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How do people build up visual memory representations from 
sensory evidence? Revisiting two classic models of choice

Maria M. Robinson*, Isabella C. DeStefano,
Edward Vul,

Timothy F. Brady

University of California, San Diego, United States of America

Abstract

In many decision tasks, we have a set of alternative choices and are faced with the problem of 

how to use our latent beliefs and preferences about each alternative to make a single choice. 

Cognitive and decision models typically presume that beliefs and preferences are distilled to a 

scalar latent strength for each alternative, but it is also critical to model how people use these latent 

strengths to choose a single alternative. Most models follow one of two traditions to establish 

this link. Modern psychophysics and memory researchers make use of signal detection theory, 

assuming that latent strengths are perturbed by noise, and the highest resulting signal is selected. 

By contrast, many modern decision theoretic modeling and machine learning approaches use the 

softmax function (which is based on Luce’s choice axiom; Luce, 1959) to give some weight 

to non-maximal-strength alternatives. Despite the prominence of these two theories of choice, 

current approaches rarely address the connection between them, and the choice of one or the other 

appears more motivated by the tradition in the relevant literature than by theoretical or empirical 

reasons to prefer one theory to the other. The goal of the current work is to revisit this topic by 

elucidating which of these two models provides a better characterization of latent processes in 

m-alternative decision tasks, with a particular focus on memory tasks. In a set of visual memory 

experiments, we show that, within the same experimental design, the softmax parameter β varies 

across m-alternatives, whereas the parameter d′ of the signal-detection model is stable. Together, 

our findings indicate that replacing softmax with signal-detection link models would yield more 

generalizable predictions across changes in task structure. More ambitiously, the invariance of 

signal detection model parameters across different tasks suggests that the parametric assumptions 

of these models may be more than just a mathematical convenience, but reflect something real 

about human decision-making.
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1. Introduction

We make choices in virtually every real-world and laboratory task. For example, we decide 

which cereal we prefer in a supermarket, which color a word is in a Stroop task, or which 

item is ‘old’ in a forced-choice memory study. Because decision processes are ubiquitous, 

there is great value in determining the type of quantitative model that best captures them. To 

this end, we examine the generalizability of two prominent probabilistic models of choice. 

The first is a Gaussian signal detection model, which is based on classic Signal Detection 

Theory (e.g., Wixted, 2020) and Thurstone’s law of comparative judgment (Thurstone, 

1927). The second is the normalized exponential model, commonly known as the softmax 

function (e.g., Bridle, 1990), which is based on Luce’s Choice Axiom (LCA) (Luce, 1959) 

and the ratio of strengths formula (Bradley & Terry, 1952) (for extensive taxonomy of these 

models see: Townsend & Landon, 1983).

In the current work, we focus on how these two models generalize across different 

decision-based visual memory tasks in order to better understand the types of computations 

people use to convert sensory evidence to memory representations to make memory-based 

decisions. Focusing on the generalizability of these models is key because this allows us 

to better isolate latent variables of interest (e.g., Navarro, 2021). For illustration, consider a 

standard forced-choice task in which you are shown an object that you have to remember. 

Subsequently, when you are tested on your memory, you are shown that object along with 

one or seven foil objects, where foils refer to objects you were never actually shown. In 

this simple forced choice task, as more foil items are added you will tend to become less 

accurate at choosing the object you saw because the probability of you incorrectly choosing 

a foil will tend to increase when more foils are present (Wickens, 2001). Importantly, 

if memory conditions are held constant across these decision tasks, the fidelity of your 

memory for the object you saw should also remain unchanged, regardless of how many foils 

you are shown (Swets, 1959). Thus, a key question is what decision model best allows us 

to assess people’s memory strength independently of the decision task we use to test it. In 

other words, which decision model’s parameters are invariant and best generalizes across 

variations in task structure that affect the decision process but not memory fidelity?

We focus on Signal Detection Theory and Luce’s Choice Axiom because they are prominent 

in different domains, such as decision-making and memory research, but within some 

domains, there are relatively few comparisons between them. Furthermore, early work that 

examines the connections between these models (for recent review see: Pleskac, 2015), has 

yet to be linked to contemporary research questions. We illustrate these points in the context 

of recent computational modeling research on visual memory.

Our article has the following structure. First, we overview each of the theories and their 

corresponding models. Second, we outline how early work on the relationship between 

models based on SDT and LCA applies to contemporary research on visual memory and 

describe a critical test that we used to discriminate between them. Finally, we discuss our 

findings and their relevance for theorizing about decision processes within and outside of 

visual memory tasks.
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1.1. Signal detection theory

The application of SDT to the study of sensory and cognitive process comes from the 

tradition of perceptual psychophysics (e.g., Green, Swets, et al., 1966), which highlights the 

relationship between sensory signals that must be used to make a decision, and the physical 

and neural noise that perturbs them before a decision is made (Wickens, 2001). Over the 

years, SDT has been used in other domains, such as memory research (e.g., Wixted, 2007), 

to provide a detailed description of decision processes in detection and discrimination tasks 

by postulating latent memory-strength signals that are perturbed by noise. The two core 

assumptions of signal detection models is that when faced with making a decision, the 

conceivably rich and multi-dimensional representation of each alternative is collapsed down 

into a scalar value – the decision variable – and that the decision variable invoked by a 

particular alternative is probabilistic. Jointly, these assumptions capture the mainstream view 

that there are internal and external sources of noise that corrupt sensory and memory signals 

(e.g., Dosher & Lu, 1998). For instance, in the memory domain, a familiar object, such 

as a backpack, will produce a decision variable of some magnitude with respect to some 

task, such as a familiarity signal for a recognition task. The decision variable produced by 

observing a backpack will vary from one instance to another due to variation in external 

circumstances, such as its lighting and vantage point, as well as fluctuations of internal 

states, such as memory, attention and motivation.

Because decision variables in this view are seen as random variables, it is common to 

postulate a specific probability distribution over them (although see: Kellen, Winiger, Dunn, 

& Singmann, 2021). While in some low-level perceptual domains, great care has been taken 

to characterize the functional form of this distribution, and thus the form of the psychometric 

function (e.g., Green et al., 1966), in most applications such fidelity is unattainable 

and researchers simply assume that decision variables are normally distributed. Thus, 

historically, the normality assumption common in SDT is made primarily for convenience 

(Wickens, 2001). Furthermore, in contemporary modeling work it is often treated as an 

auxiliary assumption that does not have a theoretical justification (Kellen et al., 2021; 

Rouder, Pratte, & Morey, 2010). To preview our analysis and results, we show that the 

Gaussian parameterization of signal detection models is not merely ancillary. Instead, its use 

can have a principled theoretical basis that formalizes how sensory signals are converted 

to decision variables. We discuss this point in depth when reviewing the mathematical link 

between the Gaussian signal detection and softmax model.

Finally, most mainstream signal detection models postulate that, while decision variables 

are probabilistic, the decision making process is deterministic (for exceptions see, e.g., 

Benjamin, Diaz, & Wee, 2009). That is, once decision variables are sampled from their 

probability distributions, choices are made deterministically by comparing the decision 

variables to one another, or to a fixed decision criterion. Next we describe how these 

principles are used to explain performance in mainstream detection and discrimination tasks.

1.1.1. SDT for detection and discrimination tasks—In detection tasks the observer 

responds by indicating the presence or absence of a target stimulus. The classic Gaussian 

signal detection model posits that this decision is made by collapsing the rich stimulus 
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representation down into a single decision variable and then comparing this decision variable 

X against a fixed decision threshold C. Accordingly, the probability of responding that 

a target is “Present” on target present and absent trials is given by Eqs. (1) and (2), 

respectively:

P ′Present′ ∣ Present = P XT > C ,

(1)

P ′Present′ ∣ Absent = P XF > C .

(2)

In Eq. (1) XT denotes the decision variable elicited by the target stimulus, which is a 

random variable sampled from a normal distribution with free parameters, mean μ > 0 and 

variance σ2: XT N μ, σ2 . A common assumption is that, on average, decision variables on 

target present trials will be of greater magnitude than on target absent trials, and it follows 

that their mean will also be greater. Therefore, with no loss in generality, the mean and 

variability of the decision variable elicited by foil items, XF in Eq. (2), on target absent trials 

is set to 0 and 1, respectively: XF N 0,1 .

Unlike in detection tasks, in forced-choice discrimination tasks the target is always shown 

and an observer must select it out of a set of n alternatives. Classic signal detection 

models postulate that this selection process involves computing the maximum of a set of 

n independent random variables corresponding to the decision variables invoked by each of 

the stimuli: Xi. More precisely, the probability of identifying a given item i as the target is 

the probability that the magnitude of the decision variable generated by the target Xi exceeds 

the decision variables generated by each of the n − 1 foil items Xj for j ≠ i :

P ID i = P ∀j ≠ i:Xi > Xj .

(3)

This general expression can be written out for the special cases of correct choices, when Xi

corresponds to the target i = 1 , and incorrect choices, when i ≠ 1. For correct choices, or 

Target Identifications, Xi is the target Xi = X1 = XT  and all Xjs are foils, thus Xi N μ, σ2 , 

and Xj N 0,1 . For incorrect choices, or Foil Identifications, the target is one of the Xjs while 

Xi and the remaining Xjs are foils. For both of these special cases, we can rewrite the general 

expression:

X1 = XT N μ, σ2

(4)
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X2…n iid N 0,1

(5)

P ID Target = P X1 > max X2…n ,

(6)

P ID Foil = ∑
i = 2

n
P Xi > max X1 . . n ∖ i .

(7)

1.2. Luce’s choice axiom

Luce’s Choice Axiom (LCA) comes from the decision theory tradition, rather than 

psychophysics, and is predated by the ratio of strengths formula for pairwise choices 

(Bradley & Terry, 1952) (for empirical tests and extended discussion of these models see: 

Townsend & Ashby, 1982; Townsend & Landon, 1983). Unlike SDT, the LCA framework is 

silent about the mechanisms of detection and discrimination processes. Instead, it consists of 

a set of axioms that impose “plausible constraints” on choice probabilities.

The central axiom is called Independence from Irrelevant Alternatives and states that 

the probability of choosing one alternative over another should not change if irrelevant 

alternatives are added or taken away. Under this view, response probabilities for each 

alternative are computed by dividing each response strength by the sum of all response 

strengths in the set. For instance if a is one alternative out of a larger set T , the probability of 

choosing a out of S is

P a, S = ϕ a
∑z ∈ S ϕ z ,

(8)

where ϕ is a response strength function. Note that independence from irrelevant alternatives 

follows directly from this formula because the odds of choosing a over a different alternative 

b ∈ S remains the same, even if we consider a larger set of alternatives T  where S ⊆ T . That 

is, for 0 < P x < 1,

P a, S
P b, S = P a, T

P b, T = ϕ a
ϕ b .

(9)

Eq. (8) also implies that the function ϕ lies on a ratio scale. That is, assume there exists 

another function ϕ′ that satisfies the equality
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ϕ a
ϕ b = ϕ′ a

ϕ′ b .

(10)

Substituting 1 for ϕ b  and τ > 0 for ϕ′ b  yields ϕ a = ϕ′ a , showing that the scale ϕ
is unique up to multiplication by a positive constant (proof adapted from: Krantz, Luce, 

Suppes, & Tver-sky, 1971). This entails that the response function ϕ lies on a ratio scale, an 

important and rare property of psychological metrics (Falmagne & Doble, 2015).

Finally, note that in order for choice probabilities in Eq. (8) to be restricted between zero and 

one, response strengths should be constrained to be non-negative. One way to impose this 

constraint is to parameterize the Luce choice model with an exponential function, such that

P a, S = eϕ a
∑z ∈ S eϕ z .

(11)

This formulation of LCA is equivalent to the exponential form of the multinomial 

distribution and the softmax function (Bridle, 1990), which is routinely used in econometrics 

(McFadden, 1980), machine learning (Murphy, 2012) and reinforcement learning (Sutton & 

Barto, 2018).

1.2.1. LCA for detection and discrimination tasks—Through the lens of LCA, 

performance in detection and discrimination tasks is not determined by random decision 

variables but by fixed response strengths. In detection tasks, assume that β denotes response 

strength generated by the target stimulus1 and V  denotes a bias parameter for reporting the 

stimulus is absent. Then, on target present trials, the probability of correctly responding 

target present is

P ′Present′ Present = eβ
eβ + eV .

(12)

On target absent trials, the probability of incorrectly responding target present is determined 

by the response strength generated by the foil, which is zero. Thus, the probability of 

incorrectly responding target present on target absent trials is

P ′Present′ ∣ Absent = 1
1 + eV .

(13)

1Technically, β denotes how response strengths are weighted. More precisely, as β increases responses become more deterministic, 
such that alternatives with higher response strengths receive more weighting and are more likely to be chosen. However, since we 
assume that foil items yield zero response strength in this exposition, we equate β with response strength of the target stimulus.
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Note that the formulas for choice probabilities in Eqs. (12) and (13) are formally equivalent 

to a logistic cumulative distribution (Suppes & Krantz, 2007), a special case of the softmax 

function for binary choices.

Extending this logic to discrimination tasks with n alternatives uses the standard assumption 

that the response strength generated by the target and n − 1 foils is equal to β and zero, 

respectively. Accordingly, the probability of correctly selecting the target is

P ID Target = eβ
eβ + n − 1

,

(14)

and the probability of incorrectly selecting a foil item is

P ID Foil = n − 1
eβ + n − 1

.

(15)

1.3. Connections between SDT and LCA

Due to their distinct origins and distinct mathematical instantiations, models based on SDT 

and LCA may seem extremely different from one another. However, the Gaussian signal 

detection and softmax models turn out to be close approximations in some tasks. More 

precisely, in detection tasks, the connection between these models follows simply from the 

fact that the logistic distribution approximates the normal distribution (Treisman & Faulkner, 

1985). This entails that the LCA for binary choices is essentially equivalent to a signal 

detection model with a logistic parameterization, which closely approximates the Gaussian 

signal detection model. Thus, in detection tasks LCA and Gaussian signal detection models 

are closely related.

In discrimination tasks with more than two alternatives the Gaussian signal detection and 

softmax model no longer approximate each other. The relationship between these two 

models breaks down in m-afc tasks (where m > 2) because the distribution of maximums 

of normally distributed variables is not a normal distribution. However, it is possible to 

establish an equivalence between the two models by dropping the normality assumption in 

the signal detection model. Holman and Marley (1974) as well as Yellott (1977) showed 

that, if decision variables in the signal detection model have a Type 1 extreme value 

Gumbel distribution for the maximum (Gumbel, 1954), than the signal detection model is 

mathematically equivalent to the Luce model for any number of alternatives m  in an m-afc 

task. We provide our own proof of this result in Appendix.

In the current context, the major implication of this result is that comparing the softmax 

model to the Gaussian signal detection model can be recast as a comparison of two 

different parameterizations of the signal detection model, that is, a signal detection 

model with a Gumbel versus a Gaussian parameterization. As we discuss next, these two 

Robinson et al. Page 7

J Math Psychol. Author manuscript; available in PMC 2024 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameterizations have an important conceptual basis because they describe different ways 

of translating sensory evidence into decision variables.

1.4. Processing implications of a Gaussian versus Gumbel signal detection (softmax) 
model

A common assumption is that the Gaussian parameterization of signal detection models is 

made for mathematical convenience and does not have a theoretical basis (e.g., Kellen et 

al., 2021). However, early work by Thompson and Singh (1967) provides one principled 

justification for using a normal distribution to model decision variables. These researchers 

noted that each time we observe a stimulus, it produces a sensory response of some 

variable magnitude. For instance, through the lens of contemporary population coding neural 

models, these sensory responses can be conceived of as distributed patterns of activation in 

populations of neurons (e.g., Averbeck, Latham, & Pouget, 2006).

If this large number of sensory signals (e.g., patterns of activation across a population) are 

pooled together by summing or averaging to compute decision variables, then in accordance 

with the Central Limit Theorem, decision variables will be normally distributed. In contrast 

to the Gaussian, the Gumbel distribution is an extreme value distribution used to model the 

maximum of a set of random variables (Gumbel, 1954). Thus, a signal detection model with 

a Gumbel parameterization is most consistent with the view that, rather than pooling, the 

observer takes the maximum of sensory signals to compute decision variables. Fig. 1 depicts 

these predictions by showing how a stimulus produces a neural response profile that consists 

of a set of tuning functions (colored distributions), and how these neural responses can be 

converted to a single decision variable through the lens of each model.

Together, a test between these models can be recast as a test of two different signal detection 

models. To further motivate the comparison of these two models, we underscore that 

there is extensive support for signal detection theory as a general theory in the memory 

domain (for recent overview see: Wixted, 2020) using diverse methods, including Receiver 

Operating Characteristics analysis (e.g., Robinson, Benjamin, & Irwin, 2020; Williams, 

Robinson, Schurgin, Wixted, & Brady, 2022; Wixted, 2007), and a novel critical test which 

rests on minimal assumptions (Winiger, Singmann, & Kellen, 2021) While some authors 

reported evidence for alternative models under some conditions (e.g., Balakrishnan, 1999; 

Rouder et al., 2008), follow-up work suggests that these results were spuriously driven 

by either restricted model assumptions, or non-diagnostic data and inadequate metrics of 

model fit (Mueller & Weidemann, 2008; Robinson, Williams, & Brady, 2022). Moreover, 

recent modeling work in the visual memory domain indicates that a signal detection model 

constrained by psychophysical scaling methods outperforms all extant alternative models 

of visual memory both in fit and generalization (Schurgin, Wixted, & Brady, 2020). Thus, 

classic and contemporary modeling work demonstrates robust evidence for signal detection 

models of memory. Our work builds on this literature by highlighting that the parametric 

assumptions of signal detection models are not merely ancillary, but can have different 

implications for how we think observers convert rich sensory or memory evidence to 

decision variables when making memory-based decisions.
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1.5. Critical test: Parameter invariance across changes of m in m-afc tasks

We compared the Gaussian signal detection and softmax model by examining which 

model’s parameters (d′ in SDT; β in LCA/softmax) are invariant across variations in the 

number of alternatives presented at test in an m-afc task. Our test rests on the assumption 

that, everything else being equal, the way in which observers compute decision variables 

should be invariant across changes in m-afc. This assumption aligns with the broader 

view that model parameters that generalize across task structures may also provide better 

approximations of latent cognitive processes (Busemeyer & Wang, 2000).

We note that a similar test was used in an auditory memory task in an early study by 

Treisman and Faulkner (1985). These authors reported evidence for the Gaussian signal 

detection model, however, their results were somewhat ambiguous. Mainly, they found that 

variations in m-afc produces decreases in d′ and increases β, parameters in the Gaussian 

signal detection and softmax model, respectively. The researchers interpreted this as 

evidence for the Gaussian signal detection model because they reasoned that increasing the 

number of alternatives in the auditory task may increase memory load and hurt performance, 

but not improve it. However, while the finding that d′ decreases with m may be more 

psychologically plausible, it does not demonstrate that parameters of this model are invariant 

with m because m is confounded with memory load. Furthermore, this study only used data 

from 6 participants and may have been underpowered. As we discuss next, one of our goals 

was to address both of these methodological limitations and perform a more direct test of the 

two theories.

1.6. Application to visual memory

We ran a new set of experiments that extends the critical test of Treisman and Faulkner 

(1985) to the visual memory domain. The first reason we used a visual memory task is 

because this allows us to present all m-afc alternatives visually, instead of having participants 

maintain these in working memory. Accordingly, this study design minimizes differences in 

memory load across m-afc task, addressing the core limitation of the Treisman and Faulkner 

experiment and providing a strong testbed of parameter invariance. We also increase the 

number of participants in our experiments to ensure that our studies are sufficiently powered.

Another motivation for extending this test to the visual memory domain is because a 

comparison between these models has direct relevance for contemporary models of visual 

memory. That is, both the Gaussian signal detection and softmax models have been used 

in recent modeling work as response functions that capture how people make decisions 

in m-afc visual memory tasks (Oberauer & Lin, 2017; Schurgin et al., 2020). However, 

these models have not been empirically compared with critical tests, and the processing 

implications for understanding how people compute decision variables in visual memory 

tasks have not been discussed. Finally, there is much recent interest in instantiating 

human visual memory models using neural network architectures (e.g., Bates, Alvarez, 

& Gershman, 2023; Brady & Störmer, 2020; Hedayati, O’Donnell, & Wyble, 2022) that 

routinely use the softmax as a response function (Murphy, 2012); it remains unclear whether 

this provides the best approximation of how humans map latent states to memory judgments. 

Our goal is to fill these gaps by comparing these models in a set of visual memory 
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experiments. To this end, we ran two experiments in which we varied the structure of the 

stimulus space, the dimensionality of stimuli and the presentation format to ensure that our 

results were robust across different processing domains and theoretical assumptions.

2. Experiment 1: Memory for simple features

Experiment 1 was designed to test the signal detection and softmax models in a multiple 

alternative forced choice visual working memory task with simple features (color). The 

central comparison involves examining which model’s parameters are invariant across 

changes in the number of alternatives in m-afc tasks.

2.1. Methods

Participants Participants (n = 31) were undergraduate student volunteers, at the University of 

California, San Diego, who participated in the study for course credit. All participants were 

at least 18 years old, reported normal or corrected-to-normal vision, and provided informed 

consent. All experiments were approved by the Institutional Review Board at the University 

of California, San Diego.

Our predetermined sample size was n = 30. This sample size is a conservative bound for 

detecting a medium effect size dz = 0.6  with 90% power and α = . 05 significance criterion. 

We collected participant data until our sample size reached n = 30 based on our exclusion 

criteria. Consistent with our standard lab practice, we excluded trials with reaction times 

less than 100 ms or greater than 5000 ms (average proportion of 3% per participant). We 

excluded participants who had more than 10% of trials excluded, or who whose performance 

was at chance in any of the four conditions (one participant).

Stimuli Stimuli were colored circles. Colors were drawn from the CIE L*a*b* color space, 

centered in the color space at L = 54, a = 21.5, b = 11.5) with a radius of 49 (from Schurgin 

et al., 2020).

Procedure Fig. 2 shows an example trial from Experiment 1. On each trial, participants 

were shown four circles and instructed to remember their colors and spatial locations. The 

minimum distance (along the color circle) between each circle in the memory array was 30 

degrees. The memory array was shown for 1000 ms. After a brief retention interval (800 

ms), participants were shown a spatial cue that probed one of the four circles shown in the 

memory array.

Participants were instructed to use a discretized color wheel to report on their memory for 

the probed circle. The discretized color wheel consisted of 2, 4, 8, or 16 colors, which were 

spaced either 180°, 90°, 45° or 22.5° apart in color space, respectively. Participants were 

instructed to click on the color that they thought best matched the color of the probed circle. 

One of the colors always matched the color of the probed circle, whereas the others did not. 

There were a total of 500 trials in the experiment (125 trials per m-afc condition), and each 

experimental session lasted approximately 50 min.
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2.2. Analysis

Participants’ responses were converted to errors by taking their distance along the color 

wheel from the correct answer, where the correct response is centered at zero. Rather 

than assuming that all foils are processed independently and elicit zero signal regardless 

of their similarity to the shown color, we fit models to the full distribution of errors 

under the assumption that the latent memory strength of each alternative scales with the 

psychophysical similarity to the remembered item. This assumption aligns with classic 

feature matching models of memory (e.g., Clark & Gronlund, 1996), as well as more recent 

work on visual memory (Schurgin et al., 2020). More precisely, both theoretical frameworks 

predict that foils that are more similar to the target have stronger latent memory strengths 

than those that are less similar. This fitting procedure used psychophysical similarity values 

obtained by Schurgin et al. (2020). These deviation values were fit with a Gaussian signal 

detection model and a softmax model to estimate parameters d′ and β, respectively. Models 

were fit separately to each participant’s data and fitting was implemented in MATLAB using 

maximum likelihood estimation (MLE).

Our goal was to determine which model’s parameters are invariant across the m-afc 

manipulations. We tested this by comparing the relative fits of the Gaussian signal detection 

and softmax model when parameters d′ and β, respectively, were fixed across all m-afc 

conditions.2 This analysis provides insight into which model best accommodates the data if 

we assume that its parameters are invariant across manipulations of m-afc. Since both the 

signal detection and softmax models have the same number of parameters, we used the log 

likelihood (LL) to compare models (note that larger values of the LL indicate superior fit). 

These values were compared at the level of individual participants using a paired t-test.

We also implemented three secondary analyses that complement our critical test. In the 

first complementary analysis, we ran a manipulation check that memory fidelity, which is 

captured via model parameters, did not decrease as a function of alternatives in m-afc. In 

the second complementary analysis, we evaluated the relative flexibility of both models 

because prior work suggests that variants of the ratio of strengths formula can be extremely 

complex relative to alternative models with the same number of parameters (Myung & 

Pitt, 1997; Pitt, Myung, & Zhang, 2002; Townsend & Ashby, 1982). To compare these 

models on their flexibility, we assessed the relative fits when parameters varied freely across 

m-afc conditions. This analysis provides insight into whether (as expected) the invariance 

of parameters of these models, as opposed to their functional form, yields better fits to 

data in our primary analysis when parameters are fixed across m-afc conditions. That is, we 

expect that if these models are matched on their flexibility, they should yield comparable 

fits to the data when parameters vary freely across experimental conditions. In the third 

complementary analysis, we compared the standard deviation of parameters across m-afc 

conditions when we allowed these to vary freely across m-afc conditions. We expect 

2Model comparisons are essential because in m-afc tasks models cannot be compared by simply examining the distributions of errors. 
For instance, the maximum rule Gaussian signal detection model does not predict perfectly Gaussian distribution of errors because 
distribution of the maximums of m > 2 variables is slightly skewed.
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variability of parameters across m-afc conditions to be smaller in the model that provides the 

best fit to data when parameters are fixed across m-afc conditions.

2.3. Results

2.3.1. Manipulation check—Panel A of Fig. 3 shows parameter estimates from each 

model when they were allowed to vary freely across m-afc experimental conditions. Note 

that one critical assumption of our analysis is that by making m − afc alternatives visible 

to participants we do not increase memory load with m − afc. To check for this, we 

examined whether parameter estimates decreased systematically as a function of the m − afc
manipulation. We found that they did not. Specifically, in the Gaussian signal detection 

model, average d′ equaled 1.79 (SEM = . 17), 1.86 (SEM = . 16), 1.98 (SEM = . 14) and 

1.84 (SEM = . 16) in the 2, 4, 8, and 16 m-afc conditions, respectively. In the Gumbel signal 

detection model, average β estimates equaled 2.42 (SEM = . 34), 2.5 (SEM = . 23), 2.85 

(SEM = . 19) and 3.07 (SEM = . 24) in the 2, 4, 8, and 16 m-afc conditions, respectively. 

Together, through the lens of both models we did not find that performance decreased 

systematically as we increased the number of alternatives at test.

2.3.2. Model flexibility—Importantly, based on LL, we found that the Gaussian 

signal detection X‾ = − 560; SEM = 31  and softmax X‾ = − 560.01; SEM = 31  models 

fit the data comparably when parameters were free to vary across m-afc conditions 

t 29 = . 19, p > . 84; dz = 0.04 . This analysis provides convergent support for the 

conclusion that the superior fit of the Gaussian signal detection model when its parameters 

are fixed across m-afc conditions, reflects its superior capacity to capture invariants across 

m-afc conditions, as opposed to this model having a more flexible functional form.

2.3.3. Critical test for parameter invariance—Panel B of Fig. 3 shows the 

difference in log likelihood (LL) between the Gaussian signal detection and softmax 

model when parameters d′ and β, respectively are fixed across m-afc conditions. 

Positive and negative values indicate support for the Gaussian signal detection and 

softmax model, respectively, whereas values near zero indicate equal support for 

both models. We found that the LL was significantly higher for the Gaussian signal 

detection X‾ = − 562.2; SEM = 31  than the softmax X‾ = − 565.3; SEM = 31  model 

t 29 = 4.26, p < . 001; dz = 0.77 . Average parameter estimates in the fixed models were 

d′ = 1.86 SEM = . 15  and β = 2.69 SEM = . 22 .

Based on the standard deviation of parameters across m-afc conditions, we also found 

that there was significantly less variability in parameters in the Gaussian signal detection 

X‾ = . 21; SEM = . 02  than the softmax model X‾ = . 55; SEM = . 08  when these were 

allowed to vary freely t 29 = 5.26, p < . 001; dz = 0.96 . Thus, the d′ parameter of the 

Gaussian signal detection model was more stable across m-afc conditions than the β
parameter of the softmax model. Together, our results provide support for the Gaussian 

signal detection over the softmax model. That is, we find that the Gaussian signal detection 

model does a better a job at capturing invariance of decision latent processes across m-afc 

conditions, and that these effects are not due to differences in model flexibility.
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3. Experiments 2: Memory for real-world objects

The goal of Experiment 2 was to examine the generalizability of our modeling results. 

To this end, in Experiment 2 we modified both the stimuli and presentation format. More 

precisely, we had participants remember real-world objects instead of simple features and 

presented stimuli sequentially instead of simultaneously. Another advantage of using real-

world objects instead of colors as stimuli, is that the real-world object stimulus space in 

unconstrained. This entails that we can select a larger number of foils that are completely 

dissimilar from the target and, therefore, compare models without relying on additional 

assumptions about how participants process psychophysically similar foils.

3.1. Methods

Participants Participants n = 31  were undergraduate student volunteers, at the University of 

California, San Diego, who participated in the study for course credit. As in Experiment 1, 

we collected participants until we reached a final sample size of (n = 30). Exclusion criteria 

were the same as those used in Experiment 1. We excluded an average of 4% of trials per 

participant, and one participant.

Stimuli Stimuli were photos of real-world objects taken from Brady, Konkle, Alvarez, and 

Oliva (2008). All objects were from different categories.

Procedure Fig. 4 shows an example trial from Experiment 2. On each trial, participants were 

shown a sequence of five unique photos of real-world objects. Each object was presented for 

300 ms, and the interstimulus interval was 100 ms. The sequence of objects was followed by 

a retention interval that lasted 800 ms.

At memory test, participants were shown 2, 4, or 8 objects and were instructed to click on 

the object that was shown in the sequence on that trial. We include 3 instead of 4 m-afc 

conditions because trials with sequential presentation are longer and we wanted to ensure 

that the experimental session did not run over the 50 min time limit, while maintaining 

a sufficiently large number of trials per condition. One of the objects always matched an 

object shown on that trial sequence, whereas the others were completely novel objects that 

were only shown once throughout the entire experimental session. There were a total of 210 

trials (70 trials per m-afc condition), and each experimental session lasted approximately 50 

min.

3.2. Analysis

In this experiment all stimuli, including targets and non-targets in the memory array, as well 

as foils were chosen randomly with the constraint that they came from different categories 

(as in Brady et al., 2008). Accordingly, there is no structure to the error distribution as a 

function of similarity, and analyzing the accuracy data and error distributions yields identical 

results. Thus, the analysis was identical to the one used in Experiment 1, with the exception 

that we fit models to proportion correct alone rather than the complete error distribution with 

no loss in generality.

Robinson et al. Page 13

J Math Psychol. Author manuscript; available in PMC 2024 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. Results

3.3.1. Manipulation check—Panel A in Fig. 5 shows parameter estimates from each 

model when these varied freely across experimental conditions. In the Gaussian signal 

detection model, average d′ equaled 1.42 (SEM = . 12), 1.49 (SEM = . 13) and 1.61 

(SEM = . 13) in the 2, 4 and 8 m-afc conditions, respectively. Average β estimates equaled 

1.71 (SEM = . 16), 1.96 SEM = . 17  and 2.30 (SEM = . 18) in the 2, 4 and 8 m-afc 

conditions, respectively. Again, through the lens of both models, memory performance did 

not decrease systematically with an increase in the number of alternatives.

3.3.2. Model flexibility—Based on the LL, both models yielded identical fits to the data 

(X‾ = − 105.4; SEM = 3.6 for both models; t 29 = 0). Again, this indicates that the superior 

performance of the Gaussian signal detection model is not due to its having a more flexible 

functional form.

3.3.3. Critical test for parameter invariance—Panel B in Fig. 5 shows the 

difference in log likelihood (LL) between the Gaussian signal detection and softmax 

model when parameters d′ and β, respectively are fixed across m-afc conditions. As 

before, positive and negative values indicate support for the Gaussian signal detection 

and softmax model, respectively, whereas values near zero indicate equal support for 

both models. We found that the LL was significantly higher for the Gaussian signal 

detection X‾ = − 106.9; SEM = 19  than the softmax X‾ = − 107.8; SEM = 20  model 

t 29 = 4.42, p < . 001; dz = . 81 . Average parameter estimates in the fixed models were 

d′ = 1.52 SEM = . 12  and β = 2.04 SEM = . 16 . Based on the standard deviation of 

parameters across m-afc conditions, we also found that there was significantly less 

variability in parameters in the Gaussian signal detection X‾ = . 24; SEM = . 03  than 

the softmax model X‾ = . 41; SEM = . 04  when these were allowed to vary freely 

t 29 = 8.77, p < . 001; dz = 1.60 . Once again, these results provide support for the Gaussian 

signal detection over the softmax model.

4. General discussion

We revisited the connection between the Gaussian signal detection and (Luce choice) 

softmax model. Although these two models come from different traditions, they closely 

approximate each other in detection tasks, and both can be recast as different parametric 

variants of the signal detection model in the m-afc task. Thus, the distinction between 

signal detection and softmax choice models can be understood as embodying different 

assumptions about the latent distribution of decision variables in a signal detection model, 

where the Gaussian parameterization is consistent with pooling of sensory evidence to 

compute decision variables, whereas the Gumbel distribution is most consistent with taking 

the maximum of sensory evidence to compute decision variables (Thompson & Singh, 

1967). Together, comparing these models may help elucidate how people compute decision 

variables from sensory evidence in a range of cognitive tasks.

We applied these ideas to examine which signal detection model provides the best 

characterization of processes in visual working memory tasks. To this end, we designed 
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a critical test to assess which model’s parameters are invariant across changes in the 

number of alternatives in m-afc visual memory tasks. We assumed that the model that 

best capture stable latent processes, should yield parameters that are invariant across m-afc 

conditions (Busemeyer & Wang, 2000) because the computations people use to compute 

decision variables in these conditions should be the same. We implemented this test in two 

different visual memory experiments, where we varied the structure of the stimulus space 

– that is, how similar stimuli were to one another, the dimensionality of stimuli – that is, 

whether people had to remember simple features (color) or complex real-world objects, and 

presentation format – that is, whether stimuli were presented simultaneously or sequentially. 

Across these experiments, we found consistent support for the Gaussian signal detection 

model. These results align with the view that sensory evidence is pooled via summation or 

averaging, and indicates that out of this suite of models, the Gaussian signal detection model 

best capture latent processes in visual memory.

4.1. Models of visual working memory

Our work has direct implications for contemporary models of visual memory. First, this is 

relevant for building cognitive models of visual memory. Relevant in this context are two 

prominent models, the Target Confusability and Competition (TCC) (Schurgin et al., 2020) 

and Interference model (Oberauer & Lin, 2017). The TCC model combines principles from 

signal detection theory and Shepard’s law of generalization; it postulates that familiarity is 

a function of the psychophysical similarity to remembered items, such that items that are 

more similar to items held in memory generate a stronger familiarity signal. Importantly, 

an assumption of this model is that the response function that maps familiarity signals 

to responses is a Gaussian signal detection model. The interference model postulates that 

memory for items is driven by cued based retrieval. More precisely, access to working 

memory representations is determined by a spatial retrieval cue, as well as noise that is 

uniformly distributed across memoranda. In contrast to TCC, the Interference model uses a 

softmax response function. Importantly, when proposing these models, these researchers did 

not provide a process-based justification for using one response function over the other.

Our work suggests that the Gaussian signal detection model is more appropriate because 

it does a superior job of capturing cognitive invariants in forced choice memory tasks. 

As discussed, this result suggests that people pool sensory evidence via summation or 

averaging when computing decision variables. Critically, this study is one of few to directly 

model how people translate early sensory signals to higher-level representations, and lays 

the groundwork for building and constraining cognitive architectures that characterize the 

linking function between perception and memory (e.g., Hedayati et al., 2022).

4.2. Limitations and future directions

Throughout our article we focused on two specific models of choice the Gaussian signal 

detection and softmax model. In principle, however, we could have compared a much 

wider range of models; for instance, we could have considered a larger range of signal 

detection models with different parameterizations. This approach was taken by Rouder 

et al. (2010), who used Receiver Operating Characteristics analysis to compare different 

parameterizations of the signal detection model to a variant of the Gaussian signal detection 
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model, which is most prominent in the recognition memory domain (Wixted, 2007). For 

instance, the authors considered signal detection models with a log-normal and gamma 

parameterization. In the current study, we focused on comparing Gaussian signal detection 

and softmax (Gumbel signal detection) models because they are prominent across different 

research domains. Furthermore, there is a large body of classic work that examines the 

formal relationship between these models, but it is disconnected from more contemporary 

modeling of visual memory. Another major reason is that, unlike the Gaussian and 

Gumbel signal detection models, these alternative parameterizations do not currently have 

a clear theoretical interpretation. In short, there is an extremely wide range of possible 

parameterizations of signal detection models. Considering a larger subset of these is outside 

of the scope of the current project because our goal is to focus solely on theoretically-

motivated models.

Finally, our results conflict with a recent analysis by Oberauer (2021). Oberauer (2021) 

implemented a factorial comparison of visual working memory models, and found support 

for the softmax over the Gaussian signal detection model. A major limitation of this 

work, is that it is not based on a critical test, such as our test of parameter invariance. 

Instead, Oberauer (2021) factorially combined different dimensions of each model until he 

identified a model that provided superior “fit” to the data based on a particular model 

comparison technique. More precisely, Oberauer considered different combinations of 

activation functions (e.g., Laplace versus von-Mises) and response rules (e.g., Gaussian 

signal detection versus softmax), and found that the best fitting model had a von Mises 

activation and softmax response rule. A critical limitation of this work, is that models were 

evaluated solely on their fit to data, rather than their ability to capture cognitive invariants. 

It is known that superior fit to data alone does not entail that a model’s basis theory is 

also a superior one (Roberts & Pashler, 2000). Instead, it could reflect other factors such 

as, inadequate penalization of a model’s flexibility (Piantadosi, 2018; Pitt & Myung, 2002). 

Our results suggest that the Gaussian signal detection model performs well across a range of 

experimental conditions and when we make minimal assumptions about the latent activation 

function.

4.3. Conclusion

We revisited the connection between the Gaussian signal detection and Luce choice-based 

softmax model. We found that the Gaussian signal detection model best captures decision 

processes that underpin mainstream visual working memory tasks. This result suggest that 

people pool sensory evidence to compute decision variables in such tasks, and paves the way 

for developing linking propositions (Teller, 1984) between neural and cognitive models of 

visual memory.
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Data availability

Data are available at: osf.io/eqvtk/.

Appendix.: Gumbel signal detection and softmax model

We provide a proof for equivalence between the Gumbel signal detection and softmax model 

(original result proved by Holman & Marley, 1974; Yellott, 1977). We start with the general 

form of the signal detection model likelihood for discrimination tasks, given partially in the 

main text in Eq. (3). For simplicity, first consider n independent and identically distributed 

(i.i.d.) variables with probability and cumulative densities f and F , respectively. Eq. (3) can 

be rewritten as a likelihood of the signal detection model for discrimination tasks in terms of 

these densities of n variables, as shown below

P ID i = P ∀j ≠ i:Xi > Xj ,

(A.1)

= P Xi = x P Xj < x, ∀j ≠ i ,

(A.2)

Eq. (A.2) shows the joint probability that the magnitude of the decision variable Xi exceeds 

the magnitude of all remaining variables Xj, where ∀j ≠ i.

For continuous variables in a memory task where there is one target and n − 1 foils, the 

likelihood that the target generates the maximum familiarity signal is

∫
−∞

∞
fT x FF x

n − 1
dx,

(A.3)

and the likelihood that a foil generates the maximum familiarity signal is

∫
−∞

∞
n − 1 fF x FT x FF x

n − 2
dx .

(A.4)

Informally, Eq. (A.3) gives the probability that the target generates a familiarity signal x
(denoted with probability density fT), which exceeds the familiarity signal of all n − 1 foils 

(denoted with cumulative density FT exponentiated by n − 1). Similarly, Eq. (A.4) gives the 

probability that one of the foils generates a familiarity signal that exceeds the target and the 

remaining n − 2 foils, which can happen in n − 1 ways. In both equations, these probabilities 

are integrated over every possible value of x.
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Next, assume that each of n variables has a Gumbel distribution (for maximums) with scale 

parameter α = 1. As before, we assume that on target present trials decision variables will 

be larger on average than on target absent trials, so the shift parameter μ > 0 and μ = 0 on 

target present and target absent trials, respectively. Thus, the densities for decision variables 

elicited by the target, fT and FT on target present trials are

fT x = eμ − xe−eμ − x,

(A.5)

FT x = e−eμ − x,

(A.6)

and the densities for decision variables elicited by the foils, fF and FF on target absents trials 

are

fF x = e−xe−e−x,

(A.7)

FF x = e−e−x .

(A.8)

Replacing the generic densities in Eq. (A.4) with the Gumbel densities in Eqs. (A.5) through 

(A.8), the likelihood for the Gumbel signal detection model on target present and absent 

trials is the following,

P ID Target = ∫
−∞

∞
eμ − xe−eμ − x e−e−x n − 1

dx,

(A.9)

P ID Foil = ∫
−∞

∞
n − 1 e−xe−e−x e−eμ − x e−e−x n − 2

dx .

(A.10)

For simplicity, we show equivalence between the Gumbel signal detection and softmax 

model using the likelihood for target present trials (Eq. (A.9)), but these steps can be 

extended to the likelihood for target absent trials (Eq. (A.10)).
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First, using substitution, set z = e−e−x
. Differentiating, dz

dx = e−e−x − x and 

dx = e−e−x − x −1
dz. Simplifying,

P ID Target = ∫
−∞

∞
eμ − xe−eμ − x zn − 1 e−e−x − x −1

dz

(A.11)

= ∫
−∞

∞
eμe−eμ − x + e−xzn − 1dz .

(A.12)

Replacing x with −ln − ln z , in Eq. (A.12) and simplifying gives,

P ID Target = = ∫
−∞

∞
eμe−eln − ln z + μ + eln − ln z zn − 1dz,

(A.13)

= ∫
−∞

∞
eμeln z eμ − ln z zn − 1dz,

(A.14)

= ∫
−∞

∞
eμzeμz−1zn − 1dz .

(A.15)

After applying the power rule, Eq. (A.15) can be rewritten as,

P ID Target = ∫
−∞

∞
eμzeμ + n − 2dz = eμzeμ + n − 1

eμ + n − 1
.

(A.16)

Substituting e−e−x
 back for z, and plugging in the boundaries, yields

P ID Target = eμ − e−x eμ + n − 1
eμ + n − 1 −∞

∞

,

(A.17)
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= eμ
eμ + n − 1

.

(A.18)

Eq. (A.18) is identical to softmax expression for P ID Target  in discrimination tasks (Eq. 

(14) in main text) with β = μ, completing the proof.
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Fig. 1. 
Processing implications of the Gaussian versus Gumbel parameterization of the signal 

detection model. By Central Limit Theorem, the Gaussian signal detection model entails 

that observes convert sensory evidence (depicted with colored distributions) evoked by a 

stimulus (such as backpack) to decision variables via pooling. The Gumbel signal detection 

model, which is formally equivalent to the softmax model, entails that observers convert 

sensory evidence to decision variables by taking the maximum of the sensory signals.
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Fig. 2. 
Example trial from Experiment 1. On each trial participants were shown a memory array 

with four colored circles. The memory array was presented for 1000 ms and followed by an 

800 ms retention interval. After a retention interval, participants were shown a self-report 

screen with 2, 4, 8, or 16 equally spaced colors, and the other positions filled with gray 

“filler” squares. One of the colors presented at test was always shown on that trial, and the 

remaining colors were not. Participants had to click one the colors to indicate which color 

was at the cued position on this trial. Responses were not speeded. The pictured trial shows 

an 8-AFC test with 8 colors presented at test, and the correct answer is the yellow color on 

the bottom of the response wheel, as this matches the color presented in the top left location, 

which is the cued location on this trial.
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Fig. 3. 
Model fitting and comparison results from Experiment 1. Panel A shows the difference 

in log likelihood between the Gaussian signal detection and softmax models when we 

fixed each model’s parameters across m-afc conditions. Positive values indicate support for 

the Gaussian signal detection model, negative values indicate support for the softmax (or 

Gumbel signal detection model), and values at zero indicate equal support for both models 

(denoted with the black dotted line). Panel B shows participants raw proportion correct 

at each m-afc condition (top) as well as the parameter estimates obtained from fitting the 

Gaussian SDT model (middle) and softmax model (bottom) separately to the full error 

distributions from each m-afc condition. In each figure, the black dot and error bar denote 

the average and standard error of the mean across participants within each condition. The 

black dotted line in Panel B, denotes the mean across participants and condition. The fact 

that estimates of d′ are more stable than estimates of β across m-afc conditions is consistent 

with the model comparison favoring the Gaussian SD model.
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Fig. 4. 
Example trial sequence from Experiment 2. On each trial participants were shown a 

sequence of five unique photos of real-world objects. Each object was presented for 300 

ms, with an inter-stimulus interval (ISI) of 100 ms. The object sequence was followed by 

an 800 ms retention interval, and then a self-report screen. The self-report screen showed 

2, 4, 8 objects. One of the objects was always an object shown on the trial sequence, and 

the remaining objects were foils from different categories, that were not shown again during 

the experimental session. Participants had to click which object they had seen on that trial. 

Responses were not speeded.
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Fig. 5. 
Model fitting and comparison results from Experiment 2. Panel A shows the difference 

in log likelihood between the Gaussian signal detection and softmax models when we 

fixed each model’s parameters across m-afc conditions. Positive values indicate support for 

the Gaussian signal detection model, negative values indicate support for the softmax (or 

Gumbel signal detection model), and values at zero indicate equal support for both models. 

Panel B shows participants raw proportion correct at each m-afc condition (top) as well 

as the parameter estimates obtained from fitting the Gaussian SDT model (middle) and 

softmax model (bottom) separately to the percent correct from each m-afc condition. In each 

figure, the black dot and error bar denote the average and standard error of the mean across 

participants within each condition. The black dotted line in Panel B, denotes the mean across 

participants and condition. The fact that estimates of d′ are more stable than estimates of β
across m-afc conditions is consistent with the model comparison favoring Gaussian SD.
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