalization. One such case is described by the angles 

(0, <1>1 , cos -l~ <P 2 ). For a polycrystalline source, in which the z axes 

-+ 5 . are oriented randomly relative to k
1

, the well-known polycrystalline curve lS 

observed 

Here the II 
-+ 

sign denotes parallel geometry, in which k1 

(20) 

This result is 

easily obtained by general methods, 5- 7 or it can be derived from Eq. (16) by 

ensemble-averaging over the angles under the constraints 8 2 = rr - 81 , 

<1> 2 = <1>1 + rr. The polycrystalline response fUnction, together with those .for 

Geometries 1-3, is plotted in Fig. 3. 

B. Oriented Molecules 

Let us now consider a sample of macromolecules labeled with rotational 

tracers. If the molecules are randomly oriented, r 2( t) wil~ be described by 

Eq. (20), and there is nothing more to be said about static interactions. 

However, if the molecules are oriented preferentially along some direction in 

space, the observed perturbation coefficients can be very informative. To 
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explore this problem systematically, let us define a molecular coordinate frame with 

cartesian axes XYZ 
+ 

and an orientation direction E· The methods by which 

macromolecules can be oriented will not be discussed, but it will be assumed 

that the direction E + 
is known relative to the laboratory frame ( E could be 

the direction of an electric field, ·for example). 

In the single-crystal case the two "parallel"·geoinetries--Geometries 1 

and 2--yielded response functions that suffice to describe the static inter-

actions. A similar result holds for oriented macromolecules, but now the detec-

tor positions must be defined in terms of the symmetry axis of the ensemble, 

-+ 
namely E. The two geometries are thus defined by 

(Geometry 1') , 

(Geometry 2') . ( 21) 

This choice of geometry has a theoretical advantage because calculations of 

r 2(t) are relatively simple at symmetry points of the system. An experimental 

advantage is that the two geometries may be interchanged without moving the 

detectors, facilitating normalization, Two practical advantages are: 1) The 

measured effect is maximized, and r 2(o) = 1 for both geometries, and 2) If 

-+ 
the direction E is in doubt it may be determined efficiently with parallel 

geometries. 

Any static orientation mechanism can be described by an orientation 

Hamiltonian X. The observable average of a quantity such as r2(t) is just its 

canonical average over the stationary states of X. These states may be described, 

for the purpose of calculating r2(t), by specifying the relative orientations of 
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E, the molecular fra.tile (XYZ), and the atomic frame ( xyz) , as well .as the quadru-

pole frequency w0 . 
-? -? 

It is sometimes necessary in addition to average kl and k
2 

-? -? 
over an angle of rotation about E and Z. This kind of average will be denoted 

by a single bar, i.e., r 2 ( t). It is made over states that are energetically 

equivalent but differently related to k1 and k"2 . The subsequent canonical 

average over states of different energies, 

f2 ~E .. ,t) P(E.) 
J. J. 

i 

where P(E.) denotes the probability of the system having energy E. and Q the 
J. J. 

partition function, will not be considered further in this paper. The evalua-

tion of f 2(t) from f 2(t) is straightforward if 'JC is known. 

In the derivationof Eq. (16) the electric-field-gradient tensor was 

assumed to be cylindrically symmetrical with z as the synnnetry axis. In the 

discussion below a similar assumption will be made about the macromolecules. 

Specifically, it will be assumed that the energy of the system is essentially 

invariant to .rotations about a single molecular axis, the Z axis. This will 

be taken in Sec. II, as the axis about which rotational relaxation is fastest. 

Thus the following discussion is most readily applicable to rodlike, .or perhaps 

disklike, molecules; This set of assumptions was selected as representing the 

·most important single example. For other sets of assumptions the methods for 

evaluation of f 2 ( t) would be similar to those given below. 

To evaluate f 2(t) for either geometry (1 1 or 2 1
) the relative orienta-

.-? -? + . 
tions of the four vectors E, Z, z, and k

1 
must be specified, and angular aver-

ages must be taken where appropriate. For a given labeled molecular species 
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-+ -+ 
and confirmation there is a fixed angle B between z and Z, and in .a given 

state + ' Z makes an angle o + 
w:i,th E. In Qeometry 1', represented in Fig. 4, 

+ + + + 
k1 and £ are parallel, and the angle of rotation of z about Z (the angle y 

in Fig. 4) completes the description of the stationary state that is necessary for 

calculating r2(t). It remains only to express 81 , ¢1 , 82 , and ¢2 in terms of 13, 

y, and o in Eq. (16) and to average over y. In fact ¢2 = ¢1 + 'IT; thus the 

factors cos(¢
2 

- ¢
1

) and cos 2(¢
2 

~ ¢
1

) can be replaced forthwith by their 

values of -1 and +1, respectively. In averaging over 8
1 

and 82 the relation 

8
1 

+ 82 = 'IT must be retained. Thus 

= 

2 2 
cos 81 cos 82 = 

. ; . . . 

sin8
1 

cos8
1 

si!{8 2 'cos8 2 = (22) 

The cosine law gives 

cos 81 = cos i3 cos o + sin i3 sin o cos y ( 23) 

After Eqs. (16), (22), and (23) are combined and the average over y taken, the J> 

perturbation factor for geometry 1' is 

3 s + 1 
4 4 

2 9 2 3 2 5 + [-3C - 9CS - 8 s + 3C + 2 s][7 cos w0t + f cos 2w0tJ 

3 2 9 9 2 3 3 3 9 5 
+ (4 C + 4 CS + 32 8 - 2 C - 4 8 + 4](14 cos w0t + 14 cos 3w0t). (24) 
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2 2 2 2 He C Q .t' d s . Q • .t' re . = cos t:J cos u an = s1n f-' s1n u. 

+ + 
In Geometry 2' ~ is perpendicular to E, and specification of the 

-+ + 
relative orientation of ~ and z involves an additional azimuthal angle n 

+ -+ 
and a polar angle E .that relates z to E, as shown in Fig. 5. From the 

cosine law 

cos e1 = sin E cos ri 

cos E = cos S cos cS + sin ~ sin cS cos y (25) 

Except for the additional average taken over n the calculat1'on· of -r (t) 1·s 
' . 2 2 1 

similar to that for f
2 

( t) 
1 1 • The result is 

-r (t) = 27 c2 + 81 c8. + .. 81 82 15 c 15 8 + 11 
2 2 I 32 32 256 - lb - 32 32 

27 C8 
8 

2
7 82 + 3 C + 3 8 + 1_) [ _g_ cos W t + .2,. coS 2W t J 64 ~ ·~ 8 7 0 . 7 0 . 

9 2 27 27 2 3 . 3 9 9 5 ] ( + [
32 

c + 32 C8 + 2'56 8 + 1b c + 32 8 + 32 ][1'4 cos w0t + 1'4 cos 3w0t • 26) 

Again 2 2 c = cos t3 cos 0 and 8 . 2Q . 2.t' = s1n '-' s1n u. 

The sensitivity of f 2(t) to molecular geometry and orientation is best 

illustrated by example. Let us consider the four cases that can be constructed 

with the macromolecules oriented parallei or perpendicular to 
-+ 
E and the elec-

tric-field-gradient axis parallel or perpendicular to the molecular sym.metry axis. 

These will be denoted 

Case I: E II z ~~-~ 
Case II: 'E 11 z 1-; 

II 
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Case III: -+E 1 -+ -+ z II. z 

Case IV: 

By combining these four cases with Geometries 1' and 2' a totai of eight con-

figurations can be constructed. These are designated by the notation Il', I2', 

etc. The angles describing these eight configurations are set out in Table I. 

The dependence of f 2(t) on S and o in Eqs. (24) and (26) only through 

even powers of cos S cos o and sin S sin o portends considerable symmetry in 

f 2(t). This expectation is realized in the.eight configurations Il' - IV2', 

which yield only four distinct curves. These curves, labeled A, B, C, and D, 

have the forms 

-r < t) 11 + 129 t 15 2 t + 4 5 'J,., t 
2 C = 32 '441f cos w0 + "§6 cos w0 448 cos ..)UJO 

- ( ) 49 + 1443 . 15 615 r2 tD = 25b 3584 cos w0t + 64 cos 2w0t + 3584 cos 3W0t (27) 

These four curves A-D are distributed among configurations Il' - IV2' as indi-

cated in the last column of Table I. They are plotted in Fig. 6 for intercom-

parison and for compa~ison with the single-crystal results shown in Fig. 3. In 

assessing the diagnostic value of r 2( t), we note that either Geometry, 1 1 or 2 1
, 

would suffice to distinguish among Cases I, Cases II or III, and Case IV, but 

that II and III are undistinguishable because of the S-o symmetryin Eqs. 

( 24 ) and ( 26) . · 
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A more general case of some practical importance, which will be called 

Case V, is encountered when the moleculeEi are completely oriented along 
-+ 
E 

-+ 
(i.e., 6 = 0) and the electric-field-gradient a:x:i.s z makes an arbitrary angle 

13 with the molecular symmetry axis 
-+ z. The response functions are 

-r (t) 1 [3 26 12 3 . 2213 [2 5 J 
2 . Vl' = 4. cos - 1 + 4 .s2n 7 cos w0t + 7 cos 2w0t 

27 . 4 3 . 2 . l = 32 s2n B + 4 s2n 13 + 4 

[ 3 . 213 9 . 413][2 t 5 2 •t] + 2 s2n - 8 s2n 7 cos w0 + 7 cos w0 

[ 3 ·. 3 . 213 9 . 413][9 t. 5 3 t.] + .· 4 - 4 s2n + 32 s2n J:'4 cos w0 + J:'4 cos w0 
(28) 

Th.e high sensitivity of f 2(t)Vl' and f 2(t)V2 ' to the angle B can easily be 

appreciated by referring to Fig. 6. As 13 is increased from 0 to TI/2, f 2 (t)Vl' 

changes continuously from Curve A to Curve B, while f 2(t)V2 ' changes from Curve 

B to Curve C. 

Let us examine the sensitivity of f
2
(t) to the degree of molecular 

orientation, for arbitrary 13. If the molecules are randomly oriented, evalua

tion of the angular averages cos2o, sin2o, etc., in Eqs. (24) and (26) leads to 

the expected random result, Eq. (21), for both geometries. Together with Eq. 

(28), describing r 
2
(t) for a completely oriented system, this suggests that for 

a wide range of values of S, f 2(t) would be a sensitive indicator of molecular 

orientation. As the molecules in a·given experiment become oriented, the observed· 



r2(t) will 

Eq. ( 28). 
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vary continuously from the random result, Eq. (21), to r 2 ( t )Vl' ,
2

,, 

For th.e extreme cases B = 0 (Case I) or B = rr/2 (Case II), this 

variation is very striking, with r2(t)l, and f2(t)2, for the completely oriented 

systems following Curves A a.nd B for S = 0 and Curves B and C for S = rr/2. 

Systems with intermediate S values will show less sensitivity to orientation, 

although any value of S will yield some variation in f
2

( t) 
1

, or f
2
(t) 

2
, with 

orientation. 

This discussion has shown that f
2
(t) has considerable sensitivity as a 

diagnostic tool in studying the static properties and orientation of macro-

molecules labeled with rotational tracers. At the same time the symmetry of 

r 
2 

( t) in the angles S and o limi.ted this sensitivity. Much of this symmetry 

is removed, and the sensitivity of f
2
(t) is consequently enhanced, if dynamic 

properties are considered; as discussed below. 

•• 
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IV. RELAXATION IN THE CLASSICAL LIMIT 

In angular correlation studies relaxation is .observed "directly" as 

decay of the response function rA(t) in time, rather than as a broadening of 

spectral lines. In principle these two manifestations of relaxation are equi-

valent, being ~elated by a Fourier transformation. 

Several theoretical discussions of the effect of relaxation on angular 

correlations. 6 Abragam and Pound considered weak random perturbations and found 

that fA(t) decays exponentially. For strong perturbations, Dillenburg and Maris13 

predicted multiexponential decay. Recently Gabrie1
14 

has developed the for-

malism for a non-Markoffian theory. These approaches are all quantum-mechanical 

in nature. A quantum-mechanical description of relaxation is necessary when 

the rotational correlation time is short compared with the reciprocal interaction 

frequency, i.e., w0Tc << 1. For 111cd in complexes and small molecules this con-

dition obtain.s: 2 •3 w0 is in the 108Hz range, while' Tc -10 may be 10 sec or less. 

_In macromolecules, however, the opposite situation, w
0

Tc >> l, is often to be 

expected, and for this situation a simple classical approach, given below, is 

simpler and more appropriate. 

Let us consider a rotational tracer atom that is bound in a rigid macro-

molecule in such a way as to be effectively shielded from the environment. The 

tracer nucleus is subject to two interactions, the static quadrupole interaction 

and relaxation caused by solvent-macromolecule collisions. However, since each 

collision induces only a very small rotation in the macromolecule, their combined 

effect on the tracer site is a random rotation of the coordinate frame. If this 

rotation is slow compared to the frequencies associated with the static inter-

action (i.e., if w0Tc >> 1), then the nucleus can follow adiabatically. We may 
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therefore write a formal expreasion for the ensemble average r
2
(t) in the presence 

of relaxation as 

(28) 

Here r
2
(e

2
•, •

2
•, t.) ~s ( ) "' ... given by Eq. 16 (with 82 <1>2 in place of 82 <t>2), P(8 2<P2) 

~ . 

is the probability of finding k
2
(t = 0), a vector directed toward the second 

detector, initially at angles 82 and <1> 2 in the atomic frame. The correlation 

function C(82' <1>2; 8;;/t), <1>2(t)) expresses the compoundprobability that the 

z axis (in the atomic system) will move in time t to an orientation such 

~ 

that k 2 (t) is at angles 82, 1>2· Thus P(8 2<t> 2) depends on the geometry of the 

experiment, including molecular geometry (e.g., the angles S, y, o, and n), 

C(82 , <1>2 ; 82(t),. <1>2(t)) contains the dynamics as well as being geometry-sensi

tive, and r2(82, <1>2, t) describes the static perturbations. The adiabaticity 

of this modelis manifest in th.e dependence of C(82 , <1>2 ; 82(t), <P2(t)) on 

angles rather than on spin operators. 

As written above Eq. (28) is of formal inte~est only, because it con-

tains no actual mechanism for relaxation. Such a mechanism is discussed below 

for the cylindrical molecules treated in Sec. III. 

Let us assume that the rotational motion of the molecules is charac-

terized by fast relaxation about their Z axes and slow relaxation of the Z-

axial direction. If the time scales of the two modes of relaxation are suf-

ficiently different that they may be taken as separable, the function 

C(8
2

, <1>
2

; 82(t), <1>2(t)) ·may be replaced by the product F(a,t) S (8, ~. t), 

where F(a,t) and 8(0, ~' t) describe the fast and slow relaxation, respectively. 

t 
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+ 
The angles 8 and ell in 8(8, ell, t) give the orientation of Z with respect 

+ 
to the orientation axis E. The slow component of relaxation will not be dis-

cussed in detail. 

The angle a in F(a,t) describes the rotation of the atomic frame about 

Z. Referring to Fig. 5, a(t) may be defined by 

a(t) = y(t) - y(O) · (29) 

where y(t) is the value of the angle y at time t. If 8(8, ell, t) varies. 

sufficiently slowly compared to F(a,t), it may be taken as essentially constant, 

and as having the value unity, during the interval in which fast relaxation 

takes place. Thus in this interva1 Eq. (28) can be approximated by 

f 2(t)- ~ ~ P(82 , ¢2 )F(a,t) r2[82(a), ¢2(a), t]d~d~' 
~' ~ 

(30) 

Here the dependence of 82 and ¢2 on a is indicated specifically. Of course 

82 arid ¢2 also depend on other angles. 

The time-evolution of a(t) can be treated as a random-walk process 

around the perimeter of a circle. For a macromolecule the step size ~a is 

very small and the number of steps required to produce a substantial angular 

displacement is very large, because rotation is caused by collisions with small 

solvent molecules. Thus F(a,t) may be taken as having Gaussian form, 

l/2 
F(a,t) = (4~) e 

-r a2 
c 

- 4-t 

Here T was chosen as the correlation time of cos a(t), i.e., 
c 

(31) 



( cos a.(O), cos a. (t} ) 

The normalization condition is 

00 r F(a.,t)da. ~ 1 
-' 
-00 

r 
= 1 

_, 
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00 

cos a. F(a.,t)dcx = e-t/Tc (32) 

(33) 

Even with the approximations entailed in Eq. (30), the calculation of 

r2(t) when relaxation is present would be very involved. Rather than attacking this 

problem generally let us evaluate r 2 (t) for some of the specific configurati<_ms 

discussed in Sec.·· III. The relaxation calculations are relatively simple for 

these configurations, and the results nicely illustrate the effects of relaxa-

tion- on the c'urves in Fig. (6). 

In configuration Il', 61 = TI- 6
2 

= 0 and these ~ngles are unaffected 

by rotation about Z. In fact ¢2(t) = ¢2(0) + a(t), but the terms in Eq. (16) 

that depend on ¢
2 

have vanishing coefficients. Thus there are no observable 

effects of fast relaxation, and 

( 34) 

In configuration I2', 62 is time-independent in spite of fast relaxation about 

Z, and-;!;he terms in 6
1 

and 6
2 

can be evaluated implediately. From the relation 

(35) 

t• 



-23-

Integration on F(a,t)da gives 

4t 
1 3 - T 9 5 

= 4 + 4 e c [ 14 cos w0 t + l4 cos 3w0 t] (36) 

Configuration IU' gave Curve Bin Fig. 6 in the absence of relaxation, 

as did configuration I2'. With fast relaxation about Z; however, they behave 

very differently. Neither e2 nor ct>2 is affected by fast relaxation in about Z 

in configuration IIl', and 

1 27 15 = 4 + 5b cos w0t + 5b cos 3w0t (37) 

In fact the results for configuration Il' and IIl' are examples of the general 

-+ -+ 
rule that relaxation about an axis parallel to k1 or k2 is not observable. This 

rule is the analogue for dynamic interactions of the well-known rule for static 

interactions that was mentioned after Eq. (17). 

The calculation of fast relation effects for configuration II2' is more 

This latter angle presents a special problem because it changes abruptly from 

-+ 
0 to 7T, and vice-versa, whenever the z or -z axis crosses through the k2 

direction. The cos 2
[ct>

2
(t)- ct>1 J term is unaffected, but cos[cp2(t)- ct>1 J changes 

sign .abruptly. In fact 

= -SIGN[sin(e2 + a(t)] 

The approximation 
I 

\ 
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has been used in the calculation below in order to retain tLe simple analytical 

procedures used for the other configurati.ons. The normalization factor ~~rr was 

introduced to give the correct i.nitial value of r2(t). 

calculation the result for configuration II 2' is 

4t 

A;fter a rather tedious 

f2(t)II2' ~ ~6 + ~2 e-Tc+ [~ e-t/Tc + k e""'9t/Tc](f cos WOt +~cos 2Wot] 

4t 
+ [~6 + ~2 e- TcHf-4- cos w

0
t + fr cos 3w

0
t] ( 38) 

This result is of special interest because an oscillatory term of maximum ampli-

tude ± 3/16 remains after fast relaxation is complet~, in addition to the con

stant "fast" hard-core term of magnitude ~6 . A fast hard-core value of ~ 

was present for configuration I2' (Eq. (36)), while configurations Il' and IIl' 

showed no fast relaxation effects. Slow relaxation will always lead to a 

limiting value r
2

(t-+ oo) = 0, provided that the relaxation is unrestricted. 

Incidentally the limiting values of f
2
(t) are easily checked. For t = 0 (or 

T = oo), Eqs. (36) and (37) must reduce to Curve Band Eq. (38) to Curve C. 
c 

The limiting values after fast relaxation are obtained by. taking uncorrelated 

averages of e
1

, e2, etc., within the constraints set by each configuration. 

Thus for configuration II2', (3 cos2e1 - 1)(3 cos2e 2 - l) = {~)(~) = ~' etc. 

The sensitivity of these relaxation curves to the experimental con-

figuration is striking. This sensitivity is illustrated by Cases II and III, 

for which r
2
(t) was identical in the absence of relaxation (Table I). The expres

' 
sions for r2(t)IIl' and "f2(t)II2 ' in the presence of fast relaxation are given 

above. The two configurations I2 1 and IIIl' will give identical forms of f 2(t) 

even in the presence of fast relaxation, because they are related by a rotation 

... 
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of the entire system. (The same is true of configurations li2' and IVl'.) Thus 

f 2 (t)III1' is given by Eq. (36). Finally, f 2(t) 1II2 ' is easily calculated since 

only ¢2 - ¢1 is affected by fast relaxation (it is also necessary to average over 

81 ). The result is 

4t 
+ 9 - Tc [9 t 5 3 t] 

32 e 14 cos w
0 

+ 14 cos w
0 

( 39) 

The fast relaxation curves f 2(t) for Cases II and III are plotted in Fig. 7. 

Their diagnostic value is obvious. With fast relaxation these two cases give 

very different results, whereas with only static interactions they were undis-

tinguishable. 

Little generalization is possible on the basis of the few configurations 

studied above. However, it is clear that in some instances angular~correlation 

studies of relaxation in rotationally-labeled macromolecules can yield infor-

mation about the molecular geometry at the binding site (specifically w
0 

and 

the angle S) and about the molecular orientation, as well as elucidating the 

dynamical behavior itself. 
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V. CONCLUSIONS AND OUTLOOK 

It has been shown that, for a particular set of circumstances, rotational 

tracer studies should yield results that are sensitive to molecular geometry. 

In addition, this technique should prove to be a good indicator of molecular 

orientation. In fact it is an absolute indicator of orientation, because angu-

lar correlation theory is rigorous. Finally, the response function measured 

in rotational tracer experiments is sensitive to the dynamic properties of mole-

cules. In favorable cases it may be possible to study molecular dynamics in 

some detail. For example, different relaxation rates about different axes 

would y'ield results that could be calculated by a straightforward extension of 

the methods usecl in Sec. IV. These features of rotational tracers are especially 

interesting because of the possibility of in vivo studies and other biological 

applications. It is not difficult, for instance, to think of biologically inter-

esting problems for which a knowledge of molecular orientation is pertinent. 

Let us therefore examine briefly the range of validity of the results obtained 

in Sees. III and IV. 

First, although the above results were obtained explicitly for a nuclear 

level with spin 5/2, similar calculations could just as easily have been done with 

any other spin {a spin I ~ l is required for quadrupole interaCtions). The 

restriction A = 2 presents no real problem either: the appropriate com-
max 

bination of AA (1) and AA2 (2) could if necessary be determined in auxiliary 
1 

exper :lments. The restriction to axial symmetry in the el'ectric field gradient 

was made to simplify the calculation. With an asymmetric field gradient, f 2(t) 

would be oscillatory but aperiodic. The calculations are more involved but the 

results are qualitatively similar. The criterion w0Tc >> 1 that is necessary 

J 
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if the classical relaxation model is to be valid will often not be met, but 

6 13 14 other theoretical approaches ' ' can be used, and the resulting relaxation 

curves should not be grossly different. Thus none of the restrictions made for 

the derivations given in Sees. III and IV are qualitatively serious: if dif-

ferent assumptions were made, the resulting curves would be different, but 

similar. 

Finally, however, two problems that could seriously affect the usefulness 

of rotational tracers can be conveniently discussed in connection with the above 

curves. First, the nuclear lifetime TN' together with other experimental para

meters, will usually limit the number of cycles that can be observed in a prac-

tical experiment to no more than 5-10, and often less. More serious is the 

problem of the uniqueness of the quadrupole coupling constant. Even if the elec-

tric field gradient tensor is asymmetric, which is highly probable at the binding 

site of a macromolecule, the response function f
2
(t) can exhibit large (albeit 

aperiodic) oscillations, because the interactions are temporally coherent in 

the ensemble (with all systems referred to the same time origin t = 0 by y1 ).· 

This coherence is lost, however, when there is a distribution of quadrupole fre-

quencies at the binding site. A distribution is often expected: it could arise, 

for example, from small conformational changes in neighboring functional groups. 

The resultant "inhomogeneous broadening" leads to a decay in f2(t) that could 

(but should not) be mistaken for relaxation. Two features that distinguish this 

broadening from relaxation are: (1) With inhomogeneous broadening, the maxima 

and minima in f
2
(t) will broaden as t increases~ Relaxation leaves the widths 

of these features unchanged. (2) With only static interactions, f
2
(t) tends to 

a finite hard-core value. Even if these two differences enable one to distinguish 
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relaxation from inhomogeneous broadening, however, the latter may still modify 

r2(t) enough to result in considerable loss of information. 
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Table I. Classification of the Configurations 

(>· 

Configuration B cS el 
Static Dynamic 
Curve Curvea. 

j 

I 1' 0 0 0 A Eq. (34) 

I 2' 0 0 rr/2 B Eq. (36) 

II l' rr/2 0 rr/2 B Eq. (37) 

II 2' rr/2 0 O-rr c Eq. ( 38)c 

III l' 0 rr/2 rr/2 B Eq. ( 36) 

III 2' 0 rr/2 O-rr c Eq. (39) 

rv 1' rr/2 rr/2 O-rr c Eq. (38)c 

IV 2' rr/2 rr/2 b 
O-rr D 

v 1' any 0 B Eq. (28) 

2' rr Eq. (28) v any ..., 0 --B 2 
a Fast component only. 

b -+ -+ 
Averaged around both E and z. 

cApproximate. See text. 

,, 
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FIGURE CAPTIONS 

Fig. 1. ~pical nuclear level diagram for angular correlation experiment. Sub-

states of intermediate level are shown schematically. The notation is 

explained in text. 

-+ + 
Fig. 2. Relations of the y-ray propagation directions k

1 
and k

2 
to the atomic 

-+ 
frame, in which the z direction is taken along the symmetry axis of the 

electric field gradient tensor. 

Fig. 3. Response functions r2 (t) for crystals, using Geometries l-3, and for 

a polycrystalline source (random geometry). In each case I = 5/2 and the 

electric field gradient has axial symmetry. 

Fig. 4. Orientation of vectors in Geometry 1'. 

Fig. 5. Orientation of vectors in Geometry 2'. 

Fig. 6. The four curves for static interactions, in oriented molecules, for 

Cases I- rv and Geometries 1' and 2'. The nuclear spin is taken as 5/2, 

and the electric field gradient has axial symmetry. 

Fig. 7. Calculated response functions for oriented macromolecules in the 

presence of fast relaxation. See Table I and text. 
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