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Cyclic steady states of nonlinear electro-mechanical devices
excited at resonance

Gerd Brandstetter and Sanjay Govindjee*,†

University of California, Berkeley, CA, USA

SUMMARY

We present an efficient numerical method to solve for cyclic steady states of nonlinear electro-mechanical
devices excited at resonance. Many electro-mechanical systems are designed to operate at resonance, where
the ramp-up simulation to steady state is computationally very expensive – especially when low damping
is present. The proposed method relies on a Newton–Krylov shooting scheme for the direct calculation
of the cyclic steady state, as opposed to a naïve transient time-stepping from zero initial conditions. We
use a recently developed high-order Eulerian–Lagrangian finite element method in combination with an
energy-preserving dynamic contact algorithm in order to solve the coupled electro-mechanical boundary
value problem. The nonlinear coupled equations are evolved by means of an operator split of the mechanical
and electrical problem with an explicit as well as implicit approach. The presented benchmark examples
include the first three fundamental modes of a vibrating nanotube, as well as a micro-electro-mechanical
disk resonator in dynamic steady contact. For the examples discussed, we observe power law computational
speed-ups of the form S D 0:6 � ��0:8, where � is the linear damping ratio of the corresponding resonance
frequency. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In today’s micro-electro-mechanical systems/nano-electro-mechanical systems (MEMS/NEMS),
many components are designed to operate at resonance. As particular examples, we mention the
recent micro-mechanical resonant switch (reso-switch) by [1] and the nanotube radio by [2]. Other
examples include MEMS resonators or the electro-mechanical charge pump as in [3, 4] and ref-
erences therein. Such devices show great potential to improve upon their semiconductor-based
counterparts that require unconventional and expensive transistors.

For the resonant systems discussed in this work, one is typically interested in simulating the oper-
ating mode at steady state. In order to find the steady state solution, one traditionally evolves the
time-dependant electro-mechanical equations from typically zero initial conditions until a steady
state is reached. The number of cycles to reach a steady state by such naïve time stepping may be
many thousands or even millions, depending on the damping of the system. Especially for mod-
ern designs with very low damping, the simulation up to a steady state will become very expensive
or may be even impossible with this classical approach. In this work, we address an alternative,
more efficient method to find cyclic steady states directly (CSS method). The CSS method has
been inspired by recent works [5, 6], where a cyclic steady state is calculated directly by means
of a Newton–Krylov shooting scheme. In [6], the authors consider the evolution of treaded rolling
bodies. Other works on Couette turbulence [7], integrable equations [8], mode-locked lasers [9],
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or surface water waves [10] have used a similar mathematical framework. To our knowledge, we
demonstrate for the first time the application of the CSS method in the context of electro-mechanical
systems and in the presence of highly nonlinear shock-like response due to electro-mechanical
impact. As will be observed, the CSS method shows strong speed-ups in comparison with traditional
time stepping and opens completely new areas for the simulation of electro-mechanical systems in
the face of very low damping.

To address the problems of interest here, as a starting point, one requires methods that can
treat the coupled electro-mechanical problem and are able to address issues of contact with
impact – in particular can properly deal with gap closing forces when the gap between two
interacting electro-mechanical bodies goes to zero. Many formulations exist in the literature to
handle electro-mechanical coupling. We mention in particular the coupled finite-element/boundary-
element methods (FEBE) [11–22], and Lagrangian or arbitrary Lagrangian–Eulerian methods
(ALE) [23–29]. For both FEBE and ALE approaches, one faces challenges when the topology of
the electrical field domain changes because of contacting bodies. With FEBE methods, one needs to
deal with singular or nearly singular integrations of Green’s function; in the ALE methods, one has
to pay special attention to distorted or collapsing elements when modeling the surrounding space.
As an alternate, our starting point will be the high-order discontinuous Galerkin immersed bound-
ary method recently proposed in [30]. This framework has been extened by [31] to the coupled
field setting in an Eulerian–Lagrangian formulation including gap closing contact. Here, we cou-
ple it to our CSS strategy to develop a technique for studying steady state excitation of resonant
electro-mechanical systems.

The outline of this paper is as follows. In Section 2, we state the governing equations of the
continuum electro-mechanical boundary value problem and our choice of discretization using an
Eulerian–Lagrangian finite element method. In Section 3, we discuss the direct algorithmic solution
of cyclic steady states in space-time before we test the algorithm for various numerical examples in
Section 4.

2. GOVERNING EQUATIONS

2.1. Electro-mechanical boundary value problem

We assume we want to solve the electro-mechanical boundary value problem sketched in Figure 1.
We divide the space into domains R, V and W: R should be thought of as a body with boundary
� , and V;W as air or vacuum; note W represents the far-field domain. In the following, we assume
that any magnetic effects are neglected, and we assume that the electrical field is quasi-static with
respect to the mechanical deformation. In order to solve for the electrical field e in the quasi-static
case with a linear dielectric material, we employ an electrical potential ˆ, such that e D �rˆ.
This leads to the need to solve Poisson’s equation in all space R, V , and W , where we assume the

Figure 1. Schematic of the electro-mechanical boundary value problem.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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corresponding linear isotropic permittivities �R, �V , and �W . In such a case, and in the absence of
any volume charge, one requires

r2ˆ D 0 (1)

in all space, with given Dirichlet boundary data ˆ D N̂ along � . Here, we limit ourselves for
simplicity of presentation to the purely Dirichlet boundary value problem along � . Please refer to
[30] for a more general discussion of (1) and alternate boundary conditions. The variational form
for (1) reads: Find ˆ 2 Ps , such thatZ

R
�Rrıˆ � rˆdvC

Z
V
�Vrıˆ � rˆdv D �

Z
�BE

ıˆqV da (2)

for all ıˆ 2 Pv along with the requirement ˆ D N̂ on � . We note the coupling to the mechanical
displacement u of the body R, which affects the domains R, V , and the boundary � . The spaces Ps
and Pv are suitable subspaces of H 1. The effect of W is modelled as a far field boundary condition
along �BE via the boundary element method as described in [30].

For the mechanical problem, we consider a continuum body R with mass density � (Figure 1). In
the following, we will describe the deformation of this body with respect to a reference configuration
R0 at time t D t0. For each material pointX in the reference configuration R0, we associate a vector
X 2 R3. For the same material point in R, we associate x 2 R3. Then we define the displacement
u.X ; t / 2 R3 via the relation x.X ; t / D X C u.X ; t / for all t > t0. The deformation gradient is
given by F D @x=@X , the Jacobian determinant by J D det .F /, the right Cauchy-Green tensor by
C D FTF, and the left Cauchy-Green tensor by B D FF T . Following the presentation of [32–34],
Euler’s first law in the coupled theory is given by

� Ru D divTC � Nb in R ; (3)

u D Nu on �u ; (4)

where �u � � is the Dirichlet-boundary for the mechanical problem, Nb is the mechanical body
force term, and T is the total Cauchy stress that satisfies

�T�n D 0 ; (5)

where �T� denotes the jump in the total Cauchy stress across the boundary � with normal vector n.
In this work, we assume a linear material polarization, and total Cauchy stress

T D Tm C Te C TM ; (6)

with purely mechanical part

Tm D �0J�1.ƒ lnJ � �/I C �0�J
�1B ; (7)

electro-mechanical part

Te D 2�0c J�2
�
1=2.I1I4 � I2I6 � I5/I C .I1I6 � I4/B � I6B

2

� I1Be ˝Be CB.Be ˝Be/C .Be ˝Be/B� ;
(8)

and the Maxwell stress TM D �0
�
e ˝ e � 1

2
.e � e/ I

�
, where �0 is the free-space permittivity.

Furthermore, we denote the small strain Lamé parametersƒ D E�=Œ.1C�/.1�2�/�,� D E=Œ2.1C
�/�, the Young’s modulus E, the Poisson ratio �, c D �.�R � �0/=.2�0/, and the identity tensor I .
The six invariants Ii , i D 1; : : : ; 6 are given by

I1 D trC; I2 D trC�; I3 D detC; (9)

I4 D tr .CE˝ E/ ; I5 D tr
�
C2E˝ E

�
; I6 D tr .E˝ E/ ; (10)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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with C� D .det C/C�1, and E D F T e. The boundary traction part due to the external electrical
field is given by

TCMn D �0

�
.e � n/ e �

1

2
jjejj2n

�
(11)

along the Neumann boundary �t � � , where the superscript .:/C indicates the limit as we approach
the boundary � from outside R.

It should be observed that the expression for the Cauchy stress is thermodynamically consistent
as shown by [32, 34]. In particular, the partial (symmetric) stress satisfying the Clausius–Duhem
inequality is given by

T � TM D Tm C Te D �
@ 

@F
FT C e˝ p D 2�Fsym

�
@ˆ

@C

�
FT ; (12)

where p D ��@ =@e is the polarization and the potential  D  .F ; e/ depends on the deforma-
tion gradient and the spatial electric field, which is equivalent to the density ˆ D ˆ.C ;E/ in terms
of the referential deformation measures. Our choice of the potential ˆ is such that one recovers the
linear polarization model:

ˆ D
�

2
.I1 � 3/ � � lnJ C

ƒ

2
.lnJ /2 C cJ�1.I5 � I1I4 C I2I6/ : (13)

Note further this formulation is fully consistent with presentations utilizing the so-called material
version of the (unsymmetric) Maxwell stress tensor T mat

M D e ˝ d �
1
2
�0.e � e/I D TM C e ˝ p,

wherein the partial Cauchy stress T partial D T � T
mat
M D �

@ 
@F FT ; see for example [35].

From (3), we derive the mechanical weak form: Given initial conditions u.t0/ D u0, Pu.t0/ D Pu0
at t D t0, find u 2 Us , such thatZ

R
ıu � � Ru dvC

Z
R
rıu � T dv D

Z
R
ıu � � Nb dvC

Z
�t

ıu �
�
Nta C TCMn

�
da ; (14)

for all admissible variations ıu 2 Uv at any t > t0, together with given data u D Nu on the Dirichlet
boundary �u. Here, Nta is the applied (mechanical) traction due to external forces, and the spaces Us
and Uv are suitable subspaces of H 1.

2.2. Semi-Discrete Form

In order to solve (2) and (14) in the context of finite elements, we use a Galerkin discretization for
the electrical as well as for the mechanical field. We solve for the mechanical deformation on a
Lagrangian grid [Figure 2 (right)], whereas we solve for the electrical field on a fixed Eulerian grid
with embedded boundary conditions [Figure 2 (left)]. In order to solve for the electrical potential
ˆ on a fixed Eulerian grid with embedded boundary conditions, we employ a high-order immersed
boundary method as described in [30]. One uses a continuous Galerkin discretization in elements

Figure 2. Discretization in space: (left) Eulerian finite element mesh with immersed boundary for the
electrical field; (right) Lagrangian finite element mesh for the mechanical motion.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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that are not intersected by the boundary � . For elements that are intersected by � , special elements
are employed with an interpolation that follows the boundary shape locally. The discrete form of the
electrical quasi-static problem can be stated as follows: Find ˆhR; ˆ

h
V 2 Phs , such thatZ

R
�Rrıˆ

h
R � rˆ

h
RdvC

Z
V
�Vrıˆ

h
V � rˆ

h
Vdv D �

Z
�BE

ıˆhVqVda (15)

for all ıˆhR; ıˆ
h
V 2 Phv along with the requirement ˆhV D ˆhR D

N̂ on �h. Depending on the
choice of interpolation in the intersected elements, the requirement ˆhV D ˆ

h
R D

N̂ on �h is either
enforced in a weak sense (e.g., the extended finite element method [36, 37]), or in a strong sense
(e.g., the immersed boundary discontinuous-Galerkin method, IB-DG [38]). In this work, we assume
the use of the IB-DG method and that after such efforts, the electrical boundary value problem can
be stated as follows: Find ˆ, such that

K .U /ˆ D Q.U / ; (16)

where the electro-static stiffness K , the electrical solution vector ˆ, and the equivalent flux vector
Q are assembled in accordance with (15). Note that the electrical stiffnessK and the flux vectorQ
depend on the mechanical deformation vector U because of the change in position of the boundary
� .

Concerning the solution of the mechanical deformation, we employ a Lagrangian discretization
in space [Figure 2 (right)] and derive the semi-discrete variational form: Find uh 2 Uhs , such thatZ

R
ıuh � � Ruh dvC

Z
R
rıuh � Th dv D

Z
R
ıuh � � Nb dvC

Z
�t

ıuh �
�
Nta C TCMn

�
da ; (17)

for all admissible variations ıuh 2 Uhv at any t > t0. Let us denote uh D
P
i Niui , Pu

h D
P
i Ni Pui ,

Ruh D
P
i Ni Rui with Ni 2 Uh and the expansion coefficients U D Œui �, PU D Œ Pui �, RU D Œ Rui �. Using

a Galerkin discretization, we can bring (17) into the algebraic form: GivenU 0, PU 0, findU such that

M RU CRdiv D F ext ; (18)

for all time instants t > t0, where M is the mass matrix, Rdiv the stress-divergence term of the
mechanical linear momentum balance, and F ext the traction due to external forces. We encounter
two types of electrical forces on the continuum: A body force due to internal fields and a surface
traction due to the external electrical field. As mentioned earlier, the total Cauchy-stress T can be
split into a purely mechanical part Tm, an electro-mechanical part Te and the Maxwell stress TM
[(7) and (8)]. Consequently, we apply an additive split toRdiv D Rdiv;mCRdiv;eCRdiv;M , where

Rdiv;m  

Z
R
rıuh � Tm dv ; (19)

Rdiv;e  

Z
R
rıuh � Te dv ; (20)

Rdiv;M  

Z
R
rıuh � TM dv ; (21)

with Rdiv;m the classical, purely mechanical stress-divergence term, and Rdiv;e , Rdiv;M the
contribution of electrical body forces. In the following, we assume that F ext is split into

F ext D F contact C F dis C F
C
M ; (22)

viz., the surface traction F contact due to mechanical contact, the dissipative force F dis for exam-
ple due to friction or absorbing boundary conditions, and the surface traction FCM due to external
electrical fields. We omit any other applied forces that have been introduced via Nta for the sake of
simplicity.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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2.3. Algorithmic solution of the coupled system

For future reference, let us define

R.U ;ˆ/ D Rdiv;m.U /CRdiv;e.U ;ˆ/CRdiv;M .U ;ˆ/ � F
C
M .U ;ˆ/ � F contact.U / : (23)

We account for any dissipative effects by an explicit linear model with a damping matrixD, such
that we can bring (18) and (16) in the form: Given U 0, PU 0, find .U ;ˆ/ such that

M RU CD PU CR.U ;ˆ/ D 0 ; (24)

K .U /ˆ D Q.U / ; (25)

for all time instants t > t0. This states the coupled nonlinear semi-discrete system. In order to
integrate Equations (24) and (25) in time, we will examine both an implicit method (mid-point rule)
and an explicit method (centered-difference scheme).

For the dynamical implicit solution, we employ the mid-point rule. Let U n � U .tn/, PU n �
PU .tn/, RU n � RU .tn/, ˆn � ˆ.tn/ at t D tn. Then for one step .tn; tnC1�, we require: Given U n,
PU n, and 	tn, find U nC1, PU nC1 such that

M RU nC1=2 CD PU nC1=2 CR.U nC1=2;ˆnC1=2/ D 0 ; (26)

K .U nC1=2/ˆnC1=2 D Q.U nC1=2/ ; (27)

where

ˆnC1=2 D .ˆnC1 Cˆn/=2 ; (28)

U nC1=2 D .U nC1 C U n/=2 ; (29)

PU nC1=2 D .U nC1 � U n/=	tn ; (30)

RU nC1=2 D .2=	t
2
n /.U nC1 � U n/ � .2=	tn/

PU n : (31)

This method is second-order accurate and unconditionally stable for linear systems. At each time-
step, one has to solve the fully coupled nonlinear problem by an iterative method. To this end, we
use a staggered scheme, and a mass lumping procedure following [39, p.704] together with a New-
ton iterator. In this setting, for each time-step and each iteration of the Newton–Raphson method,
one first calculates the electrical field for a fixed mechanical configuration, and subsequently
the resulting electrical forces are updated in this configuration in order to drive the mechanical
displacement.

For the dynamical explicit solution, we investigate the centered-difference scheme (e.g.,
[40, p.490]): Given U n, PU n, RU n and 	tn, for one step .tn; tnC1�, we require the following:

M RU nC1 CD PU nC1 CR.U nC1;ˆnC1/ D 0 ; (32)

K .U nC1/ˆnC1 D Q.U nC1/ ; (33)

and

U nC1 D U n C	tn PU n C .	t
2
n=2/

RU n ; (34)

PU nC1 D PU n C .	tn=2/
�
RU n C RU nC1

�
: (35)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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This scheme is second-order accurate and conditionally stable. One requires a sufficiently small
time-step, such that the Courant condition is satisfied. Following [41], one typically chooses

	tn D ıc
h

vp
; (36)

with the element size h of the smallest element, and the p-wave speed vp that can be estimated
for a linear elastic material by vp D

p
2�=�Cƒ=�, where ƒ and � are the first and second

Lamé-parameters. In the following, we assume the empirical factor ıc D 0:9. Because the scheme
is explicit, we can solve the electrical and mechanical problem independently and only encounter
linear equations. Thus, the explicit method is computationally more efficient in comparison with
the implicit method when the time-steps are comparable. Note, however, that the stability require-
ment (36) must be satisfied, which imposes a restriction on the method and may require much
smaller time-steps as compared with the implicit method.

For both implicit and explicit solution schemes, we have employed a node-to-surface contact
driver. Energy conserving contact algorithms for the second-order schemes as used in this work are
well established; see for example [42–47] and the more recent studies in [48–50]. We outline the
main ideas for our context in Appendix A, please refer to [31] for a more detailed discussion.

When exciting the system (24), (25) by a periodic load, one may encounter a cyclic steady state if
the damping is sufficient. In order to find steady state solutions to (24), (25), one traditionally evolves
(24), (25) from initial conditions U 0, PU 0, typically zero conditions, until a steady state is reached.
We term this methodology the naïve time-stepping method, alternately the full time-stepping (FTS)
method. Such time-stepping through the transient phase will be very expensive for systems with low
damping. In the following, we investigate a method that enables one to find steady state solutions
directly – without the need to fully step through the entire transient phase.

3. CYCLIC STEADY STATE SOLUTIONS

Our focus in this study is on systems that are excited by an electrical field in resonance with one of
the system’s vibrational modes. For linear problems, such problems are easily approached via tradi-
tional modal analysis; see for example [39, p.580]. However, in the nonlinear setting, one requires
alternative methodologies. Here, we propose a direct numerical solution in order to find steady state
solutions of the fully coupled nonlinear problem excited at a given resonance frequency without the
need to resort to the FTS method.

3.1. Direct solution of cyclic steady states

The steady state solution of interest arises from Equations (24) and (25) when they are subjected to
harmonic excitation. In the following, we assume that the damping is sufficient such that the system
will reach a cyclic steady state for a harmonic load, typically as part of the potential boundary
conditions. In order to find cyclic steady state solutions for the nonlinear coupled system excited
at frequency !, we consider the method advocated in [5, 6]. In our case, the period is given by
T D 2
=!, where the mechanical state is represented by X D ŒU I PU �. The CSS problem reads:
Given a period T , find X0 such that

H .X0/ D X.T / �X0 D 0 ; (37)

where X.T / evolves according to (24), (25) with initial conditions X0.‡ Put simply, the CSS prob-
lem amounts to finding the initial conditions such that the nonlinear system evolves back to them

‡Note that one could also treat the period T as an additional unknown to solve for, but here, we assume T as a given
parameter matching the excitation frequency of the external load.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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within one period. The solution to (37) will be found using the Newton–Raphson method: Given a
guess X i

0, we update X iC1
0 D X i

0 C	X
i
0, where we find 	X i

0, such that

DH
�
X i
0

� �
	X i

0

�
D �H

�
X i
0

�
: (38)

Here, the application of the tangent operator means

DH ŒX0�.	X0/ D 	X.T / �	X0 ; (39)

where 	X.T / is found by evolving the linearized equation

M	 RU CD	 PU C
@R

@U
.U ;ˆ/	U D 0 ; (40)

over one period starting from initial conditions 	X0 along the path X.t/ that is determined
from (24), (25) with initial conditions X0.

In order to assemble the operator DH ŒX0� in each Newton step, one may iteratively calculate
each column DH ŒX0�W;i via

DH ŒX0�W;i D DH ŒX0�.ei / ; (41)

with basis vectors ei 2 RN .i D 1; : : : ; N ), where N is the length of X . While this gives the full
operator for a direct solution of (38), the assembly via (41) is expensive. As advocated in [6], we
instead employ the generalized minimal residual method (GMRES) so that only the application of
the operator is needed. To this end, let us denote A D DH

�
X i
0

�
, b D �H

�
X i
0

�
and x D 	X i

0, so
that for each Newton step ‘i’ we wish to solve Ax D b. In the proposed scheme, one computes the
m-th order Krylov subspace Km D span ¹b;Ab;A2b; : : : ; Am�1bº by a standard Arnoldi iteration.
The minimizer of the residual jjAx � bjj2 over Km gives the approximate solution that we set to
	X i

0. For each Newton step, one has to compute (37) by evolving (24), (25) with initial conditions
X i
0. Subsequently, one evolves (40) .m�1/ times with initial conditions b;Ab; : : : ; Am�2b in order

to construct the Krylov subspace within which an approximate solution to (38) is found. In this
work, we find the dimensionm, by requiring jjAx�bjj=jjbjj < 10�3 during the Arnoldi iteration as
in [6]. The algorithm is summarized in Algorithm 1. We refer to [51] for a more detailed discussion
on GMRES and Arnoldi iterations.

Cyclic Steady State Solution

Given X0
0 D ŒU

0
0, PU

0

0�.
LOOP i

1. CalculateH .X i
0/ according to (37), (24) and (25).

2. Iteratively form m-th order Krylov subspace by an Arnoldi iteration and computing
DH ŒX i

0�.:/ according to (39) and (40).
3. Find the minimizer QX of the residual jjDH ŒX i

0�.
QX/CH .X i

0/jj2 over Km
by a least-square approximation.

4. Set 	X i
0 D

QX .
5. Check convergence jj	X i

0jj2=jjX
i
0jj2 < TOL and update if needed

X iC1
0 D X i

0 C	X
i
0 :

Algorithm 1: Cyclic steady state solution via generalized minimal residual method.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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4. NUMERICAL EXAMPLES

In the following examples, we will consider that a cyclic steady state is reached, when the relative
L2-norm ofH .tn/ D X.tn/ �X.tn � T / after a period T ,

Residual D

sP
i jXi .tn/ �Xi .tn � T /j

2P
i jXi .tn/j

2
; (42)

is converged by six orders of magnitude. All accuracy considerations have been carried out within
this scope. Note that another tolerance setting will change the accuracy requirements on the
discretization, and results will differ from the current study.

4.1. Critical time-step

In order to obtain accurate results and optimal convergence rates, it is crucial to ensure a converged
discretization in the time-domain. In our examples, we require the finite element solution at steady
state to be converged by six orders of magnitude. Given a linearized damping ratio � , we find the
number of time-steps per cycle T=	tn for the centered-difference scheme and for the mid-point rule
by monitoring the residual (42), such that convergence is achieved. In addition, the requirement (36)
must be met when using the explicit time-stepper.

4.2. Nanotube vibration

Our first example deals with a carbon nanotube that is excited by an external electrical field. As
discussed in [31], carbon nanotubes possess very unique and promising characteristics for use as
NEMS resonators [2, 52–55]. In this study, we suppose that the carbon nanotube is a conductor.
After certain corrections when extracting material properties, the use of continuum mechanics is
still justified for such systems [56], and various mechanical models exist [57, 58]. We focus here
on the efficient simulation of the first three cyclic modes of vibration of a nanotube as sketched in
Figure 3 via Algorithm 1. In this study, we consider a nanotube with a sharp corner. While carbon
nanotubes may be closed smoothly at the tip, the cut-nanotube imposes a greater challenge on the
computational treatment because of the singularity that arises in the electrical field at the corner. We
demonstrate the necessity of a high-order IB-DG in such a case, in order to achieve convergence of
Algorithm 1.

4.2.1. Fully transient solution method: Nanotube. For analysis purposes, we will consider a very
coarse discretization such that we can also consider the FTS method. As sketched in Figure 3,
we assume that the nanotube is mechanically clamped and electrically grounded. A separate input
voltage Vi at an external electrode creates a capacitive force across the gap, such that the nanotube
will vibrate. The input voltage is given by

Vi .t/ D VDC C VAC sin!i t ; (43)

with constant part VDC, alternating amplitude VAC, and frequencies !i , i D 1; 2; 3. The !i rep-
resents the linearized eigen-frequencies about the static deformation resulting from VDC. For the
numerical example, we consider a nanotube length of 80 nm and a diameter of 8 nm. The initial

Figure 3. Nanotube vibration schematic showing mode shapes and linearized vibrational frequencies.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



G. BRANDSTETTER AND S. GOVINDJEE

Table I. Nanotube vibration example: linearized eigenfrequencies fi , damping ratios �i , number of cycles
Ni to reach steady state during the fully transient solution; (top, ˛M D 5 � 109 s�1) explicit time-step
size Ti=	tn (steps per cycle) and computational time TCPU for linearized Mode i D 1 � 3 excitations;
(bottom, ˛M D 10 � 109 s�1) additionally a comparison between explicit and implicit time-step size

Ti=	tn and computational time TCPU .

˛M D 5 � 10
9 s�1 fi ŒGHz� �i Ni Ti=	t

expl
n T

expl
CPU

Œh�

Mode 1: 7.2 5:6 � 10�2 40 1444 78.8
Mode 2: 42.6 9:4 � 10�3 238 244 81.0
Mode 3: 111.2 3:6 � 10�3 621 96 82.7

˛M D 10 � 10
9 s�1 fi ŒGHz� �i Ni Ti=	t

expl
n T

expl
CPU

Œh� Ti=	t
impl
n T

impl
CPU

Œh�

Mode 1: 7.2 1:1 � 10�1 20 1444 42.1 36 3.0
Mode 2: 42.6 1:9 � 10�2 119 244 42.1 88 43.3
Mode 3: 111.2 7:2 � 10�3 310 96 42.6 144 184.8

gap to the electrode is 46 nm, and we assume a nonlinear neo-Hookean material as in (7) with
E D 1 TPa , � D 0:31, � D 1 g=cm3. Further, we take the tube to be a conductor, in other words
that �R ! 1. This implies that the electric potential is constant throughout the nanotube. By set-
ting the electric potential to a constant at all surface nodes of the tube, one forces this condition
for all values of �R, thus avoiding any difficulties with �R ! 1; notwithstanding, see [30] for an
example demonstrating the robustness of our methodology in the high permittivity limit.

The linearized eigen-frequencies are summarized in Table I in accordance with an ultra-high
frequency resonator [59]. We assume a mass-proportional damping D D ˛MM , with ˛M 2 ¹5 �
109 s�1; 10 �109 s�1º. Then, the linearized damping ratios are given by �i D ˛M=.2!i / as tabulated
in Table I for linearized Mode 1–3 excitations. Note in this study we limit ourselves to a 20�2 finite
element grid for the mechanical motion in order to calculate the fully transient response, which
already sets a limit of> 1443 time-steps per cycle according to (36) for the fundamental mode in the
explicit case. One would need to consider a mesh refinement, and/or the use of enhanced elements
or incompatible modes in order to gain more accurate results in such a bending dominated problem.
Such methods are well established, and we refer to [60] for a brief historical account and references
therein. For the electrical field, we use a 25�25 Eulerian finite element grid, in combination with the
high-order IB-DG method to accurately evaluate the singularity of the boundary traction around the
nanotube corner. In Table I (bottom, ˛M D 10 � 109 s�1), we monitor the number of time-steps per
cycle Ti=	tn D 2
=.!i	tn/ for the explicit and implicit method to reach steady state, as well as
the total computational time TCPU in our MATLAB implementation. The implicit method is seen to
be more efficient in this example for the simulation of the lower modes because it is unconditionally
stable, and larger time-steps may be used as long as accuracy is preserved. For the higher modes,
requirement (36) imposes less restriction on the stability region, and the explicit method will be more
efficient in comparison with the mid-point rule as we observed higher accuracy for similar time-step
sizes. In the remaining discussion, we will limit our discussion to the use of explicit time-stepping
for both CSS and FTS methods.

Because in our case we employ mass-proportional damping, the damping �i becomes smaller
for a fixed ˛M at higher excitation frequencies. The direct consequence of this is that, as shown in
Table I, the number of cycles to overcome the transient phase to a steady state is relatively higher at
higher excitation frequencies. As mentioned earlier, we assume that a steady state is reached when
the residual (42) is converged by six orders of magnitude.

Figure 4 shows a typical result for a first mode excitation with �1 D 5:6 � 10�2, VDC D 60 V and
VAC D 40V after 40 cycles of oscillation with zero initial conditions. One can observe the deformed
mechanical mesh, the electrical potential field, as well as the Maxwell boundary traction at vari-
ous time instants. Note that such large motions can be easily tracked with the immersed boundary
method, and no remeshing or motion of the electrical mesh is required – as becomes necessary
when using a Lagrangian or arbitrary Eulerian–Lagrangian (ALE) approach. Note moreover that the

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



CYCLIC STEADY STATES OF NONLINEAR ELECTRO-MECHANICAL DEVICES

Figure 4. Nanotube vibration, Mode 1 excitation: deformed mechanical (bold) mesh, electrical (fine) mesh,
contour of electrical potential, and Maxwell boundary traction at VDC D 60 V and VAC D 40 V for various

time instants.

Figure 5. Nanotube vibration: fully transient solution (FTS) and cyclic steady state solution (CSS) via gen-
eralized minimal residual method (Algorithm 1) of the tip-displacement and velocity for (top) Mode 1

excitation, (middle) Mode 2 excitation, and (bottom) Mode 3 excitation.

boundary force around the corner stems from a singular charge distribution; this is well captured by
our chosen IB-DG method.

In Figure 5, we monitor the vertical tip displacement and velocity for the case ˛M D 5 � 109 s�1

with loading VDC D 60 V and VAC D 40 V. The results over time and the corresponding phase
portraits are plotted in columns 1 and 2 for Mode 1–3 excitations when we start from zero initial
conditions. The displacement with Mode 1 excitation reaches about �0:9˙ 11 nm and a velocity of
˙68 mm=s at steady state after 40 cycles [Figure 5 (top)]. Looking at the higher mode excitations,
the amplitude of the displacement at steady state decreases to about �0:9 ˙ 0:9 nm for Mode 2
excitation after 238 cycles [Figure 5 (middle)] and �0:9˙ 0:2 nm for Mode 3 excitation after 621
cycles [Figure 5 (bottom)]; the velocity decreases to about ˙33 mm=s for Mode 2 excitation and
˙19 mm=s for Mode 3 excitation. Note that the simulation of the higher modes becomes more
expensive, as the number of cycles to overcome the transient phase increases because of the lower
damping. For even lower damping or finer meshes, the simulation time to overcome the transient
phase will impose severe limitations on the design process if the FTS method is used.
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Figure 6. Nanotube vibration: (top) convergence of the residual (42) when using the high-order IB-DG for
(left) the fully transient solution and (right) the cyclic steady state solution (CSS) via generalized minimal

residual method (Algorithm 1); (bottom) convergence issues of the low-order IB-DG.

4.2.2. CSS method: Nanotube. We now employ Algorithm 1 in order to find solutions to (37) more
efficiently. As for the FTS, we have employed the explicit time-integration scheme to evolve (24)
as well as (40) with time-step size in accordance with Table I. After finding the initial conditions
X0 according to Algorithm 1, we have evolved Equations (24) and (25) with these initial conditions
over one period T in order to compare the results to the FTS method; Figure 5, columns 3 and
4. The direct solution via Algorithm 1 shows excellent agreement when compared with the FTS
through the transient phase from zero initial conditions. In Figure 5, we have also labeled various
corresponding time-instants 1–5 in the steady state displacement [Figure 5 (third column)] and in
the phase portrait [Figure 5 (fourth column)] to assist in comparison.

In Figure 6 (top), we plot the residual from the FTS scheme [Figure 6 (top, left)], as well as from
the proposed CSS scheme via Algorithm 1 [Figure 6 (top,right)] at various damping values. While
the number of cycles to reach convergence in the transient solution increases for lower damping val-
ues, the number of Newton iterations of the CSS solution remained at about 5�6 Newton iterations,
largely independent of damping. We show the numerical values of the Newton residual of the CSS
solution and the size of the Krylov subspace in Table II for the case ˛M D 5 � 109 s�1 as plotted in
Figure 6 (top,right), as well as for the case ˛M D 10 �109 s�1. In both cases, we typically encounter
convergence by six orders of magnitude within 4 to 6 iterations.

We have measured the speed-up S which we define as the computational time Ttransient that is
required to evolve Equations (24) and (25) from zero initial conditions until the residual (42) is
converged by six orders of magnitude divided by the computational time Tcss that is required to find
convergence of (42) by six orders of magnitude via Algorithm 1:

S D
Ttransient

Tcss
: (44)

For this example, we see speed-ups ranging from S D 3:3 for Mode 1 excitation at �1 D 1:1�10�1

all the way up to S D 45:5 for Mode 3 excitation at �3 D 3:6 � 10�3. Please see Section 4.4 for a
further discussion of these results.
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Table II. Nanotube vibration example: residual convergence jj	Xj
0
jj2=jjX

j

0
jj2 of Algorithm 1 for Mode

1–3 excitations and number of Arnoldi iterations mj for each Newton step j and various ˛M .

˛M D 5 � 10
9 s�1

Mode 1 Mode 2 Mode 3
jj	X

j
0 jj2=jjX

j
0 jj2 mj jj	X

j
0 jj2=jjX

j
0 jj2 mj jj	X

j
0 jj2=jjX

j
0 jj2 mj

j D 1 1:0 � 100 6 1:0 � 100 24 1:0 � 100 26
2 5:1 � 10�3 16 2:4 � 10�2 52 2:6 � 10�1 63
3 5:0 � 10�4 16 1:3 � 10�4 77 4:9 � 10�3 111
4 7:9 � 10�6 19 1:9 � 10�6 81 1:2 � 10�4 244
5 2:3 � 10�7 14 7:5 � 10�8 81 1:3 � 10�5 244
6 4:4 � 10�8 244

˛M D 10 � 10
9 s�1

Mode 1 Mode 2 Mode 3
jj	X

j
0 jj2=jjX

j
0 jj2 mj jj	X

j
0 jj2=jjX

j
0 jj2 mj jj	X

j
0 jj2=jjX

j
0 jj2 mj

j D 1 1:0 � 100 5 1:0 � 100 18 1:0 � 100 20

2 3:2 � 10�3 9 2:8 � 10�2 35 6:2 � 10�1 54
3 1:0 � 10�4 10 5:4 � 10�5 45 7:1 � 10�3 68
4 3:1 � 10�6 10 3:9 � 10�7 49 1:7 � 10�4 87
5 5:3 � 10�9 10 1:3 � 10�6 95
6 9:2 � 10�8 102

Figure 7. Reso-switch example: (left) schematic ‘off ’-mode; (middle) schematic ‘on’-mode; (right) mechan-
ical mesh, electrical mesh, input/output electrodes, and boundary element (BE) domain.

4.2.3. Comparison with low-order method. In the example just presented, we used a high-order
immersed boundary method. It is instructive to observe what happens if one uses instead a low-order
immersed boundary method [30, 38]. Figure 6 (bottom) displays the algorithmic performance with
the use of a low-order IB-DG; this is seen to result in reduced or even incomplete convergence of
the residual for the FTS method [Figure 6 (bottom,left)], as well as for the CSS solution [Figure 6
(bottom,right)]. Such observations are consistent to what has been previously observed in [30] and
indicate to us the necessity of a higher-order accurate immersed boundary method in this example
with a singular electric field. The high-order IB-DG is needed not only for accuracy and physically
meaningful results but also for obtaining convergence during the Newton iteration of the cyclic
steady state solution via Algorithm 1.

4.3. Reso-switch

Our second example examines a micro-electro-mechanical disk resonator, which is excited in the
wine-glass mode by a forced vibration such that dynamic contact occurs with a rigid electrode as
sketched in Figure 7. Such on-chip resonators or dynamic switches show high potential for the
replacement of transistors, for example for power-amplification, because of their superior quality
factors (low damping properties) [3, 4, 61, 62]. The system is similar to the resonance switch (reso-
switch) in the work by [1].

As sketched in Figure 7, we assume that the driving electrodes are operated at a periodic input
voltage Vi , and the resulting capacitive force brings the disk into a resonant vibration mode. The
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voltage at the disk is kept constant at VD . During this vibration mode, the disk will periodically
switch contact with the output electrodes, where a voltage Vo is measured. No contact along the
input axis occurs because of a larger air-gap in comparison with the output axis. During ‘off ’-mode,
an electrical chargeQ assembles on the electrodes, whereas a current i flows when the disk touches
the electrodes, or during electrical breakdown.

In the context of finite elements, we find the linearized eigenmodes numerically by a standard
subspace iteration [63, p.156]. The calculation is carried out assuming quarter-symmetry, as our
mode of interest has quarter-symmetry. For the mechanical deformation of the disk, we employ 108
quadrilateral elements with a bi-linear interpolation [Figure 7 (right)], and a plane stress nonlinear
neo-Hookean material model as derived from (7) with standard material properties of Nickel: E D
179 GPa, � D 0:31, � D 8:9 g=cm3. For a disk radius R D 70 �m and thickness 4 �m, we
obtain the linearized fundamental frequency f0 D 14:8 MHz. Note the material is assumed to be a
conductor and treated as done for the nanotube example.

For the electrical field computation, we use a background mesh with 1200 quadrilateral ele-
ments that cover the domain of interest as sketched in Figure 7 (right). The electrode boundaries are
aligned with the background mesh, and the boundary motion of the disk is captured by the immersed
boundary method. We apply a resonant load at the input electrodes:

Vi .t/ D VDC C VAC sin!t ; (45)

where ! D 2
f0, the bias-voltage is given by VDC, and the load amplitude is VAC. At the output
electrodes, we assume Vo D VD when the disk is in contact or during electrical breakdown (‘on’-
mode), and otherwise, calculate Vo from the requirement

dQ

dt
D
Vo

RL
; (46)

where the output load RL D 220 ˝ and the total charge Q on both output electrodes is calculated
from the electrical field; see [31] for further details. The damping is assumed to be mass-proportional
withD D ˛MM , such that the linearized damping ratio is � D ˛M=.2!/. In the following example,
we test the case � D 5:6 �10�2. Note that the mesh densities are artificially low so that we have easy
access to the FTS solution for comparison purposes.

4.3.1. FTS method: Reso-switch. As with the nanotube example, we will begin our discussion of
the reso-switch by looking at the transient FTS method from zero initial conditions. We will do so
looking at two separate cases, one that leads to contact and one that does not.

Figure 8. Reso-switch example: transient solution and cyclic steady state solution (CSS) via generalized
minimal residual method (Algorithm 1) of the top-disk-node displacement and velocity for (top) Case 1, and

(bottom) Case 2.
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Figure 9. Reso-switch example: convergence of the residual (42) for Case 1 in black (no contact), and for
Case 2 in red (contact) during (left) the full transient solution from zero initial conditions, and (right) the

direct cyclic steady state solution via Algorithm 1.

Case 1
First, we will excite the disk at a load VDC D 6:45 kV, VAC D 4:3 kV and VD D 240 V with
the initial gap to the output electrodes being g0 D 2:2 �m, and the initial gap between the input
electrodes and the disk being 6 �m. With this load, there will be no contact with the output electrodes
as the displacement does not sufficiently ramp up. We monitor the displacement and velocity of the
top-end node of the disk in Figure 8 (top). One observes that a steady state is reached after about 40
cycles, with the displacement of �0:5˙ 12:5 nm, and a velocity of 0:05˙ 1:15 m=s.

Case 2
If we now excite the disk at a load VDC D 6:45 kV, VAC D 4:3 kV and VD D 240 V but with
the initial gap to the output electrodes being g0 D 9:6 nm, and the initial gap between the input
electrodes and the disk being 6 �m, then as the output electrodes are closer to the disk, the disk
impacts the output electrodes after about 5 cycles. In Figure 8 (bottom), we monitor the displacement
and velocity of the top-end node of the disk. After 40 cycles, we observe the displacement and
velocity reach steady state contact, where the displacement oscillates in Œ�11:9; 9:6� nm and the
velocity in Œ�1:1; 1:4� m=s. In this example, one observes about 15% persistent contact during one
loading cycle.

4.3.2. CSS method: Reso-switch. We now employ Algorithm 1 in order to find solutions to (37)
directly. As with the FTS solution, we employ the explicit time-stepper. We find the initial condi-
tions X0 according to Algorithm 1, and then, we evolve Equations (24) and (25) with these initial
conditions over one period T in order to compare the results with the FTS solution. In Figure 8 (col-
umn 3), we monitor the top-disk-node displacement and velocity for Cases 1 and 2, respectively. As
in the previous example, the direct solution via Algorithm 1 shows an equally excellent agreement
when compared with the FTS through the transient phase from zero initial conditions. In this plot,
we have labeled various time-instants 1–5 in the steady state displacement [Figure 8 (third column)],
as well as in the phase portrait [Figure 8 (fourth column)]. Note in particular that the CSS algorithm
is capable of handling highly nonlinear electro-mechanical impact response at steady state.

Again, we have tracked the residual (42) for the transient as well as the CSS solution. In Figure 9,
we plot the residual for Case 1 in black (no contact), and for Case 2 in red (contact). We observe
a slightly slower convergence for Case 2, about 5 additional cycles, to reach a steady contact state
during the transient solution when compared with Case 1, where no contact occurs [Figure 9(left)].
This is also observed in Figure 9 (right) for the CSS solution, where convergence is reached after
7 iterations for Case 2 involving impact, and convergence is reached after 4 iterations for Case 1
without impact. The observed speed-up in this example is S D 6:2 for Case 1 and slightly lower
S D 4:1 for Case 2.

Note that for Cases 1 and 2 we have assumed a damping value � D 5:6 � 10�2. We now test the
numerical solutions for VDC D 6:45 kV, VAC D 4:3 kV, VD D 240 V and the initial gap to the
output electrodes g0 D 2:2 �m as in Case 1, but with varying damping values � 2 ¹1:4 � 10�2; 2:8 �
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Figure 10. Reso-switch example: (left) convergence of the residual for the transient solution at various damp-
ing ratios as indicated in the right figure; (right) convergence of the residual of the direct cyclic steady state

solution (CSS) via Algorithm 1 for various damping ratios � .

Figure 11. Speed-up of the direct cyclic steady state solution (CSS) via Algorithm 1 versus a classical
transient time-stepping from zero initial conditions.

10�2; 5:6 � 10�2; 2:2 � 10�1º. As the damping value decreases, we have to adjust the number of
time-steps in order to achieve convergence of the residual due to the higher accuracy requirements
(Section 4.1). In this study, we have used 2
=.!	tn/ D 36 explicit steps per cycle for � D 2:2�10�1,
52 steps per cycle for � D 5:6 � 10�2, 72 steps per cycle for � D 2:8 � 10�2, and 104 steps per cycle
for � D 1:4 � 10�2. Typical convergence plots for the FTS solution are shown in Figure 10 (left),
and for the CSS solution in Figure 10 (right). Similar observations as with the nanotube vibration
example are made: while the transient solution requires significantly more cycles to reach a steady
state at lower damping values, the CSS solution is converged within 4 to 5 Newton steps. Thus, the
observed speed-ups are higher at lower damping values. In accordance with (44), we have measured
S D 3:5 at � D 2:2 � 10�1, S D 6:2 at � D 5:6 � 10�2, S D 11:2 at � D 2:8 � 10�2, and S D 16:7

at � D 1:4 � 10�2. We summarize all performance tests done for the reso-switch example, as well as
for the nanotube vibration in the next section.

4.4. Performance of the GMRES algorithm and computational speed-up

As we have noted in the nanotube vibration, as well as the reso-switch example, the measured speed-
ups are higher for lower damping values � . This is mainly due to the increased number of cycles to
reach a steady state for the FTS solution, whereas the Newton algorithm via Algorithm 1 has been
demonstrated to be relatively unaffected by � . In Figure 11, we plot all speed-ups for the various
tests of the nanotube vibration and the reso-switch. We observe power law computational speed-ups
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of the CSS solution in comparison with a transient solution of the form

S D 0:6 � ��0:8 ; (47)

where we have measured S according to (44) for the different test cases. As mentioned in
Section 3.1, we have investigated two ways to assemble the tangent operator for the direct steady
state solution. While the full tangent assembly as in (41) will deliver most accurate results, the
use of GMRES will significantly speed-up the calculation during the iterative Newton solution. In
accordance with [6], we use the tolerance jjAx� bjj=jjbjj < 10�3 in order to determine the number
of Arnoldi iterations for each Newton step. Note that in our examples we observed that the num-
ber of Arnoldi iterations increases for lower damping values (Table II), and thus, the computational
speed-up shows only sub-linear growth.

5. CONCLUSION

We have presented a numerical method to efficiently find the cyclic steady state response of electro-
mechanical devices that are excited at resonance. The method features a full-field simulation of
the mechanical deformation and the electrical field, incorporating dynamical impact. Whereas the
mechanical motion is discretized by a Lagrangian finite element scheme, we employ a fixed grid
approach to solve for the electrical field in combination with a higher-order immersed boundary
method to track the mechanical motion. This approach reveals several advantages in comparison
with traditional Lagrangian or ALE methods – in particular there is no mesh-motion or re-meshing
required during large deformations or the closing of gaps during contact. The proposed direct
method to solve for cyclic steady states has been demonstrated for two NEMS/MEMS examples,
including the vibration of a carbon nanotube at ultra-high frequencies > 1 GHz , and the excita-
tion of a wine-glass disk resonator in forced vibration, as well as in dynamic steady contact. For the
presented examples, we show excellent agreement of the direct solution of the cyclic steady state in
comparison with the full transient solution from zero initial conditions. The computational speed-
up of the discussed examples scales inversely with the damping � according to S D 0:6 � ��0:8,
where we tested � > 10�3. In the presented examples, we have limited ourselves to � > 10�3 using
second-order accurate time-integration schemes. For lower damping values � , the use of higher-
order integration schemes will become necessary to attain accurate results with a reasonable number
of time-steps. The development of such higher-order methods must be carried out within the context
of energy-conserving impact algorithms for the electro-mechanical problem, which is still a subject
of current research.

APPENDIX A: CONTACT HANDLING

We briefly outline the contact drivers used in this work. For a more detailed discussion, we refer
to [31]. In this study, we only consider frictionless contact and a node-to-surface contact driver.
Refering to Equation (22), the mechanical contact force is due to a (nominal) contact pressure p > 0,

F contact  

Z
�c

ıuh � pn da ; (A.1)

which is active along the contacting surface �c with outward normal n. The pressure p accounts for
the unilateral constraint

g.U / > 0; (A.2)

where g.U / is the gap function between the continuum bodies. This problem can be posed as

p > 0; �g 6 0; pg D 0 ; (A.3)
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in accordance with the Kuhn–Tucker conditions (e.g., [64]). During persistent contact, in addition,
one typically requires

p Pg D 0 ; (A.4)

the persistency condition. The algorithmic enforcement of (A.3) and (A.4) simultaneously becomes
non-trivial while preserving energy and momentum of the deformable bodies involved. For the
various computational treatments of this issue, we refer to [42–47] and [48–50] or references therein.
Here, we consider two separate algorithms for the explicit and implicit time integration cases.

In order to ensure (A.3) and (A.4) in the implicit case, we use a penalty method, with the penalty
potential

U.g/ D

²
1
2
�pg

2 ; if g 6 0 ;
0 ; otherwise ;

(A.5)

featuring the user-defined penalty parameter �p , such that the contact pressure becomes p D
�U 0.g/ whenever there is some penetration. Following [46], we advocate an energy conserving
scheme, where the contact pressure pnC1=2 at t D tnC1=2 is calculated by

pnC1=2 D

´
�
U.gnC1/�U.gn/

gnC1�gn
; if gnC1 ¤ gn ;

�U 0
�
1
2
.gn C gnC1/

�
; otherwise :

(A.6)

As shown in [46], the form of contact pressure as in (A.6) preserves the energy upon contact release.
As mentioned before, we limit ourselves to frictionless contact and a node-to-rigid-surface contact

driver. The gap function at a node A becomes

gA D .xA � Nx/ � Nn ; (A.7)

and we find Nx such that

jjxA � Nxjj D min
x2�master

jjxA � xjj (A.8)

is the minimum distance of the slave node xA to the boundary �master . By differentiation, and
noting that Pn � .xA � Nx/ D 0, we have

PgA D . PxA � PNx/ � Nn ; (A.9)

which is the gap-rate at a node A.
In order to ensure (A.3) and (A.4) in the explicit setting, we employ a similar approach to a recent

method by [48], where the equations of motion are integrated in time with a predictor-corrector-type
algorithm. The equations of motion are advanced for one step .ti�1; t�i � by a predictor-step without
consideration of contact. In the case of penetration, one projects all penetrating nodes of the slave-
surface to the master-facets by a closest-point projection: xt�

i
! xti , where xti is the projected

nodal positions. Subsequently, as outlined in [31, Alg.4.3], the post-impact velocities of penetrating
nodes are found such that the gap rate PgA D 0 according to (A.9) for all contacting nodes A. The
direct enforcement of the Kuhn–Tucker constraint (A.3) and persistency condition (A.4) can be
carried out in our case as the position of the rigid surface is assumed to be fixed. Whenever two
elastic bodies are in contact, a method that takes into account the momentum conservation must be
employed as done in [48].
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