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Shreyas Choliaa, Noel Keena, Harinarayan Krishnana, Travis A. O’Briena,

William D. Collinsa

aLawrence Berkeley National Laboratory, Berkeley, California, U.S.A.
bUniversity of New South Wales, Sydney, New South Wales, Australia

Abstract

This paper presents two contributions for research into better understanding

the role of anthropogenic warming in extreme weather. The first contribution is

the generation of a large number of multi-decadal simulations using a medium-

resolution atmospheric climate model, CAM5.1-1degree, under two scenarios of

historical climate following the protocols of the C20C+ Detection and Attribu-

tion project: the one we have experienced (All-Hist), and one that might have

been experienced in the absence of human interference with the climate sys-

tem (Nat-Hist). These simulations are specifically designed for understanding

extreme weather and atmospheric variability in the context of anthropogenic

climate change.

The second contribution takes advantage of the duration and size of these

simulations in order to identify features of variability in the prescribed ocean

conditions that may strongly influence calculated estimates of the role of anthro-

pogenic emissions on extreme weather frequency (event attribution). There is a

large amount of uncertainty in how much anthropogenic emissions should warm

regional ocean surface temperatures, yet contributions to the C20C+ Detection

and Attribution project and similar efforts so far use only one or a limited num-

ber of possible estimates of the ocean warming attributable to anthropogenic
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emissions when generating their Nat-Hist simulations. Thus, the importance

of the uncertainty in regional attributable warming estimates to the results of

event attribution studies is poorly understood. The identification of features

of the anomalous ocean state that seem to strongly influence event attribution

estimates should therefore be able to serve as a basis set for effective sampling

of other plausible attributable warming patterns. The identification performed

in this paper examines monthly temperature and precipitation output from the

CAM5.1-1degree simulations averaged over 237 land regions, and compares in-

terannual anomalous variations in the ratio between the frequencies of extremes

in the All-Hist and Nat-Hist simulations against variations in ocean tempera-

tures.

Keywords: C20C+ D&A, CAM5.1, extremes, event attribution, attributable

warming

1. Toward tackling a major uncertainty in event attribution analysis

The field of research investigating the role of anthropogenic emissions in

specific extreme weather events (termed “event attribution” in the remainder

of this paper) has gained interest in recent years but is still in an early stage

of development (Stott et al., 2013; National Academies of Sciences, Engineer-5

ing, and Medicine, 2016). At this stage, there are a considerable (and growing)

number of methods being used, some with rather different philosophical un-

derpinnings (Shepherd, 2016). One of the most popular methods compares

the frequency of exceedance of some threshold in simulations of a dynamical

atmospheric model driven under a factual scenario of observed radiative and10

surface boundary conditions against the frequency in simulations driven under

a counterfactual scenario of what those boundary conditions might have been

like in the absence of human interference with the climate system (Pall et al.,

2011). Conclusions of studies using this atmospheric-modelling time-slice ap-

proach are usually expressed numerically in terms of the Risk Ratio or Fraction15

Attributable Risk (Stone and Allen, 2005). This type of experiment is explic-
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itly supported by the design of the Climate of the 20th Century Plus Detection

and Attribution (C20C+ D&A) Project, the topic of the special journal issue

in which this paper appears (Stone et al., In preparation).

A consequence of the relative youthful stage of this research field, however,20

is that a number of aspects of the experiment design remain poorly under-

stood in terms of the potential generation of bias and quantification of un-

certainty (National Academies of Sciences, Engineering, and Medicine, 2016).

For the atmospheric-modelling time-slice approach, possibly the biggest uncer-

tainty involves generation of the estimate of ocean warming (and sea ice retreat)25

attributable to anthropogenic emissions. There are a number of plausible ap-

proaches to estimating the attributable warming, including approaches based on

observed trends (Christidis and Stott, 2014), approaches based on simulations

of dynamical models of the coupled atmosphere-ocean system (Pall et al., 2011;

Christidis et al., 2012; Shiogama et al., 2014; Wolski et al., 2014; Schaller et al.,30

2016; Stone and Pall, 2017), and approaches that combine climate models and

observations (Bichet et al., 2015, 2016). Estimates based on observed trends

suffer from poor sampling, and thus a large amount of the estimated pattern

of attributable warming consists of random endogenously generated variability

rather than a response signal to an external forcing; because extreme weather35

tends to feed off of local temperature gradients, such “noise” may have an im-

portant influence on event attribution results. Estimates based on atmosphere-

ocean climate models may be better sampled (Stone and Pall, 2017), but they

depend on usage of accurate estimates of the drivers of climate change as well

as on the capability of atmosphere-ocean climate models to accurately repre-40

sent the effect of those drivers on ocean surface conditions. Only a few of the

many studies so far using the atmospheric-modelling time-slice approach have

used multiple estimates of the counterfactual natural scenario based on various

attributable ocean warming estimates (Pall et al., 2011; Kay et al., 2011; Chris-

tidis et al., 2012; Shiogama et al., 2014; Christidis and Stott, 2014; Schaller45

et al., 2016), and even these have used a miniscule number in relation to the

enormous size of the space of possible values.
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Considering the computational cost of running the simulations, the viability

of the atmospheric-modelling time-slice approach to event attribution depends

on the ability to reduce the size of the space of attributable ocean warming50

estimates to a manageable number. A first step toward this is the assumption

of separability into a spatio-temporal pattern and scalar global amplitude (Pall

et al., 2011). The linearity of event attribution results for extreme autumn

seasonal precipitation over England-Wales (Pall et al., 2011) and extreme local

daily precipitation within South Africa (Angélil et al., 2014) as a function of the55

global amplitude parameter suggests that this may be a reasonable assumption.

The pattern-amplitude separation not only substantially reduces the total size

of the attributable warming space, but it also effectively solves the bias and un-

certainty estimation issues for the amplitude half of the attributable warming

problem, because this is accurately constrained by long-term historical global60

warming (Stott et al., 2006; Pall et al., 2011). Note that the separation consid-

ered here differs from that proposed in Bichet et al. (2015, 2016), which instead

separates in spatial and temporal components.

The assumption of pattern-scalar separability thus transforms the problem

of attributable warming estimation into a problem of spatio-temporal pattern65

estimation. We are still left with an effectively infinite number of possible pat-

terns, however, so some further efficiency is required. One option, labeled here

as the “available pattern approach”, is to sample whatever pattern estimates

are available (e.g. Pall et al., 2011; Schaller et al., 2016). A more complete sam-

pling of the same space of available estimates might be achieved through cluster70

analysis (Mizuta et al., 2014). The advantage is that the patterns are plausi-

ble responses to anthropogenic forcing (notwithstanding errors in observational

data and biases in climate models). The disadvantage however is that there is

no obvious reason why the space spanned by the relatively few patterns should

be strongly aligned with the directions of high sensitivity of event attribution re-75

sults; thus, these few patterns may provide a poor indication of the sensitivity to

plausible patterns that have not been sampled. One might imagine for instance

that a set of available attributable ocean warming patterns differs only in the
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equator-to-pole gradient, while for a tropical region uncertainty in the risk ratio

depends only on uncertainty in the interhemispheric gradient. Thus a second80

option, proposed here and labeled the “sensitivity-based approach”, is to instead

focus on sampling patterns corresponding to the directions of highest sensitivity

of event attribution results. The disadvantage of this second approach is that is

unclear whether such patterns are plausible responses to anthropogenic forcing.

The two approaches are thus complementary.85

This paper sets out to facilitate sampling of the uncertainty in the at-

tributable ocean warming pattern by further reducing the space of useful pat-

terns to a manageable number using the sensitivity-based approach. We identify

the directions of attributable warming with the highest sensitivity in event at-

tribution results, with these directions being perturbations from the baseline90

attributable warming estimate (Stone and Pall, 2017) used by the C20C+ D&A

project. To do so, we examine the year-to-year sensitivity of risk ratio esti-

mates for monthly extremes to interannual variability in sea surface temper-

atures (Risser et al., 2017), using a set of large ensembles of multi-decadal

simulations of an atmospheric climate model. We start by describing the simu-95

lations in detail, including specifics of the experiment setup. We then describe

the method used to identify sensitivity to anomalous sea surface temperature

variability, and develop its application here to the identification of a subspace of

patterns to which risk ratio estimates for events around the world are generally

most sensitive.100

2. Simulations of CAM5.1-1degree

In this section we describe the simulations of the CAM5.1-1degree model

of the atmosphere/land system submitted to the C20C+ D&A Project. These

simulations are unusual in the combination of their number and duration, prop-

erties required for the study described in this paper. Because the C20C+ D&A105

experiment protocol permits some flexibility, it may be useful to spell out the

specifics of these simulations here.
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2.1. The CAM5.1-1degree model

CAM5.1 is the atmospheric component of the CESM1.0.3 earth system

model (Neale et al., 2012). Here it is run at 1.25◦×0.9375◦ resolution in longi-110

tude and latitude respectively (hence the “1degree” suffix in our label for the

model), with 30 vertical hybrid height-pressure levels. The dynamical equations

are solved using the finite volume (FV) dynamical core. In our configuration,

we also use CLM4.0 (Oleson et al., 2010; Lawrence et al., 2011), the model of

land surface properties in CESM1.0.3. Chemistry and ecosystem properties are115

not simulated in either the atmosphere or land models, but rather prescribed

for computational efficiency.

2.2. Scenarios

The model has been run under the two benchmark scenarios of the C20C+ D&A

project: All-Hist/est1, and Nat-Hist/CMIP5-est1 (Stone et al., In preparation;120

Stone and Pall, 2017). The collection of simulations of CAM5.1-1degree de-

scribed in this paper are labeled “All-Hist/est1/v2-0” and “Nat-Hist/CMIP5-

est1/v2-0” respectively, with the “v2-0” distinguishing from some trial All-

Hist/est1/v1-0 simulations which have some differences in the radiative forcing

and are not considered in this paper. The All-Hist/est1/v2-0 simulations are in-125

tended to represent possible trajectories for the atmosphere (and land surface)

under observed boundary conditions; the Nat-Hist/CMIP5-est1/v2-0 simula-

tions are intended to represent possible trajectories of the atmosphere under

an estimate of what the observed boundary conditions might have been in the

absence of anthropogenic interference with the climate system. 400 simulations130

have been run under each scenario, with start dates on 1 January 1959, 1996,

or 2010 (Table 1). All simulations start from the same initial state, except for

small uniform perturbations applied to the three-dimensional temperature field

(note that some simulations listed as starting on 1 January 1959 actually start a

year earlier). For this study we ignore the first year of each simulation in order135

to ensure sufficient divergence from the common initial macrostate.
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Table 1: Lengths of simulations as of 30 June 2017. Continued extension of the end date of

all simulations is planned as observed sea surface temperature and sea ice concentration data

become available.

Scenario Simulations Period covered

All-Hist/est1/v2-0 50 1959/01/01–2016/12/31...

50 1996/01/01–2016/12/31...

300 2010/01/01–2013/12/31...

Nat-Hist/CMIP5-est1/v2-0 50 1959/01/01–2015/06/30...

50 1996/01/01–2015/06/30...

300 2010/01/01–2013/12/31...

2.3. Experiment setup

The All-Hist/est1/v2-0 simulations have been driven with observed (or observationally-

derived) changes in greenhouse gas concentrations, sulphate aerosol burden, or-

ganic aerosol burden, black carbon aerosol burden, dust aerosol burden, sea salt140

aerosol burden, ozone concentrations, solar insolation, volcanic aerosol, land

surface cover/use, sea surface temperatures (SSTs), and sea ice concentrations

(SICs) (Table 2 and references therein). Prescribed modal aerosol values are

used for the non-volcanic aerosols; volcanic aerosols are prescribed through a

height-latitude profile of the mass mixing ratio. The consequence of not using145

prescribed aerosol emissions, and not simulating atmospheric chemistry, is a

topic for planned future research.

The Nat-Hist/CMIP5-est1/v2-0 simulations mimic the All-Hist/est1/v2-0

in many ways, but with adjustments to represent the effect of removing the

historical influence of anthropogenic emissions (Table 2 and references therein).150

Solar and volcanic forcing is identical to All-Hist/est1/v2-0. However, values for

greenhouse gas concentrations, aerosol burdens, and ozone concentrations are

held at estimated year 1855 values. SSTs from All-Hist/est1/v2-0 are cooled ac-

cording to the “Nat-Hist/CMIP5-est1” monthly estimate of attributable warm-

ing from Stone and Pall (2017). This estimate of the warming attributable to hu-155

man interference with the climate system is calculated as the difference between
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Table 2: Radiative and surface boundary conditions used in the All-Hist/est1/v2-0 and

Nat-Hist/CMIP5-est1/v2-0 simulations performed with CAM5.1-1degree. CFC-11 values are

adjusted in order to represent a number of species: CFC-11, CCl4, CF4, C2F6, C6F14,

CH3Br, CH3Cl, CFC-113, CFC-114, CFC-115, Halon-1211, Halon-1301, Halon-2402, HCFC-

22, HCFC-141B, HCFC-142B, HFC-23, HFC-32, HFC-43-10, HFC-125, HFC-134a, HFC-143a,

HFC-227ea, HFC-245fa, methyl chloroform, SF6. Aerosols include: black carbon, dust, or-

ganic, sulphate, and sea salt. Year 1855 values for Nat-Hist/CMIP5-est1/v2-0 involve repeat-

ing the annual cycle from that year.

Boundary

condition

All-Hist/est1/v2-0 Nat-Hist/CMIP5-est1/v2-0

CO2 Prescribed from Meinshausen

et al. (2011)

284.725ppmv

CH4 Prescribed from Meinshausen

et al. (2011)

790.979ppbv

N2O Prescribed from Meinshausen

et al. (2011)

275.425ppbv

CFC-11 Prescribed from Meinshausen

et al. (2011)

33.432pptv

CFC-12 Prescribed from Meinshausen

et al. (2011)

0.0pptv

Sulphate

aerosol

Prescribed modal aerosol from

Lamarque et al. (2012)

Year 1855 prescribed modal aerosol

from Lamarque et al. (2012)

Black carbon

aerosol

Prescribed modal aerosol from

Lamarque et al. (2012)

Year 1855 prescribed modal aerosol

from Lamarque et al. (2012)

Organic

aerosol

Prescribed modal aerosol from

Lamarque et al. (2012)

Year 1855 prescribed modal aerosol

from Lamarque et al. (2012)

Dust aerosol Prescribed modal aerosol from

Lamarque et al. (2012)

Year 1855 prescribed modal aerosol

from Lamarque et al. (2012)

Sea salt

aerosol

Prescribed modal aerosol from

Lamarque et al. (2012)

Year 1855 prescribed modal aerosol

from Lamarque et al. (2012)

Ozone Lamarque et al. (2010) and

Lamarque et al. (2011)

Year 1855 from Lamarque et al.

(2010) and Lamarque et al. (2011)

Solar lumi-

nosity

Wang et al. (2005) Wang et al. (2005)

Volcanic

aerosol

Ammann et al. (2003) Ammann et al. (2003)

Land surface Hurtt et al. (2006) Hurtt et al. (2006)

Sea surface

temperature

Hurrell et al. (2008) and

NOAA OI.v2 (Reynolds et al.,

2002)

Hurrell et al. (2008) and NOAA OI.v2

(Reynolds et al., 2002) adjusted ac-

cording to Stone and Pall (2017)

Sea ice con-

centration

Hurrell et al. (2008) and

NOAA OI.v2 (Reynolds et al.,

2002)

Hurrell et al. (2008) and NOAA OI.v2

(Reynolds et al., 2002) adjusted ac-

cording to Stone and Pall (2017)
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the “historical” (drivern with historical changes in both anthropogenic and nat-

ural forcings) and “historicalNat” (driven with historical changes in natural forc-

ings only) simulations from the Coupled Model Intercomparison Project Phase

5 (CMIP5, Taylor et al., 2012). Sea ice concentrations are adjusted for consis-160

tency with the cooler temperatures according to the observed temperature-ice

relationship (Stone and Pall, 2017). Visuals illustrating the spatial and tem-

poral properties of the resulting All-Hist/est1 and Nat-Hist/CMIP5-est1 SSTs

and sea ice coverage are provided in Stone and Pall (2017). Additionally, the

data is available for download at http://portal.nersc.gov/c20c/.165

The C20C+ D&A protocols are flexible in terms of whether land use/cover

change is considered a global or local anthropogenic forcing, and thus whether

it is a driver of change which the benchmark Nat-Hist/CMIP5-est1 scenario

is intended to diagnose. For the CAM5.1-1degree Nat-Hist/CMIP5-est1/v2-0

simulations we have interpreted it as a local forcing for the purposes of extreme170

weather, and thus not something to be diagnosed in this global experiment.

Therefore, the All-Hist/est1/v2-0 land use/cover change is retained for the Nat-

Hist/CMIP5-est1/v2-0 simulations. The effect of this choice is a topic of planned

future research.

Further details on these simulations are available at http://portal.nersc.gov/c20c/data.html,175

including on planned continual updates as observed SSTs and SICs become

available.

3. Method

The experimental design used in the C20C+ simulations involves some im-

portant assumptions relating to the ocean surface state and the way the atmo-180

sphere interacts with the ocean. In order to assess the impact of ocean variabil-

ity on atmosphere-model-based event attribution, Risser et al. (2017) develop

a hierarchical statistical model that allows for quantification of the uncertainty

introduced in attribution studies from the use of uncoupled, atmosphere/land-

only model simulations (in addition to sampling uncertainty from the limited185
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number of simulations). Specifically, the framework provides a way to quantify

the effect of ocean variability on the risk ratio, while taking account of the effect

of long-term trends.

For complete details of the statistical approach, we refer the reader to the

methods section of Risser et al. (2017); however, a summary is as follows. Given

the long term nature of the CAM5.1-1degree simulations, we are interested in

estimating the risk ratio over time at a total of T years, i.e.,

RRt =
pAt

pNt
t = 1, . . . , T,

where pAt and pNt are the occurrence probabilities for a defined extreme event

in year t for scenario All-Hist and Nat-Hist, respectively. Together with a non-

parametric (or binomial) likelihood, the scenario-specific probabilities for each

calendar month are modeled using mixed-effects logistic regression as

log

(
pktj

1− pktj

)
= βk0 + βk1xkt + αt + δt1{k=A} + γj , (1)

for k ∈ {A,N}, j ∈ {1, . . . , 12} (an index for the calendar months), and

t = 1, . . . , T . While calculations are performed with the γj seasonality term190

included, for simplicity we take annual averages over the resulting seasonality

in this paper when presenting results for δt, pAt, pNt, and RRt and we will drop

the j index in the remainder of this summary of the method. Here, xkt is a time-

varying covariate for scenario k ∈ {A,N} (we use a smoothed scenario-specific

50◦S-50◦N land annual mean temperature), βk0 and βk1 are scenario-specific195

regression coefficients, and 1{·} is an indicator function. Intuitively, including

the scenario-specific covariate accounts for any long-term trends present in pN

and pA. Then, we use a prior for the αt and δt that borrows information across

years, which is a standard form of statistical shrinkage that increases the signal

to noise ratio when estimating these effects. The choice of priors does not affect200

the best estimate of the long-term trend itself, but rather encourages a decrease

in the uncertainty in the trend. The statistical model is estimated in a Bayesian

framework, using Markov chain Monte Carlo (MCMC) methods to obtain joint

samples from the posterior distribution, upon which all subsequent inference
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is based. We assume that all values are independent in time, which is reason-205

able for the monthly mean data (admittedly notwithstanding some intra-annual

variability that is not accounted for by the t index) examined in this paper but

would not be for daily frequencies.

Using (1) for pAt and pNt, the risk ratio in year t is approximately

RRt ≈ RR0 × exp{βA1xAt1 − βN1xNt1} × exp{δt}.

Thus, RR0 = exp {βA0 − βN0} is the “baseline” risk ratio for the entire time

interval, a scalar that centres the analysis on a particular climate era (and means210

that the approximation is not valid for a period experiencing a large amount

of climate change in either scenario). The exp{βA1xAt1 − βN1xNt1} term, a

multiplicative scaling due to the covariates, describes the long term trend in the

risk ratio, where the trend is taken to have the form of the difference in the global

mean temperature covariates of the two scenarios. Finally, the exp{δt} term is215

a scaling for the risk ratio in a particular year that describes the year-to-year

variability in the pAt above and beyond variability in the pNt (after accounting

for long term trends in the probabilities due to atmospheric warming). Hence,

the δt effects also describe the year-to-year variability in the risk ratio beyond

the long term trend, and are of particular interest to our analysis in the next220

section. Together the first two terms describe the mean anthropogenic effect

as measured by the risk ratio; the δt term describes anomalous year-to-year

variations in that anthropogenic effect that result from the anomalous ocean

state modulating the way that the climate system interprets the anthropogenic

forcing.225

In order to account for regional differences in the probabilities pAt and pNt

and hence the δt, we fit the statistical model to area-averaged monthly output

from the simulations for each of 237 diagnostic land regions (Stone, 2017, , see

Figure 5) over the 1982-2014 period. For hot, cold, and wet extremes, we then

have an estimated time series of the δt (33 total years) for each of the 237230

regions. The focus on monthly extremes is motivated in part because these may

be expected to be more sensitive to prescribed ocean conditions than shorter-
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duration events. Given that risk ratios tend to scale straightforwardly as a

function of duration and spatial scale (Angélil et al., 2017), the results here

should be qualitatively relevant for hot, cold, and wet extremes for different235

durations and regions than are examined here.

4. Results

4.1. Year-to-year variability in extreme weather probabilities

As an example, Figure 1 shows the estimated probabilities of hot, cold, and

wet months over the U.S. states of California and Nevada (comprising one of the240

237 diagnostic regions) for each year in the 1982-2014 period under both sce-

narios. We do not examine dry months because over many regions, such as this

one, a zero-precipitation month can be fairly common. Thresholds are defined

as the 1-in-10-year event over the 1982-2014 period in the All-Hist/est1/v2-0

simulations. While the probabilities of a hot month were similar between the245

two scenarios in the 1980s, they are at least five times more probable in recent

years. In contrast, the probabilities of cold months are already about three

times lower in All-Hist/est1/v2-0 scenario in the 1980s, with only a slight fur-

ther increase in the probabilities in recent years. Probabilities of wet months

are similar between the two scenarios.250

Along with long-term trends in the probabilities plotted in Figure 1, there

are also notable interannual variations. For instance, the probability of a wet

month is substantially higher in 1983 and 1998 under both scenarios: both years

experienced strong El Niño events which often induce wet winters over this

region. However, the variations are not identical across the two scenarios. For255

instance, even though the estimated probabilities appear to be higher in both

1983 and 1998 with anthropogenic forcing, the highest estimated probability

of a wet month in the Nat-Hist/CMIP5-est1/v2-0 scenario is in 1998, while it

is 1983 for the All-Hist/est1/v2-0 scenario. Some of these variations represent

uncertainty from the limited sample of simulation data available, however Risser260

et al. (2017) concluded that some of the differences represent real features of the
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anthropogenic influence on extreme weather, at least as represented by CAM5.1-

1degree.

4.2. Correlation of risk ratio with sea surface temperatures

In order to achieve the goal of this paper, we would like to diagnose what265

spatial patterns of SST variability might be related to the year-to-year variations

in the differences in probabilities between the two scenarios, beyond long-term

global warming. In other words, what SST patterns are responsible for the year-

to-year variability in the risk ratio estimates? We measure these variations in the

risk ratio using the δt effects introduced in Section 3. This variable represents270

variations in the risk ratio beyond those from mean global warming, with the

risk ratio being the probability under the All-Hist/est1/v2-0 scenario divided

by the probability under the Nat-Hist/CMIP5-est1/v2-0 scenario (Stone and

Allen, 2005). We then calculate the linear correlation between the estimated

δt and the year-to-year variations in SST at each location in the ocean (across275

1982-2014). The result is plotted in Figure 2 for the case of wet months over

California and Nevada.

The year-to-year variability in the risk ratio for wet months over California

and Nevada is correlated with SSTs in the Pacific Ocean, in patterns that re-

semble the El Niño/Southern Oscillation (ENSO) phenomenon in the tropical280

Pacific and the Pacific Decadal Oscillation (PDO) in the extratropical North

Pacific. These phenomena are known to influence precipitation over California

and Nevada (Dettinger et al., 2011). Their visibility in these maps, however,

suggests that the extent of their influence may depend on the existence of an-

thropogenic forcing. Stated differently, the existence of an El Niño-like pattern285

in this map suggests that during El Niño events extreme wet months over Cal-

ifornia and Nevada become wetter under anthropogenic forcing than would be

expected based on the anthropogenic effect on ENSO-neutral months. We need

to be careful not to overinterpret that suggestion though. First, because wet

months are more probable over these states in years when there is an El Niño290

event occurring, the anomalous risk ratio correlation map is sensitive to the lim-
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ited sampling of those El Niño months; a similar issue exists for PDO phases.

Second, the correlations are not that strong, ranging from -0.59 to 0.61, or about

one third of the variance being shared at a maximum.

4.3. Global patterns of anomalous variability in regional risk ratios295

While anomalous year-to-year variations in the estimated risk ratio (δt) for

California and Nevada may be correlated with the PDO, this may not be the

case with the other 236 regions. In order to collectively analyse all regions,

we perform a principal component (PC) analysis on the estimated δt variable

across all regions and years in the 1982-2014 period (the principal components300

are calculated based on the correlation matrix of the δt). Because all regions

are approximately the same size by design, we do not apply any area-based

weighting. The normalised eigenvalues are plotted in Figure 3 separately for

hot, cold, and wet events. Slightly more PCs are required to represent 90% (red

line) of the anomalous variability in the risk ratio of hot events than for cold305

events, while nearly twice as many PCs are required for wet events as for cold

events. This difference might be expected given that temperature variability

has a larger spatial decorrelation scale than does precipitation variability (Jones

et al., 1997).

The leading PC related to cold events represents nearly half of the anoma-310

lous variability in the risk ratio, while the leading PC for hot and wet events

represents about a quarter and a fifth of the variance respectively. The PC time

series are ploted in Figure 4, with the associated spatial projections plotted in

Figure 5.

The leading PC for cold events marks the occurrence of El Niño events,315

with the lowest four values corresponding to four of the top five El Niños of

the period: the 1983, 1987, 1998, and 2010 events. The spatial projection

indicates that when there is an El Niño event (negative) tropical land regions

have an anomalously high risk ratio. If this PC is reflecting an effect of ENSO

variations on the risk ratio, then it might be expected to be strongly correlated320

with SSTs in the tropical Pacific. Figure 6 shows the map of the correlation
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between annual mean SSTs and the time series associated with the leading

PC. Note that this map is not actually showing the PC, which is based on the

anomalous risk ratio variability of the 237 land regions. The SST correlation

map for the anomalous risk ratio of cold events resembles the PDO (Mantua325

et al., 1997), with correlations ranging between -0.71 and 0.73 in the Pacific

Ocean. However, there is no strong correlation visible in the tropical Pacific

itself, i.e. with ENSO variability. The explanation would seem to be that the

leading PC is reflecting the effect of the El Niño phase of ENSO but not of

the opposite La Niña phase: this nonlinear relationship is not being picked330

up by a linear correlation. Tropical land regions have a lower probability of

a cold month during an El Niño (also known as “warm ENSO”) event, which

makes them almost impossible in the Nat-Hist/CMIP5-est1 world but merely

less likely in the All-Hist world (not shown), resulting in a substantially higher

risk ratio; in contrast, a La Niña event does not lead to a near-zero numerator335

or denominator in the risk ratio.

The leading PC for the anomalous risk ratio of hot events generally repre-

sents opposite behaviour in the tropics versus the non-tropics. The correlation

with SSTs shows a similar pattern, with in-phase correlations in the tropical

Pacific, tropical North Atlantic, and the Indian Ocean. However, the correla-340

tions with SSTs are generally weaker than for cold or wet events. In the Indian

Ocean the pattern resembles the Indian Ocean Dipole (IOD), but correlations

between the Dipole Mode Index of the IOD (Saji and Yamagata, 2003) and the

anomalous risk ratio time series of individual regions only span the -0.58 to 0.40

range, so this probably does not reflect anything substantial.345

For wet events, the leading PC for the anomalous variability in the risk ratio

mostly represents a long-term linear trend until around 2005, with no trend over

the final decade. Its spatial projection mainly focuses on the northern half of

Africa. It may represent a simulated version of the recovery of the Sahel (and

here surrounding areas) rainfall since the drought of the early 1980s. This area350

generally has a lower chance of wet events in the All-Hist/est1/v2-0 simulations.

Thus, as the frequency of wet events increases during this period, the shift in the
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distribution has a larger effect on All-Hist events, increasing their probability

by about a factor of five while the probability in the Nat-Hist/CMIP5-est1

simulations merely doubles (not shown). The correlation of the PC with SSTs355

is strongly focused on the North Atlantic (reaching values as high as 0.91), a

region that has been linked to the recovery of the Sahel rains (Hoerling et al.,

2006).

5. Application for alternative natural ocean surface estimates

Uncertainty in what the ocean surface might have been like in the absence360

of anthropogenic interference is probably the largest uncertainty in the popular

time-slice atmospheric modelling approach to event attribution first presented

by Pall et al. (2011) and adopted by the C20C+ D&A project Stone et al.

(In preparation). One can generate a plausible estimate, as for instance the

Nat-Hist/CMIP5-est1 SSTs used as the benchmark natural-SST estimate for365

the C20C+ D&A project (Stone and Pall, 2017), but there exists an essentially

infinite number of perturbations to such a natural-world SST estimate that could

be just as plausible. How can we effectively sample across that uncertainty?

In this paper we have developed and presented the maps in Figure 6 as pos-

sible anomalous patterns in attributable warming to which estimates of the risk370

ratio of extreme weather may be highly sensitive. The idea has been that areas

of particularly high amplitude correlation in the maps are areas to which the

risk ratio (or a similar measure of attributable influence) is most sensitive. For

instance, there appears to be a large number of regions for whom the estimate

of the risk ratio of wet months is sensitive to SSTs in the North Atlantic Ocean,375

because the correlation values are particularly high for the leading principal

component shown in Figure 6. The sensitive land regions tend to be located in

the northern subtropics, with a particular focus on the northern half of Africa

(Figure 5). The sensitivity patterns in Figure 6 are based on a particular es-

timate of the ocean warming attributable to anthropogenic emissions and thus380

specifically represent directions from that pattern for which risk ratio estimation
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may be most sensitive. Whether similar anomalous patterns would be developed

when using another baseline attributable warming estimate is an open question

which requires the generation of a similarly large ensemble of simulations of

CAM5.1-1degree or another model under a different Nat-Hist scenario.385

Of course there are a number of questions concerning how these patterns

can best be used. In terms of implementation, what magnitude would be most

appropriate? This could be an arbitrary ratio of the variance of that pattern

in the observed SST record. Alternatively it could be based on the spread of

multiple existing attributable warming estimates. For instance, one could cal-390

culate attributable warming estimates from multiple individual CMIP5 models

(e.g. Schaller et al., 2016), project the sensitivity patterns onto the multiple

estimates, and estimate appropriate amplitudes based on the spread of these

projections. Alternatively the multiple attributable warming estimates could be

expressed as anomalies from a baseline estimate (such as the Nat-Hist/CMIP5-395

est1 attributable warming estimate used here), the multiple estimates could be

ranked according the magnitude of the correlation of these anomalous patterns

with the sensitivity patterns, and that ranking could be used to provide priori-

tisation of the sampling of the multiple existing estimates. Indeed, using these

patterns as a means to more efficiently sample between existing available esti-400

mates may represent the most effective use of both the available estimates and

these sensitivity patterns.

6. Conclusions

This paper has described the generation of an unusually numerous and

lengthy set of simulations designed for investigation of extreme weather and405

climate variability within the context of climate change, following the protocols

of the C20C+ D&A project. The C20C+ D&A project currently includes half-

century-long simulations under both the All-Hist/est1 and Nat-Hist/CMIP5-

est1 scenarios for two additional atmospheric climate models (HadAM3P-N96

and HadGEM3-A-N216), but the ensemble sizes for the CAM5.1-degree simula-410
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tions described here are considerably larger (Stone et al., In preparation). The

“d4PDF” experiment with the MRI-AGCM3.2 model is comparable, being run

at a somewhat higher spatial resolution and involving ensemble sizes twice as

large for the full multi-decadal period (Shiogama et al., 2016). Considering that

the d4PDF “natural” world is estimated using a different, observationally-based,415

attributable warming estimate than is used here for CAM5.1-1degree, repeti-

tion of the analysis conducted here with d4PDF simulations would provide an

indication of the robustness of results to both climate model and attributable

warming estimate.

Multi-decadal simulations with atmosphere-ocean models run under “histor-420

ical” and “natural historical” scenarios are also available, for instance through

CMIP5 (Taylor et al., 2012), and the relatively small ensemble sizes can be

mitigated by use of multiple years in a given era. Coupled atmosphere-ocean

models include long-time-scale variability generated by the ocean, which may

be relevant in some regions (Risser et al., 2017), but they can also suffer from425

substantial biases that can be reduced when observed ocean conditions are pre-

scribed (notwithstanding observational errors). Coupled models also include

short-time-scale coupling that may be important for tropical cyclone dynam-

ics (Dong et al., 2017). However, in order to accurately simulate tropical cy-

clones, climate models need to be run at a spatial resolution that in CMIP5430

was well beyond what was feasible for a large ensemble of multi-decadal simu-

lations (Wehner et al., 2015). Thus, experiments with atmospheric models such

as those here provide a complementary, and in some cases likely more accurate,

tool for understanding extreme weather in the context of anthropogenic climate

change.435

When atmospheric models are used in factual-counterfactual experiments for

diagnosing the effect of anthropogenic emissions, uncertainty in how the ocean

might respond to anthropogenic emissions is separated from the dynamical mod-

elling apparatus. Instead, the ocean warming to emissions is prescribed. Thus,

the uncertainty that might be characterised by using multiple atmosphere-ocean440

models is now split between using multiple atmospheric models and multiple es-
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timates of the attributable ocean warming. Sampling these ocean warming esti-

mates can be undertaken in essentially the same method as when using multiple

atmosphere-ocean models: simply sample directly from individual atmosphere-

ocean models. However, once the attributable ocean warming has been sepa-445

rated from the dynamical modelling, other possible estimates become available,

such as observed trends (e.g. Christidis and Stott, 2014; Bichet et al., 2015).

The capability to sample beyond estimates from the limited number of avail-

able atmosphere-ocean models and (very limited) observations would thus mean

that in one respect atmosphere-only experiments may paradoxically provide im-450

provements over atmosphere-ocean models in terms of how the ocean response

is represented.

In this paper, we have proposed a method, based on the CAM5.1-1degree

ensembles, that can allow such further sampling of possible natural-world ocean

climates. Besides technical limitations involving assumptions and approxima-455

tions in the methodology, as described in Section 3, there are also practical and

existential questions. On the practical side, how might we limit the selection

of possible attributable warming estimates to physically plausible ones? One

option proposed above, using the basis set developed here to interpolate be-

tween single estimates generated through other approaches, has the drawback460

that it contradicts the main justification of the development of this method: to

go beyond the range spanned by those other approaches. A sensitivity-based

approach, in which extreme cases are studied in order to understand where the

main uncertainties lie, may be a more useful implementation. Nevertheless,

the ultimate usefulness depends on the existential question of whether sensi-465

tivity to year-to-year variability in the risk ratio of these experiments projects

substantially onto the space of plausible attributable warming patterns.

While this paper only analysed monthly data from the CAM5.1-1degree sim-

ulations, daily and 3-hourly output is also available through the C20C+ D&A

project data portal at http://portal.nersc.gov/c20c/data.html. Along with be-470

ing applicable to “one-off” attribution studies, most appropriately with other

C20C+ D&A models or other data sources, the number and length of the sim-
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ulations permit systematic analyses that may help us better understand the

time-slice modelling approach from a technical perspective, as well as the global

role of anthropogenic interference in local extremes.475
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Figure 1: Time series of estimated probabilities of exceedence of a threshold for hot (top), cold

(middle), and wet (bottom) months over the states of California and Nevada, U.S.A., for the

All-Hist/est1/v2-0 simulations (red) and Nat-Hist/est1/v2-0 simulations (blue). The thresh-

olds correspond to the 1-in-10-year event over the 1982-2014 period in the All-Hist/est1/v2-0

simulations.
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Figure 2: Map of the correlation of annual mean sea surface temperatures with the year-

to-year variability (δt) in the risk ratio for wet months over the U.S. states of California

and Nevada. δt is calculated from the CAM5.1-1degree simulations using the method of

Risser et al. (2017). Sea surface temperature data are from Hurrell et al. (2008) updated

with NOAA OI.v2 (Reynolds et al., 2002), the same data used by the All-Hist/est1/v2-0

simulations.
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Figure 3: Cumulative proportion of the anomalous variation in the risk ratio across all 237

regions that is is represented by the given number of principal components, for hot (left), cold

(middle), and wet (right) events. The point at which the curves cross the red line indicates

the number of principals required to represent 90% of the anomalous variation in the risk

ratio.
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Figure 4: The time series of the leading principal component of the anomalous variation in

the risk ratio across all 237 regions during the 1982–2014 period: hot events (top), cold events

(middle), and wet events (bottom). Arrows in the cold events panel denote the strongest five

El Niño events during the period as defined by the January-March Extended Multivariate

ENSO Index (Wolter and Timlin, 2011).
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Figure 5: The spatial projection of the leading principle component of the anomalous variation

in the risk ratio across all 237 regions during 1982-2014 period: hot events (top), cold events

(middle), and wet events (bottom).
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Figure 6: Correlation of the leading of principal component of anomalous variation in the risk

ratio across all 237 regions against 1982–2014 sea surface temperatures for: hot events (top),

cold events (middle), and wet events (bottom).
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