Computing Aggregates for Monitoring Wireless
Sensor Networks

Jerry Zhao and Ramesh Govindan
Department of Computer Science
University of Southern California

Los Angeles, CA 90089
Email: {zhaoy,ramseh}@usc.edu

Abstract— Wireless sensor networks involve very large num-
bers of small, low-power, wireless devices. Given their unattended
nature, and their potential applications in harsh environments, we
need a monitoring infrastructure that indicates system failures
and resource depletion. In this paper, we briefly describe an
architecture for sensor network monitoring, then focus on one
aspect of this architecture: continuously computing aggregates
(sum, average, count) of network properties (loss rates, energy-
levels etc., packet counts). Our contributions are two-fold. First,
we propose a novel tree construction algorithm that enables
energy-efficient computation of some classes of aggregates. Sec-
ond, we show through actual implementation and experiments
that wireless communication artifacts in even relatively benign
environments can significantly impact the computation of these
aggregate properties. In some cases, without careful attention
to detail, the relative error in the computed aggregates can be
as much as 50%. However, by carefully discarding links with
heavy packet loss and asymmetry, we can improve accuracy by
an order of magnitude.

I. INTRODUCTION

Wireless sensor networks will consist of large numbers of
small, battery-powered, wireless sensors. Deployed in an ad-
hoc fashion, those sensors will coordinate to monitor physical
environments at fine temporal and spatial scales [1]-[3]. Wire-
less sensor networks will be autonomously deployed in large
numbers. Energy-efficiency is a key design criterion for these
sensor networks.

A monitoring infrastructure will be a crucial component of a
deployed sensor network. Such an infrastructure indicates node
failures, resource depletion, and other abnormalities. Our first
contribution is an architecture for sensor network monitoring
infrastructures, one that consists of three classes of software.
The first class of software continuously collects aggregates
of network properties (we call them network digests) in the
background. Triggered by sudden changes in these properties,
scans can be invoked to provide global, yet aggregated, views
of system state. Such views can indicate the location of per-
formance problems or impending failure within the network.
Dumps can then be used to collect detailed node state to debug
the problem. These three pieces of software are invoked at
different spatial and temporal scales, and will allow accurate,
yet low-overhead sensor network monitoring.

Our second contribution is the design of protocols to contin-
uously compute network digests. Abstractly, a digest is defined

Deborah Estrin
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095
Email: destrin@cs.ucla.edu

by an digest function f(vy,va,---,v,), Where v; is the value
contributed by each node . In this paper, we consider v;’s
that represent some aspect of network operation: node energy
level, degree of connectivity, volume of traffic seen etc. A
key property of the class of aggregates we are interested in is
decomposability [4], [5]. f is decomposable by a function g
if it can be expressed as:

f(vla""vn) :g(f(vlv'">vk)7f(vk+17"'7vn))

Decomposable digest functions include min, max, average, and
count. The median, for example, is not decomposable.
Aggregation has been discussed in different contexts such
as large scale databases [6], active networks [7], and wireless
sensor network applications [5], [8], [9]. However, computing
digests for sensor networks poses unique design challenges.
Digests are computed continuously and from the entire net-
work. Furthermore, computing digests represents background
activity and not the sensing task done by the applications (in
contrast to queries that compute the average temperature of
a region, for example). Finally, prior aggregation schemes
have been designed to deliver aggregates on-demand to a
small number of users outside the network; we argue that
digests should be continuously distributed throughout the
entire network. This will allow users low-latency access to
digests from any node within the network. In addition, it may
also enable applications to tailor their performance based on
the values of digests (e.g., shift to a different mode of operation
when the average energy level falls below a certain threshold).

A. Our Approach

These observations lead to two key constraints in the design
of protocols for digest computation. First, digest protocols
must be aggressively energy-efficient, far more so than other
components of the system. Second, because there isn’t a natu-
ral initiator for a digest (e.g., a user node) the routing structures
for digest computations must be autonomously derived.

To achieve aggressive energy-efficiency, we propose to pig-
gyback digest computation messages on neighbor-to-neighbor
communication. We observe that many proposed sensor net-
work protocols for medium access [10] and for topology
control [11], [12] include periodic beaconing. Digests, being

small by definition, can easily be piggybacked on such com-
munication. While not itself a new idea, this approach seems
almost necessary to achieve very low energy expenditures
for digest computation. This approach trades-off latency for
energy savings. We quantify this trade-off in a later section.

We observe that some decomposable digest functions like
min and max can be computed using a technique we call
digest diffusion!. For example, suppose we are interested in
computing a digest that represents the value of minimum
energy at any node in the network; call this value FE,,;,.
Each node periodically broadcasts to its neighbors (e.g. by
piggybacking on other messages) its own energy, as well as
its current estimate of E,,;,. Each node also sets its estimate
of E,,;» to the lower of its own energy-level and the lowest
among the estimates heard from its neighbors. After a few
iterations (intuitively, a number proportional to the network
diameter), all nodes converge to the right E,,;,. In other
words, F,,;, diffuses out to the network. (This is, of course,
a simplified description. We describe our protocol more fully
in Section V).

Thus, digest diffusion can be used to evaluate one class of
digests, and satisfy two important requirements we discussed
above. First, every node ends up with an estimate of the
digest. Second, these computations do not need to be explicitly
initiated by some external action (e.g. by injecting a query into
the system).

Not all digest functions can be computed using iterative
diffusing computations. For example, the average and count
functions, being non-idempotent, can be particularly sensitive
to duplicates. Our simple diffusing computation can easily
deliver duplicate data to a node. To compute this class of
digests, though, we observe that computing a min or a max
using an iterative diffusing computation results in a tree that
spans the entire network. As we show in Section 1V, we can
use this tree to compute this class of digests, by propagating
digest values to the root of the tree. Note that this tree is
not constructed by user initiation, but as a by-product of
computing a min or a max digest?

Finally, we note that some digests are particularly sensitive
to packet loss. Count is an example of this. The packet loss on
a wireless link can be significant is anecdotally well known.
However, not much work has gone into quantifying the extent
of loss, until recently. Morris et al. show the prevalence of
links with heavy loss and asymmetry in 802.11 environments
[13]. Our own experiments confirm this in Section V for
a network of motes (the sensor node platform). Even in
fairly benign environments, we observe widespread and time-
varying occurrences of heavy link loss and asymmetry. We also
demonstrate that simple implementations of the count digest
can exhibit severe error in these environments. We then show
that a careful implementation that selectively avoids links with

1This is in contrast to directed diffusion [8]. a data-centric routing paradigm.

2The notion here is that the network will be continuously computing several
kinds of digests, depending on the needs of the particular deployment. We
think at least one of them will be a min or max digest, and that can form the
basis for computing other digests.

(a) Aggregate Network Properties (b) Abstracted Network Scan

‘@'

(c) Detailed Network Dump

TTme

o‘.‘oa&uu‘:
e o
))

A Wireless Sensor Network

Fig. 1.

LN

Monitoring wireless sensor networks

heavy loss and asymmetry can improve the accuracy of count
computation, sometimes by an order of magnitude.

To our knowledge, this paper is the first to articulate an
architecture for sensor network monitoring. Our paper fleshes
out a very practical implementation of one component of this
architecture, discussing how real-world artifacts can seriously
impact the performance of the monitoring system.

B. Paper Organization

The rest of the paper is structured as follows. The next two
sections describe an infrastructure to monitor wireless sensor
networks in details, and give a brief definition of aggregate
network properties. Section 1V describes our approach that
enables energy-efficient computation of aggregate properties.
Section V describes link quality estimation and rejection
algorithms to reduce the negative impacts of packet loss on
the performance of the computation process. The performance
of our design is evaluated by implementation on a testbed and
a simulator in Section VI and VII. We conclude our work with
related work and discussion of strength and limitation of our
approach.

Il. MONITORING WIRELESS SENSOR NETWORKS: AN
ARCHITECTURE

While the main focus of this paper is a specific set of
diagnostic tools for sensor networks (digests), we describe in
this section our vision for how these tools fit into a coherent
architecture for monitoring sensor networks. This architecture,
which is quite different from the classical SNMP [14] archi-
tectural model (centralized collection of per-device statistics),
is motivated by the need for energy-efficient communication
in sensor networks.

Our architecture is distinguished by three levels of monitor-
ing, where each level consists of a class of tools. Each level is
distinguished from the next in the spatial or temporal scale at
which the corresponding tools are invoked. This is illustrated
in Figure 1.

The first component consists of tools such as dump. Upon
user’s request, dump collects detailed node state or logs over

the network for diagnosis. For example, we could dump the
raw temperature readings from some sensors to debug the
collaborative event detection algorithm between nearby nodes.
Dump can be implemented as an application upon directed
diffusion [8]. Because the amount of data per node may be
large, dump should be invoked only at small spatial scales
(i.e., from a few nodes), and only when there is a reasonable
certainty of a problem at those nodes.

To guide system administrators to the location of problems,
we envision the second class of tools that we call scans. Scans
represented abstracted views of resource consumption through-
out the entire network, or throughout a significant section
of the network. Thus, this class of tools has a significantly
greater spatial extent than dumps. One example of a scan is
the escan [15]. To compute an escan, a special user-gateway
node initiates collection of node state, for instance residual
energy supply level, from every node in the system. Instead of
delivering the raw data to user node, escan computation takes
advantage of in-network aggregation. Residual energy level
data from individual nodes are combined into more compact
forms, if and only if those nodes are nearby and have similar
energy level. By pushing the data processing into the network,
escan constructs an approximate system-wide view of energy
supply levels with much less communication cost compared
to centralized collection. From such a global view, users are
able to isolate those nodes upon which they can invoke tools
such as dump.

Clearly, the energy cost of collecting an escan can be
significant, and our third class of tools, digests, can help
alert users to error conditions (partitions, node deaths) within
the network. As we have described before, a digest is an
aggregate of some network property. For example, the size
of network i.e. the number of nodes, can indicate several
system health conditions: Sudden drop in the network size
can be taken as hint for massive node failure or network
partitioning. In the paper, we show how to collect aggregates
efficiently, accurately, and continuously. Digests, like escans,
also span the entire network, or a large spatial extent. However,
unlike escans, they are continuously computed. Digests are not
intended to isolate network problems, merely to tell users when
to invoke network-wide scans.

I1l. DEFINITIONS, ASSUMPTIONS, AND MODELS

We assume that the sensor network consists of n nodes
deployed in an ad-hoc manner. Nodes have unique identifiers.
Nodes may crash due to failures or resource depletion and
new nodes may join the network. Nodes are static or move
infrequently. Each node can communicate with its neighbors
within certain range. Communication between nodes may be
lost due to noise or collision. We do not assume a specific
MAC or routing protocol, but do assume the radio capability
to broadcast messages to neighbors.

Recall that a digest function is denoted by f(v1,va, -+, vn),
where v; is the value contributed by sensor node 7. Addition-
ally, f is decomposable by a function g:

f(v171)27"‘7vn) = g(f(”l?"' avk)7f(vk+17"'avn))

A decomposable digest function is one in which the final result
can be calculated from partial results. The values v may either
be scalars or vectors. For example, to compute average residual
energy supply level in the network, we can define v =< s,¢ >
and aggregate function

gave (v, ve) =< v1.8 + V2.8, v1.¢ + va.¢ >

where s and ¢ are the sum of energy level and ¢ is the node
count, respectively. The average value is derived from the final
result v.s/v.c.

The problem of digest computation is: Each node i provides
a value v; as its contribution to the digest function f, where
v; may change over time. The goal of the digest computation
mechanism is for each node in the network to contain a
continuous estimate for the current value of f. In this paper,
we limit the digest functions we consider to Vi;ax, Vava,
Vsua and Vonr , which respectively denote the maximum,
average, and sum of vy, v, - -v,, and number of the nodes
in the network.

There is a specific rationale for our choice of digest func-
tions, since these functions are qualitatively different from
each other. Using terminology from [5], a digest function
is monotonic if and only if, when two partial results r;and
ro are combined by a function r = g(ry,72), the result r
satisfies Vi = 1,2 r = r; for an ordering relationship . It is
exemplary if the final result can be determined from one single
contribution value. In our set of digest functions, Va;ax is
monotonic and exemplary, while Vo is monotonic but not
exemplary, and Vsyar and Vv may not be monotonic (if
negative values are allowed) and are certainly not exemplary.
Finally, as we shall argue later, the loss sensitivity of V4 ¢
may be different from that of V;4x.

1V. COMPUTING DIGESTS

In this section, we discuss techniques for computing digest
functions for sensor network monitoring.

A naive, centralized, approach to compute digest functions
is to have each node send its value to a designated head node
H. H computes the final result from all the values received.
This approach does not scale well with network size. First,
there is possible message implosion at nodes near H. Second,
it can incur heavy processing work load at H to aggregate
values from all nodes. Third, H represents single point of
failure.

Our approach leverages in-network aggregation. Each node
computes a partial result of the digest function, and passes
that result to other neighboring nodes (we describe the exact
technique in the next two sections). For this, we leverage the
fact that our digest functions are all decomposable. In-network
aggregation has better energy-efficiency characteristics; com-
munication overhead is less, and the computation is evenly
distributed.

A standard way of computing these digest functions using
in-network processing is to use a hierarchy and propagate the
digest up to the root, computing partial values along the way.
Such an approach is exemplified by the approach of Gupta

et al. [4], where node location is leveraged to construct a
“Grid Box” hierarchy. However, their approach for computing
aggregates requires leader election within grid boxes, and other
maintenance overhead. One requirement for our monitoring
application is that digest computation has to be aggressively
energy-conserving. Another approach, with similar drawbacks
from the perspective of monitoring, is the idea of recursive
clustering elections [16], [17].

Instead of using more heavyweight hierarchy and clustering
techniques, we use a two-pronged approach for computing
digests.

« We note that some of our digests can be computed by a

scheme we call digest diffusion.

« Digest diffusion implicitly builds a tree. We use this tree
to compute digest functions by propagating partial results
up the tree towards the root.

We now describe these in some more detail.

A. Digest Diffusion

We note that monotonic and exemplary digest functions can
be computed efficiently by localized information exchanges
between one-hop neighbors. We call this technique digest dif-
fusion. We now describe digest diffusion for Va; 4x. Initially,
each node 17 sets its perceived maximum value m; = v;, source
of maximum s; = 4, hop distance h; = 0 and periodically
sends a tuple M = (m;,s;, h;) to its neighbors. Upon
receiving a message (m;, s;, h;) from neighboring node j with
m; > m;, node i sets m; = mj, s; = s;, h; = h; + 1 and
parent p; = j. If m; = m,, it further checks if s; > s;, which
guarantees strict monotonicity. Node 7 may switch its parent
node from j to node k, when & provides the same maximum
value but a shorter hop distance h, < h;. Gradually within
O(d/(1 — p)) steps (d is the diameter of the network, p is
packet loss rate per link.), all nodes agree on a node s with
the maximum value v.

This fusion based approach is simple but efficient. It is
fully distributed and requires no base-station or user node to
initiate the computation. The computation converges in a time
proportional to the network diameter. It is energy-efficient and
scales well with network size since the overhead at each node
is constant over time. The information exchanged between
neighbors is small and can easily be piggybacked® on other
neighbor-to-neighbor communication (e.g., beacons sent by
MAC protocols or protocols for topology adaptation?).

B. Computing Other Digests

However, digest diffusion cannot be used to compute non-
exemplary digests, such as V4y . One of the fundamental

30f course, if the network is continuously computing many digests in
parallel, then piggybacking does not make sense. In that situation, one can
combine the information required from several digests into one message and
achieve similar amortization benefits.

4The advantage of piggybacking is that it can avoid the header and
framing costs associated with sending the information on a separate packet. In
addition, in sensor networks, waiting to piggyback the information on other
transmissions can save the cost of turning on and off radios (e.g., if the MAC
layer has turned off the radio for power saving) compared to sending the
information immediately.

reasons is that when a node tries to aggregate the V4 ¢ partial
results from its neighbors, it is difficult to determine if there
are any overlaps between those results. For example, in Figure
4, node E tries to aggregate the partial results for Vay ¢ from
C and D. however without explicit knowledge whether values
from A, B have been accounted by C, D or both of them, it
is impossible for E to aggregate correctly.

We note that digest diffusion implicitly constructs a tree
whose root is the node that contributes to the value of the
exemplary digest (e.g., the node that has the maximum value
in a Vs ax digest. Digest diffusion also computes a parent p;
for each node 7 (see Section IV-A). We call this tree the digest
tree.

Other digest functions can be computed easily on this
tree. For example, with the aggregation tree from Vj;ax
computation, it is straightforward to calculate compute Vv ¢:
node 4 periodically calculates a partial result from most recent
reports from its children ¢y, ca, - - -, ¢x , for node count

k
n; = an +1
j=1

and average value

k
D jm1 Me; * Ge; +V;

n;

a; =

It then sends out < a;,n; > to its parent p; along the tree.
Hop by hop, the partial results are propagated up to the
root, where the final result of V4 ¢ is calculated. It takes
O(d/(1—p)) time to converge on the correct result, given the
tree structure is stable. We may further reduce communication
cost by incrementally updating the partial digests. Only those
subtrees that have nodes whose values have changed beyond a
certain threshold need to send their partial results. Finally, in a
similar fashion, the root can propagate a computed digest down
the tree such that all nodes can maintain a current estimate for
the digest.

The digest tree construction process is fully distributed
and robust. The tree migrates adaptively when the current
root fails, since digest diffusion will try to find the new
value for Vj;4x. Not all metrics are suitable to construct the
aggregation tree. For example, the maximum node link degree
is a bad choice because the node with the maximum degree
(maximum number of neighbors) may change frequently over
time. A stable tree can avoid short-term errors in the computed
digest values caused by root switching. A digest tree based on
the maximum coarse-grained residual energy level of a node
tends to hold still over relative long time period. When the
current root node is exhausted, the protocol changes the root
of the tree to the next most energy-rich node in the network.

C. Digest Tree Maintenance

Maintenance of the digest tree against topology changes
such as node failure and addition is also combined within the
process of updating Vs 4 x: Each node periodically broadcasts
a message M = (m,s,h) for updating Visax every Tg

TABLE |
TIME-OUT VALUE V.S. SOFT-STATE STABILITY

= ¢=90% | $=99% | ¢ =99.9%
p=10% 1 2 3
p=20% 1.4 2.9 5.2
p =30% 1.9 38 5.7
p=50% 3.3 6.6 9.7

seconds, as described in the previous sub-section. Topology
adaptation is through soft-state techniques. The parent node
identifier expires if node A does not receive any message from
its current parent after 7, seconds.

Node A then switches to another node (including A itself)
which provides the largest value with the smallest hop distance
during the last 7}, seconds. Similarly, each node keeps a timer
T, for the partial result sent by its child. Additionally, a
sequence number or time-to-live value from the root is placed
into each message to avoid possible looping when the root
node itself crashes.

It takes T, seconds to detect a parent node failure or
disconnection. The time-out value has to be carefully selected.
Ideally, we would set T, = Ty for fastest response to topology
changes. However, the stability of the tree is equally important.
Considering existence of packet loss, setting 7}, = Tj leads to
significant oscillation in the tree structure. We quantify how
stable the parent-child relationship is as follows:

o(T) =1-ph

where p is packet loss probability for the link. ¢ is the
probability that a soft-state is refreshed within 7" seconds. The
goal is to minimize T for fast adaption to topology changes,
while having certain bound on ¢ so that the tree structure
is stable. Table | describes the relation between T, ¢, and
p. Conservatively, we choose T, = 47} in our experiments,
which keeps the tree relatively stable even when all the links
suffers packet loss as much as 30%.

V. IMPACT OF PACKET LOSS

Packet loss can significantly impact the computation of
some classes of digests. In this section, we quantify this
phenomenon by observing packet loss rates in a deployed
wireless network under relatively benign conditions. These
results suggest that our design of digest computation must
explicitly deal with packet loss, the subject of our next section.

Several factors affect packet loss over a wireless communi-
cation channel. The signal strength fading effect leads to low
signal noise ratio over long distances. Environmental inter-
ference, which may be sporadic or constant, also contributes
to packet loss. Packet collision between multiple transmitters,
particularly the hidden terminal problem, is another factor.
As a special case of packet loss, an asymmetric link arises
between a pair of nodes when only one can directly commu-
nication with the other. The use of transmission range control
protocols can result in nodes to transmit with different powers.
Even with the same power setting, different receivers may

80

0 westine i 7

60 2ascrid [B

ol 5x5 Grid D B

Percentage of Links

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.
Probability of Successful Reception (1-p)

Fig. 2.

Distribution of link quality

experience different levels of channel interference. Depending
on those conditions, empirical studies show that heavy packet
loss and link asymmetry can be quite common in wireless
networks [13], [18].

Our measurements on a testbed consisting of motes (detailed
description in Section VI) qualitatively confirm the same
findings but in different environment. In our experiments,
packet loss for each link is measured every minute for two
hours in different topology settings. A link is defined as a
good link if its average packet loss p < 30% or a bad one
if p > 80%. Figure 2 shows that common existence of links
with heavy packet loss: Though majority of the links are good
links, more than 10% of the links suffers average loss rate
greater than 50%. To evaluate connectivity asymmetry, links
between a pair of nodes are defined as symmetric if both are
good links, and as asymmetric if one is a good link and the
other is a bad link. A link pair are relatively asymmetric if
their loss rate difference is greater than 35%. Table Il indicates
asymmetric links are also quite common. Statistics also shows
that the packet loss of most links fluctuates over the time with
an estimated variance of 9% to 17%.

TABLE I
Percentage OF SYMMETRIC AND ASYMMETRIC LINKS

Percentage 1x26 Line | 2x13 Grid | 5x5 Grid
Symmetric (2G) 72.5% 69.5% 81.1%
Asymmetric (1G1B) 12.5% 10.2% 7.2%
Symmetric Bad (2B) 3.8% 2.9% 3.1%
Relatively Asymmetric 17.5% 16.8% 12.3%

A. Impact on the Aggregation Tree

Not only is loss rate prevalent, it can also adversely affect
the computation of digests, as this section shows.

In Section 1V, we described a design for digest computation
that involves constructing a digest tree. Figure 3 shows the
results, on a 26-node linear topology, from the direct imple-
mentation of a Vo nr digest tree. Notice that the estimated
count (shown by the dashed line) changes over time and results
in significant error. An analysis of logs from the testbed reveals
that the existence of heavy packet loss and link asymmetry
adversely affects the tree construction protocol in Section IV.

40

T T

Real Count -------

Observed Count Without Link Rejection sssssss
Observed Count With Link Rejections

35 | 4

I S
o

20 [

Node Count

FE S

0

1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time (second)

Fig. 3. A plot of CNT (1x26 network)
b =
@ :0 (b) @ h=0
® °
-« F h=1 ™
=1
ez oL, ®
—>
A Do
% P —
kN Asymmetric
" Link
KR O
O)Heavy Packet ‘\®
/ 0ss
® - h:l h=2

Fig. 4. Impact of packet loss on the aggregation tree

To understand this phenomenon, consider Figure 4 (a) and
(b), where, from time to time, node D selects node A as
its parent over B according to the shortest hop count rule.
However since the link between D and A suffers heavy packet
loss, the parent’s soft-state at D soon expires and D switches
back to B as its parent. Thus this branch “flapping” occurs all
the time, and the final aggregate result is unstable. In another
case of Figure 4(c), node C always chooses A as its parent.
However, A is hardly able to hear any reports from C' over the
asymmetric link A — C'. The branch is stable but the partial
result from C' and its subtree is thus lost, which may lead to
significant error if the subtree is large.

B. Link Quality Profiling and Rejection

So far, we have seen that:

o Packet loss and link asymmetry can be prevalent in
wireless networks.

o That time-varying loss and asymmetry can result in oscil-
lating digest tree branches, and thereby cause significant
error in the computed digest.

To avoid this, we propose to selectively “blacklist” links with
poor link quality or asymmetry from being on the tree. That
is, when possible, each node will try to choose a parent
with which it has “good” and symmetric communication. The
challenge in doing this is to detect these links reliably, and
adapt to time-varying conditions. We describe our approach to

doing this, which involves using the digest tree construction
messages to estimate losses to neighbors.

Recall that the digest tree construction message contains
a sequence number. For each of its neighbors B, node A
maintains a FIFO buffer k1, ko, - - -, k,, to store the sequence
numbers in the most recently received beacons. Packet loss
is estimated as pap = 1 — m/(k,, — k1). If no message is
received from B for 107} seconds, the buffer is released. (i.e.,
those links with p > 90% are ignored).

All incoming links are then qualified as “good” or *bad”
according to the following rules: 1) Whenever pap < «, link
A — B is marked with “good”. 2) Whenever psp > 3, link
A — B is marked with “bad”. The heuristic is necessary given
our observation that there exists fairly high variance in packet
loss over the time. Assessment of link quality based on a single
threshold still leads to frequent parent switching.

Each node now has a list L;y of the good incoming
links. To identify asymmetric links, each node periodically
broadcasts L;y to its neighbors. Instead of sending out the
entire list, each item of Ly is piggybacked into the digest
computation message, in a round-robin fashion. The overhead
of neighbor list exchange is then amortized over many mes-
sages. By listening if its identifier is mentioned by neighbors,
each node can construct another list Loy of good outgoing
links. To avoid the scenarios in Figure 4, only those neighbors
in Ly N Loyt are allowed to be parent candidates. With an
upper bound of packet loss, the time-out values can easily
be determined according to Table | to guarantee that tree is
relatively stable.

V1. EXPERIMENTAL EVALUATION

In Figure 3, the solid curve shows that with link profiling
and rejection, the computed digest is significantly more stable
than in an implementation that does not selectively choose tree
links based on observed packet loss. This essentially validates
our design, but we now describe our experiments in more
detail, more carefully dissect our experimental findings, and
quantify the performance difference that our scheme can bring
about.

We implemented our scheme on the “mote” sensor platform
[19]. Each node has a 4MHz Atmel microprocessor with 4 KB
RAM, 128 KB code space and 512KB external EEPROM.
Motes use TinyOS [20] which provides a MAC layer with
a simple CSMA/collision avoidance protocol running on a
433MHz RFM radio transceiver at 40Kbps. In our experi-
ments, we chose the transmission power setting such that the
communication range is approximately 3-4 meters. Nodes are
placed along a single line with inter-node distance of 1 meter.
Each node has a degree of 4-6. Given only a limited number
of nodes, our intention is to stress test our approach with the
largest network diameter as much as possible. A single line
formation does not reflect the full reality of a sensor field, but
still captures the accumulated effect of multiple hops with loss
and asymmetry on digest computation.

We implement three digests Visax, VonT and Vsya.
Vave is derived from Vsyas /Vonr. The partial results for

TABLE Il
DIGEST MESSAGE FOR MAX, CNT, SUM, AND AVG

‘ Zd | seqno | VMAX | S’I“CMAX | HOpMAX | SeqnoMAx | VCNT | VSUM | Parent ’ GOOdN@igthUT ‘

these three can be coded into a 18-byte message (Table
[11), which is periodically sent out every 7, = 6 seconds
with randomization. Note that partial results for Vo and
Vsuar can be separated from V4 x computation to further
reduce the individual digest size, but we did not do this for
simplicity. As proposed in Section IV, we choose timeout
values T, = T, = 4T,. We also choose sequence number
buffer size m = 5, link quality profiling thresholds « = 25%,
B = 50%. These thresholds are reasonable values to identify
the bad links, given the average packet loss and variance
observed from Figure 2. The contributed value v; for each
node is uniformly distributed over the range [0, 100]. A node
with the maximum value is intentionally placed on one corner.
Partial results and node state are logged into EEPROM for post
analysis. Each experiment takes around 2 hours. Experiments
were repeated until 95% confidence intervals were achieved.

A. Communication Cost

The digest computation is based on periodic messages, thus
each node consumes constant power transmitting 18/7y = 3
byte/sec in our experiments. In addition, the energy expended
for reception at each node is proportional to the node degree.
Comparison between our approach to centralized solution is
trivial as described in section 1V: In-network aggregation can
achieve an order of magnitude reduction on communication
cost and thus leads to better energy-efficiency. Note that our
choice of a small Ty = 6 is primarily to reduce the experiment
time. Larger value can be used in practice to further improve
energy-efficiency.

B. Robustness to Packet Loss

The primary characteristic to evaluate on our testbed is
the robustness to packet loss and asymmetric links in the
real world. Figure 3 shows that link rejection can reduce
the error in digest computation dramatically. To quantify the
performance improvement, we define the relative root mean
square error in digest V' as the follows:

where V; is the observed value at time ¢ and V' is th actual
value.

We then compare our proposed solution against three
schemes:

1) The digest computation algorithm without link rejection;

2) Scheme 1 plus rejection of poor incoming links;

3) Scheme 1 plus rejection of asymmetric (poor outgoing
) links;

0.8

simple ==
poor link rejection E===
‘asym link rejction e
07+ both s

0.6 -

05
04
03
02
01 m
0
9 16 26

Network Diameter

Relative RMS Error

(a) Relative RMS Error for CNT

0.8

simple ——=
poor link rejection ==
‘asym link rejction s
07+

06 -

05
04
03
02
0
9 16

Network Diameter

Relative RMS Error

26

(b) Relative RMS Error for SUM

0.8

simple ==
poor link rejection ==

asym link rejction s
07 both —

06
05

0.4

Relative RMS Error

9 16 26
Network Diameter

(c) Relative RMS error for AVG

Fig. 5. Relative Root Mean Square Error for 1x9, 1x16, 1x26 networks
(Implementation)

4) Our proposed scheme: scheme 1 with both incoming and
asymmetric link rejections turned on.

Figure 5 shows that the accumulated error over multiple hops
increases significantly with larger network size. Without link
rejection, the simple tree construction algorithm leads to error
as much as 70% for Vo nr in a 1x26 configuration. However,
with rejection of both poor incoming links and asymmetric
links, the error can be reduced to less than 10% for the same
network.

In Figure 5, the performance difference between scheme
(2), (3) and (4) implies that both incoming link rejection
and asymmetric link rejection are important to our design.
A thorough analysis of logs shows that with only asymmetric
link rejection (scheme 3), the oscillations depicted in Figure 4
(@)(b) are still quite common. On the other hand, rejection of
poor incoming links (scheme 2) itself is sufficient to construct
quite stable trees. However, in some cases, such a tree includes
“stable” asymmetric links where partial results are constantly
lost. Neither of them can achieve acceptable accuracy in
digest computation by itself. It is interesting that scheme 3
outperforms scheme 2 in our experiments. Our explanation is
that in scheme 3, that node B is a good outgoing neighbor of
A implies that A can hear from B quite well, at least for those
neighbor list broadcast messages. Thus the trees constructed
in scheme (3) is more likely be a “good” aggregation tree
compared to those in scheme (2).

Our experiments also show that different digests have dif-
ferent robustness characteristics. Monotonic exemplary digests
such as V4 x are the most robust digest with hardly no error
all time except some transient errors when the node with max-
imum node crashes. Packet loss and topology changes hardly
affect the final result given the network is still connected.
Vont and Vspas tend to be the most sensitive to packet loss
since their accuracy rely on correctly collect the partial results
from every node in the network. The robustness of Vaya
computation depends on the characteristics of the data set. In
our experiments, Vay ¢ is more robust than Vot and Vsp s
because the value set is from an uniform distribution. Even a
fraction of samples leads to a good estimate for the average.
In the next section, we will further evaluate by simulation the
performance of digest computation with different distributions
of contributed values.

C. Latency

Digest computation relies on piggybacking partial results
on other periodical messages. The latency of response to
value changes, node failures or topology changes is another
important performance metrics. The response time to those
scenarios is bounded by the convergence time of computation
from the system initialization. We define the convergence time
for Vo as the time that the moving average of the 10 recent
results appears with less than 10% relative error. For Vi 4x,
we define the convergence time as the time that all nodes agree
on the same Vi 4x.

In Figure 6, the convergence time for Vonr shows the
trend approximately proportional to the network diameter. In

T
MAX ==

T T
120 [CNT = ‘}

100
80

60 -

Convergence Time (second)

9 16 26
Network Diameter

Fig. 6. Latency for MAX and CNT

addition, the convergence time ty;4x for Vasax is smaller
than tonr for Vonr. We further conjecture that ¢y, 4x i
approximately half of ¢c 7. Because from system initializa-
tion, Ve nr computation need ¢y, 4 x time for constructing the
aggregation tree and approximately the same amount of time
to propagate all the partial results back to the root.

VII. SIMULATION RESULTS

We use the TinyOS simulator [20] to study the impact
of scale on our conclusions. The simulator is modified the
simulator with the following packet loss model: The packet
loss over distance d is defined:

0.2d/r a<r
p(d)=<¢ 1.6d/r—14 r<d<15r
1.0 d>1.5r

where r is the nominal transmission range. The packet loss
slightly drops to 20% at r and then drops sharply to 100%
at 1.5r. This model is artificial but it reflects our observation
from the testbed experiments. In addition, asymmetric links are
generated by setting » for each node randomly from range of
2 to 4 meters. The system parameters such as Ty,7}, «, 5 are
used with the same values in the testbed experiments except
otherwise noted. Each simulation runs for approximately 40
minutes.

A. Scalability

Once again, the communication and computation overhead
at each node is constant over time. The primary metric
to study scalability is the error that introduced by packet
loss and asymmetric links in large networks. In this set of
simulations, nodes are randomly placed on a m x m area,
with an approximate density of 1 node per square meters.
Figure 7 shows the errors in Vay ¢ and Vo yr for the networks
with 100-900 nodes. With link rejection, the proposed digest
computation protocol scales well with the network size and is
robust enough to provide accurate results.

12

T T
AVG, w/o link rejection ===
AVG, with link rejection s
CNT, w/o link rejection =—=
CNT, with link rejection s

0.8

0.6

Relative RMS Error

0.4

0.2+

10X10 15X15 20X20 25X25 30X30

Network Diameter

Fig. 7. Relative RMS Error for V4y ¢ and Vo (Simulation)

T T T
uniform distribution, w/o link rejection =—=

uniform distributioin, with link rejection s
skewed distributioin, wio link rejection ===
skewed distributioin, w link rejection

Relative RMS Error

10 20 30 40 50 60
Network Diameter

Fig. 8. Relative RMS Error in V4 for Different Data Sets

B. Sensitivity to data distribution

Our experiments on the testbed (Figure 5) and simulation
(Figure 7) show that different digests have different levels of
sensitivity to packet loss. In particular, it seems that V4 ¢ is
significantly more robust than Vo and Vsyas. However, as
we show in this section, the robustness of digest computation
also depends on the distribution of the contributed values. We
simulated digest computation with two different distribution
models of the value for each node. The first one is the
uniform model [0, 100] that we use in previous experiments.
The second one is a "skewed” distribution: 10% of the nodes
have a value uniformly from [90, 100], the rest nodes have
value of 0 or 1. i.e. a small fraction (10%) of nodes contributes
a large fraction (95%) of the sum.

We simulate V4 ¢ computation with different number of
nodes on a linear formation. Figure 8 shows the different
impacts of these two distributions on V4 ¢ computation: for
the uniform distribution, the error tends to converge when
the network size increases. From a uniformly distributed data
set, a fraction of samples can provide an average estimate
such that additional sample loss does not introduce more
error. The “skewed” distribution behaves differently. Without
link rejection, the large values from very few nodes tends
to be lost due to high accumulated packet loss. Thus the

result of V4 computation constantly suffers significant error
for different network sizes. However, with link rejection, the
digest computation protocol can reduce the error significantly.

VIIl. RELATED WORK

The problem of monitoring sensor networks is crucial
and important. Recently, different protocols are proposed
to discover node deaths [21], [22], compute the coverage
and exposure bounds of wireless sensor networks [23], [24],
provide remaining energy supply indication [15] or discover
the topology of the network [25]. These approaches address
various specific aspects of sensor network monitoring and are
complementary to the digest aggregation tools in this paper. In
addition, they can fit into our proposed architecture to provide
a coherent monitoring system for wireless sensor networks.

Computation of aggregates has been discussed in database
research community such as in [6]. Madden et al. recently
proposed a generic framework to support aggregate queries
from base-stations in sensor networks [5], [9]. Our solution
eliminates any predefined base-stations or hierarchy, and pro-
vides an energy-efficient and robust aggregation with little
extra overhead. In addition, we also address the impact of
packet loss from empirical studies on a real wireless sensor
network testbed, which turns out to be crucial to the accuracy
of aggregate computation. Though this paper is not intended
to address the design of generic sensor network applications,
some techniques proposed here can be applied to efficiently
compute global or regional aggregates for applications.

There are many proposed solutions to deal with packet
loss and asymmetric links in mobile ad-hoc networks. To
name a few, associativity-based routing protocol [26] uses a
route stability metric for routing in mobile ad-hoc networks.
The objective is to select long lived links according to the
associativity of the nodes involved. In signal stability based
adaptive routing [27], routing is based on both the signal
strength and location stability. The link quality is estimated
according to the signal strength of received beacons from
its neighbors. In [28], a sub-layer called Sub Routing Layer
between the network layer and the MAC layer is proposed
to provide a bidirectional abstraction of any unidirectional
network to the routing protocols. Our proposed link profiling
and rejection technique is similar in spirit, but focuses on the
context of lower-power wireless sensor network monitoring,
given its even tighter energy efficiency requirement. Though
mobility is not a primary challenge for sensor networks, our
approach does tolerate certain level of node mobility.

Another orthogonal class of approaches is to improve scal-
ability with randomized sampling techniques. For example,
in the context of multi-cast group size estimation [29] [30]
[31], only a small fraction of multi-cast participants send
out replies to the querying node by suppressing replies from
the others. However, depending on the statistical nature of
the data set, these centralized solutions may require high
sample probability to achieve reasonable accuracy. In addition,
they assume that the communication cost to disseminate any
message to the network is constant, which does not hold for

multi-hop sensor networks where energy-efficiency is crucial.
We are starting to investigate the trade-offs to incorporate such
techniques into digest computation.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an architecture to monitor wireless
sensor networks with different levels of detail, and focus on
the design of computing network digests. Digests represent
continuously computed summaries of network properties and
can serve to indicate the need for more detailed, but perhaps
energy-intensive, monitoring.

We have implemented digests, and presented our evaluation
from a medium-scale testbed of motes. Carefully dealing
with heavy packet loss and asymmetric links can significantly
reduce the error of digest computation, as we have shown. We
presented a simple scheme that selectively avoids adding links
with heavy loss or asymmetric links to the digest tree.

We would like to continue our experiments on a larger scale
testbed and further evaluate our design. Ultimately, we intend
to make a suite of monitoring tools available that will foster
larger scale experimentation in sensor networks.

REFERENCES

[1] D. Estrin, R. Govindan, and J. Heidemann, “Embedding the Internet,’
Communications of the ACM, vol. 43, no. 5, pp. 39-41, May 2000,
(special issue guest editors).

[2] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocols for wireless microsensor networks,”
in Proceedings of the Hawaii International Conference on Systems
Sciences, Jan. 2000.

[3] P. Varshney and C. Burrus, Distributed detection and data fusion, New
York, Springer, 1997.

[4] 1. Gupta, R. van Renesse, and K. Birman, “Scalable fault-tolerant
aggregation in large process groups,” in Proc. Conf. on Dependable
Systems and Networks, 2001.

[5] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny
aggregation service for ad hoc sensor networks,” in Proceedings of the
USENIX Symposium on Operating Systems Design and | mplementation,
2002.

[6] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals,” J. Data
Mining and Knowledge Discovery, vol. 1, no. 1, pp. 29-53, 1997.

[7]1 D. Raz and Y. Shavitt, “New models and algorithms for programmable
networks,” in Computer Networks, Feb. 2002, vol. 38(3), pp. 311-326.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
in Proceedings of the ACM/IEEE International Conference on Mobile
Computing and Networking, Boston, MA, USA, Aug. 2000, pp. 56-67.

[9] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Sup-

porting Aggregate Queries Over Ad-Hoc Wireless Sensor Networks,”

in Proceedings of the Workshop on Mobile Computing Systems and

Applications, 2002.

W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient mac protocol

for wireless sensor networks,” in Proceedings of the |EEE Infocom, June

2002.

Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy

conservation for ad hoc routing,” in Proceedings of the ACM/IEEE

International Conference on Mobile Computing and Networking, Rome,

Italy, July 2001, pp. 70-84.

A. Cerpa and D. Estrin, “ASCENT: Adaptive self-configuring sensor

networks topologies,” in Proceedings of the IEEE Infocom, New York,

USA, June 2002.

D. De Couto, D. Aguayo, B. Chambers, and R. Morris, “Performance

of multihop wireless networks: Shortest path is not enoughi,” in

Proceedings of the First Workshop on Hot Topics in Networks (HotNets-

1), New Jersey, USA, Oct. 2002.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

J. Case, M. Fedor, M. L. Schoffstall, and C. Davin, “Simple Network
Management Protocol,” in Internet Request For Comments 1908, Nov.
1996.

Y. Zhao, R. Govindan, and D. Estrin, “Residual energy scans for
monitoring wireless sensor networks,” in Proceedings of the |IEEE
Wreless Communications and Networking Conference, Mar. 2002.

W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Pro-
tocols for Information Dissemination in Wireless Sensor Networks,”
in Proceedings of the ACM/IEEE International Conference on Mobile
Computing and Networking, Seattle, WA, USA, Aug. 1999, pp. 174-
185.

P. Tsuchiya, “The Landmark Hierarchy: A new hierarchy for routing in
very large networks,” in ACM Computer Communication Review, Aug.
1988, pp. 35-42.

D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker, “Complex behavior at scale: An experimental study of low-
power wireless sensor networks,” in Technical Report UCLA/ICSD-TR
02-0013,Computer Science Department, UCLA, July 2002.

M. Horton, D. Culler, K. Pister, J. Hill, R. Szewczyk, and A. Woo,
“MICA, the commercialization of microsensor motes,” in Sensors
Magazine, Apr. 2002, pp. 40-48.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “Sys-
tem architecture directions for network sensors,” in Proceedings of the
9th International Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, USA, Nov. 2000,
pp. 93-104.

S. Chessa and P. Santi, “Comparison based system-level fault diagnosis
in ad-hoc networks,” in Proceedings of the 20th IEEE Symposium on
Reliable Distributed Systems, Oct. 2001.

J. Staddon, D. Balfanz, and G. Durfee, “Efficient tracing of failed nodes
in sensor networks,” in Proceedings of the First ACM International
Workshop on Wireless Sensor Networks and Applications, Atlanta, USA,
Sept. 2002, pp. 122-130.

S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava,
“Coverage Problems in Wireless Ad-hoc Sensor Networks,” in Pro-
ceedings of the IEEE Infocom, 2001.

S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure
In Wireless Ad Hoc Sensor Networks,” in Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking, July
2001, pp. 139-150.

B. Deb, S. Bhatangar, and B. Nath, “A topology discovery algorithm
for sensor networks with applications to network management,” in
Proceedings of the IEEE CAS Workshop on Wreless Communications
and Networking, Pasadena, USA, Sept. 2002.

C. Toh, "Associativity-based routing for ad-hoc mobile networks,” in
|EEE Personal Communications Magazine, 1997.

R. Dube, C.D. Rais, K. Wang, and S.K. Tripathi, “Signal stability
based adaptive routing for ad-hoc mobile networks,” in |EEE Personal
Communications Magazine, Feb. 1997.

V. Ramasubramanian, R. Chandra, and D. Mosse, “Providing A
Bidirectional Abstraction for Unidirectional Ad-Hoc Networks,” in
Proceedings of the IEEE Infocom, June 2002.

J. Nonnemacher and E. W. Biersack, “Optimal multicast feek backup,”
in Proceedings of the IEEE Infocom, San Fransisco, USA, Mar. 1998,
pp. 964-971.

T. Friedman and D. Towsley, “Multicast session memebership size
estimation,” in Proceedings of the IEEE Infocom, New York, USA,
Mar. 1999, pp. 965-972.

S. Alouf, E. Altman, and P. Nain, “Optimal on-line estimation of the
size of a dynamic mutilcast group,” in Proceedings of the |EEE Infocom,
New York, USA, June 2002.

