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Abstract. A numerical procedure was introduced for solving one-dimensional 

* 

equations of gas dynamics for a cylindrically or spherically symmetric 

flow. This method has been generalized to the two-dimensional equations 

of gas dynamics in a cylindrical geometry. This is coupled at the 

boundary with a new grid free method for introducing viscous effects, 

where the computational elements are s~gments of vortex sheets and 

circular vortex filaments. Examples are given for flow in a motored 

engine chamber during intake and compression strokes. 
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Introduction. Recently a ntlr.lerical procedure was introduced for solving the 

one-dimensional equations for an inviscid, radially symmetric flow [ 1 ] and l 2 ] • 

The idea of the method was to use operator splitting to reduce this system of 

equations to two systems of equations; the equations of gas dynamics in Cartesian 

coordinates and a system of simultaneous ordinary differential equations. This 

method has been generalized to treat the two-dimensional equations of gas dynamics 

for an inviscid fluid in a cylindrical geometry. 

When considering the flow in the cylinder of an internal combustion engine 

viscous effects cannot be ignored. The effect of viscosity in two-dimensions is 

confined to regions near the boundaries. Viscosity results in the creation of a 

thin boundary layer, which later separates into the fluid. 

A grid free method for approximating the incompressible boundary layer 

equation for a cylinder and a flat plate is used. The computational elements are 

pieces of vortex sheets [3] and vortex filaments L 4.]. The desirability of a grid free 

method can be seen from analysis which implies that if a grid method is used then 

several grid points must fall within the boundary layer whose thickness is O(R-l/ 2), 

where R is the Reynolds number. Thus a relatively low upper bound must be imposed on 

the Reynolds number. In the problem considered below ~ranges from 1000 to 10000. 

The computational domain is divided into two regions, one the interior and the 

other the region near the boundary. Different assumptions about compressiblity are 

made, as well as different numerical methods used, in the two regions. Near the 

... 
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boundary the flow will be considered viscous and incompressible and in the interior the 

flow will be considered inviscid and compressible. A new way of coupling the two 

methods which greatly reduces the number of segments of vortex sheets needed will be 

discussed in a later section. 

1. Outline of the Method for Interior. The two-dimensional equations for an inviscid, 

non-heat conducting flow in cylindrical coordinates with axial symmetry and zero 

azimuthal velocity can be written in the form 

a U + a F(U) + a G(U) 
t- r-- z-- .!_ W(U), 

r-- (1) 



where 

U= !_(U) = 

and 

W(U) = 

pu 
r 
2 

pu 
r 

pu u r z 

(e+p)u 

G(U) 

where P is the density, ur is the velocity in the radial direction, u is the 
z 

velocity in the axial direction, p is the pressure, e is the energy per unit 

volume, t is time, and r is the radial distance from the axis of symmetry. We 

may write 

- p 1 2 2 
e - Y - 1 + 2 p(ur + uz ) 

holding for a polytropic gas, where y is the ratio of specific heats (a constant 

greater than 1). 

There are several major problems involved in solving the system (1) directly 

the first is the singular term near the axis (r = 0), that is, there are singular 

terms proportional to ! 
r 

The second problem is that the momentum equations (the 

second and third component equations of (1)) cannot be put into conservation form. 

These problems cause major difficulties ne~r the axis. 

In the method developed by the author t1 1 and l2 1 for one-dimensional flows 

and extended here to two-dimensional flows, both problems have been removed with-

out having to resort to any ad-hoc method. 

The first step is to use operator splitting to remove the inhomogeneous term 

1 
-; W(U) from the system (1). The resulting set of equations takes the form 

(2a) 

2 

• 

( 



• 

r<: 
) 

d U =-.! W(U). 
t- r --

The system of equations (2a) represents the two-dimensional equations of gas 

dynamics in Cartesian coordinates, written in conservation form • 

(2b) 

The method used to solve system (2a) is the random choice method introduced 

By Glimrn LsJ and developed for hydrodynamics by Chorin [ 6] • 

Consider the nonlinear system of equations 

3 

a F(U) = 0 • 
x--

(3) 

The random choice method (Glimm's method) is outlined as follows. 

Divide time into intervals of length ~t and let ~x be the spatial increment. The 

solution is to be evaluated at time n~t where n is a nonnegative integer at the 

spatial points i~x, where i = 0, +1, ±2, •.. and at time (n + t>~t at (i + i)~x. 

This is a two step method. Let u~ approximate ~(i~x,n~t) and 
-J.. 

n+.!.. 
2 

u 1 
1 1 

approximate .Q((i + z>~x, (n + 2)~t). To find the solution 
i+ 2 

1 n+-
2 

u -.+ 1 l. -
2 

n 
given~ 

and ~+l' consider the system (4) along with the piecewise constant initial date 

n 1 
~i+l' x > (i + -z>~x, 

~(x,nM) = 

n 1 
~' x < (i + z)~x. 

This defines a sequence of Riemann problems. ~X If ~t < c) , where c is the local (lui + 
sound speed, the waves generated by the individual Riemann problems will not 

interact. Hence the solution v(x,t) to the Riemann problems can be combined into 

a single exact solution. Let l;;n be an equidistributed random variable which is given 

1 1 by the Lebesque measure on the interval (- z, z) Define 

1 n+-
2 

u -.+ 1 l. -
2 

v( (i + ~ + l;;n)~x, (n + ~)~t). ('4) 
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· At each time step, the solution is approximated by a piecewise constant function. 

The solution is then advanced in time exactly and the new values are sampled. The 

method depends on being able to solve the Riemann problem exactly and inexpensively. 

The Riemann problem can be efficiently solved by an iterative method due to Godunov 
• 

[7] and modified by Chorin l6]. As indicated in the review bY. the author [8], this 

iterative procedure made the Glimm scheme above 2~ times slower per grid point than ' L'-

most finite difference schemes. A modification in the iterative procedure by the 

author t91 makes this random method comparable timewise with most finite difference 

schemes. 

The generalization of Glimm's methods to two space dimensions is done by operator 

splitting. Thus equation (2a) can be written as two sets of one dimensional equations 

of the form of (3). The two systems of one dimensional equations are solved on a 

staggered grid in order to ensure consistency. A single two dimensional time step 

consists of four quarter steps. Each is a sweep in the z or r direction. 

Glimm's method will produce perfectly sharp shocks and contact discontinuities. 

However, for multidimensional problems there are oscillations in a neighborhood of 

the shocks. This is a dispersive effect due to the operator splitting (used to reduce 

the number of space dimensions). This is usually not observed in finite difference 

methods due to the truncation error and the inclusion of artificial viscosity which 

smooths such oscillations. A numerical study demonstrating this property has been 

conducted by Colella r10). 

To reduce these oscillations an artificial viscosity term is added at each 

quarter step. The form is a modified version of the artificial viscosity considered 
r 

by Lapidus t11]. See Colella [lQl and Sod (9) and \12) for specialization to 
b-1 

Glimm's scheme. 

-n+l Once the solution of system (2a) u .. is obtained, we must solve a system of 
l.,J 

ordinary differential equations (2b). We approximate equation (2b) by a modified 

version of the Cauchy-Euler scheme. Randomness, in keeping with. the spirit of the 

Glimm scheme, is introduced which was not in the original method. See Sod ll). 



Let i;
1 

and i;
2 

be the random variables used in the two r-sweeps. Then system ( 2b) 

is approximated by 

n+l 
Ui,j 

n 
= ..!!i,j = 

Originally r in system (2b) was replaced with i~r, here r is replaced with 

(i + l;1 + l; 2)~r. At the end of the two r-sweeps the place at which the solution 
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(5) 

is found is offset from the grid point i~r by (l;1 + l; 2)~r. This gives the solution 

of (2b) which is in phase with the solution of (2a) in the r-direction. 

Since the sampling used is the stratified sampling as developed by Chorin [61, 

the values of l;1 and l;2 are never such that i + l::1 + l:: 2 = 0 • 

2. Boundary Layer Treatment. Consider the flow pas.t a circular cylinder of constant 

radius r 0 parallel to its axis (r = 0). A boundary layer, initially of zero thickness, 

is formed on the surface of the cylinder. The Prandtl boundary layer equations for 

a semi-infinite flat plate are a valid approximation. The boundary layer grows 

parabolically in thickness with increasing z. A stage will be reached when the 

thickness of the boundary layer can no longer be neglected compared with r . So 
0 

for a long axially symmetric cylinder, the boundary layer equations for a flat 

plate break down. Certain derivatives in r may no longer be neglected. See 

Schlichting [13) . 

The boundary layer equations for axially symmetric cylinder (retaining the 

correct derivatives in r) may be written in the form 

a (ru ) + a (ru ) = 0 z z r r ' 

l; = - () u r z' 
where u = cu ,u) with u tangent to the boundary and u normal to the boundary - z r z r 

~ is the vorticity, and v is the viscosity. The boundary conditions are 

(6a) 

(6b) 

(6c) 



We integrate equation (6c) to obtain the tangential component of velocity 

uz(r,z) = Uao(z) - fao ~(r,t)dr. 
r 

With this equation (6b) may be integra~ea to obtain the normal component of the 

velocity 
1 a 
r z ( 

0 

ru (r,z)dr, 
z 

which is nonsingular provided r 0 > 0. Hence once the vorticity Hr, z) is 

known the velocity field in the boundary layer may be obtained. 

(7a) 

(7b) 

The ·method used is one introduced by Chorin [3) for the boundary layer equations 

for a flat plate in two-dimensions. Consider a collection of N segments S. of vortex 
1 

sheets with intensities~., i = l, .•. , N. The S. are straight line segments 
1 1 

parallel to th~ z-axis having length hand center (r., z.). The tangential velocity 
1 1 

u of S. due to the presence of the other segments is obtained by approximating z. 1 
1 

(7a). The normal velocity u r. 
1 

of S. due to the presence of the other segments is ob-
1 

tained by approximating (7a). The normal velocity u of S. due to the presence of 
r. 1 

1 

the other segments is obtained by approximating (7b). 

Consider the semi-infinite strip Ri = { (r, z)l r ~r0 and zi - h/2~ z ~ zi + h/2} 

The number of interactions among the segments is small since for a segment S. to 
J 

influence a given segmentS. it must intersect the strip R .. 
1 1 

and 

Operator splitting is used to write equations (6a-c) in the form 

d ~ + (~·~)~ = 0, 
t 

a (ru ) z z + a r(rur) 

~ -a ruz' 

\) a t, a ~ - -
t r r 

2 
= \)(} ~­r 

0, 

= 0, 
(8) 

(9) 

(10) 

6 

r 
{.,-



System (8) is solved deterministically where the sheets S. are advanced in time 
1 

according to the tangential (u ) and normal (u ) components of velocity. Equation z. r. 
1 1 

(9) is responsible for diffusing the sheets in the r-direction. This equation solved 

by a random walk. Finally, the sheets are moved along the characteristics of equation 

(10). 

For further details as well as a discussion of the method of vorticity creation 

see Chorin [3] and [14] and Sod [9], D-2), and [1~ . 

3. Coupling of Interior and Bounda.!I:Lay~~~thods. Finally we must describe how the 

two methods are pieced together. The method used to couple the boundary layer 

calculation to the interior calculation is more complicated than originally considered 

by Chorin [ 3]. 

It is essential that the boundary layer act on the interior (unless the boundary 

layer does not separate). In this method the edge of the calculation is not the 

boundary of the domain, but rather the edge of the boundary layer. 

In the problem considered below the boundary is substantially more complicated 

than a simple cylinder. We shall allow for boundaries which consist of pieces of 

cylinders and flat plates (normal to cylinder). The boundary layer equations for a 

flat plate are used for these regions normal to the cylinders. 

A boundary layer calculation for the entire boundary is made every two quarter 

~t steps each with time step --2- The tangential component of the velocity at the 

edge of the interior calculation (edge of the boundary layer) is used as the velocity 

/~ at infinity for the boundary layer calculation. For the boundary layer calculation 

' ' ) •• the velocity at infinity is considered to be piecewise constant over the same 

intervals as in the interior calculation. This is important since the values of 

r and z in the interior calculation may not be the same as the spacing h of the 

boundary points for the boundary layer calculation. 

In an earlier version of the method (see Sod [15] and [161, the normal velocity 

at the edge of the boundary layer was computed using equation (7b). This normal 

7 
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velocity at the edge of the boundary layer at ~z became the normal velocity at the 

edge of the interior calculation at ~z. The result was at the end of a two-stroke 

cycle where the boundary layer equations were solved on a time scale 50 times greater 

than that of the interior, there were about 6500 vortex sheets. Despite the number 

of interactions between vortex sheets being small, this was still costly both in 

computer time and computer storage. Another serious drawback to this approach was 

that the boundary layer equations are no longer valid in the region where the boundary 

layer separates. 

A method is introduced that brings the effect of the viscosity from the boundary 

into the interior in a more natural manner in such a way that most of the vortex 

sheets are not retained. See also Sod [ 4], (9], and (171. 

Consider the Navier-Stokes equations for a viscous, incompressible fluid in an 

axially symmetric geometry in vorticity transport form 

at~ + (~ • y)~ = v~~ + ~ ar~ - v2 ~, 
r 

(lla) 

a (ru ) + a (ru ) = 0, r r z z 

~=au -au z r r ?-

We can define the stream function 1/1 such that 

u = J. a lJ! and r r z 
1 

u = - a lJ!. z r r 

Consider a collection of N circular vortex filaments in ~3 of intensity~­
J 

which lie in a plane normal to the z-axis. This represents a point vortex in an 

. 11 . . '[0;1 2 ax1a y-syrnrnetr1c geometry 1n ~ . 

Under these conditions, we have for the j-th vortex filament with center 

r. = (r., z.) 
-J J J 

lJ! (r- r.) 
0- J 

~j(r- r.)r. Joo -klz-z.l 
- J J e J J 

1 
(k ( r - r. ) ) J 

0 
(k r . ) dk 

Sir 0 . J J 

where J 0 and J
1 

are Bessel functions of the first kind of order zero and one 

respectively. 

(llb) 

(llc) 

(12) 

(13) 

• 



where 

The vorticity field is given by 

t:o (E) = 

1 , ll.rll <cr, 
4'11"cr ll.rll 

0 , ILrll ~cr; 

N 
\ t;,.E;,

0
(r- r.) 

j~l J - -J 

and u is a cut-off which is taken to be h/271" It is seen that ~ 0 is a smooth 

approximation to be Dirac delta function. 

The vortex blob ~0 (!) generates its own stream function ~ (~) which may be 

obtained by solving 

~ljio - 1:. c ljJ = - rE;,o. 
r r 

9 

(14) 

Since u is small we see that for \\ r - r. ll < u r is near r. (the r-coordinate 
- -J J 

of the j-th vortex blob which is the radius of the j-th vortex filament in~) as 

a result we replace _l in(l2) with ! . This gives a new relationship between the r r. 
J 

stream function and the vorticity 

lllji = -r F;, 
0 ' 0 

which has solution 
r. 

ljJ 
0 

<.r - .rj ) = ~ I l.r - .rj I I . 

Combining this with (13) gives the stream function ljl 0(.!.- .!.j) generated by (14). 

Furthermore, it is possible to generate a velocity field v(~- rj) induced by this 

vorticity field, 
N 
\ E;,.~(r- r.) 
L. J---v - -J 

j=1 
~(!) = 

where v0 (.r- 1j) is the velocity field at~ induced by a single vortex blob located 

at rj . By differentiating the stream function ljJ 0 (.!_ - .!.j) we obtain 

.Yn(r- r.) 
---v- --:J { 

( _ 1:. c ljJ ( r - r. ) , l c ljJ 
0 

(.!_ - r . ) ) , II.!. - .!j II < 0 
, 

r zO- -J rJ. r --:J 
= j 

1 ., ,,, ( ) 1 ., ,,, ( ) ) ll_r - ~r II ~ 0 • (--a 'I' r- r. ,-a '~'o.!.- r. , 
r zO- -:J r r --:J 



We are now in a position to describe the coupling of the boundary layer 

calculation to the interior calculation using the vortex filaments and the way in 

which the vortex sheets are removed. 

10 

The vortex sheets and vortex filaments are very similar in structure, that is, 

they are determined by their position and intensity. A segment of a vortex sheet 

with negative intensity will slow the fluid in the portion of the strip below it. 

Through the equation of conservation of mass (6b) we see that this negative intensity 

will create an upward flow to the left and a downward flow to the right similar to 

an actual vortex. The circulation around a vortex sheet of intensity~ is {h where 

h is the length of the sheet. The intensity of a vortex blob must be {h, which gives 

a transition from vortex sheets to the vortex filaments. When a vortex sheet is 

converted to a vortex filament, its intensity { is multiplied by h, the length of 

the sheet. 

Even in separated flow there is a thin viscous sublayer near the boundary where 

the boundary layer equations remain valid. This is an essential fact. For this 

allows us to use the vortex sheets near the boundary. The vortex sheets will satisfy 

the boundary conditions much more accurately than the vortex filaments. See Chorin, 

Hughes, McCracken, and Marsden (18~. 

Let L be a length chosen in such a way that p [ In r > L] < e; , where E is some 

small number. Using Tscebysheff's theorem (see Loeve [19], we see that L will be a 

multiple of the standard deviation /2~~t . Any vortex sheet which is greater than 

a distance 2L from the boundary will be converted to a vortex filament by multiplying 

the intensity of the sheet by its lengths. 

The velocity field induced by these vortex filaments on the interior grid is 

then computed using (14) where the integrals are computed using Gauss-Laguerre 

quadrature. This velocity field is added to the velocity field obtained by the 

interior calculation. Once this is done the vortex filaments are destroyed. This 

This leaves only a small number of vortex sheets at any given time. 

r• 



•• 

This approach is consistent with what happens physically for a slightly viscous 

flow. Far away from the boundaries the flow may be considered inviscid. The 

vorticity brought into the interior using the vortex filaments is advected with the 

flow through the interior method. 

4. Application to a Motored Engine Chamber. The method is applied to a motored engine 

chamber, i.e., one that is driven externally. The engine is assumed to be axially 

symmetric, with a single intake-exhaust valve located on the chamber axis. The 

piston motion and valve timing represent an engine timing of 2500 RPM. The bore to 

stroke ratio is 1, the compression ratio is 0.6, and the Reynolds number for the 

boundary layer calculation is 104 The intake part is maintained at a constant 

pressure of 1 atmosphere and a temperature of 800°F. Where the piston is at bottom 

11 

dead center (the position where the piston is furtherest from the head of the cylinder) 

the cylinder and the intake-exhaust port lie in a 20 x 56 fixed (Eulerian) grid. 

As a result of using the circular vortex filaments, the average number of sheets 

retained at any one time step is 300. This brings about a considerable savings in 

computer time and storage. 

Figures 1 and 2 are vector plots of the velocity field for every other 

computational grid point. For each plot the vectors are scaled linearly with the 

. - ..... ' - ,., I , .................................................. ~--..-..,.,. 

........ ....,. ...... ---~ 
.,, ___ , . 

- - . 
. ··------···· ··-----------------------------· 
• - .,_ - - - • • - _,. - -. ·--. ----~-------... 1 

Figure 1 - Velocity field plot prior to completion of intake stroke depicting 
toroidal vortex at valve lip 



. - ' ... 

... . 

... - , I\,..._..._ __ ......., ................... -~ ... 

-- - .. ,_ -.. ..._-. ..,_ ....... --- -+ ~ 4 I 

-·-

, -
.... ··-----------------------

............................ --- .... ~ .. ' 
-'"I,,...._,. _ _..._.,._.._.,.__._....._ _ _, 

I .. -\ 1 I/'...,.....,.,....,._.._.._..._....~­

. ... • I I / / / ........ - _.. ........ _.... __ --' ... I • I • 

' ' I .. / / /'//...,.....-_......,........_.~...-t-- • , • ,., 

~ 
.... // / ,.......,,......... /~.......! .... ......~ • l .., .... , 

\ ................. /-~__.;t~-.--d • t •• l ,~ ... 

---~ ........ ~!,.....-t~ 
\ ... 

Figure 2. Velocity field plot at beginning of compression stroke 
depicting closing of valve and the stretching of vortex. 

longest vector being twice the maximum velocity. These plots are just prior to the 

end of the intake stroke and just after the beginning of the compression stroke. The 

toriodal vortex which is formed during the intake stroke is stretched during the 

closing of the valve during the compression stroke. 

5. COnclusions. Until such time as useful experimental measurements of the flow in 

the cylinder of an internal combustion engine can be made, an assessment of the 

accuracy of this computation cannot be made. Work is beginning in this area. 

Laser schlieren photographs of the flow in a cylinder are being taken by A. K. 

Oppenheim. Hot-wire measure-ments at one point in the flow field of a motored 

engine have been taken by Witze [ 20]. The results• depicted in Figures 1 and 2 

are in reasonable agreement with the experimental location and structure of the 

large vortex shed from the valve lip obtained by A. Ekchain and D. Hoult (21 ]. 

However, these experiments where performed with an incompressible fluid (water) 

whereas the fluid used in the numerical model was compressible. 

A random moving grid method in the spirit of Glimm's method has been implemented 

which in the case of a motored engine chamber gives much better revolution when the 

piston approaches top dead center •. 

12 
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'!he method of solution is being generalized to a variable geometry. See Sod [22]. 

In the application to a motored engine chamber this gives rise to allowing a curved piston 

head, curved valve head, and a beviled edged on the valve and valve seat in the intake part. 

The main advantage of the method is that all of the boundary conditions (including piston 

and valve motion) from the interior method can be built into the boundary layer calculation. 

This will eliminate the problem caused by imposing the boundary condition on the interior 

method when the boundary is oblique to the mesh. The cost of this improvement will be a 

minor amount of extra work required to couple the interior and boundary layer methods. 
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