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Heat shock protein 70 (Hsp70) and Hsp90 are molecular
chaperones that play essential roles in tumor growth by stabiliz-
ing pro-survival client proteins. However, although the develop-
ment of Hsp90 inhibitors has benefited from the identification
of clients, such as Raf-1 proto-oncogene, Ser/Thr kinase (RAF1),
that are particularly dependent on this chaperone, no equivalent
clients for Hsp70 have been reported. Using chemical probes
and MDA-MB-231 breast cancer cells, we found here that the
inhibitors of apoptosis proteins, including c-IAP1 and X-linked
inhibitor of apoptosis protein (XIAP), are obligate Hsp70 clients
that are rapidly (within �3–12 h) lost after inhibition of Hsp70
but not of Hsp90. Mutagenesis and pulldown experiments
revealed multiple Hsp70-binding sites on XIAP, suggesting that
it is a direct, physical Hsp70 client. Interestingly, this interac-
tion was unusually tight (�260 nM) for an Hsp70 – client inter-
action and involved non-canonical regions of the chaperone.
Finally, we also found that Hsp70 inhibitor treatments caused
loss of c-IAP1 and XIAP in multiple cancer cell lines and in
tumor xenografts, but not in healthy cells. These results are
expected to significantly accelerate Hsp70 drug discovery by
providing XIAP as a pharmacodynamic biomarker. More
broadly, our findings further suggest that Hsp70 and Hsp90
have partially non-overlapping sets of obligate protein clients in
cancer cells.

In cancer, high levels of the chaperones Hsp70 and Hsp90 are
associated with poor prognosis and resistance to chemothera-
peutics (1–4). These chaperones are not oncogenes themselves;
rather, they are thought to create a permissive environment by
binding to multiple proteins and stabilizing them (5), resulting
in “non-oncogene addiction” (6, 7). Indeed, a hallmark of Hsp90
inhibition is that a subset of these proteins (sometimes termed

“clients”) becomes unstable and is degraded after treatment (8,
9). This response is so robust that loss of specific clients, such as
Akt1 or Raf-1, is routinely used as a surrogate biomarker of
Hsp90 target engagement (10). Indeed, medicinal chemistry
campaigns often take advantage of this property to help guide
the optimization of Hsp90 inhibitors (11, 12). In other words,
the relative ability of a molecule to reduce the levels of Hsp90
clients is used to guide structure–activity relationships. How-
ever, no equivalent client for Hsp70 has yet been reported.
Rather, Hsp90 clients are often used to estimate activity on
Hsp70, making it unclear whether the compound acts strictly
through that chaperone.

Hsp70 is composed of an N-terminal nucleotide-binding
domain (NBD),3 a substrate-binding domain (SBD), and C-ter-
minal disordered region (13). In its ATP-bound state, Hsp70
has a poor affinity for clients, but upon ATP hydrolysis, the SBD
adopts a tight-binding conformation (14, 15). In mammals,
there are two major Hsp70 family members in the cytosol:
Hsc70 (HSPA8) and Hsp70 (HSPA1A). For both proteins,
cycling between the tight- and weak-binding states is further
regulated by co-chaperones, such as J proteins (also called
Hsp40s), that increase the rate of nucleotide hydrolysis and
nucleotide exchange factors that promote release of ADP (16,
17). Clients of Hsp70s contain short stretches of non-polar
amino acids within extended polypeptides (18 –20) and hydro-
phobic “patches” within partially folded conformations (21–
23). These client interactions often involve a hydrophobic cleft
in the �-basket subdomain of the SBD (24). The physical fea-
tures of Hsp70 clients are likely to be found in many unfolded
and metastable proteins (25–27), such that the theoretical cli-
ent pool is large.

Although Hsp70 and Hsp90 often work together to stabilize
shared clients (28), such as steroid hormone receptors (29), the
two chaperones have no sequence or structural similarity.
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Hsp90 is an obligate dimer that uses its N-terminal and middle
domains to interact with partially folded and near-native states
(30). Hsp90 has been reported to bind a more restricted set of
�200 kinases and transcription factors (5), but it also binds to
some intrinsically disordered proteins, including Tau (31, 32).
Much of what we know about how Hsp70 and Hsp90 bind to
clients comes from pioneering work on glucocorticoid receptor
(29). In that system, Hsp70 uses its SBD to bind to newly
synthesized glucocorticoid receptor during primary folding,
whereas Hsp90 is recruited to bind the later, partially folded
states. Because of these differences in chaperone structure and
binding preference, it seems possible that some clients might be
more dependent on one chaperone than the other for stability.

Recent work has yielded first-generation Hsp70 inhibitors,
which have proven to be useful chemical probes (16). For exam-
ple, analogs of MKT-077 (including JG-98) stabilize the ADP-
bound state of Hsc70 and Hsp70 (33) and have anti-prolifera-
tive activity in cell-based and animal models of breast cancer
(34, 35). Likewise, pifithrin-� (PES) and its analogs bind to the
SBD of Hsp70 and have anti-proliferative activity in multiple can-
cer cells (36–38). In both cases, the compounds have been found
to be relatively selective for Hsp70 based on pulldown studies and
genetics (39, 40). Moreover, both JG-98 and PES are less toxic to
normal, non-transformed cells, consistent with the “addiction” of
cancer cells to Hsp70. Together, these experiments have helped
solidify the proposed role of Hsp70 in tumorigenesis (4). However,
further development of Hsp70 inhibitors has been limited by a lack
of pharmacodynamic biomarkers. In particular, the reported
Hsp70 clients, such as Raf-1 (34), are also Hsp90 clients, so it is not
clear whether their degradation is due to inhibition of just Hsp70
or a combination of the chaperones.

The availability of Hsp90 inhibitors, such as 17-DMAG, was
essential in discovering the clients of Hsp90 (5, 41). In that
work, the inhibitors were identified first and then used to reveal
that many kinases and transcription factors rely on that chap-
erone. Inspired by this history, we wanted to take advantage of
the new Hsp70 inhibitors to learn whether any reported chap-
erone clients might be relatively more sensitive to Hsp70 versus
Hsp90. Based on recent reports (35), we selected a handful of
candidate clients and found that the inhibitor of apoptosis pro-
teins (IAPs), such as c-IAP1 and XIAP, appear to be obligate
clients of Hsp70 that are less reliant on Hsp90. This was a par-
ticularly interesting result because IAPs are important media-
tors of cell survival signaling and are overexpressed in many
cancers (42). The IAP family includes c-IAP1, c-IAP2, and
XIAP, and it is defined by the inclusion of one or more baculo-
viral IAP repeat (BIR) domain (43, 44). The BIR domains bind to
caspases and prevent apoptotic signaling (45) and are bona fide
drug targets in their own right. Here, we show that treatment
with Hsp70 inhibitors leads to rapid and dramatic loss of the
IAPs in MDA-MB-231 breast cancer cells. To understand this
relationship in more detail, we explored the interaction between
XIAP and Hsp70 in vitro and found that the chaperone binds to
multiple sites within the BIR2 and BIR3 domains. Mutagenesis and
NMR studies suggested that the interaction is tight and not canon-
ical; it seemed to involve regions outside of Hsp70’s expected bind-
ing cleft. Together, these results suggest that IAPs are direct clients
of Hsp70, and they might be candidate biomarkers of Hsp70.

Moreover, these results illuminate surprising differences between
how cancer cells rely on Hsp70 and Hsp90.

Results

Hsp70 inhibition results in rapid degradation of XIAP

Chemical inhibitors of Hsp70 have been reported to enhance
turnover of a number of proteins, including IAP-1, XIAP, Raf-1,
tau, androgen receptor and others (35, 40, 46). However, it is
not clear whether any of them might be relatively selective for
Hsp70 compared with Hsp90. To address this question, we first
examined the levels of XIAP, c-IAP1, and Raf-1 after treatment
with either Hsp70 or Hsp90 inhibitors. These studies employed
MDA-MB-231 breast cancer cells because growth of these cells
had previously been shown to be sensitive to both Hsp70 and
Hsp90 inhibitors (34). Moreover, we initially focused on XIAP
and c-IAP1, rather than other putative clients, based on seren-
dipitous observations made during recent studies of necropto-
sis (59). Finally, to provide greater confidence in the results, we
used two structurally distinct inhibitors of each chaperone. For
Hsp70, we used PES and JG-98, and we used AUY-922 and
17-DMAG as Hsp90 inhibitors (see Fig. 1A). In the first exper-
iments, MTT assays were used to confirm that all of the inhib-
itors have anti-proliferative activity at the expected EC50 values
(Fig. 1B). These experiments allowed us to use each of the com-
pounds at a concentration that ensured maximal activity (10
�M for JG-98, AUY-922, and 17-DMAG and 30 �M for PES).
Next, we characterized the kinetics of cell death by performing
MTT assays at 24, 48, and 72 h after treatment. We found that
both JG-98 and PES caused relatively rapid responses, with 50%
cell proliferation lost by �10 h and more than 80% by 24 h (Fig.
1C). In contrast, the response to AUY-922 and 17-DMAG took
a longer period of time, with 72� h required to reduce growth
by 80%. The results of these kinetic experiments were impor-
tant in our search for Hsp70 clients because we were most inter-
ested in those clients that are degraded prior to extensive loss of
cell viability. More explicitly, we considered it likely that non-
specific client degradation, triggered by downstream caspase
activation and/or other proteolytic events, might be confound-
ing at later times; whereas the bona fide clients should be direct
physical interaction partners.

With these criteria in mind, we performed Western blottings
of the candidate proteins at 0, 1, 3, 6, 12, and 24 h after treat-
ment. From these experiments, we confirmed (47) that Raf-1 is
a selective client of Hsp90 (Fig. 1D). Specifically, the levels of
Raf-1 were significantly (�95%) decreased by 12 h after treat-
ment with either 17-DMAG or AUY-922. In contrast, treat-
ment with these inhibitors tended to have a less pronounced
effect on cIAP-1 and XIAP levels. In contrast, treatment with
either of the Hsp70 inhibitors JG-98 or PES caused a dramatic
loss of cIAP-1 and XIAP at relatively early time points, although
Raf-1 was largely spared (Fig. 1D). This effect was particularly
strong in the first 6 h after treatment, when c-IAP1 and XIAP
levels were reduced �75% and Raf-1 levels were only reduced
�20%. Thus, XIAP and c-IAP1 seemed to be relatively selective
clients of Hsp70 but not Hsp90.

To better understand the mechanism of IAP loss in response
to Hsp70 inhibitors, we first tested whether activation of
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caspase activity might be involved by blotting the JG-98-treated
MDA-MB-231 cell lysates for cleaved caspase-3 and poly(ADP-
ribose) polymerase (PARP). Interestingly, cleaved caspase-3
and PARP only emerged 12–24 h after treatment (Fig. 1D),
which is substantially after the levels of XIAP and c-IAP1 were
reduced. This finding is consistent with a recent result, in which
removal of the RING domain of XIAP was found to block turn-

over by JG-98 (59). Thus, inhibition of Hsp70 seems to initiate
the normal turnover of IAPs rather than triggering loss through
caspase activation.

Hsp70 and XIAP form a complex in vitro and in cells

We next wanted to determine whether Hsp70 physically
interacts with the IAPs. In these studies, we focused on XIAP

Figure 1. IAPs are selectively destabilized by Hsp70 inhibition. A, chemical structures of inhibitors. PES and JG-98 inhibit Hsp70, whereas AUY-922 and
17-DMAG inhibit Hsp90. B, Hsp70 and Hsp90 inhibitors reduce the growth of MDA-MB-231 cells, as measured by MTT assays. C, kinetics of Hsp70 and Hsp90
inhibitor-mediated anti-proliferative activity. Results are the average of experiments performed in triplicate. Error bars represent S.E. D, destabilization of IAPs
occurs after treatment with Hsp70 inhibitors. MDA-MB-231 cells were treated for the indicated times. The blots shown are representative of at least two
independent experiments. The error bars represent S.E.
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(Fig. 2A) as a representative member of the IAP family because
of a wealth of available structural data (44). Using co-immuno-
precipitations, we found that endogenous XIAP was bound to
Hsp70 in MDA-MB-231 cell lysate (Fig. 2B). To understand
whether this interaction might be direct, we first used a com-
putational algorithm to predict possible Hsp70-binding sites in
full-length human XIAP (18). This approach suggested that
XIAP contains nine putative binding sites, all but two of which
are located within the BIR2 and BIR3 domains (see Fig. 2A). To
test this prediction, the region of XIAP(120 –356) correspond-
ing to the BIR2 and BIR3 domains was purified, and its binding
to recombinant human Hsp70 was measured by ELISA. We
found that Hsp70 bound XIAP(120 –356) with a KD � 260 � 20

nM (Fig. 2C). Consistent with binding in the BIR2 and BIR3
domains, addition of a Smac mimetic (48) blocked interactions
with Hsp70 (Fig. 2D). Also, addition of JG-98 (10 �M) weakened
the apparent affinity of Hsp70 for XIAP(120 –356) (see Fig. 2D).
Thus, XIAP appears to be a direct client of Hsp70 in vitro and in
cells, and its interaction with Hsp70 is mediated by the BIR2/3
domains.

We next wondered why Hsp90 inhibitors might have a less
pronounced effect on XIAP stability. One possibility is that
Hsp90 might not bind to this client. Hsp90 and Hsp70 are
known to bind similar or even overlapping sites in other clients.
To understand whether this might be the case for XIAP, we
tested the ability of recombinant human Hsp90� to compete

Figure 2. Hsp70 binds XIAP. A, domains of human XIAP. B, XIAP is co-immunoprecipitated with Hsp70 in MCF7 lysates. Results are representative of
experiments performed in triplicate. C, XIAP(120 –356) binds Hsp70 in vitro, as measured by ELISA. Addition of JG-98 (10 �M) modestly weakens the interaction.
Results are the average of three independent experiments performed in triplicate. Error bars are S.E. D, Smac mimetic SM164 blocks binding of Hsp70 to
XIAP(120 –356) by ELISA. Results are the average of three independent experiments performed in triplicate. Error bars represent S.E. E, purified Hsc70 and
Hsp90a compete with Hsp72 for binding to XIAP in the ELISA format. Results are the average of triplicates, and error bars represent S.E. IP, immunoprecipitation;
IB, immunoblot.

Hsp70 stabilizes IAPs

J. Biol. Chem. (2018) 293(7) 2370 –2380 2373



with Hsp70 for binding to XIAP(120 –356) in the ELISA. Strik-
ingly, Hsp90� was a relatively strong competitor, with an IC50
of 227 � 138 nM (Fig. 2E). Similarly, the highly conserved Hsp70
family member, Hsc70 (HSPA8), also competed with an IC50 of
302 � 196 nM. Thus, Hsp90 binds XIAP, although inhibitors do
not seem to trigger degradation.

To further explore the interaction of XIAP with Hsp70, we
created point mutations to disrupt each of the seven putative
binding sites in XIAP(120 –356) (Fig. 3A). Other than the pos-
sible exception of L231S, each of the mutants was folded to the
same extent as wildtype, as judged by circular dichroism (CD)
(Fig. 3B). In the ELISA platform, we found that Y190E, L207S,
L307S, and L331S all had weaker affinity for Hsp70, with disso-
ciation constants ranging from 2-fold to greater than 10-fold
higher than the wildtype protein (Fig. 3C). To test whether
this difference in affinity would translate into resistance to
Hsp70 inhibitors, we expressed full-length XIAP (XIAPWT,
XIAPY190E, and XIAPL207S) in HeLa cells and measured protein
stability after treatment with JG-98. Consistent with the model,
we found that XIAPY190E was difficult to overexpress, likely
because of reduced Hsp70 binding, and that its levels were not
sensitive to JG-98 (Fig. 3D). The other mutant, XIAPL207S was
not as dramatically affected, suggesting that some sites might be
more functionally important for stability than others.

The ELISA results suggested that Hsp70 may bind to multi-
ple sites on XIAP(120 –356) because none of the individual

mutations were sufficient to completely block the interaction.
To examine this possibility, we incubated Hsp70 with
XIAP(120 –356) and analyzed the complex by size-exclusion
chromatography and multiangle light scattering (SEC-MALS).
Consistent with the other binding studies, we found that Hsp70
and XIAP(120 –356) formed a stable, multimeric complex (Fig.
3E). Moreover, based on the apparent molecular mass of �240
kDa, we estimate that approximately three Hsp70s may be
bound.

Interaction with XIAP involves non-canonical interactions with
Hsp70

Next, we asked whether XIAP(120 –356) binds to Hsp70 in
the chaperone’s canonical SBD. As a first test, we titrated a
known SBD ligand, the NRLLLTG peptide, into the ELISA
experiment. Surprisingly, we found that NRLLLTG was not
able to compete with XIAP(120 –356) for binding to Hsp70
(Fig. 4A), suggesting that the XIAP(120 –356) was not binding
the canonical cleft. A growing number of non-canonical inter-
actions with Hsp70 have been discovered (49, 50), and these
interactions often do not fit the normal profile for nucleotide
dependence. In other words, the interaction is not always
tighter in the ADP-bound state (20). Similarly, we found that
the affinity of XIAP(120 –356) for Hsp70 did not follow the
canonical behavior; its affinity for ADP-bound or apo-Hsp70
was 1.5-fold worse than in the ATP-bound state Hsp70 (Fig.

Figure 3. Hsp70 binds multiple sites in the BIR2 and BIR3 domains. A, location of predicted Hsp70-binding sites on BIR2 and BIR3 (Protein Data Bank codes
1C9Q and 1F9X) are shown in red. B, CD spectra for XIAP(120 –356) wildtype and mutant proteins. Each reported spectrum is the average of six scans,
subtracting the signal acquired for buffer alone. C, binding of XIAP(120 –356) point mutants to Hsp70, as measured by ELISA. Results are the average of three
independent experiments performed in triplicate. Error bars are S.E. D, XIAPY190E is partially resistant to degradation in response to JG-98. HeLa cells over-
expressing the indicated XIAP point mutations were treated for 24 h. Blots are representative of two independent experiments, and quantification is from the
average of biological replicates. Error bars are S.E. *, p � 0.06; ns, not significant. E, Hsp70 binds to XIAP and forms a stable, multimeric complex, as analyzed by
SEC-MALS. Molecular weight standards were BSA and �-amylase. Results are representative of duplicates.
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4B). This result was consistent with our observation that the
apparent affinity of Hsp70 for XIAP(120 –356) was slightly
weakened, not strengthened, by addition of JG-98 (see Fig. 2D),
as this compound is known to stabilize the ADP-bound state
(51). Some non-canonical interactions with Hsp70 are reported
to involve contacts outside the SBD (49). To probe whether
XIAP(120 –356) might share this feature, we purified truncated
mutants of Hsc70 that are composed of either the NBD
(Hsc70NBD) or SBD (Hsc70SBD) alone and tested them for the
ability to compete with full-length Hsp70 for binding to
XIAP(120 –356). Unlike what would be expected for a strictly
canonical interaction, we found that both Hsc70NBD and
Hsc70SBD competed with full-length Hsp70 for binding to
XIAP(120 –356) (Fig. 4C), although the Hsc70NBD interaction
seemed to be significantly weaker. Finally, we titrated
NRLLLTG or XIAP(120 –356) into samples of 15N-labeled
Hsc70SBD (residues 395-508, lacking the C-terminal sub-
domain). This NMR-based assay has previously (50) been used
to measure binding of canonical clients, such as NRLLLTG, to
the hydrophobic cleft, and it is based on the appearance of char-
acteristic cross-peaks upon “rigidification” of the �-subdomain.
Consistent with previous observations, we found that adding

NRLLLTG to Hsc70SBD caused the appearance of � 15 new
cross-peaks (Fig. 4D). Because the peptide is not labeled, these
cross-peaks are likely due to “rigidification” of the SBD after
binding to the canonical hydrophobic cleft. Consistent with the
ELISA studies, XIAP(120 –356) failed to produce these charac-
teristic peaks, again suggesting that it is a non-canonical client.
Together, these results all suggest that XIAP makes non-canon-
ical contacts with Hsp70 and that the NBD is involved.

Stability of IAPs is responsive to inhibitors of Hsp70 but not
Hsp90

Our experiments in MDA-MB-231 cells showed that Hsp70
inhibitors induce degradation of XIAP and c-IAP1. Thus, we
envisioned that IAPs might be useful surrogates for Hsp70 tar-
get engagement, similar to how Raf-1 is used to monitor phar-
macological inhibition of Hsp90 (11). However, we wanted to
test this relationship in additional cell lines. Similar to what we
found in MDA-MB-231 cells, we found that the IAPs in HeLa
and MCF7 cells were selectively degraded in response to JG-98,
but not 17-DMAG, at early time points (�6 h) (Fig. 5A). Next,
we wanted to test whether IAP stability was sensitive to Hsp70
inhibition in normal healthy cells. This experiment was impor-

Figure 4. XIAP(120 –356) binds Hsp70 through partially non-canonical interactions. A, canonical peptide, NRLLLTG, does not compete with XIAP(120 –
356) for binding to Hsc70, as measured by ELISA. B, Hsp70 binding to XIAP(120 –356) is not classically nucleotide-dependent. The affinity is slightly tighter in the
presence of ATP, rather than ADP. C, full-length Hsc70, Hsc70NBD, and Hsc70SBD compete with Hsp70 for binding to XIAP(120 –356), as measured by ELISA. All
results shown are averages of three independent experiments performed in triplicate, and error bars represent the S.E. Binding data were fit to the Langmuir
binding isotherm, and competition data were fit to the Hill equation. D, 15N-1H TROSY-HSQC spectra of 35 �M Hsp70 SBD(395–507) without (black) or with (red)
200 �M NRLLLTG and 15N-1H TROSY-HSQC spectra of 100 �M Hsp70 SBD(395–507) without (blue) or with (red) 131 �M XIAP(120 –356).
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tant because clients often depend on chaperone only in a cancer
cell-specific context (4). Consistent with this idea, JG-98 did
not reduce levels of XIAP or c-IAP1 in IMR90 normal human
lung fibroblasts (Fig. 5B). Finally, we wanted to understand
whether IAPs might be surrogate biomarkers of Hsp70 engage-
ment in vivo. Accordingly, we established MCF7 tumor xeno-
grafts in mice and treated with JG-98, using a previously
reported dosing scheme (35). In this model, daily i.p. injections
of JG-98 (7 mg/kg/day) begin to show a therapeutic effect on
tumor volume 4 – 6 days after the initiation of treatment. When
we isolated tumors from these treated animals, we found that
the lysates had significantly lower levels of XIAP and c-IAP1
(Fig. 5C) when compared with those from mock-treated ani-
mals. Together, these results suggest that XIAP and c-IAP1 are
candidate biomarkers of Hsp70 in cells and animals.

Discussion

There is growing interest in Hsp70 inhibitors as potential
anti-cancer therapeutics (3, 52, 53), and the development of

such molecules would benefit from the identification and char-
acterization of selective biomarkers. Particularly sensitive
Hsp70 clients could be used as surrogates for target engage-
ment in cancer cells, facilitating hit-to-lead medicinal chemis-
try campaigns. In addition, such clients could potentially be
used in animal models or in the clinic to develop relationships
between pharmacokinetics and pharmacodynamics. Impor-
tantly, the ideal client should be more sensitive to inhibition of
Hsp70 than Hsp90 to allow for the rapid discrimination of their
relative contributions. Here, we found that degradation of
c-IAP1 and XIAP occurs rapidly (�6 h) and dramatically
(�50 – 80%) after treatment with Hsp70 inhibitors in MDA-
MB-231 cells. Furthermore, the levels of these proteins did not
seem to be responsive to Hsp90 inhibitors; for example, treat-
ment with AUY-922 only reduced XIAP levels by �25% in 24 h.
Despite the fact that Hsp90 inhibitors had little effect on IAP
levels, this chaperone did seem to bind relatively tightly to XIAP
in vitro and to share Hsp70-binding sites. These chaperones are
known to work together in the folding and stability of many

Figure 5. IAPs are potential biomarkers of Hsp70 inhibition in cancer cells. A and B, IAPs are de-stabilized by Hsp70 inhibition in HeLa (left) and MCF7 (right)
cells (A), but not in IMR90 cells (B). Representative blots of at least two independent biological replicates are shown. Protein levels are quantified, and results
shown are averages of two independent experiments. Error bars represent S.E. C, treatment with JG-98 results in loss of IAP protein levels in MCF-7 mouse
xenografts.
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clients (29), but to our knowledge, no clients have been exper-
imentally shown to be clearly reliant on Hsp70 but not Hsp90.
Future work will be directed at better understanding the struc-
tural differences between how Hsp90 and Hsp70 interact with
XIAP to reveal the molecular mechanisms that make this client
different from previously studied ones. This question is also
motivated by the fact that IAPs themselves are validated targets
for cancer therapy (54), so ways of reducing their levels might
be directly beneficial in cancer.

Why does treatment with an Hsp70 inhibitor lead to a reduc-
tion in the levels of XIAP? There are still many important
mechanistic details to uncover, but it seems that treatment with
JG-98 weakens the affinity of Hsp70 for XIAP by more than
5-fold in vitro. Furthermore, it is known that the RING domains
are important for normal XIAP turnover and that the RING
domain is critical for turnover in response to JG-98. Thus, we
speculate that Hsp70 might contribute to keeping XIAP in an
inactive state, such that release would favor auto-ubiquitina-
tion and degradation, possibly correlating with changes in olig-
omerization. Because Hsp70 inhibitors of different chemical
classes bind different locations and “trap” different nucleotide
states, it will be interesting to use a broader panel of probes to
understand the relationships between client affinity and turn-
over in the XIAP system.

A major goal of this work was to characterize the protein–
protein interaction (PPI) between putative clients and Hsp70.
We considered it important to understand the physical con-
tacts Hsp70 makes with possible biomarkers, similar to the
detailed information available for binding of other obligate cli-
ents to Hsp90 (55). This is important because many putative
clients are expected to be indirectly degraded during cell death,
and such clients might therefore not be the best choice as bio-
markers. Accordingly, we focused on the potential interaction
between XIAP and Hsp70 and confirmed that these two pro-
teins bind to each other in vitro and in cells. We were initially
surprised to find that the measured affinity of Hsp70 for XIAP
was relatively tight (�230 nM), compared with the affinity for
many other clients (typically low to mid-micromolar). This
tight affinity may be due, in part, to avidity effects from binding
to multiple sites. Mutagenesis and SEC-MALS studies sug-
gested that as many as three Hsp70s may bind to XIAP(120 –
356). Multiple Hsp70 molecules have also been shown to bind
other clients, including denatured rhodanese (21, 56), so mul-
tivalency seems to underlie the interaction with a subset of cli-
ents. Second, the relatively tight affinity of the XIAP–Hsp70
complex might be a product of the non-canonical nature of the
PPI. We found that binding to XIAP does not follow the normal
nucleotide dependence and that it involves at least one addi-
tional contact within the Hsp70’s NBD. Furthermore, the NMR
titrations clearly showed that the NRLLLTG peptide, but not
XIAP(120 –356), binds the canonical hydrophobic cleft of the
SBD. Currently, the Hsp70 NBD is not fully assigned, so the
specific binding site of XIAP(120 –356) is not clear. However,
there are intriguing chemical shift perturbations in the
XIAP(120 –356) treated samples (see Fig. 4D) that might lead to
additional insights. We speculate that XIAP could be a good
model for understanding the location of non-canonical con-
tacts. In addition, although the exact site(s) of the non-canoni-

cal interaction(s) are not known, recent work has shown that
phosphoserines bind to the �-helical lid of Hsp70 (49), so we
posit that secondary contacts here may contribute to XIAP
binding. More generally, our results suggest that IAPs might
serve as good models for probing this category of poorly
understood Hsp70 interactions. We speculate that non-ca-
nonical interactions may make a major, unresolved contri-
bution to Hsp70-mediated quality control and that new
model systems will have a substantial impact on our knowl-
edge of the system.

Experimental procedures

Reagents and general methods

Antibodies used are as follows: XIAP (Enzo Life Sciences
ADI-AAM-050-E); c-IAP1 (Enzo Life Sciences ALX-803-335-
C100); �-actin (AnaSpec AS-54591); FLAG (Sigma F1804);
Hsp70 (Santa Cruz Biotechnology sc-137239 and sc-33575);
Raf-1 (Santa Cruz Biotechnology sc-133); goat anti-mouse HRP
(AnaSpec 28173); goat anti-rabbit HRP (AnaSpec 28177); and
goat anti-rat HRP (Santa Cruz Biotechnology sc-2006). JG-98
was synthesized according to previously described methods
(34), and PES, AUY-922, and 17-DMAG were purchased from
Millipore, Selleckchem, and LC Laboratories, respectively. All
other biological reagents were purchased from Sigma unless
otherwise noted. All spectroscopic measurements were
obtained with a SpectraMax M5 microplate reader (Molecular
Devices).

Plasmids and site-directed mutagenesis

XIAP mutants were prepared using the QuikChange site-
directed mutagenesis kit (Stratagene). The following mutants
were engineered into the human XIAP(120 –356) gene in the
pet28a vector: L141S, Y190E, L207S, L231S, I276T, L307S, and
L331S. Wildtype and mutant XIAP(120 –356) constructs all
contained additional C202A/C213G mutations for stability.
N-terminally FLAG-tagged, full-length XIAP in pCMV6 was
obtained from GeneArt (Invitrogen).

Protein expression and purification

All His-tagged Hsp70 proteins (HSPA1A, HSPA8, Hsc70NBD
(1–383), and Hsc70SBD(395–509)) were purified as described
previously (57) using batch purification with Ni-NTA resin
(Novagen) and subsequent cleavage of the His tag with tobacco
etch virus protease. Hsp70, Hsc70, and Hsc70NBD were further
purified using an ATP column, whereas Hsc70SBD underwent
gel-filtration chromatography on a Superdex 75 16/60 column
(GE Healthcare). Hsc70 (HSPA8) domain truncations were
used in Fig. 4, A and C, because we have found that they are
more stable than the corresponding Hsp70 (HSPA1A)
domains. WT His-tagged XIAP(120 –356) and its mutants were
batch-purified with Ni-NTA resin and eluted with 400 mM im-
idazole. DTT was added to 10 mM, and XIAP(120 –356) was
further purified by gel-filtration chromatography on a Super-
dex 75 16/60 column (GE Healthcare) in 20 mM Tris buffer
containing 200 mM NaCl, 50 �M zinc acetate, and 1 mM DTT,
pH 7.5. Fractions containing XIAP(120 –356), as assessed by
SDS-PAGE, were pooled and concentrated, and DTT was
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added to 10 mM before storing at �80 °C. The bicinchoninic
acid (BCA) assay kit (Thermo Fisher Scientific, Inc.) was used to
determined protein concentration, and protein purities were
estimated at �90% by SDS-PAGE and Q-TOF LC-MS
(Agilent).

Tissue culture, viability assays, and transfections

MCF-7 and HeLa cells (ATCC) were maintained in DMEM
(Invitrogen) supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin. MDA-MB-231 cells (ATCC) were
maintained in DMEM supplemented with 10% fetal bovine
serum, 1% penicillin/streptomycin, and non-essential amino
acids. Cells were used at low passage, typically less than 20. No
further validation of the cell lines was performed. If indicated,
cell viability was determined using the MTT assay as described
previously (34). XIAP pCMV6 plasmids were transfected using
Lipofectamine 2000 (Invitrogen) according to the manufactu-
rer’s instructions.

Western blotting

Cell extracts were prepared in chilled RIPA buffer (50 mM

Tris, pH 8, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxy-
cholate, 0.1% SDS) unless otherwise indicated. Protein concen-
tration was determined by the BCA assay, and 20 �g of total
protein was separated by SDS-PAGE on 10% Mini-PROTEAN
TGX gel (Bio-Rad) and transferred to PVDF membrane
(Thermo Fisher Scientific Inc). Membranes were blocked with
5% milk in TBS, 0.05% Tween for 1 h at room temperature,
incubated with primary antibodies overnight at 4 °C, washed
with TBS, 0.05% Tween, and incubated with the appropriate
horseradish peroxidase-conjugated secondary antibody for 1 h
at room temperature. Membranes were developed using
chemiluminescence (ECL Prime, GE Healthcare). Xenograft
experiments were carried out as described (35, 58).

Co-immunoprecipitation

Cell extracts were prepared in chilled lysis buffer (50 mM

Tris, pH 8, 150 mM NaCl, 1 mM ATP, 10 mM KCl, 5 mM

Mg(OAc)2, 1% Nonidet P-40) supplemented with protease
inhibitor mixture (Roche Applied Science). The total protein
concentration was adjusted to 5 mg of protein in 1 ml of cell
extract. PureProteome protein G magnetic beads (Millipore)
were incubated with 6 �g of the appropriate antibody or non-
specific mouse IgG (Santa Cruz Biotechnology) for 30 min at
room temperature with mixing, followed by antibody cross-
linking with bis(sulfosuccinimidyl) suberate (Thermo Fisher
Scientific, Inc.) for 1 h at room temperature with mixing. The
cross-linking reaction was quenched with 1 M Tris, pH 7.5, for
1 h at room temperature with mixing. Meanwhile, equal 100-�l
samples of cell lysate were pre-cleared by incubation with 50 �l
of protein G beads for 1 h at room temperature with mixing.
Protein complexes were immunoprecipitated by incubation of
the pre-cleared lysate (1 mg of total protein per immunopre-
cipitation) with 50 �l of antibody– cross-linked protein G beads
for 1 h at room temperature with mixing. The immunocom-
plexes were washed three times with 500 �l of wash buffer (PBS,
pH 7.4, 0.1% Tween 20) and eluted with 0.1 M glycine, pH 2.6.
Proteins were visualized by Western blotting.

ELISA

XIAP(120 –356) was non-covalently immobilized in the
wells of a clear, flat-bottom 96-well plate (Thermo Fisher Sci-
entific, Inc.) by incubating 100 �l of 100 nM XIAP(120 –356) in
immobilization buffer (20 mM MES, pH 5.2) overnight at 37 °C.
XIAP(120 –356) was removed from the wells, and the wells
were washed with 3	 150 �l of TBS supplemented with 0.05%
Tween (TBS-T). Each wash was incubated, with gentle rocking,
for 3 min at room temperature. Following washing, 30 �l of
Hsp70 was added at the indicated concentrations in binding
buffer (25 mM HEPES, pH 7.4, 40 mM KCl, 8 mM MgCl2, 100 mM

NaCl, 0.01% Tween), supplemented with 1 mM nucleotide and 1
mM DTT. The plates were incubated at room temperature for
24 h with gentle rocking. Solutions of Hsp70 were removed, and
each well was washed as before and blocked with 100 �l of 5%
milk in TBS-T for 5 min at room temperature. The plates were
developed using 50 �l each of Hsp70 primary antibody (1:5000
in TBS-T) and an HRP-conjugated secondary antibody (1:5000
in TBS-T) and washed with TBS-T between each 1-h incuba-
tion at room temperature. Binding was detected using the TMB
substrate kit (Cell Signaling Technology), and the absorbance
was read at 450 nm. Data were analyzed using GraphPad Prism
software and fit to the Langmuir binding isotherm (Y � BmaxX/
[KD � X]).

Size-exclusion chromatography and multiangle light
scattering

XIAP(120 –356) and Hsp70 were subjected to size-exclusion
chromatography using a KW-803 silica resin column (Shodex
Group) with an AKTA micro-HPLC (GE Healthcare) in 20 mM

Tris buffer, pH 7.5, containing 200 mM NaCl, 5 mM MgCl2, 10
mM KCl, 50 �M zinc acetate, 1 mM DTT. Separated samples
were then analyzed for light scattering using a DAWN HELEOS
II MALS detector and for protein concentration using the
change in refractive index measured by a Optilab rEX. Molec-
ular weights of species contained in the SEC peaks were calcu-
lated using ASTRA VI software (Wyatt Technology).

Circular dichroism

CD spectra of XIAP(120 –356) and mutants were acquired
on a J-715 spectropolarimeter (Jasco Inc.) using a 1 mM path-
length quartz cuvette, subtracting the CD signal acquired for
buffer alone (10 mM sodium phosphate, pH 7.6, 100 mM NaF, 50
�M zinc acetate, 0.5 mM DTT). Data were converted to mean
residue ellipticity (degrees cm�1 dmol�1) according to the
equation 
 � �/(1000 nlc), where � is the CD signal in
degrees; n is the number of amides; l is the path length in cen-
timeters; and c is the concentration in decimoles/ml. Each spec-
trum reported is the average of six scans.

NMR spectroscopy

NMR-based binding studies were performed as described
previously (50). Briefly, 13C-15N Hsc70 SBD (residues 395–508)
was expressed in BL21 cells in M9 minimal media supple-
mented with 15NH4Cl, purified, and refolded from 4 M GdHCl
on a Ni-NTA column. This protein was dialyzed into 25 mM

Tris, 50 mM NaCl, 1 mM EDTA, 2 mM DTT, 0.02% sodium
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azide, 5% D2O, protease inhibitors, pH 7.2. Then, 15N�1H
TROSY-HSQC spectra with either NRLLLTG or XIAP(120 –
356) were recorded at 30 °C for 1 h, using a Bruker 600 MHz
NMR spectrometer with cryoprobe.
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