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Abstract For an integrand with a 1/r vertex singularity, the
Duffy transformation from a triangle (pyramid) to a square
(cube) provides an accurate and efficient technique to evalu-
ate the integral. In this paper, we generalize the Duffy trans-
formation to power singularities of the form p(x)/rα , where
p is a trivariate polynomial and α > 0 is the strength of the
singularity. We use the map (u, v, w) → (x, y, z) : x = uβ ,
y = xv, z = xw, and judiciously choose β to accurately
estimate the integral. For α = 1, the Duffy transformation
(β = 1) is optimal, whereas if α �= 1, we show that there
are other values of β that prove to be substantially better.
Numerical tests in two and three dimensions are presented
that reveal the improved accuracy of the new transforma-
tion. Higher-order partition of unity finite element solutions
for the Laplace equation with a derivative singularity at a
re-entrant corner are presented to demonstrate the benefits of
using the generalized Duffy transformation.

Keywords Weakly singular integrand · Numerical
quadrature · Partition of unity enrichment · FEM · BEM

1 Introduction

Elliptic boundary-value problems can admit solutions u ∼ rλ

(0 < λ < 1) with derivative singularities—Laplace equa-
tion in a domain with a re-entrant corner or when there is
an abrupt change in the boundary condition (Dirichlet to
Neumann) [1,2]; problems in elasticity such as analysis of
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plates with sharp notches and cracks [3], wedge-shaped bima-
terials [4,5], crack impinging a bimaterial interface [6], and
bimaterial interfacial cracks [7] are well-known examples.
In the numerical treatment of such problems with the bound-
ary element and enriched finite element methods, the numer-
ical integration of weakly singular integrands of O(1/rα)
arises where 0 < α < n in R

n . The development of mesh-
free [8] and partition of unity finite element methods [9] for
modeling singularities—cracks in isotropic media (λ = 1/2)
[10–13], strong and weak singularities for a crack perpendic-
ular to a bimaterial interface [14], complete sliding contact
[15], HRR crack-tip fields with λ = 1/(n + 1) (n is the
hardening exponent) [16], hydraulic fracture (λ = 1/2, 2/3)
[17,18], and parametric enrichment for singular problems
(λ is itself a parameter, which is obtained through optimiza-
tion in the solution procedure) [19]—underscores the need
to develop accurate numerical integration schemes to com-
pute weak form integrals, which provides the impetus for
pursuing this contribution.

The use of standard integration techniques such as Gauss–
Legendre quadrature rules to evaluate singular integrands has
its limitations, both, from the accuracy and cost perspectives.
Extrapolation techniques [20–23] construct more accurate
integration formulae based on asymptotic error expansions
of standard quadratures, whereas in adaptive subdivision
scheme [24,25] the integration domain is subdivided into
uniform/nonuniform subdomains and well-known integra-
tion rules are used over the subdomains. Klees [26] shows
that for weakly singular integrands, extrapolation and adap-
tive subdivision techniques behave poorly in terms of both
accuracy and efficiency.

Variable transformation methods (also referred as can-
celation schemes) to numerically integrate weakly singular
integrands are well-established in the literature [27–33]. The
main idea in this approach is to map the physical domain to a
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Fig. 1 Duffy transformation from (a) the standard triangle to (b) the
unit square

parent domain so that the singularity is removed through the
introduction of the Jacobian. Among the transformation tech-
niques, the so-called Duffy transformation has found wide
appeal. The Duffy transformation [28] from a triangle (pyr-
amid) to a square (cube) is: (u, v, w) → (x, y, z): x = u,
y = xv = uv, z = xw = uw, which eliminates singulari-
ties of the type 1/r (see Fig. 1). The mapped kernel over the
square (cube) is smooth enough and can be integrated within
a desired accuracy using a tensor-product Gauss quadrature
rule. When the singularity falls inside an element, then the
element can be divided into triangles in R

2 (pyramids in R
3)

with the singularity lying at a vertex of the subdivisions and
the transformation can be applied to each subdomain sepa-
rately.

As noted by Monegato and Scuderi [34], though attrib-
uted to Duffy, the above transformation in two dimensions
was proposed earlier by Fairweather et al. [35] to numerically
integrate a 1/r vertex singularity over a triangle. For the two-
dimensional integral considered by Duffy [28], the integrand
had a u−1/2 term and therefore Gauss–Jacobi quadrature rule
was used in the u-direction, and Gauss quadrature in the
v-direction. However, in most boundary element and finite
element applications, it is more convenient to adopt stan-
dard Gauss quadrature in all directions. The Duffy transfor-
mation has been used for the integration of stiffness matrix
entries with singular finite element shape function derivatives
[36–40]. The Duffy transformation has also been applied
within boundary element and finite element methods: appli-
cations in Stokes flow [41], wave scattering and Helmholtz
equation [42–44], and quantum mechanical density-func-
tional calculations [45–48] to name a few.

Many recent studies have tackled the issue of numeri-
cal integration of singularities within partition of unity finite
element methods [49–53]. Laborde et al. [49] triangulate the
element with the singularity inside it so that the source point
lies at a vertex of a triangle and then the Duffy transformation
(though not mentioned in Ref. [49]) is applied to integrate

singular functions over the triangle. This technique proves
to be more accurate and has a better convergence rate than
standard Gauss quadrature.

Other types of mappings have also been employed for
different classes of functions and singularities. For exam-
ple, Nagarajan and Mukherjee [32] use a polar mapping
(ρ, θ) → (x, y) : x = ρ cos2 θ, y = ρ sin2 θ , which trans-
forms a master triangular element to a square element and as
a result the 1/r singularity is removed. Park et al. [53] gen-
eralize this transformation to three-dimensional tetrahedral
elements and use it to integrate singular enrichment bases for
crack problems within the generalized finite element method.
The main advantage of this mapping is in the integration of
terms such as f (x)/r , where f is a homogeneous function.
This permits integration with respect to r to be carried out
algebraically and the multiple integral in two (three) dimen-
sions is reduced to a line (surface) integral, which permits
machine-precision accuracy to be realized [32]. If f is non-
homogeneous, the accuracy and efficiency of this technique is
significantly reduced [53]. Béchet et al. [50] present a series
of transformations in two dimensions, which eventually can-
cels 1/rα singularities, but as they point out, their mapping
does not readily extend to three dimensional domains.

Even though the Duffy transformation works very well for
1/r singularity, it is not as efficient for 1/rα when α �= 1.
For partition of unity finite element applications with corners
or cracks, the integrand in the stiffness matrix may consist
of terms with singularities α < 1 and α ≥ 1. The aim of this
paper is to present a generalization of the Duffy transforma-
tion that can provide improved accuracy for integrating ver-
tex singularities within two- and three-dimensional domains.
In Sect.2, we introduce the generalized transformation, and in
Sect. 3, we compare its performance with the Duffy transfor-
mation. Numerical studies on the accuracy and convergence
rate of the new transformation are presented in Sects. 3.1–
3.3. In Sect. 3.4, application to the Laplace equation with
a re-entrant corner is presented, where the rate of conver-
gence in strain energy is studied for finite element (FE) and
higher-order partition of unity finite element (PUFE) meth-
ods. We close with the main findings and a few final remarks
in Sect. 4.

2 Formulation

A generalization of the Duffy transformation is proposed:
(u, v, w) → (x, y, z) : x = uβ , y = xvγ = uβvγ , z =
xwζ = uβwζ , where β, γ and ζ are selected so that the trans-
formed kernel is as smooth as possible and can be integrated
with the fewest number of evaluation points. This transfor-
mation maps the standard pyramid with vertices at (0, 0, 0),
(1, 0, 0), (1, 1, 0), (1, 0, 1) and (1, 1, 1) to a unit cube [28].
Equation (1) shows the calculation of the integral in three
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dimensions after the transformation:

I =
1∫

0

dx

x∫

0

dy

x∫

0

dz
f (x, y, z)

(x2 + y2 + z2)α/2

=
1∫

0

1∫

0

1∫

0

f
(
uβ, uβvγ , uβwζ

)
[
u2β

(
1 + v2γ + w2ζ

)]α/2 J du dv dw, (1a)

where J is the Jacobian of the transformation:

J = βγ ζu3β−1vγ−1wζ−1. (1b)

From the expression for the Jacobian and the denominator
in (1a), it is evident that the choice γ = 1 and ζ = 1 pro-
vides the lowest exponents of the variables v and w in the
transformed space. On using γ = ζ = 1 (1) reduces to

I =
1∫

0

1∫

0

1∫

0

f (uβ, uβv, uβw)

(1 + v2 + w2)α/2
βu3β−1−αβdudvdw,

where β is now selected so that both f (uβ, uβv, uβw) and
u3β−1−αβ have the simplest possible forms that can be eas-
ily integrated. Since in boundary element and finite element
applications, polynomial bases are used and the integration
of polynomials is required, we pick β so that f remains a
polynomial in the transformed space. This requirement will
marginally increase the polynomial order of f , and there-
fore require a slight increase in the order of the quadrature
rule to exactly integrate the polynomial in the u-direction.
However, a fractional exponent in the term u3β−1−αβ needs
a much higher-order quadrature rule to capture the non-linear
behavior of the integrand. Therefore, we select the minimum
β ∈ Z

+ so that the exponent 3β − 1 − αβ is a positive inte-
ger. For instance, for a 1/

√
r (α = 1/2) singularity, β = 2

is chosen, which results in the term u4, whereas in the Duf-
fy transformation (β = 1), the term u3/2 is present which
leads to loss in accuracy. Similar arguments apply in the two-
dimensional case (Fig. 1); the generalized transformation in
two dimensions is provided in Appendix A. We point out that
for singularities α > 2 in three dimensions (α > 1 in two
dimensions), the Duffy transformation does not remove the
singularity since the exponent of u in the transformed kernel
is negative.

3 Numerical examples

We present numerical tests to affirm the improvements in
accuracy that are realized by the generalized transformation
vis-à-vis the Duffy transformation. The performance of the
proposed transformation in the numerical integration of a ver-
tex singularity in a square and a cube are presented. Finally,
the Laplace problem on an L-shaped domain with a corner

singularity is considered and the accuracy and rate of con-
vergence of higher-order FE and PUFE solutions are studied.

3.1 Vertex singularity in two dimensions

To validate the criterion for the selection of β, we apply
the Duffy transformation and the generalized transformation
for the integration of functions p(x, y)/rα , where p(x, y) ∈
Pd(x, y) are bivariate polynomials up to degree d with respect
to x and y and r is the distance from the origin. The inte-
gration is carried out over a unit square after dividing it into
two triangles (Fig. 2a, b). Each triangle is mapped to the
standard triangle of Fig. 1 through a shift of the coordinates
and an affine mapping (see Appendix A). Different values
of the singularity-exponent α are considered. We choose
α = {1, 1/2, 1/3, 2/3, 4/3}, which appear in various appli-
cations: α = 1/2, 1 for cracks in isotropic media [10], α =
1/2, 2/3 in hydraulic fracture [18], and α = 1/3, 2/3, 4/3
in the solution of Laplace equation in an L-shaped domain
with a re-entrant corner (see Sect. 3.4). For each α, differ-
ent choices of β are tried. For example, Fig. 2c shows the
convergence curves for 1/r singularity with β varying from
1 to 5. Also, tensor-product quadrature rules over the trian-
gulated domain and the unit square are tested (indicated as
tensor 1 and tensor 2, respectively). The reported relative
errors are the norm of the relative error in the integration of
p(x, y)/rα , where p includes all bivariate polynomials up
to order three (ten functions in two dimensions). Figure 2d
to g show similar results for other values of α. The reference
values are calculated using very high-order quadrature rules
so that sufficient number of digits are converged. For some of
the values of α, e.g., α = 1 and α = 1/2, the reference inte-
gral is evaluated using symbolic packages such as Maple™
and MATLAB™ either exactly or with very high accuracy.
For all values of α and β, the maximum error in the integra-
tion as nsp increases corresponds to

∫
(1/rα) dx dy, i.e., for

a constant in the numerator of the integrand. This is due to
the fact that bivariate polynomials xi y j for i + j > 0 have
a radial dependence and therefore

∫
(xi y j/rα) dx dy has a

milder radial singularity than
∫
(1/rα) dx dy. In accordance

with our expectations, we note from Fig. 2 that the choice
β = {1, 2, 3, 3, 3} gives us the most accurate results for
the singularities α = {1, 1/2, 1/3, 2/3, 4/3}, respectively.
Moreover, it is evident from the plots that if α �= 1, then the
optimal β delivers markedly better accuracy than the Duffy
transformation (β = 1). Figure 2c to g also reveal that Gauss–
Legendre quadrature has a very low convergence rate and the
errors are O(10−5) for 500 integration points. A MATLAB
code that performs the generalized Duffy transformation is
provided in Appendix B.

To further illustrate the performance of the generalized
transformation, we apply it to the integration of functions
with singularities α = p/q when p and q are moderately
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Fig. 2 Convergence curves for integration of p(x)/rα over a unit square. (a) Unit square and its (b) triangulation. Relative errors for (c) α = 1,
(d) α = 1/2, (e) α = 1/3, (f) α = 2/3, and (g) α = 4/3

large positive integers with no common divisor. Such values
of α arise in re-entrant corner problems in orthotropic media
[54], and in partition-of-unity enriched finite element meth-
ods with parametric enrichment functions [19]. The rationale
provided in Sect. 2 for selecting β would lead to the choice

β = q. It should be noted that increasing β has a dual effect:
(1) Improves the accuracy due to the larger exponent of u
in the transformed kernel (the transformed domain of inte-
gration is the unit square and therefore 0 ≤ u ≤ 1); and
(2) More integration points are needed in the unit square
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Fig. 3 Convergence curves for integration of p(x)/rα over the trian-
gle with vertices (1, 1); (3, 2) and (1.5, 2.3). Singularity is at (1, 1) and
α = 150/311

due to the increase in the polynomial order of the trans-
formed kernel. For such α, numerical tests can guide the
choice for β. As an example, for α = 150/311, we con-
sider β = {1, 2, 3, 4, 5, 311, 311/150}. Figure 3 shows that
an accuracy of O(10−8) is realized on using the generalized
Duffy transformation with β = 4 and a 8 × 8 tensor product
over the unit square.

3.2 Vertex singularity in three dimensions

We examine the three-dimensional case by integrating func-
tions of the form p(x, y, z)/rα over a unit cube that have
a singularity at the origin. The function p consists of tri-
variate polynomials up to degree three with respect to x , y,
and z (twenty functions in three dimensions). The unit cube
is divided into three pyramids with planar bases, and each
of these pyramids is mapped to the standard one and then
the generalized transformation is applied. The unit cube is
shown in Fig. 4a and one of its partitions (standard pyramid)
is depicted in Fig. 4b. Similar to the the two-dimensional
case, different singularities α = {1, 1/2, 1/3, 2/3, 4/3} are
tested with β varying from 1 to 5. The results are plotted in
Fig. 4c to g, and once again, the best choices ofβ are identical
to those obtained in the two-dimensional case. The optimal
β outperforms all other values of β and is able to reduce the
relative error to close to machine precision in all cases. For
a relative error of 10−8, the optimal β requires about 1,000
integration points; the tensor-product Gauss rule can at best
deliver an accuracy of 10−7 with 10,000 integration points.
Similar to the two-dimensional case, the constant term in the
numerator of the integrand dominates the error in the numer-
ical integration depicted in Fig. 4.

3.3 Optimization

Careful observation of the behavior of our generalized trans-
formation shows that by increasing the number of integration
points in each direction, the rate of convergence has a sudden
decrease at a point and after that it converges with a much
lower rate (for example, see the curve forβ = 2 in Fig. 2d). A
similar behavior is seen in almost all the convergence curves.
Further inspection reveals that the kernel after transformation
remains a polynomial with respect to u, but is an irrational
function with respect to v and w. Hence, one can determine
the number of Gauss points in the u-direction to obtain exact
integration with respect to u, after which increasing the num-
ber of integration points in the u-direction does not have any
effect on the accuracy. Based on this finding, we propose
to use the minimum number of Gauss points in the u-direc-
tion to exactly evaluate the integral with respect to u, and
a higher-order quadrature rule in the other directions. This
idea is made more precise through the following example.

Consider an integrand of the form p(x, y)/rα , with
p(x, y) consisting of polynomials up to order d. As indicated
in Appendix A, the kernel K (u, v) after the transformation
in two dimensions is

K (u, v) = p(uβ, uβv)

(1 + v2)α/2
βu2β−1−αβ.

Collecting like-terms reveals that the highest exponent of u is
2β−1−αβ+dβ. Thus, it is sufficient to use nspu = (2β−
αβ+ dβ)/2 Gauss points in the u-direction to exactly evalu-
ate the integral with respect to u. To obtain higher precision
one only needs to increase the number of evaluation points in
the other directions. Figure 5a and b show the convergence
curves for α = 1/2 over the unit square and α = 4/3 over
the unit cube, respectively. When β = 3 (optimized) is used,
the high convergence rate is maintained and in comparison to
β = 3 (without optimization), fewer number of integration
points are needed to attain higher accuracies.

3.4 L-shaped domain with a re-entrant corner

The L-shaped domain with a corner singularity is a well-
known benchmark problem, which has been considered in
previous studies [12,55,56]. The boundary-value problem is
posed as:

−∇2u = 0 in �, (2a)

u = 0 on 	D (2b)
∂u

∂n
= g on 	N , (2c)

where � is the L-shaped domain shown in Fig. 6.
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Fig. 4 Convergence curves for integration of p(x)/rα over a unit cube. (a) Unit cube and one of its partitions, (b) the standard pyramid. Relative
errors for (c) α = 1, (d) α = 1/2, (e) α = 1/3, (f) α = 2/3, and (g) α = 4/3

Following Strouboulis et al. [12], we choose boundary
conditions that are consistent with the exact solution:

u =r1/3 sin
θ

3
, ∇u = r−2/3

3

[
− sin

2θ

3
i + cos

2θ

3
j
]
, (3)

which has a derivative singularity at r = 0. We apply Dirich-
let boundary condition u = 0 on	D and Neumann boundary
condition ∇u · n = g on 	N and all other edges.

The weak form of the problem in (2) is: Find u ∈ U such
that
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Fig. 5 Effect of optimization. (a) Unit square, α = 1/2 (compare to
Fig. 2d); and (b) unit cube, α = 4/3 (compare to Fig. 4g)

∫

�

∇w · ∇u dV =
∫

	N

wg d S ∀w ∈ U , (4a)

U =
{
w : w ∈ H1(�), w = 0 on 	D

}
, (4b)

where H1(�) is the Sobolev space that consists of functions
and their derivatives that are square integrable in �. The
PUFE approximation for the trial function u is [9]:

uh(x)=
∑
i∈I

Ni (x)ui +
∑
j∈J

N PU
j (x)ψ(x)a j ≡

∑
k∈K

�k(x)dk,

where Ni (x) are FE basis functions, N PU
j (x) are the FE basis

functions used to form the enriched basis function, ψ(x) is
the enrichment function, and ui and a j are nodal coefficients
associated with the finite element and enriched bases, respec-
tively. On substituting the above trial function and using �k

(−1,−1)

θr

O

ΓN

x

y

ΓD

(1,1)

Fig. 6 Laplace problem on an L-shaped domain

as test functions in the weak form (4), we obtain the following
discrete system of equations:

Kd = f, d = [u a]T , (5a)

Ki j =
∫

�

∇�i · ∇� j dV, fi =
∫

	N

�i g d S, (5b)

where �i = Ni for a classical degree of freedom and �i =
N PU

i ψ for an enriched degree of freedom.
In this paper, we use linear (p = 1, Q4), quadratic (p = 2,

Q8) and cubic (p = 3, Q12) serendipity finite elements,
which are shown in Fig 7. The partition of unity enriched
basis is always constructed as the product of the bilinear finite
element basis function (N PU

i = N Q4
i ) and the enrichment

function. As in Ref. [12], we use ψ(x) = r1/3 sin(θ/3) as
the enrichment function in the PUFE method. The DECUHR
adaptive algorithm [57] (restricted to hyper-rectangular
regions) was adopted by Strouboulis et al. [12] to compute
the enriched contributions in the stiffness matrix, whereas
the generalized Duffy transformation is used in this study.

In Fig. 8, a sample mesh of the domain with eight divisions
along each coordinate direction is presented. First, we only
enrich the node at the origin (one additional degree of free-
dom), which corresponds to an enrichment support radius
re = ε (ε is a small number). The support of the enriched
basis function is the shaded region in Fig. 8. For FE compu-
tations, we use 4, 8, 16, 32, 64 and 128 number of divisions
along each coordinate direction, and for PUFE computations,
meshes with 4, 8, 16, and 32 divisions are chosen. Table 1
shows the number of degrees of freedom for the different
meshes and element types. For FE stiffness matrix calcula-
tions and for elements that do not contain an enriched node
in PUFE calculations, 4×4 tensor-product Gauss quadrature
rule is used. For stiffness matrix calculation of the three ele-
ments containing the singularity (shaded elements in Fig. 8),
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(a) (b) (c)

Fig. 7 Serendipity elements. (a) Linear (Q4, p = 1); (b) Quadratic (Q8, p = 2); and (c) Cubic (Q12, p = 3)

21

B

A

h = 0.25

Fig. 8 Sample mesh (8 × 8 mesh divisions) for L-shaped domain

we use a 10 × 10 generalized Duffy quadrature rule (total of
600 evaluation points over the three elements) in the PUFE
computations.

Figure 9a shows a plot of the solution along the diagonal
AB (see Fig. 8) for FE with different pth order elements
and Fig. 9b and c show the results for PUFE. In the PUFE
plots, the contributions due to the FE basis and the enriched
basis are depicted separately. As seen in these figures, the

PUFE solution is proximal to the exact solution and is able
to capture the sharp gradients of the solution in the vicinity of
the singular point. As a measure of accuracy of the methods,
convergence in the strain energy is studied. The relative error
in the strain energy is defined as:

E = a(u, u)− a(uh, uh)

a(u, u)
, a(u, u) =

∫

�

∇u · ∇u dV,

where a(u, u)/2 is the exact strain energy. The exact strain
energy for the problem under consideration is: Eex =
0.423569003301483. Figure 9d shows the convergence for
FE and PUFE with h and p-refinements. For all FE com-
putations, the relative error remains greater than O(10−2),
whereas even on coarse meshes the accuracy of PUFE (one
extra degree of freedom in comparison to the correspond-
ing FE problem) is superior and reaches relative errors of
10−4 on a cubic mesh with 32 divisions along each coordi-
nate direction. Due to the singularity (λ = 1/3) at the corner,
however, the theoretical asymptotic rate of convergence in
strain energy for finite elements is min(2p, 2λ) = 2λ = 2/3
[58]. The rates for all the curves in Fig. 9d for pth order
FE and PUFE are in agreement with theory. This sub-opti-
mal convergence was also noted in previous studies where
enrichment for crack problems (λ = 1/2) is used [49,50].
We return to a potential remedy for this issue later on.

Table 1 Number of degrees of
freedom for meshes used in FE
and PUFE computations

Divisions FE PUFE (re = ε) PUFE (re = 0.5)

Q4 Q8 Q12 Q4 Q8 Q12 Q4 Q8 Q12

4 21 53 85 22 54 86 26 58 90

8 65 177 289 66 178 290 77 189 301

16 225 641 1,057 226 642 1,058 266 682 1,098

32 833 2,433 4,033 834 2,434 4,034 989 2,589 4,189

64 3,201 9,473 15,745 – – – 3,815 10,087 16,359

128 12,545 37,377 62,209 – – – – – –
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Fig. 9 Convergence study for FE and PUFE solutions. In the PUFE
computations, only the vertex node is enriched (re = ε). (a) Solu-
tion along the diagonal AB for FE with different element types;
(b, c) Solution along the diagonal AB for higher-order PUFE;

(d) Convergence of strain energy for FE and PUFE using the gener-
alized Duffy transformation with β = 3; and (e, f) Convergence of k11
and k12 for PUFE (8 × 8 mesh divisions) using different integration
schemes

In Fig. 9e, the relative error in the computation of k11

(the entry in the global stiffness matrix corresponding to the
enriched degree of freedom assigned to the node at the origin;

see Fig. 8) is plotted for a tensor-product Gauss rule, using
Duffy transformation, and by the generalized Duffy transfor-
mation that is proposed in this paper. The expression for k11
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Fig. 10 Geometric enrichment for Laplace problem on an L-shaped
domain. (a) Sample mesh, enriched nodes (re = 0.5) are shown by
open circles; and (b) Convergence in strain energy for PUFE using

Duffy transformation (β = 1; 15×15 quadrature rule) and generalized
Duffy transformation (β = 3; 10 × 10 quadrature rule)

contains terms with 1/rα singularities, where α = 1/3, 4/3:

k11 =
∫

�1

∇(N1ψ) · ∇(N1ψ) dV ≡
∫

�1

K (x) dV,

where ψ = r1/3 sin(θ/3), N1 is the bilinear finite element
basis function associated with node 1 and �1 is its support
(shaded region in Fig. 8). On letting q = − sin(2θ/3)i +
cos(2θ/3)j and using (3), we can write the integrand K (x)
as

K (x) = r2/3 sin2(θ/3)||∇N1||2 + 2 sin(θ/3)N1∇N1 · q
3r1/3

+ N 2
1

9r4/3 .

In Fig. 9f, the relative error in the computation of k12 (cor-
responding to the enriched degree of freedom of node 1 and
the classical degree of freedom of node 2 (see Fig. 8), is pre-
sented. The expression for k12 contains a term with r−2/3

singularity:

k12 =
∫

�2

∇(N1ψ) · ∇N2 dV ≡
∫

�2

K (x) dV,

where Ni (i = 1, 2) are bilinear finite element basis func-
tions, �2 is the element that contains nodes 1 and 2 in its
connectivity, and K (x) in this case is given by

K (x) = r1/3 sin(θ/3)∇N1 · ∇N2 + N1∇N2 · q
3r2/3 .

A benefit that accrues with the generalized Duffy transfor-
mation is that β = 3 can be used to integrate all the terms
in the above integrals. As can be discerned from Fig. 9e and
f, the generalized transformation integrates both k11 and k12

to almost machine precision with about 200 function eval-
uations per element (k11 is computed over three elements
whereas k12 is evaluated on one element). For computing k11,
600 function evaluations (10×10 over each triangle after the
square elements are triangulated) are required, whereas the
Duffy transformation (β = 1) minimally improves the tensor
product rule, a consequence that bears out since the 1/r4/3

singularity (α = 4/3 > 1) is not removed by the Duffy
transformation. It is noteworthy to point out that the gener-
alized Duffy transformation outperforms the adaptive algo-
rithm used in Ref. [12]. The relative error for k11 in Ref. [12]
is 10−5 for about 400 evaluation points; with the generalized
Duffy transformation the same accuracy is attained with just
over 200 evaluation points and more importantly, the error
can be further reduced without significant addition in the
number of evaluation points.

To address the issue of sub-optimality in the rate of conver-
gence of PUFE with topological enrichment (see Fig. 9d), La-
borde et al. [49] and Béchet et al. [50] suggested the notion of
geometric (fixed-area) enrichment—all nodes that are inside
a fixed region of the singularity are enriched. We choose an
enrichment radius re = 0.5 and all nodes within a distance
of re or less from the vertex are enriched (see Fig. 10a). The
number of degrees of freedom in the PUFE computations are
listed in Table 1. Figure 10b shows the convergence curves
for the strain energy using linear, quadratic, and cubic PUFE
solutions. Duffy transformation (β = 1) with a 16 × 16
tensor-product rule is compared to the generalized transfor-
mation (β = 3) with a 10 × 10 tensor-product rule. With
the generalized Duffy quadrature, we obtain rates of conver-
gence in strain energy of 1.85, 3.92 and 5.92 (rates are com-
puted for PUFE solutions using 16, 32, and 64 divisions) for
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the linear, quadratic and cubic elements, respectively, which
indicates that close to the optimal 2p rate of convergence is
recovered. Hence, the generalized Duffy quadrature is accu-
rate and yields the correct rate of convergence, whereas the
Duffy quadrature fails (non-monotonicity and incorrect rate
of convergence). To ensure convergence, the quadrature error
must be at least an order smaller than the PUFE approxi-
mation error, which is the case when the generalized Duffy
transformation is used, but is not so when the Duffy trans-
formation (see Fig. 9e, f) or a tensor-product Gauss rule is
applied.

4 Conclusions

In this paper, we presented a generalization to the well-known
Duffy transformation, which has been widely used for inte-
gration of kernels having 1/r singularity. We introduced the
following generalized Duffy transformation: (u, v, w) →
(x, y, z): x = uβ , y = uβv, z = uβw, with β as an addi-
tional parameter. The choice of β was guided by the observa-
tion that the transformed kernel not have a fractional expo-
nent. For instance, for α = {1, 1/2, 1/3, 2/3, 4/3}, β =
{1, 2, 3, 3, 3} was the optimal choice, respectively. All cases
were tested in two and three dimensions, and the numerical
results clearly demonstrated the superior accuracy and effi-
ciency of the generalized transformation over the standard
Duffy transformation. We also showed that the number of
evaluation points can be further reduced by using the mini-
mum number of Gauss points in u-direction (both in two- and
three-dimensional applications) so that integration is carried
out exactly with respect to u and higher-order quadrature
rules are used in the other directions.

The L-shaped domain with a corner singularity was con-
sidered, and higher-order FE and PUFE computations were
performed. Once again, the merits of the generalized Duffy
transformation were revealed in the computation of the
enriched stiffness matrix entries. The convergence in strain
energy of PUFE was studied: when only the vertex node was
enriched, a convergence rate of 0.66 was realized, but when
a fixed region of radius 0.5 was enriched, near-optimal 2p
rate of convergence was recovered. This was possible due
to the highly accurate integration that the generalized Duffy
transformation afforded; use of the Duffy transformation or a
tensor-product Gauss rule led to inaccuracies since the quad-
rature error dominated the approximation error.

The generalized Duffy transformation can be implemented
in boundary element and enriched finite element methods for
the integration of singular functions without adding to the
complexity of the programming and at the same time reduc-
ing the number of evaluation points with respect to the Duffy
transformation. Furthermore, when there is a need for fre-
quent integration of the singular kernel over the same domain,

the generalized Duffy transformation can be combined with
the node elimination algorithm presented in Mousavi
et al. [59] to construct a very efficient quadrature rule with far
fewer number of evaluation points. The term 1/rα containing
the singularity is used as the weight function in these quadra-
ture rules similar to the quadratures presented by Haegemans
[60]. Even though this study targeted integrands with ver-
tex singularities in PUFE methods, the stringent demands on
accuracy in non-singular PUFE applications such as acous-
tics [61] and Schrödinger and Poisson solutions in quantum
mechanics [62] reinforces the need and importance of devel-
oping accurate and efficient quadrature rules for enriched
finite element methods.

Appendix A

Generalized Duffy transformation in two dimensions The
mapping (u, v) → (x, y) : x = uβ , y = uβv transforms the
integral from the standard triangle (Fig. 1a) to the unit square
(Fig. 1b):

I =
1∫

0

dx

x∫

0

dy
f (x, y)

(x2 + y2)α/2

=
1∫

0

1∫

0

f (uβ, uβvγ )

[u2β(1 + v2γ )]α/2 J du dv,

where J is defined as

J =
(
βuβ−1

) (
γ uβvγ−1

)
= βγ u2β−1vγ−1.

On setting γ = 1, we obtain

I =
1∫

0

1∫

0

f (uβ, uβv)

(1 + v2)α/2
βu2β−1−αβdu dv.

Any arbitrary triangle with a vertex singularity is first trans-
lated so that the singularity is moved to the origin and then an
affine map to the standard triangle is used: x = aX +bY and
y = cX + dY , where (X,Y ) is the physical coordinate sys-
tem containing the arbitrary triangle and (x, y) is the plane
of the standard triangle. Equivalently, given an arbitrary tri-
angle R having one vertex at the origin, there exists an affine
transformation A that takes the standard triangle to R [21].
The transformation A can be used to map the points of a rule
over the standard triangle to R.

Appendix B

MATLAB code for construction of generalized Duffy quadra-
ture in two dimensions

123



138 Comput Mech (2010) 45:127–140

function [xg,yg,wg] =
getGeneralizedDuffyQuad(coord,
beta,nsp)

% External Dependencies (m-files)
% gauss_points(nsp) : 1D

Gauss points
% gauss_weights(nsp): 1D

Gauss weights

% Input Parameters
% coord : 3 x 2 matrix (triangle

coordinates)
% beta : Duffy parameter

(positive integer)
% nsp : Number of quadrature

points

% location of vertex singularity
a = coord(1, 1);
b = coord(1, 2);

% shift
sh_coord = [coord(:, 1) - a, coord

(:, 2)- b];

% affine mapping
a11 = sh_coord(2, 1);
a12 = sh_coord(3, 1) - sh_coord(2, 1);
a21 = sh_coord(2, 2);
a22 = sh_coord(3, 2) - sh_coord(2, 2);
A = [a11, a12; a21, a22];
detA = det(A);

% get a tensor product over unit square
% sq = [0, 0; 1, 0; 1, 1; 0, 1];
x0 = gauss_points(nsp); x0 = (1+x0)/2;
w0 = gauss_weights(nsp); w0 = w0/2;
X = struct(’x’, 0, ’y’, 0, ’w’, 0);
X(1:nsp*nsp) = X;
for i = 1:nsp

for j = 1:nsp
ind = (i-1)*nsp+j;
X(ind).x = x0(i);
X(ind).y = x0(j);
X(ind).w = w0(i)*w0(j);

end
end

% transformation
Z1 = X; Z2 = X;
for i = 1:length(X)

% generalized transformation

u = X(i).x; v = X(i).y; w = X(i).w;
Z1(i).x = uˆbeta;
Z1(i).y = uˆbeta * v;
Z1(i).w = w * beta*uˆ(2*beta-1);

% reverse affine mapping and shift
u = Z1(i).x; v = Z1(i).y; w = Z1(i).w;
x = a11*u+a12*v+a;
y = a21*u+a22*v+b;
w = detA*w;
Z2(i).x = x; Z2(i).y = y; Z2(i).w = w;

end

% write output
xg = zeros(nspˆ2, 1); yg = xg; wg = xg;
for i = 1:nsp*nsp
xg(i) = Z2(i).x;
yg(i) = Z2(i).y;
wg(i) = Z2(i).w;

end
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