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Localized Edge Detection in Sensor Fields

Krishna Kant Chintalapudi, Ramesh Govindan
University of Southern California, Los Angeles,

California, USA, 90007.

Abstract

A wireless sensor network for detecting large-scale phenom-
ena (such as a contaminant flow or a seismic disturbance) may
be called upon to provide a description of the boundary of the
phenomenon (either a contour or some bounding box). In such
cases, it may be necessary for each node to locally determine
whether it lies at (or near) the edge of the phenomenon. In
this paper, we show that such localized edge detection tech-
niques are non-trivial to design in an arbitrarily deployed sen-
sor network. We define the notion of an edge and develop
performance metrics for evaluating localized edge detection
algorithms. We propose three different approaches for local-
ized edge detection and present one example scheme for each.
In all our approaches, each sensor gathers information from its
local neighborhood and determines whether or not it is an edge
sensor. We evaluate the performance of each of the example
schemes and compare them with respect to the developed met-
rics.

1 Introduction

Several physical phenomena (for instance, contaminant
flows [3] and seismic disturbances) can span large geographic
extents. Fine-grain sensing of these time-varying phenomena
can help scientists understand what factors (e.g., soil density
variations) affect the spread of these phenomena. One way to
architect an energy-efficient sensor network for studying these
phenomena is to store the detections of the phenomena within
the network and provide a query interface which enables scien-
tists to understand the temporal and spatial properties of these
phenomena.

We anticipate that one common query will ask for the spa-
tial extent of the phenomenon at a given time: for example,
“Which sensors saw the primary wave before time T ?”. For
energy-efficiency reasons, it makes more sense for to design
the spatial query that returns a boundary that captures all or
most nodes that satisfy the query predicate. A geometric repre-
sentation of the boundary has the potential to be more concise
(and therefore more energy-efficient) than an enumeration of

all nodes. Examples of such representations include contours,
hulls, or bounding boxes.

An energy-efficient boundary finding algorithm will need to
carefully choose nodes in the sensor network and compute the
boundary “in-network”. A key component of such an algo-
rithm is a localized edge detection scheme: a technique by
which each node locally determines (perhaps by gathering in-
formation from other nodes within its neighborhood) whether
it lies on or near the boundary specified by the query. If a
reliable technique existed for localized edge detection, then,
conceptually at least, boundary finding is simply a matter of
sequentially traversing all nodes that determine themselves to
be on the edge. Localized edge detection will be an essential
component of boundary tracking as well; as the phenomenon
evolves with time, nodes at the edge may alert neighboring
nodes (in a manner similar to target tracking [4]). We think of
localized edge detection as a powerful primitive upon which a
variety of applications might be built.

Edge detection has been widely studied in the context of digital
image processing. Filtering [1] is one of the most common ap-
proaches to detecting edges in images. To determine whether
an image pixel is at an edge or not, this approach applies a
filter to values of a set of neighboring pixels. As such, these
techniques can be directly applied to localized edge detection.

However, one fundamental difference between images and a
sensor field is the spatial regularity of information. A digital
image is a regular grid of pixels, and information is sampled
at regular intervals. Almost all standard digital image process-
ing techniques (Fourier transforms, high-pass filtering) rely on
having information about the image at regular intervals. De-
ployment and maintenance of thousands of sensors in a grid
like regular fashion over large geographical extents is clearly
infeasible. It is expected that sensors will be arbitrarily placed
in the sensor field and will be prone to failures or even node
displacement. With this relaxation of regularity, it is less clear
that digital image filtering can be applied to localized edge de-
tection.

In fact irregular node placement makes it hard to even define
precisely whether a node is at an edge or not. In Section 2, we
show how to circumvent this difficulty and define some met-
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rics for localized edge detection. Because the efficacy of edge
detection based on digital image filtering is unclear, we con-
sider two other classes of edge detection schemes in Section 3:
a statistical scheme and a classifier-based scheme (that is sug-
gested by the pattern recognition literature [2]). We find that,
over a fairly broad range of operating conditions, the classi-
fier scheme out-performs the other schemes. We present our
evaluation results in Section 4, and conclude in Section 5.

To our knowledge, no prior work has considered localized
edge detection in sensor networks. Concurrently, Nowak and
Mitra [5] describe a scheme for estimating the boundary of a
large-scale phenomenon by aggregating readings along a pre-
defined hierarchical structure within the network. Their ap-
proach is somewhat complementary to ours, in that our lo-
calized edge detection is a primitive that might be used in a
variety of boundary estimation applications (not just in their
algorithm, but also in applications that estimate more concise,
but approximate, boundary descriptions such as ellipses and
hulls).

2 Edge Detection

In this section we describe our model of the sensor field and
discuss definitions for an “edge”. We then develop metrics to
evaluate localized edge detection algorithms and discuss the
trade-offs involved in the design of localized edge detection

2.1 Assumptions, Models and Terminology

In what follows, we make fairly general assumptions about
the capabilities of sensor nodes and the structure of sensor
networks. Sensor nodes can be arbitrarily deployed, but each
such node knows its location, perhaps using a localization sys-
tem [6]. For simplicity of exposition, we assume that the de-
ployment of sensors is in the plane, and location can be speci-
fied by (xs,ys)). We use the term sensor field to both mean the
geographical region covered by the deployment, and the set of
sensors within the region. Sensors can make measurement er-
rors, and our localized edge detection schemes will need to be
robust to these. (Edge detection algorithms may also exhibit
significant error due to errors in localization [7]; we do not
model such errors, since our interest is in understanding how
to compensate for sensor error in edge detection).

We model an edge as follows. Consider a phenomenon that
spans some arbitrarily shaped sub-region of the sensor field.
Each sensor can, based on locally collected measurements, de-
termine whether it belongs to the sub-region covered by the
phenomenon or not. We call the function that makes this de-
cision the event predicate, and denote the event predicate at
sensor s by ηs. Taking our example in Section 1, if the phe-

nomenon of interest is “the geographical extent covered by the
primary seismic disturbance at time T ”, the event predicate for
each sensor is, informally: “Did I see a primary seismic dis-
turbance at or before T?”.

Given an event predicate, we can then define the interior of a
phenomenon (I) to be the spatial region ℜ2 such that, if a per-
fectly calibrated error free sensor were placed in this region
its predicate function would have evaluated to 1. The exte-
rior O of the phenomenon can be similarly defined. Based on
these, there exists an idealized definition of the edge of a phe-
nomenon E: the edge is the set of all points (x,y), such that
every non-empty neighborhood of (x,y) intersects with both I
and O. We call E the ideal edge, and E represents the ground
truth that defines the boundary of the phenomenon.

This idealized definition is descriptive, but does not give us
much insight for designing or evaluating localized edge detec-
tion schemes. The ideal edge has no “thickness” and therefore
constitutes a very restrictive definition of an edge. Intuitively,
we would like a sensor to consider itself to be an edge sensor
if it is closer to the ideal edge than any other sensor. For this
reason, we introduce the notion of tolerance of an edge detec-
tion scheme. We define a sensor to be an edge sensor if it a)
is in the interior of the phenomenon, and b) lies within a pre-
specified distance r of the ideal edge. We call r the tolerance
radius, and the area around a sensor node covered by a circle
of radius r the tolerance neighborhood. The tolerance radius
roughly measures the “thickness” of the edge that the designer
of a localized edge detection scheme is willing to tolerate. For
a given tolerance radius, we can define metrics that enable us
to compare the efficacy of different edge detection schemes
(Section 2.2).

A stronger definition an edge might be to require continuity
among the set of edge sensors—that is, that there exists a path
between every pair of edge sensors that only traverses edge
sensors. We have not adopted this definition because it seemed
to be beyond the realm of localized techniques to ensure this
property. Of course, if we could ensure this property, it would
be easy to define energy-efficient boundary finding algorithms
that simply traversed edge nodes. As such, whatever boundary
finding algorithms that we build on top of localized edge detec-
tion will need to traverse some non-edge sensors to determine
a continuous boundary for a phenomenon. Such algorithms
are beyond the scope of this paper.

Finally, detecting whether a node lies at the edge of a phe-
nomenon is slightly different from detecting whether a node
lies on (or near) a contour (or iso-lines; i.e. continuous curves
across the sensor field defined by sensors having the same
value of, say, temperature). In the general case, there isn’t a
well-defined notion of the interior and exterior of a contour, as
much as there is a distinction between whether a sensor detects
a phenomenon or not.
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Figure 1: If the edge passes through the radius of tolerance it
is deemed an edge sensor.
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Figure 2: Having a tolerance radius gives a certain thickness
to an edge.

2.2 Metrics

There are, broadly speaking, two classes of desirable charac-
teristics of localized edge detection: robustness, and perfor-
mance. These characteristics inform our choice of metrics for
localized edge-detection.

There are several desirable robustness properties of an edge
detection algorithm. First, as we shall show later, localized
edge detection algorithms can intrinsically exhibit error, fail-
ing to detect an edge when there is one, or detecting an edge
when there is none. A good algorithm has low intrinsic error.
Second, localized edge detection algorithms must be relatively
robust to reasonable levels of sensor calibration error. Finally,
many localized edge detection schemes employ thresholds to
decide on the existence of an edge. We would prefer schemes
which are relatively insensitive to the threshold settings over a
broad range of operating conditions.

In the performance category, an obvious consideration is en-
ergy expended in communication. There exists a trade-off be-
tween energy and accuracy in localized edge detection; intu-
itively, a node can get information from a bigger neighborhood
to increase the likelihood of a positive detection. The second
performance criterion is the quality of the result, defined by
the actual thickness of the edge. Although our definition of an
edge above includes a tolerance radius that nominally defines
an edge thickness, an actual edge detection scheme might have
a thickness that is larger or smaller than this radius.

Based on the above discussion, in this section we use the
following metrics to evaluate the performance of localized
edge detection algorithms.

Let S be the set of all sensors. Let E be the curve representing
the edge (as defined in Section 2.1). Suppose set Strue be the
set of sensors in the sensor field which are within a distance of
r from E. Let Sdet be the set of sensors marked as edge sensors
by the algorithm and let N be the total number of sensor nodes.

Percentage Missed Detection Errors em : This represents
the fraction of sensors which lie within the radius of tolerance
(Strue) but were not marked as edge sensors (Sdet).

em =

∣

∣Strue −Sdet

∣

∣

|Strue|
. (1)

False Detection Errors e f : This represents the fraction of
nodes that declared themselves to be edge sensors but should
not have (Sdet −Strue) among the rest of the (S−Strue) sensors.
For this reason, the denominator for e f is different from that in
(1).



e f =

∣

∣Sdet −Strue

∣

∣

N −|Strue|
. (2)

Mean thickness ratio et : Let t(S,E) be the mean distance of
all the sensors in set S to the edge E. We define,

et =
t
(

Sdet ,E
)

− t (Strue)

t (Strue,E)
. (3)

To avoid the effect of random outliers, we consider only the
closest 95% edge sensors in the mean.

We are now ready to discuss some localized edge detection
schemes that illustrate the trade-offs involved in localized edge
detection.

3 Three approaches to localized edge
detection

In this section we propose three qualitatively different ap-
proaches to localized edge detection in a sensor field: a sta-
tistical approach, an approach drawn from image processing
and an approach drawn from the pattern recognition literature.
Each approach can be used to generate a family of algorithms
for edge detection.

In all these approaches, each sensor gathers information from
sensors in its neighborhood and independently tries to deter-
mine if an edge passes within its tolerance radius. Specifi-
cally, the sensor gathers the location and the values of the event
predicate (that determines whether the sensor is in the interior
or the exterior of a phenomenon) from each node within the
neighborhood.

One parameter that determines the performance of all algo-
rithms, to varying extents, is the size of this neighborhood.
Arbitrary placement of the sensors coupled with sensor errors
can result in detection errors. In general, the performance of
a scheme improves as we collect information from more sen-
sors (larger neighborhood). This is because the node gets more
samples from the interior and the exterior of the phenomenon,
and can make more confident estimates even in the presence
of sensor errors. However, collecting more information incurs
more communication overhead and hence increases the energy
usage of the scheme. We have already mentioned this energy
accuracy trade-off. We represent this parameter by a circle of
radius R centered around the sensor and call it the probing ra-
dius. Typically, the probing radius is greater than the tolerance
radius i.e. R > r (see Figure 3). Generally the greater the R

r
ratio, the better the performance of the algorithms in terms of

Interior

Exterior

r

R

edge

Figure 3: Performance can be improved by gathering infor-
mation beyond the tolerance radius. Here, the sensor gathers
information in a circle of radius R, the probing radius and is
able to detect an edge which passes through the area of toler-
ance more reliably.

errors and thickness ratio, however the communication over-
head increases roughly as R2. In the rest of the paper we shall
refer to this neighborhood as the probing neighborhood.

3.1 The statistical approach

A general statistical scheme would gather data from the sen-
sors in the probing neighborhood and perform statistical anal-
ysis to decide whether or not the sensor is an edge sensor. The
advantage in this approach is that statistical methods can be
explicitly tailored to be robust to errors, if error characteristics
are known. The general algorithm for a statistical scheme then
needs three components to be specified.

1. The information to be collected from the neighbors.

2. A set of statistics Γ1,Γ2, · · · ,Γn based on the information
collected from the neighbors.

3. A boolean decision function Ψ
(

Γ1,Γ2, · · · ,Γn
)

to decide
if the sensor is an edge sensor. The decision function
usually would involve comparing a value evaluated us-
ing {Γi}i=n

i=1 against a threshold which maybe statically or
dynamically assigned.

3.1.1 An example scheme

In this paper we evaluate a specific statistical scheme that we
designed for edge detection. The key idea behind the scheme
is the observation that if one collects the event predicate values



from sensors in the neighborhood, and these values form a bi-
modal distribution (spikes at 0 and 1) then an edge is present.
Let n+ be the number of 1 valued event predicates and n− be
the number of zero valued event predicates in the neighbor-
hood. We calculate the following statistic:

Γ = 1−
∣

∣n+−n−
∣

∣

n+ +n−
. (4)

Ψ(Γ) =
1 i f S ≥ γ0,

0 i f S < γ0.
(5)

Our statistical scheme is intuitively simple, and therefore
forms a baseline for comparison against other schemes. One
salient feature lacking in the statistical scheme is that it does
not take the geographical locations of sensors into account
when making its decisions. For arbitrarily placed sensors, as
we shall see later, this can make a difference.

Designing the statistical scheme to be robust to sensor errors
is a bit tricky, as we now explain. If the sensors were perfectly
calibrated and error free, the presence of an edge would be in-
dicated by a non-zero value of the statistic Γ and any γ0 > 0
would suffice. In a more realistic scenario, with arbitrarily
placed sensors having calibration and measurement errors, the
statistic would yield non-zero values in absence of edges be-
cause of sensor errors. Also if R > r, for edges passing in the
probing neighborhood which do not lie in the area of toler-
ance, (4) would give a non-zero value. Then, the choice of an
“appropriate” threshold γ0 would determine the performance
of the scheme. In general the choice of γ0 ∈ (0,1) depends R

r ,
ρ and the performance requirements of the application.

3.1.2 Analysis of the scheme and choice of γ0

To gain some intuition about the choice of γ0 and how it relates
to the tolerance radius and the probing neighborhood, we an-
alyze the performance of the proposed statistical scheme. For
our analysis we assume that nodes are placed in the region at
locations drawn from a uniform density function with a density
ρ sensors per unit area. Also we assume that the sensors make
an error in evaluating the value of the event predicate with a
probability p. We hope that this error model encapsulates both
calibration and measurement errors. Further, we assume that
the probing neighborhood is so “small” in comparison to the
area covered by the entire phenomenon that the edge can be
approximated by a straight line in this region.

As discussed in Section 2.2, errors can be either false detec-
tions e f or missed detections em. False detections can arise in
two ways. One cause of false detections is when there is no
edge in the probing radius but the algorithm detects an edge
due to sensor errors. The second occurs when there is an edge
in the probing radius but not within the tolerance radius. We

call the former kind of errors pure false detections (ep f ) and
the latter unwanted detections (eud).

e f = ep f + eud. (6)

We make this distinction because a high ep f can result in a
large number of sensors being deemed edge sensors even when
they are in the “middle” of a phenomenon because of sensor
errors and local variations in sensor density. On the other hand,
a high eud simply increases the thickness of the edge. For cer-
tain applications, the edge thickness may not be as harmful as
identifying a sensor as an edge sensor when it is far from an
edge. For fixed values of R

r and ρ , the errors em, ep f and eud
depend on the choice of γ0.

Now, the number of sensors present in an area a can be mod-
eled by a Poisson random variable,

P(N = n) = e−aρ (aρ)n

n!
(7)

and the number of sensors making an error M among N sensors
can be modeled by a binomial random variable,

P(M = m|N = n) =

(

n
k

)

(p)m (1− p)n−m
. (8)

Based on these assumptions, one can numerically calculate the
probability density function for Γ defined in (4), for given val-
ues of R

r and ρ . The procedure for calculating the density func-
tion is described in Appendix A.

Choosing γ0: An Example Figure 4, computed from our
analysis, shows the variation of the percentage of true, un-
wanted and false detections as γ0 varies from 0 to 1, for two
different values of R

r (1.0 and 1.5). The sensor density is such
that, the expected number of sensors in area of tolerance is 15.
The sensor error probability p = 0.05.

Suppose an application requires a true detection ratio of at least
80% and also wants false detections to be below 1%. Also
suppose the application can do with slightly thicker edges and
allows about 20% extra edge detections. For R

r = 1, corre-
sponding to an error of 80%, the S0 ≈ 1.5. Corresponding to
this value of S0, the false error ep f ≈ 30% and eud = 0. The sit-

uation is considerably improved when R
r = 1.5. If we choose

a threshold of 0.4, one can achieve 80% true detections, but
now ep f less than 1% and eud ≈ 3%. Hence, by increasing
the probing radius we have improved the performance of our
scheme. However, by increasing the probing area we incurred
an increase in communication overhead by 125% ( R2

r2 −1).

Clearly since performance depends on the choice of γ0 and
R
r , it becomes essential for sensors to be able to figure out a
suitable setting for these parameters for “satisfactory” opera-
tion. It is conceivable that pre-calculated performance curves
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similar to those in Figure 4 are stored in the sensor nodes a
priori. Nodes estimate the local sensor density and based on
the performance criterion desired, use the performance curves
to come up with an operating threshold.

3.2 The image processing approach

Numerous techniques for edge detection have been developed
and analyzed in the image processing literature [1]. It is there-
fore tempting to attempt to apply such techniques to localized
edge detection in sensor networks. In this paper we do not ex-
haustively examine all possible image processing techniques,
but simply pick a framework that can incorporate a class of
high pass filtering techniques (a standard way of performing
edge detection in images e.g.. Prewitt, Sobel filters) for local-
ized edge detection.

A high-pass filter retains only the high frequencies (abrupt
changes such as edges) present in the image and removes all
the uniformities. Designing a filter with a desired frequency
response is a mature art and several different techniques ex-
ist. In general, if a filter with a frequency response F( fx, fy) is
desired then a filter H(x,y) can be designed to approximately
match the desired frequency response. Here, fx and fy repre-
sent the frequencies in the image in the x and y axes. To detect
edges, the image P(x,y) can be filtered by convolving with the
filter H(x,y). Within the context of digital image processing,
the x and y are discretized into pixels. The filter and the im-
age are represented by matrices H(i, j) and P(i, j) respectively.
The filtered image P′ is computed as a convolution of P and H.

P′(i, j) =
m=k

∑
m=0

n=k

∑
n=0

P(i+m− k
2
, j +n− k

2
)H(m,n) (9)

One straight-forward way to map filtering techniques within
the context of sensor networks is to treat each sensor as a
pixel, and directly apply Equation 9. However, sensors may
not exhibit pixel-like regularity in placement. To overcome
this, we observe that Equation 9 is essentially a weighted
average of all the neighboring values. Our approach is to
derive the weights for the sensors based on the continuous
version of the filter namely H(x,y). Let PAs be the set of all
the sensors in the probing area of a sensor so. Let Vs be the
value obtained from a sensor s, and (xs,ys) its location. Then
the filtering output of sensor so is given by,

Vso = ∑
∀s∈PAso

W (xs,ys)H(xs,ys)Vs (10)

Here, W (xs,ys) are weights to compensate for the uneven
weighing caused due to arbitrary positioning and variations in
number of the sensors. In general W (xs,ys) is a function of
sensor locations and H.

Unlike the statistical filter, then, our framework for using im-
age processing techniques allows us to take the geographic lo-
cations into account. In general, our framework allows for dif-
ferent kinds of H and W functions. We do not explore this
space, choosing instead to evaluate one particular localized
edge detection scheme that fits into this framework.

3.2.1 The Prewitt filter based scheme

The Prewitt (difference) filter [1] in digital image processing
is a set of two matrices,

Hx =





−1 0 1
−1 0 1
−1 0 1



 (11)

Hy =





1 1 1
0 0 0
−1 −1 1



 (12)

Hx and Hy are based on the functions,

Hx(x,y) =
1 i f x ≥ 0,

−1 i f x < 0.
(13)

Hy(x,y) =
1 i f y ≥ 0,

−1 i f y < 0.
(14)

σx and σy are the gradients in the image, along the x and y

directions respectively. A high value of say σ =
√

σ 2
x +σ 2

y

would indicate an edge.

We define Vs as,

Vs =
1 i f ηs = 1,

−1 i f ηs = 0.
(15)



Here, ηs is the event predicate of sensor node s.

Suppose we wish to filter at node so based on (10), we need to
decide Hx(xs,ys), Hy(xs,ys), Wx(xs,ys) and Wy(xs,ys) to calcu-
late σx and σy.

Calculation of Hx and Hy From (10), for calculating σx,
Hx(xs,ys) is -1 if xs < xso , 1 if xs > xso and 0 otherwise. For
calculating σy, Hy(xs,ys) is -1 if ys < yso , 1 if ys > yso and 0
otherwise.

Selection of Wx and Wy We calculate the weights to make
the scheme more tolerant to the varying number of sensors in
the region. Consider, the filter Hx for calculating σx. Due to
arbitrary placement, suppose the number of sensors to the left
(xs < xso) of so are nle f t and those on the right are nright . Sup-
pose nle f t > nright . Then filtering at so will be biased toward
the left side. This bias can be avoided if we choose Wx such
that Vs from sensors on the left by 1

nle f t
and those on the right

by 1
nright

. A similar strategy can by used for calculation of σy.

Let
(

ni+,ni−
)i=4

i=1 be the number of sensors with 1 and 0 val-
ues of event predicates in the ith quadrant of the probing area
around the sensor in question. Quadrants are numbered in the
anti-clockwise direction. The weights then become,

Wx(x,y) =

1
n1++n1−+n4++n4−

i f x < xso ,

1
n2++n2−+n3++n3−

i f x > xso .
(16)

Wy(x,y) =

1
n1++n1−+n2++n2−

i f y > yso ,

1
n3++n3−+n4++n4−

i f y < yso .
(17)

Based on (15),(16) and (17) we obtain,

σx =

n1++n4+−n1−−n4−
n1++n1−+n4++n4−
− n2++n3+−n2−−n3−

n2++n2−+n3++n3−

(18)

σy =

n1++n2+−n1−−n2−
n1++n1−+n2++n2−
− n3++n4+−n3−−n4−

n3++n3−+n4++n4−

(19)

The algorithm can now be stated as:

1. Collect the values
(

ni+,ni−
)i=4

i=1 in the probing area.
2. Calculate σ using (18),(19) and compare it against a
threshold σ0 to decide whether or not the sensor is an edge
sensor.

Interior

Exterior

r

R

Partitioning Line

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0 0
0

0

0

0
0

0

Edge Sensor

Exterior

Not an Edge Sensor

Partitioning Line
Interior

0

0

0

0

0

0

0

0

0

1

0
0

0

0

1

1
0

0 0

0

1 1

1

1

r

R

0

1

Figure 5: Classifier-based schemes attempt to determine a line
which partitions all the event predicates in the probing area
into 1s and 0s. If this line passes through the area of tolerance
the sensor is deemed an edge sensor.

Analysis for the image processing based scheme can be done
similar to the statistical scheme (as in Section 3.1.2). The anal-
ysis is provided in Appendix B.

3.3 The classifier-based approach

Our last approach comes from the pattern recognition litera-
ture. This classifier-based approach relies on the information
provided by sensors in the interior I being “significantly” dif-
ferent from that by sensors in the exterior O. Such a bi-partite
data set will allow classification [2] (partitioning) the data into
two subsets, such that “similar” data lie in the same subset
and “dissimilar” data lie in different subsets. In a classifier, a
sensor would attempt to partition data gathered from its neigh-
borhood into two classes. The success of the partition may
be assessed by a partition validity measure [2]. A successful
partition implies the presence of an edge.

The simplest classifier is a linear classifier. This classifier at-
tempts to find a line L(a,b,c) ≡ ax + by + c = 0 such that all
the sensors (in the probing neighborhood) with ηs = 1 are on
one side of the line and those with ηs = 0 lie on the other side.
A localized edge detection scheme based on a linear classifier
is then quite simple. If this line passes within a distance of r
from the sensor, the partition is accepted as valid and the edge
is deemed as an edge sensor. Figure 5 depicts the scenario.

Two important differences exist between classifier-based edge
detection and our two previous approaches. First, the linear
classifier explicitly encodes a notion of geography. Second,
this classifier does not require any thresholds for operation.

Classifier Definition In the event of sensor errors, an ex-
act partition may not exist. In this case, we try to find a line
which maximizes the number of sensors with like values of



event predicate on each side of the line.

Let PAs be the set of all sensors in the probing area of sensor s.
Let so be the sensor performing edge detection. Let L(a,b,c)
be the line specifying the classifier. Let Vs be as defined in
Equation 15. We define classifier score Js as,

Jso(a,b,c) =

∣

∣

∣

∣

∣

∣

∑
∀s∈PAso

VsSN(axs +bys + c)

∣

∣

∣

∣

∣

∣

. (20)

SN(x) =
−1 i f x < 0
0 i f x = 0
1 i f x > 0

(21)

In general there can be several methods to find the optimal line
based on Jso . In our implementation, we sample (θ ,c) in the
region c ∈ [−R,R] and θ ∈ [0,π ]. Here, each sample specifies
a line L(tan(θ ),1,c), which has a slope tan(θ ) and intersects
the x-axis at c. We evaluate the value of Jso at all these sample
lines; the line Loptwith the highest value of Jso is chosen as
the partitioning line. We then deem the partition as valid if the

optimal line Lopt(a,b,c) satisfies
axso +byso+c√

(a2+b2)
≤ r; that is, the

line is within the radius of tolerance r.

The classifier based algorithm can now be summarized as:
1. Collect all the coordinates and event predicate values
within the probing radius.
2. Find a line Lopt(a,b,c) which gives the maximum value for
Jso(a,b,c).
3. If Lopt passes within the radius of tolerance, the sensor is
deemed an edge sensor.

4 Results

In this section we compare the performance of the three pro-
posed schemes through extensive simulations. We describe the
datasets used, followed by the details of the simulations. We
end this section by comparing the three schemes described in
the previous section.

4.1 The simulation framework

In all simulations, our sensors are located in a 200m by 200m
area, their locations drawn from a uniform distribution over the
area. The radio range of all the sensors is 10m and assumed
omni-directional. In all simulations, we arbitrarily chose the
tolerance radius r equal to the radio range of the sensors. In
this context, an R

r = 2, roughly implies a 2-hop neighborhood.

The Data Sets Our simulations were conducted for two dif-
ferent data sets. The first, linear boundary data sets Dl , com-

prise of randomly chosen lines y+mx+c = 0. c is drawn from
a uniform distribution over the entire x-axis within the sensor
field. m = tanθ is the slope of this line, generated by drawing
θ uniformly in (0,π). Sensors with mxs + ys + c ≤ 0 belong
to the interior region (ηs = 1) and rest belong to the exterior
region (ηs = 0). The edge (ground truth) is defined by the line
y+mx+c = 0. The linear boundary forms a baseline for evalu-
ating our scheme; an acceptable edge detection scheme should
perform well for this data set.

The second, elliptical boundary data sets De, consist of el-
lipses E(a,b,x0,y0,θ ) = 0 randomly chosen within the sensor
field. 2a and 2b are lengths of the major and minor axes of the
ellipse, uniformly drawn over the length of the sensor field.
(x0,y0) is the center of the ellipse drawn uniformly over the
entire sensor field. θ , which is the angle between the major
axis of the ellipse and the x-axis is drawn uniformly in (0,π).
Let (x′s,y

′
s) be the sensor coordinates in a coordinate system

“natural” to the ellipse (the major and minor axes of the el-
lipse form the x and y axes). (x′s,y

′
s) can be obtained by first

translating the origin to (x0,y0) and then rotating the axes by θ
in the anti-clockwise direction. If 1− (x′s)2

a2 − (y′s)2

b2 ≥ 0, the sen-
sor is deemed to belong to the interior region (ηs = 1) and to
the exterior (ηs = 0) otherwise. The edge (ground truth) is de-
fined by the ellipse E(a,b,x0,y0,θ ) = 0. Ellipses of different
eccentricities represent continuously curved edges, and can be
serve to distinguish localized edge detection schemes.

Factors To examine the impact of density, we chose three
values of ρ : ρ1 = 1.6 × 10−2 sensors/sq.mt (low density -
about 5 senors within radio range), ρ2 = 3.6 × 10−2 sen-
sors/sq.mt (moderate density - about 15 senors within radio
range), and ρ3 = 7.2 × 10−2 sensors/sq.mt (high density -
about 30 senors within radio range).

To capture the impact of sensor errors, we used a simple bit
flipping technique. In this model, a sensor toggles its event
predicate value from its true value with a probability p. We
used three different choices for p. p1 = 1% (low), p2 = 5%
(moderate) and p3 = 10% (high).

Thus, for the linear boundary data set, a single simulation run
represents one line chosen randomly, for one value of density
and sensor error. For a given density and sensor error probabil-
ity, we average the performance metrics for a localized edge
detection scheme over 20 different runs corresponding to dif-
ferent randomly chosen lines. The same is true for the ellipse.

Parameters We chose five different values of R
r , namely 1,

1.5, 2, 2.5 and 3. We ran simulations for all the data sets, for
each of the three schemes, for the five values of R

r .

The statistical and the image processing schemes require
choosing γ0 ∈ (0,1) and σ0 ∈ (0,1) respectively. This choice
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Figure 6: Energy accuracy trade-off : As more and more
neighborhood is examined ( R

r the detection probability in-
creases for all the three detection schemes.)

(as discussed in Section 3.1.2) can impact performance. To be
fair to all schemes, for a given simulation run, we chose the
best threshold value (using the analysis in Appendix A and B)
defined thus: “Choose the threshold which satisfies ep f ≤ 1%
and minimizes em”. Thus, for schemes that require thresh-
olds, our simulations represent the fewest possible missed de-
tections.

We evaluate our schemes with respect to the metrics described
in Section 2.2.

4.2 Simulation results

In this section we discuss the results of our simulations. The
space of parameters and factors we have explored is large.
Rather than exhaustively present all of our results, we selec-
tively describe the simulation results in an effort to give the
reader an understanding of the main differences between the
schemes.

We start by considering (Figure 6) which shows the varia-
tion of et (mean thickness error) and 1− em (detection prob-
ability) for moderate error (p = 5%) and moderate density
(ρ = 3.6× 10−2) with R

r . It depicts the basic nature of the
energy accuracy trade-off . As seen in Figure 6, the edge de-
tection probability increases with increase in R

r . However, in-
creasing R

r increases the communication overhead as o(R2)
and hence the energy consumption. For linear data sets all
the three schemes give similar detection ratios at R

r ≥ 2, while
the classifier gives a thinner edge. For elliptical data sets, at
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Figure 7: False detections for the classifier based scheme de-
crease with increase in R

r

R
r ≥ 2, the classifier performs slightly inferior to the other two
schemes, however it gives a much thinner edge. The perfor-
mance of statistical and image processing based schemes is
similar.

The statistical and image processing based schemes, allow one
to restrict the false detection probability by selecting an “ap-
propriate” choice of threshold (γ0 and σ0). In all our simula-
tions, the choices restricted false detection to below 1%. In
the classifier based scheme, there is no such direct way to re-
strict false error probability. Figure 7 shows the variation of
false detections made by the classifier scheme with increase in
R
r for the moderate density, moderate sensor errors data sets.
The false detection probability decreases with increase in R

r .

The classifier scheme behaves qualitatively differently from
the statistical and image processing schemes. For the latter, as
the R

r ratio increases, the edge thickness increases while for the
classifier based schemes the edge thickness decreases. Edge
thickness error results from pure false detections (ep f )and un-
wanted detections (eud). Since we restricted ep f < 1% for ths
statistical and image processing based schemes, edge thick-
ness error mostly arises out of eud. In the classifier based
scheme eud is small and does not change significantly with
R
r . This is depicted in Figure 8. The increase in eud causes
an increase in thickness error for the statistical and image pro-
cessing based schemes, while a decrease in false detections
leads to a decrease in thickness error for the classifier based
scheme. For this regime, then, the classifier based scheme rep-
resents a low-energy technique for achieving thin edges with
high likelihood of true detections.

What happens when we change density but keep sensor error
constant? Predictably the detection probability increases with
increase in sensor density for both kinds of data sets. This is
shown in Figure 9. There was no σ0 which gave an ep f < 1%
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Figure 8: Variation of eud with increase in R
r for the three

schemes for moderately dense sensor fields with moderate er-
rors.
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Figure 9: Variation of 1− em (detection probability), with in-
crease in density for the three schemes for linear edge data
sets.

at ρ = 1.6×10−2, hence this point is missing. We also found
that while the thickness error increases with increase in den-
sity for the statistical and image processing based schemes, it
decreases for the classifier based scheme. The reason is that,
unwanted errors, which dictate thickness error for the statis-
tical and image processing schemes increase with increase in
sensor density. However, the false detections which dictate the
edge thickness error for the classifier based scheme decrease
with increase in density.

How sensitive are the schemes with respect to sensor errors?
Keeping density fixed, we notice an expected qualitative trend.
The detection probability decreases with increase in sensor er-
rors for all the three schemes. This is shown in Figure 10. We
also found that the thickness error increases with increase in
sensor error for all the three schemes and both kinds of data
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Figure 10: Variation of 1 − em (detection probability), with
increase in sensor error p for the three schemes for linear edge
data sets.

sets.

Finally, how critical is the choice of appropriate thresholds?
The classifier-based scheme does not require selection of a
threshold. The other schemes do, and in the results we have
presented, we have chosen the best threshold possible for each
particular scenario. The threshold based schemes might have
been acceptable if there existed one or a small range of thresh-
olds that were acceptable over the density and error ranges we
consider. However, we found that the thresholds in the statis-
tical scheme vary very widely with changes in R

r and p, espe-
cially at low densities. For instance the optimal value of γ0 is
0.79 for R

r = 1, p = 0.05 and ρ = 1.6× 10−2. The optimal
value of γ0 is 0.17 for R

r = 3 ,p = 5% and ρ = 7.2× 10−2.
For the image processing based scheme, it turns out that the
variation in the choice of σ0 is very small (within 10%) with
respect to R

r and p at low densities. However the scheme ex-
hibits variations similar to the statistical scheme at higher sen-
sor densities for changes in R

r .

This discussion leads to the following conclusions. Over a
range of sensor error rates and densities, all the three scheme
can achieve true detection rates of 90% or better by using a
two-hop probing radius. Among the three schemes the clas-
sifier provides the thinnest edges and performs better with in-
creasing probing radius. The classifier based scheme does not
require choosing appropriate thresholds. Thus, from a prac-
tical perspective, the classifier-based scheme represents a low
energy approach to accurate localized edge detection. Even
though the classifier based scheme does not provide a direct
control over false detection errors (as thresholds in other two
schemes do), one can increase the probing radius (e.g., 3-hop
probing) and achieve lower false detections at the cost of more
communication cost. Recall that localized edge detection will
usually be a component of a larger system that, for example,
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Figure 11: Classifier based edge detection on a low density
low error data set. Each unit on x and y axis represent 100m.
’o’ represent edge sensors and + the interior.

computes boundaries of a phenomenon. We observe that false
detections can be disambiguated at the level of these boundary
finding algorithm. If the algorithm that constructs the bound-
ary from the observed edges also uses information about each
edge sensor’s partition line, it should be able to detect incon-
sistent partition line orientations and locations among neigh-
boring edge sensors caused by false detections. We believe
that a better scheme which relies on edge continuity informa-
tion will result in fewer false detections.

For this reason, we suggest that, of the three schemes we con-
sider, the classifier is the most promising for localized edge
detection. Figures 11,12,13 show three examples of the three
edge detection algorithms at work.

5 Conclusion

In this paper we introduced the problem of localized edge de-
tection in a sensor field. We discussed an “edge” and pro-
posed metrics to assess edge detection algorithms. We pro-
posed three qualitatively different approaches to edge detec-
tion namely statistical, image processing based and classifier
based approaches. We proposed an example scheme for each
of these approaches. Through numerous simulations we com-
pared the three schemes with respect to the energy accuracy
trade-off, sensitivity to choice of parameters and performance.

Our results indicate that the classifier scheme performs much
better than the other schemes. Under higher sensor error con-
ditions, it is susceptible to more false detections than other
schemes. These false detections can be reduced at the ex-
pense of higher communication cost or can probably be disam-
biguated by a higher-level boundary finding algorithms. The
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Figure 12: Image processing based edge detection on a mod-
erate density moderate error data set. Each unit on x and y axis
represent 100m. ’o’ represent edge sensors and + the interior.
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Figure 13: Statistical scheme based edge detection on a high
density high error data set. Each unit on x and y axis represent
100m. ’o’ represent edge sensors and + the interior.



statistical and image processing based scheme can exhibit sim-
ilar performance but only if detection thresholds are correctly
set. The correct detection thresholds vary widely with den-
sity and sensor error and we believe that dynamically setting
thresholds by empirically observing densities will be hard to
do. As such, then, of the schemes we consider, the classifier
based scheme seems to be the most promising for localized
edge detection.
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APPENDIX A

In this appendix we calculate em, euw and ep f to analyze the
scheme described in Section 3.1.1.
We assume that the phenomenon is ”large” enough and the
edge can be approximated by a line segment L within the
probing neighborhood. Let L be l units distant from the
sensor. We assume that line segments at all values of l are
equally likely. Suppose an edge passes at a distance l from
the sensor ( as depicted in Figure 14). The sensor collects

Edge
Exterior

R
l

a

a

1

2cos−1 (l/R )

Interior

B

C

D

A

Figure 14:

information about the exterior from area a1 (ABC) and about
the interior from a2 (ADC).

a1 = R2 cos−1
(

l
R

)

− l
√

R2 − l2, (A-1)

a2 = πR2 −a1, (A-2)

The number of sensors N1 and N2 in these regions can be mod-
eled as Poisson random variables.

P(Ni = n) = e−aiρ
(aiρ)n

n!
(A-3)

The number of sensor errors K1 (in ABC) and K2 (in ADC),
can be modeled by a binomial random variable with p as sen-
sor error probability.

P(Ki = k|Ni = n) =

(

n
k

)

(p)k (1− p)n−k
. (A-4)

The value of the statistic in (4) can now can be written in terms
of Ki and Ni as,

Γ = 1−
∣

∣N1 +2K2−N2 −2K1

∣

∣

N1 +N2
. (A-5)

Using equations (A-1)-(A-5), we can numerically calculate the
probability density function, P(Γ = γ |l = q).

Calculation of em and euw : A miss-detection occurs when
l ≤ r and Γ < γ0.

P(l = q|l ≤ r) =
2q
r2 (A-6)

P(Γ = γ |l ≤ r) =
∫ r

0
P(Γ = γ |l = q)

2q
r2 dq, (A-7)

em =

∫ γ0

0
P(Γ = γ |l ≤ r)dγ . (A-8)

An unwanted detection occurs when R ≥ l > r and Γ ≥ γ0.

P(l = q|R ≥ l > r) =
2q

R2 − r2 (A-9)



P(Γ = γ |R ≥ l > r) =

∫ R

r
P(Γ = γ |l = q)

2q
R2− r2 dq, (A-10)

euw =
R2 − r2

r2

∫ 1

γ0

P(Γ = γ |R ≥ l > r)dγ (A-11)

Calculation of ep f : Now suppose there is no edge with the
probing neighborhood (l > R). Γ can assume non-zero values
only because of sensor errors. The pdf of number of sensors
in the neighborhood region N can be expressed as a Poisson
random variable.

P(N = n|l > R) = e−πR2ρ
(

πR2ρ
)n

n!
. (A-12)

The number of sensor errors K in the probing neighborhood
can be expressed as a binomial random variable.

P(K = k|N = n) =

(

n
k

)

(p)k (1− p)n−k
. (A-13)

The value of the statistic in (4) can now can be written in terms
of K and N as,

Γ = 1− |N −2K|
N

. (A-14)

We numerically calculate the pdf P(Γ = γ |l > R). A pure false
error occurs when, Γ > γ0.

ep f =
N

ρr2

∫ 1

γ0

P(Γ = γ |l > R)dγ . (A-15)

N is the total number of sensors in the field.

APPENDIX B

In this appendix we calculate the errors e f , euw and ep f for
Prewitt filter example in Section 3.2.1. Let the line segment
L(l,θ ) approximate the edge (as argued in Appendix A) in-
tersect the probing neighborhood. Here, l is its distance from
the sensor and θ is the angle the y-axis makes with the nor-
mal from the sensor (see Figure 15). We divide the neighbor-
hood into 4 areas, a1 (DCHF), a2 (ABCD), a3 (ADEG) and
a4 (EDFI) as depicted in Figure 15. The four areas (ai)

i=4
i=1 for

θ ∈ (0,
π
2 ) can be calculated by the equations,

a1 =

R2

2

(

cos−1( r
R )−θ

)

− r
2

(

−r tanθ +
√

R2 − r2
)

θ < cos−1( r
R )

0 θ ≥ cos−1( r
R ).

(B-1)

(B-2)

a2 =

R2

2

(

cos−1( r
R )+θ

)

− r
2

(

r tanθ +
√

R2 − r2
)

θ < cos−1( r
R)

R2

2 cos−1( r
R )− r

√
R2 − r2 θ ≥ cos−1( r

R).

(B-3)
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Figure 15: Figure for appendix B

a3 = π
R2

2
−a2. (B-4)

a4 = π
R2

2
−a1. (B-5)

The number of sensors (Ni)
i=4
i=1 in the four regions and the num-

ber of sensor errors (Ki)
i=4
i=1 can be modeled as in A-3 and A-4.

The value of σx in (18) can now can be written in terms of Ki
and Ni as,

σx =

∣

∣

∣

∣

N2 −2K2 +N3 −2K3

N2 +N3
+

N1 −2K1 +N4 −2K4

N1 +N4

∣

∣

∣

∣

. (B-6)

The pdf P(σx = µ |l,θ ) can be numerically calculated using,
(B-1)-(B-6), (A-3) and (A-4).

It turns out that P(σy = µ |l,θ ) is same as P(σy = µ |l, π
2 −θ )

. The pdf P(σ = µ |l,θ ) can be calculated numerically from

σ =
√

σ 2
x +σ 2

y .

Calculation of em and euw : A miss-detection occurs when
l ≤ r but σ < σ0.

P(σ = µ |l ≤ r) =
8

πr2

∫ π
4

0

∫ r

0
P(σ = µ |l,θ )dl dθ(B-7)

em =

∫ σ0

0
P(σ = µ |l < r)dµ (B-8)

An unwanted detection occurs when R ≥ l > r but σ ≥ σ0.

P(σ = µ |R > l ≥ r) =
8

π(R2 − r2)

∫ π
4

0

∫ R

r
P(σ = µ |l,θ )dl dθ ,

(B-9)

euw =
R2 − r2

r2

∫ 1

σ0

P(σ = µ |R > l ≥ r)dµ . (B-10)

Here, we integrate on θ only over (0,
π
4 ) since, P(σ = µ |l,θ )

is identical in any section ( nπ
4 ,

(n+1)π
4 ).



Calculation of ep f : Now suppose there is no edge with the
probing neighborhood (l > R) and a non-zero value of σ oc-
curs due to sensor errors. Let Ni be the number of sensors in
the ith quadrant (quadrants numbered in anti-clockwise direc-
tion). Let Ki be the number of sensor errors in the ith quadrant.
Then,

P(Ni = n) = e−
πR2

2 ρ

(

πR2

2 ρ
)n

n!
(B-11)

P(Ki = k|Ni = n) =

(

n
k

)

(p)k (1− p)n−k
. (B-12)

The value of σ can be calculated in terms of (Ni)
i=4
i=1 and

(Ki)
i=4
i=1.

σx =

∣

∣

∣

∣

∣

∣

N2+2K3−N3−2K2
N2+N3

+
N1+2K4−N4−2K1

N1+N4
,

∣

∣

∣

∣

∣

∣

(B-13)

σy =

∣

∣

∣

∣

∣

∣

N1+2K2−N2−2K1
N1+N4

+
N3+2K4−N3−2K4

N3+N4
,

∣

∣

∣

∣

∣

∣

(B-14)

σ =
√

σ 2
x +σ 2

y (B-15)

Using (B-11)-(B-15), we can numerically calculate the pdf
P(σ = µ |l > R). A pure false error occurs when, σ > σ0.

ep f =
N

ρr2

∫ 1

σ0

P(σ = µ |l > R)dµ . (B-16)

N is the total number of sensors in the field.




