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ABSTRACT 

We review the differences in first order phase transition of single and multi
component systems, and then discuss the crystalline structure expected to 
exist in the mixed confined deconfined phase of hadronic matter. The par
ticular context of neutron stars is chosen for illustration. The qualitative 
results are general and apply for example to the vapor-liquid transition in 
subsaturated asymmetric nuclear matter. 
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Crystalline Structure in the Confined-Deconfined Mixed Phase 

N. K. Glendenning and S. Pei 

1 Introduction 

First order phase transitions are very familiar only in one-component substances such 
as water. As is well known, on an isotherm the pressure remains constant as do all 
internal properties such as density and chemical potential, for all proportions of the 
two phases, gas and liquid, in equilibrium. These characteristic properties of all single
component substances are unique to them, and are not at all general. What is not 
familiar is that the precise converse of the above properties holds when the substance 
has more than one independent component. This has unique consequences in certain 
situations, such as in the presence of a gravitational field. More than that, when one 
of the independent components is electrically charged, the two phases in equilibrium 
may form a Coulomb lattice of the rare phase immersed in the dominant one. We 
have proven these properties in great detail and generality elsewhere [1]. Our aim here 
is to briefly recapitulate the physical reason for the different behavior of a first order 
phase transition in single- and multi-component substances, and then to compute 
the varying geometry of the crystalline structure as a function of proportion of the 
phases in equilibrium. We shall do this in the context of the confined-deconfined phase 
transition in neutron star matter, - matter that is charge neutral and in equilibrium 
with respect to all baryon and quark species. The results would be qualitatively 
similar for the liquid-vapor transition in sub-saturated nuclear matter. 

2 Degrees of Freedom in Multi-component Sys
tem 

We stated above that in the mixed phase of a multi-component substance all internal 
properties of each phase and their common pressure vary as the proportion of the 
phases. Let us see why this is so, first by considering the physics rather than the 
mathematics. Consider a substance composed of two conserved 'charges' or indepen
dent components, - Q of one kind, B of the other. In the case of a neutron star, 
these could denote the net electric charge number (in units of e) and baryon charge 
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number. Let the substance be closed and in a heat bath. Define their concentration, 

r = Q/B. (1) 

Is this ratio fixed? One would certainly think so since Q and B are fixed. But the 
ratio is fixed only as long as the system remains in one pure phase or the other! 
When in the mixed phase the concentration in each of the regions of one phase or the 
other may be different and they are restricted only by the conservation on the total 
numbers, 

(2) 

If the internal forces can lower the energy of the system by rearranging the concen
tration, they will do so. The essential point is that conservation laws in chemical 
thermodynamics are global, not local. 

The above observations allow us to prove easily that all properties of each phase 
in equilibrium with the other will vary according to the proportion of the phases. 
Consider the system at the density or pressure where the neutron star matter has just 
begun to condense some quark matter. There is little scope for the internal forces 
to optimize the concentrations, rt, r 2 , in the two phases, since the small quantity of 
quark matter can neither receive nor donate much of either charge. However, at higher 
density or pressure, the proportion of the two phases will become more comparable, 
and the internal forces now have more scope to optimize the concentrations in the 
two phases, alwa.ys consistent with overall conservation of the two charges. From this 
observation, we learn: For a first order phase transition in a. multi-component system, 
the nature of each phase in equilibrium changes with the proportion of the phases 
and since the total energy is now the volume proportion of the energy density of the 
two phases, each of which varies with the proportion, the derivative with respect to 
volume is no longer a. constant. Therefore the pressure also varies as the proportion 
of phases! 

The mathematical proof of the above properties is not nearly so illuminating as 
the physical verbal proof above, but we give it for completeness. 

The Gibbs condition for phase equilibrium is that the chemical potentials J.lb, J.lq 
corresponding to B and Q, temperature T and the pressures in the two phases be 
equal, 

(3) 

As discussed, the condition of local conservation is stronger than required. We apply 
the weaker condition of global conservation, 

< P >= (1 - x)PI (J.lb, J.lq, T) + XP2(J.lb, J.lq, T) = B /V, 

(1- x)qi(J.lb, J.lq, T) + xq2(J.lb, J.lq, T) = Q/V, X= V2/V. 

(4) 

(5) 

Given a temperature, the above three equations serve to determine the two inde
pendent chemical potentials and V for a specified volume fraction x of phase '2' 
in equilibrium with phase '1 '. We note that the condition of global conservation 
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expressed by (4) and (5) is compatible, together with (3), with the number of un
knowns to be determined. It would not be possible to satisfy Gibbs conditions if 
local conservation were demanded, for that .would replace (5) by two equations, such 
as q1(pb, J-lq, T) = Q1/Vi, q2(J-lb, J-lq, T) = Q2j~, and the problem would be over 
determined. 

In systems possessing only one conserved charge, the pressure equation defines 
uniquely the corresponding chemical potential for phase equilibrium. In that case 
the energy densities of each phase are also determined as unique values and like the 
pressure are independent of the proportion of the phases in equilibrium. In contrast 
with this, for two or more conserved charges and corresponding chemical potentials, 
the situation is quite different. Through (3,4,5) the chemical potentials obviously 
depend on the proportion, x, of the phases in equilibrium, and hence so also all 
properties that depend on them, the energy densities, baryon and charge densities of 
each phase. and the common pressure. This remarkable and little known property 
of first order phase transitions with more than one conserved charge and the· role 
played by the microphysics or internal forces is discussed in detail elsewhere [1, 2]. 
It will be observed that the above discussion is completely general, and must apply 
to many systems, in particular, to the confined-deconfined phase transition at high 
density and equally to the so-called liquid-vapor transition in nuclear matter at sub
saturation density. For both systems the symmetry energy is the driving force, and 
clearly the results here for two component systems hold when Z # N. For the 
special case of equality however, the driving force is absent,- both phases are already 
symmetric, - and the pressure would be constant throughout the. mixed phase. But 
only when N = Z! 

3 Internal Forces 

By the above discussion we understand that the internal force( s) can exploit the 
degree( s) of freedom available in rearranging concentrations of conserved quantities 
while conserving them globally and lowering the energy. Let us looknow at a specific 
example, neutron star matter which is charge neutral and in chemical equilibrium. 
Stars must be neutral because they are bound by gravity and net charge would reduce 
their binding, it being also long-ranged. Since pure neutron matter is beta unsta
ble, neutron star matter will be composed of various particles of different charges, 
- neutrons, protons, leptons, perhaps hyperons and quarks. The star is born with 
a definite number of baryons, and soon becomes neutral. There are two conserved 
charges, therefore, - electric charge and baryon number, - and two corresponding 
independent chemical potentials. 

The internal force that can exploit the degree of freedom made available by al
lowing neutrality to be achiev~d globa.lly and which is closed to one in which local 
neutrality is artificially enforced, is the isospin restoring force experienced by the 
confined phase of hadronic matter. It is embodied in the isospin symmetry energy in 
the empirical mass formula of nuclei and nuclear matter. The hadronic regions of the 
mixed phase can arrange to be more isospin symmetric (closer equality in proton and 
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neutron number) than in th,e pure phase by transferring charge to the quark phase 
in equilibrium with it. Symmetry energy will be lowered thereby at only a small 
cost in rearranging the quark Fermi surfaces. Electrons play only a minor role when 
neutrality can be realized among baryon charge carrying particles. Thus the mixed 
phase region of the star will have positively charged regions of nuclear matter and 
negatively charged regions of quark matter. 

4 Structure in the Mixed Phase 

The Coulomb interaction will tend to break the regions of like charge into smaller 
ones, while this is opposed by the surface interface energy. Their competition will be 
resolved by forming a lattice of the rare phase immersed in the dominant one whose 
form, size and spacing will minimize the sum of surface and Coulomb energies. In 
other words, a crystalline lattice will be formed. Since all internal properties of the 
two phases in equilibrium with each other vary with their proportion, so will the 
geometrical structure. When quark matter is the rare phase immersed in confined 
hadronic matter, it will form droplets. At higher proportion of quark matter, the 
droplets will merge to from strings and then sheets, and then the role in the geometric 
structure of confined and deconfined phases will interchange [1]. 

We consider a. \Vigner-Seitz cell of radius R containing the rare phase object of 
radius r and an amount of the dominant phase that makes the cell charge neutral. 
The whole medium can be considered as made of such non-interacting cells, under 
the usual approximation of neglecting the interstitial material. As we shall see, the 
size of these cells is is of the order of tens of fermis or less. The variation of the metric 
over such small regions is completely negligible (see ref. [3] for the radial behavior of 
the metric in typical neutron star models), so they are locally inertial regions and our 
discussion of them as if gravity is absent is justified by the equivalence principle. The 
solution to problems involving a competition between Coulomb and surface interface 
energies is universal. We may adapt the results of (4] to write for the radius of the rare 
phase immersed in the other and the minimum of the sum of Coulomb and surface 
energies, in the case of three geometries, slabs, rods and drops, 

1 
r3 

Ec+Es 
v 

d=l,2,3, (6) 

(7) 

where, qH, qq are the charge densities of hadronic and quark matter (in units of e) 
at whatever proportion x being considered. We have denoted the volume fraction of 
quark matter Vq/V by X· The ratio of droplet (rod, slab) to cell volume is called, 

x = (r/R)d. (8) 

It is related to X by, 

X = ( r / R)d = x (hadronic matter background), (9) 
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when hadronic matter is the background (ie. dominant) phase. The quark droplets 
(rods, slabs) have radius r and the spacing between centers is R, with d = 1, 2, 3 
corresponding to slabs, rods and drops, respectively. In the case of drops or rods, r 

is their radius and R the half distance between centers while for slabs, r is the half 
thickness. In the opposite situation where quark matter is the background, 

1 - X = ( r / R)d = x (quark matter background) , (10) 

is the fraction of hadronic matter which assumes the above geometric forms. 
The function h( x) is given in all three cases by, 

- 1 [ 1 1-2/d ] h( X) - d + 2 ( d _ 2) ( 2 - dx ) + X , (11) 

where the apparent singularity for d = 2 is well behaved and has the correct value, 

limit 1 ('> _ d 1-2/d) ---+ -[1 + 1 ] 
d-2 (d- 2)~ x nx. (12) 

We have supposed that the electrons are uniformly distributed throughout the mixed 
phase whether quark or hadronic regions, and hence they do not appear in the above. 
In fact, we shall find that electrons are almost totally absent from the mixed phase. 

What can we say of the surface tension? This is a very difficult problem to 
solve. Obviously it should be self-consistent with the two models of matter, quark 

, and hadronic, in equilibrium with each other. This latter feature arises because of 
·the fact that, unlike simple substances like water and vapor, the densities of each 
phase change as their proportion does [1, 5]. So the surface energy is not a constant. 
Following our deduction that a. Coulomb lattice should exist in the mixed hadron
quark phase [1, 5], Heiselberg, Pethick and Staubo have investigated the dependence 
of the geometrical structure on the surface tension [6]. They adopted a. selection of 
values from various sources, none of them computed self-consistently, for this is an 
extremely hard problem. 

Gibbs studied the problem of surface energies, and as a gross approximation, one 
can deduce that it is given by the difference in energy densities of the substances in 
contact times a length scale typical of the surface thickness [7], in this case of the order 
of the strong interaction range, L = 1 fm. In other words; the surface interface energy 
should depend on the proportion of phases in phase equilibrium, just as everything 
else does. 

CJ = const x [EQ(X)- EH(X)] x L, (13) 

where x is the volume proportion of quark phase. The constant should be chosen so 
that the structured phase lies below the unstructured one. Heiselberg et al found this 
energy difference to be about 10 MeV. We choose the constant accordingly. 

It will be understood ·from the formulae written above that the structure size, 
whether drops, rods or slabs, and the sum of surface and Coulomb energies scale with 
the surface energy coefficient as CJ

113 independent of geometry. Therefore the location 
in the star where the geometry changes from one form to another is independent of 
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5 Bulk Description of the Phases 

The geometrical structure of the mixed phase occurs against the background of the 
bulk structure, at least to good approximation. The energy and pressure are of course 
dominated by the bulk properties of matter. We outline briefly how to handle this 
part of the problem. It has been discussed in detail elsewhere. 

For the confined hadronic phase we use the covariant Lagrangian, 

£ = L 1/JB(i!,./Y'- ffiB + 9uBU- 9wB/,..w~-'- ~gpB/11-T · p~-')1/JB 
B 

+ 1(8 u8~-'u- m2 u 2 ) - lw w~-'v + lm2 w w~-' 2 1J. 17 4 IJ.V 2 W 11-

(14) 

We regard it as an effective theory to be solved at the mean field level, and with 
coupling constants adjusted, as described below, to nuclear matter properties. The 
baryons, B are coupled to the u, w, p mesons. The sum on B is over all the charge 
states of the lowest baryon octet, (p, n, A,~+,~-, ~0 , :=:-, :=:0 ) as well as the .6. quartet. 
However the latter are not populated up to the highest density in neutron stars, nor 
are any other baryon states save those of the lowest octet for reasons given elsewhere 
[3). The last term represents the free lepton Lagrangians. How the theory can be 
solved in the mean field approximation for the ground state of charge neutral matter 
in general beta equilibrium (neutron star matter) is described fully in ref. [3). 

There are five constants here that are determined by the properties of nuclear 
matter, three that determine the nucleon couplings to the scalar, vector and vec
tor, iso-vector mesons, g17 I m 17 , 9w I mw, g PImP, and two that determine the scalar self
interactions, b,c. The nuclear properties that define their values are the saturation 
values of the binding energy, baryon density, symmetry energy coefficient, compres
sion modulus and nucleon effective mass. The hyperon couplings are not relevant 
to the ground state properties of nuclear matter but information about them can 
be gathered from levels in hypernuclei, the binding of the A in nuclear matter, and 
from neutron star masses [8]. We shall assume that all hyperons in the octet have 
the same coupling as the A. They are expressed a.s a ratio to the above mentioned 
nucleon couplings, 

(15) 

The first two are related to the A binding by a relation derived in [8] and the third 
can be taken equal to the second by invoking vector dominance. We adopt the value 
of X 17 = 0.6 and corresponding Xw taken from [8]. 

The chemical potentials of all hadrons are given by, 

(16) 
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where bs and es are the baryon and electric charge numbers of the baryon state B, 
and Pn and Pe are independent chemical potentials for unit baryon number and unit 
negatiye electric charge number (neutron and electron respectively). 

The values of nuclear matter properties are the binding, B j A = -16.3 MeV, 
saturation density, Po = 0.153 fm-3

, and symmetry energy coefficient, a 5ym = 32.5 
MeV,]{= 240 MeV, m;

3
Jm = 0.78. 

To describe quark matter we use a simple version of the bag model for finite quark 
masses and T = 0 [1]. Because of the long time-scale, strangeness is not conserved 
in a star. The quark chemical potentials for a system in chemical equilibrium are 
therefore related to those for baryon number and electron by 

(17) 

Solving the models of confined and deconfined phases, in both pure phases and 
in the mixed phase, we can compute the composition of charge-neutral, beta-stable 
neutron star matter. It is shown in Fig. 1. Note the saturation of the leptons as 
soon as quark matter appears. At this stage, charge neutrality is achieved more 
economically on baryon charge carrying particles, since the star has a definite baryon 
number. We note the transition from pure hadronic to mixed phase occurs at the 
rather low density of about 2p0 , as was found also by several other authors [6, 9]. 

Figure 1: · Baryon, lepton 
and quark populations in 
charge neutral, beta-stable 
neutron star matter, as a 
function baryon density < 
p >. In the mixed phase re
gion, the quark densities re
fer to the their values aver
aged over the volume of a 
Wigner-Seitz cell and simi
larly for the baryons. 
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6 Varying Crystalline Structure 

We are now in a position to compute the geometrical structures, their sizes and 
spacings as they vary from one radial point to another throughout the,mixed phase 
region. Our purpose is to demonstrate the extreme dependence of the structure of 
the crystalline region as a function of proportion of phases or equivalently density or 
pressure. 

In Fig. 2 we show some of the ingredients from the bulk calculation that enter 
the computation of the structure as laid down in section 4. It is noteworthy how the 
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Figure 2: The bulk energy 
density of the hadronic and 
quark phases in equilibrium 
as a function of local vol
ume proportion of the quark 
phase, x = Vq /V, the sur
face energy coefficient, u(x), 
proportional to the differ
ence of the above, and the 
sum of Coulomb and surface 
energies. 

energy density, of each phase varies throughout the mixed phase region as a function 
of the volume fraction of quark matter, just as we showed above must be the case in 
general. Therefore the total energy density, 

c(X) = (1- X)EH(X) + XEQ(X), (18) 

is a non-linear function of proportion (or volume). As a consequence, the pressure 
varies throughout the mixed phase. This is in contrast to a. simple substance, one 
with only one conserved charge, in which the density of each phase in equilibrium 
remains constant as well as the pressure. It is also worth noting that the bulk energy 
densities of the confined and deconfined phase are about two orders of magnitude 
greater than the sum of the energy densities of the Coulomb and surface interface 
energy. This justifies the two part approach to the problem, of computing the bulk 
properties and then against this background, the geometrical structure imposed by 
the surface and Coulomb energies. As already noted, the total charge in a Wigner
Seitz cell is zero, so the Coulomb force is shielded by the lattice arrangement of the 
rare phase immersed in the dominant. To illustrate the rearrangement of the electric 
charge concentration between the quark and baryonic regions of the mixed phase, we 
show the charge density in each region, and the electron charge density, assumed to 
be uniform throughout the Wigner-Seitz cell, as functions of the proportion of quark 
matter in Fig. 3. It is interesting to see that quark matter, which in the absence 
of baryonic matter (x = 1) is charge neutral, carries a high negative charge density 
when there is little of it and it is in equilibrium with baryonic matter. The latter 
acquires an ever increasing density as the quantity of quark matter, with which it can 
balance electric charge, grows. This illustrates how effectively the symmetry driving 
force acts to optimally rearrange charge. 

As shown above, because one of the conserved quantities is the electric charge, 
having long range, an order will be established in the mixed phase, the size of the 
objects of the rare phase and their spacing in the dominant one, being determined 
by the condition for a minimum sum of Coulomb and surface energy. In Fig. 4 the 
diameter D and spacing S is shown by the lower and upper curves as a function of 
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Figure 3: The charge densi
ties in the mixed phase car
ried by regions of quark and 
hadronic matter, as well as 
leptons which permeate all 
regions m our approxima
tion. Multiplied by the re
spective volumes occupied, 
the total charge adds to 
zero. 
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7 Summary 

Figure 4: Diameter (lower 
curves) and Spacing (upper 
curves) of rare phase im~ 

mersed in the dominant as 
a function of the propor
tion of quark phase. Ge
ometries are identified as 
drops, rods, slabs, and com
position as q (quark) or h 
(hadronic). Dots are a con
tinuous dimensionality in
terpolation of the discrete 
shapes. 

We have exhibited the crystalline structure of the mixed phase of confined and de
confined neutron star matter. What is of crucial importance is that the mixed phase, 
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if it had a constant pressure for all proportions, would be absent from the star, or 
any gravitational field. This is because a constant pressure region cannot support any 
overlaying material, and the pressure is monotonic in a star as it is in our atmosphere. 
This squeezing out of the mixed phase was an inadvertent feature of idealizations of 
all treatments of the phase transition in neutron stars until our work. The idealiza
tions were either an assumption of purely neutron star [10], or an assumption of local 
charge neutrality [11]. Neither is a valid constraint. 

It is almost certain that a solid region in a pulsar will play a role in the period 
glitch phenomenon, which is highly individualistic from one pulsar to another. We 
have suggested that this high degree of individual behavior may be due to the extreme 
sensitivity on stellar mass of the radial extent of the solid region and the particular 
geometrical forms and sizes of the objects at the lattice sites [12]. The sensitivity 
arises because of the rather flat radial profile of the pressure and energy density in 
neutron stars, so that a small change in central density and therefore a small change in 
stellar mass, moves a transition pressure a considerable distance in the radial direction 
in the star. 

As remarked earlier, we have illustrated very general phenomena associated with 
first order phase transitions in multi-component systems. Whether geometric struc
tures can develop on the time scale of collisions between nuclei is problematic, but the 
non-constant pressure in the mixed phase is likely to have consequences that may be 
observable. In particular the so called plateau behavior ascribed to phase transitions 
in nuclear collisions can be present only for N =Z symmetric systems, since otherwise 
the symmetry energy will have scope to act in the mixed phase. 

Acknowledgements: This work was supported by the Director, Office of Energy 
Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of 
the U.S. Department of Energy under Contract DE-AC03-76SF00098 .. 
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