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Vitamin D receptor, a tumor suppressor in skin1

Daniel D. Bikle
VA Medical Center and University of California San Francisco, 1700 Owens Street, Room 373, 
San Francisco, CA 94158, USA.

Abstract

Vitamin D and calcium are well-established regulators of keratinocyte proliferation and 

differentiation. Therefore, it was not a great surprise that deletion of the vitamin D receptor 

(VDR) should predispose the skin to tumor formation, and that the combination of deleting 

both the VDR and calcium sensing receptor (CaSR) should be especially pro-oncogenic. In this 

review I have examined 4 mechanisms that appear to underlie the means by which VDR acts as 

a tumor suppressor in skin. First, DNA damage repair is curtailed in the absence of the VDR, 

allowing mutations in DNA to accumulate. Second and third involve the increased activation of 

the hedgehog and β-catenin pathways in the epidermis in the absence of the VDR, leading to 

poorly regulated proliferation with reduced differentiation. Finally, VDR deletion leads to a shift 

in the expression of long noncoding RNAs toward a more oncogenic profile. How these different 

mechanisms interact and their relative importance in the predisposition of the VDR null epidermis 

to tumor formation remain under active investigation.

Résumé :
La vitamine D et le calcium sont des régulateurs bien établis de la prolifération et de la 

différenciation des kératinocytes. Ainsi, il n’est pas surprenant de constater que la délétion du 

récepteur de la vitamine D (VDR) prédispose à la formation de tumeurs cutanées, et que la 

combinaison de la délétion du VDR et du récepteur de détection de calcium (CaSR ; Calcium 
sensing receptor) soit particulièrement pro-oncogénique. Dans cet article de revue, l’auteur a 

examiné quatre mécanismes qui semblent sous-tendre les moyens par lesquels le VDR agit comme 

suppresseur de tumeurs cutanées. D’abord, la réparation du dommage à l’ADN est restreinte 

par l’absence du VDR, permettant aux mutations dans l’ADN de s’accumuler. Les deuxième 

et troisième mécanismes impliquent l’activation accrue des voies hedgehog et β-caténine dans 

l’épiderme en absence de VDR, conduisant à une prolifération faiblement régulée et une 

différenciation réduite. Finalement, la délétion du VDR mène à un changement de l’expression 

de longs ARN non codants vers un profil plus oncogénique. La recherche se poursuit activement 

afin de comprendre comment ces différents mécanismes interagissent, ainsi que leur relative 

importance dans la prédisposition de l’épiderme depourvu de VDR à la formation tumorale. 

[Traduit par la Rédaction]

1This Invited Review is part of a Special Issue entitled “Pharmacology of vitamins and beyond: Vitamin D.”
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Introduction

Over 1 million skin cancers occur annually in the United States, 80% of which are basal 

cell carcinomas (BCC), 16% squamous cell carcinomas (SCC), and 4% melanomas, making 

skin cancer by far the most common cancer afflicting humankind (Greenlee et al. 2001). 

Ultraviolet radiation (UVR) from the sun is the major etiologic agent for these cancers. 

Of the solar radiation that does reach the earth, 95% is UVA and 5% is UVB. UVB 

(280–320 nm), although it does not penetrate past the epidermis, is absorbed by DNA in 

the epidermal cells creating characteristic mutations identified as cyclobutane pyrimidine 

dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PP), which if not repaired 

result in C to T or CC to TT mutations, the UVB “signature” lesion (Freeman et al. 1989; 

Hussein 2005). UV wavelengths between 320–400 nm (UVA) are capable of penetrating into 

the dermis, and do their DNA damage (e.g., 8 hydroxy 2′ deoxyguanosine production) 

primarily by oxidative processes, although at high enough dose levels UVA can also 

produce CPDs (Besaratinia et al. 2005). On the other hand, UVB is required to convert 

7-dehydrocholesterol levels in the skin to pre-vitamin D3, which then isomerizes to vitamin 

D3. The amount of UVB required to produce vitamin D in the skin is suberythemal (18 

mJ/cm2 in white males with class III pigmentation) (Matsuoka et al. 1989). Moreover, the 

skin is capable of converting vitamin D to its active metabolite 1,25(OH)2D (Bikle et al. 

1986), and this conversion is potentiated by UVR at least in part by cytokines such as tumor 

necrosis factor-α (TNFα)( Bikle et al. 1991), which are increased by UVR in the epidermis 

(Muthusamy and Piva 2009). Both melanocytes (Colston et al. 1982) and keratinocytes 

(Pillai et al. 1988) express the vitamin D receptor (VDR) and respond to 1,25(OH)2D with 

reduced proliferation and increased differentiation (Colston et al. 1981; Bikle 2012). We 

have pursued the hypothesis that the 1,25(OH)2D produced in the skin under the influence of 

UVB acting through its VDR, provides protection against UVB-induced tumors. Moreover, 

we have found that many of the actions of 1,25(OH)2D in the skin are duplicated and (or) 

potentiated by calcium acting through its receptor, CaSR (Bikle et al. 2012). Most recently 

we found that mice lacking both the CaSR and the VDR in their skin develop tumors 

spontaneously, unlike mice lacking either the CaSR or VDR alone (Bikle et al. 2014). This 

article will review the mechanisms that we believe underlie the protection of VDR and CaSR 

for tumor development in the skin.
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Calcium and 1,25(OH)2D interact to regulate keratinocyte proliferation and 

differentiation

Calcium and 1,25(OH)2D are critical for keratinocyte differentiation. If keratinocytes are 

grown at calcium concentrations below 0.07 mmol/L, they continue to proliferate but fail 

or are slow to develop intercellular contacts, stratify little if at all, and fail or are slow to 

form cornified envelopes. Acutely increasing the extracellular calcium concentration (Cao) 

above 0.1 mmol/L (calcium switch) leads to the rapid redistribution of a number of proteins 

from the cytosol to the membrane, where they participate in the formation of intercellular 

contacts. These include the calcium-sensing receptor (CaSR), phospholipase C-γ1 (PLCG1), 

Src family of tyrosine kinases, and the formation of the E-cadherin/catenin (CDH1/CTNN) 

complex with phosphatidyl inositol 3 kinase (PI3K), various catenins (CTNN) including 

β-catenin (CTNNB1), and phosphatidyl inositol 4-phosphate 5-kinase 1α (PIP5K1A), all 

of which play important roles in calcium-induced differentiation (Tu et al. 2001, 2005, 

2008; Xie et al. 2005, 2009; Xie and Bikle 2007). Within hours of the calcium switch the 

keratinocytes begin making keratins KRT1 and KRT10 (Yuspa et al. 1989) followed by 

increased levels of profilaggrin (the precursor of filaggrin [FLG]), involucrin (IVL), loricrin 

(LOR), and other proteins that are cross-linked into the insoluble cornified envelope by the 

calcium induced transglutaminase 1 (TGM1) (Thacher and Rice 1985; Hohl 1990).

The CaSR is essential for these responses to calcium (Tu et al. 2004, 2008, 2011, 2012). Its 

role in the formation of the CDH1/CTNN complex and actin reorganization critical for the 

differentiation process is mediated through filamin (FLN)/RHOA (Tu et al. 2011). The CaSR 

is a 7-transmembrane domain, G-protein coupled receptor first identified in parathyroid 

cells (Brown et al. 1993) that we cloned from keratinocytes (Oda et al. 1998). We then 

developed a mouse in which the exon (exon 7) encoding the entire transmembrane domain 

and intracellular portion of the Casr is floxed, enabling its deletion in keratinocytes (and 

other cells) (Chang et al. 2008; Tu et al. 2008). We have used this model to demonstrate in 

vivo the role of CaSR in calcium signaling within the keratinocyte, and its importance in 

differentiation (Tu et al. 2008, 2012). In particular, mice lacking the CaSR fail to develop 

a normal permeability barrier, with decrements in the production of both the protein and 

lipid components, and demonstrate a defective innate immune response similar to what is 

seen in mice lacking the VDR or CYP27B1 (the enzyme producing 1,25(OH)2D). These 

defects may be due in part to the reduction in expression of Vdr and Cyp27b1 in these mice 

(Tu et al. 2012), indicating that as much as 1,25(OH)2D/VDR induces Casr (see below), 

calcium/CaSR induces Vdr and Cyp27b1.

The expression of Casr is induced by 1,25(OH)2D (Canaff and Hendy 2002), making the 

keratinocyte more sensitive to the prodifferentiating actions of calcium (Ratnam et al. 1999), 

just as calcium enhances the prodifferentiating actions of 1,25(OH)2D (Su et al. 1994). 

All of the phospholipase C (Plc) family members are induced by 1,25(OH)2D (Xie and 

Bikle 1997) as they are by calcium (Xie and Bikle 1999), and blocking phospholipase C-γ1 

(Plcg1) expression prevents both 1,25(OH)2D- and calcium-stimulated differentiation (Xie 

and Bikle 1999, 2001). Both calcium and 1,25(OH)2D inhibit keratinocyte proliferation. 

The antiproliferative effects are accompanied by a reduction in the expression Myc 
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(Matsumoto et al. 1990) and Ccnd1 (Bikle 2011) and an increase in the levels of cell 

cycle inhibitors CDKN1A (a.k.a., p21cip) and CDKN1B (a.k.a., p27kip). Like calcium/CaSR, 

1,25(OH)2D/VDR regulates the processing of the long chain glycosylceramides that are 

critical for permeability-barrier formation (Oda et al. 2009) and induce the receptors, 

Toll-like receptor 2 (TLR2) and its coreceptor CD14, which initiate the innate immune 

response in skin (Schauber et al. 2007). Activation of these receptors leads to the induction 

of CYP27B1, the product of which, 1,25(OH)2D, induces cathelicidin (CAMP) production 

resulting in the killing of invasive organisms (Schauber et al. 2006, 2007). The roles of 

calcium/CaSR and 1,25(OH)2D/VDR in immune regulation may contribute to their roles 

in protection of the skin against malignant transformation, although this has received little 

study.

Mechanisms by which VDR and CaSR provide cancer protection

The role of VDR as protection against epidermal tumor formation was demonstrated 

when Zinser et al. (2002) showed that 85% of Vdr null mice but none of the controls 

developed skin tumors within 2 months following 7,12 dimethylbenzanthracene (DMBA) 

administration. These were primarily papillomas. These results have been confirmed 

using topical administration of DMBA/TPA (Indra et al. 2007). However, although only 

papillomas were seen in the Vdr null mice, subsequently, Ellison et al. (2008) and our own 

group (Teichert et al. 2011) demonstrated that Vdr null mice were also more susceptible to 

tumor formation following UVB exposure, and many of the tumors were SCC. Our interest 

in the potential for calcium/CaSR providing additional protection against epidermal tumor 

formation was piqued when we discovered that the double knockout of Vdr and Casr in 

keratinocytes (epidVdr−/− / epidCasr−/−, DKO) resulted in spontaneous tumor formation that 

we had not observed in mice in which either gene was deleted. The role of calcium/CaSR 

in the prevention of cancer is not unprecedented, as its involvement in colorectal cancer has 

been implicated in a number of studies with human colorectal cancer cell lines (Chakrabarty 

et al. 2003, 2005; Bhagavathula et al. 2007; Liu et al. 2010; Wang et al. 2010). In colorectal 

cancer, the major initiating lesion is a mutated Apc resulting in increased WNT/CTNNB1 

signaling. Activating this pathway increases proliferation and reduces apoptosis, whereas 

inhibition of this pathway has the opposite effect in these cells (Varnat et al. 2009) 

or tumors in Apctm1Mmt mice (Arimura et al. 2009). Calcium via the CaSR blocks the 

transcriptional activity of CTNNB1 in part by increasing CDH1 translocation to the plasma 

membrane where it forms the CDH1/CTNN complex, much as it does in keratinocytes 

(Chakrabarty et al. 2003). As in the keratinocyte, the actions of calcium are synergistic with 

1,25(OH)2D. 1,25(OH)2D induces the CaSR in colon cancer cells (Chakrabarty et al. 2005), 

and both calcium and 1,25(OH)2D inhibit proliferation of these cells by increasing the 

cell cycle inhibitors CDKN1A and CDKN1B, while reducing the levels of MYC, CCND1, 

survivin (BIRC5), and thymidylate synthase (TYMS) (Bhagavathula et al. 2007; Liu et al. 

2010). Moreover, 1,25(OH)2D induces dickkopf 1 (DKK1), an inhibitor of WNT/CTNNB1 

signaling (Pendas-Franco et al. 2008). When we (Rey et al. 2011) deleted Casr specifically 

in the intestinal epithelium, hyperproliferation was observed in these cells with increased 

localization of CTNNB1 in the nuclei. As in the skin, deletion of Vdr in the intestinal 

epithelium does not result in spontaneous tumors, but predisposes to tumor formation 
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following exposure to a carcinogen (Byers et al. 2011). DKO mice lacking both intestinal 

CaSR and VDR have not been tested. We now turn to 4 mechanisms in the epidermis that 

appear to underlie the role of VDR as a tumor suppressor in skin.

DNA damage repair

Part of the predisposition to tumor formation in the VDR null epidermis is due to a defective 

DNA damage repair process (Demetriou et al. 2012). UVB-induced DNA damage includes 

the formation of cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4)pyrimidone 

photoproducts (6-4PP). If these lesions are not repaired, C to T or CC to TT mutations 

result, the UVB “signature” lesion (Hussein 2005). Actinic keratoses, the precursor lesion 

to SCC, as well as SCC and BCC contain these mutations in genes such as p53 (Brash 

et al. 1991; Ziegler et al. 1993,1994; Bito et al. 1995; Daya-Grosjean and Sarasin 2005). 

Preventing UVB-induced DNA damage from producing DNA mutations is the role of 

DDR operating through mechanisms involving damage recognition, repair, and signal 

transduction. Nucleotide excision repair (NER) is the principal means by which UVB 

damage is repaired. By removing DNA damage before DNA replication begins, NER can 

eliminate DNA damage that would otherwise result in mutations that get incorporated into 

the DNA during replication (Chen et al. 1990; Wood 1999). The 2 major processes used by 

NER include transcription-coupled repair (TCR), involving the repair of genes undergoing 

active transcription, and global genomic repair (GGR) for the non-transcribed regions of 

the genome (Mellon et al. 1986; Hanawalt 1994; Wood et al. 2001). Heritable mutations in 

NER genes occur in several human diseases with increased susceptibility to UVB-induced 

epidermal malignancies, such as xeroderma pigmentosum (XP) and Cockayne syndrome 

(CS) (Wood et al. 2001). Identification of the genes mutated in these diseases has assisted 

substantially in identifying the genes and their protein products critical for DDR.

The epidermis of VDR null mice demonstrates a marked reduction in the clearance of 

CPDs and 6,4PPs following UVB, whether administered in vivo (Teichert et al. 2011) or 

in vitro (Demetriou et al. 2012). The Mason laboratory (Dixon et al. 2005; Gupta et al. 

2007) has demonstrated that 1,25(OH)2D, when topically applied, protects the skin from 

UVB-induced photodamage, including increased clearance of CPDs, decreased apoptosis, 

increased survival, and increased expression of p53. These effects do not appear to require 

genomic actions of VDR, as analogs of 1,25(OH)2D that promote nongenomic actions of 

the VDR are equally effective. Moreover, using fibroblasts with mutations of the VDR that 

prevents its genomic actions but not its binding to 1,25(OH)2D, this laboratory demonstrated 

photoprotective effects comparable with that in normal cells (Sequeira et al. 2012). VDR 

null cells did not show a protective effect, however (Sequeira et al. 2012). Whether these 

results will apply in vivo in the epidermis in keratinocytes is not known. On the other 

hand, Moll et al. (2007) found that 1,25(OH)2D induced 2 genes important for DDR: 

XPC (xeroderma pigmentosum complementation group C) and DDB2 (damage-specific 

DNA binding protein 2, also known as XPE). Thus, 1,25(OH)2D may have genomic and 

nongenomic actions to enhance DDR, although in all cases the VDR is required. Much 

remains to be investigated in terms of vitamin D signaling and DDR.
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The hedgehog (HH) pathway in epidermal tumor formation

The appearance of BCC is characteristic of tumors formed when HH signaling is activated 

(Hahn et al. 1996), although UVR-induced SCC formation is also increased (Ping et al. 

2001). Appreciation of the pivotal role of the HH signaling pathway in BCC development 

began with the identification of the PTCH1 gene as the site of mutations underlying the 

rare autosomal dominant heritable basal cell nevus syndrome (BCNS) (Gorlin Syndrome), 

one of whose cardinal features is a high susceptibility to the development of BCCs (Hahn 

et al. 1996; Aszterbaum et al. 1998). The BCCs in these subjects frequently lose function 

of the inherited wildtype PTCH1 allele, leaving the tumor cells functionally devoid of 

PTCH1. Subsequently it has become clear that essentially all BCCs, whether arising in 

patients with BCNS or sporadically, have mutations in PTCH1 or other alterations in HH 

signaling (Aszterbaum et al. 1998). This appreciation has resulted in the development of the 

Ptch1tm1Mps (Gorlin) mouse as the first practical model of mouse BCCs (Aszterbaum et al. 

1999). UVR or ionizing radiation readily induces BCC as well as SCC in these mice.

PTCH1 is the membrane receptor for sonic hedgehog (SHH) in the skin. In the absence of 

SHH, PTCH1 inhibits the function of another membrane protein smoothened (SMO). SHH 

reverses this inhibition, freeing SMO to enable the activation of a family of transcription 

factors, GLI1, GLI2, and GLI3. GLI3 is primarily a repressor, whereas GLI1 is primarily 

an activator and GLI2 can either activate or repress transcription (Mimeault and Batra 

2010). Suppressor of fused (SUFU) maintains these transcription factors in the cytoplasm 

and (or) limits their activity in the nucleus (Barnfield et al. 2005; Svard et al. 2006). 

GLI1 and 2 overexpression in keratinocytes can increase the expression of each other as 

well as PTCH1, the antiapoptotic factor BCL2, CCND1,2, E2F1, CDC45 (all of which 

promote proliferation) while suppressing genes associated with keratinocyte differentiation 

such as KRT1, KRT10, IVL, LOR, and VDR (Grachtchouk et al. 2000; Nilsson et al. 2000; 

Regl et al. 2002, 2004a, 2004b). Mice overexpressing GLI1, GLI2, or SHH in their basal 

keratinocytes (Oro et al. 1997; Grachtchouk et al. 2000; Nilsson et al. 2000) or grafted 

with human keratinocytes overexpressing SHH (Fan et al. 1997) develop BCC-like lesions. 

Furthermore, BCC show overexpression of PTCH1, SMO, GLI1, and GLI2 (Tojo et al. 

1999; Bonifas et al. 2000).

We (Teichert et al. 2011) have found that the epidermis and epidermal portion (utricles) 

of the hair follicles of adult Vdr null animals overexpress elements of the HH signaling 

pathway, unlike the dermal portion of the hair follicle in which HH signaling is reduced 

(Teichert et al. 2010). These results suggest that one of the causes of the increased 

susceptibility of the epidermis to malignant transformation is due to a loss of VDR 

regulation of HH signaling in the epidermis. SHH, PTCH1, PTCH2, GLI1, and GLI2 have 

consensus sequences for vitamin D response elements (VDRE) in their promoters (Reddy 

et al. 2004; Wang et al. 2005; Palmer et al. 2008; Luderer et al. 2011), and we (Teichert 

et al. 2011) have found that 1,25(OH)2D suppresses all elements of the HH pathway in a 

dose-dependent fashion that requires VDR (no repression in Vdr null epidermis). Of further 

interest is that vitamin D may regulate this pathway not only via the genomic actions of 

1,25(OH)2D, but also by direct inhibition by vitamin D of SMO (Bijlsma et al. 2006; Tang et 

al. 2011).
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CTNNB1 signaling in epidermal tumor formation

Like the HH pathway, overexpression and (or) activating mutations in the CTNNB1 pathway 

lead to skin tumors, in this case pilomatricomas or trichofolliculomas (hair follicle tumors) 

(Gat et al. 1998; Chan et al. 1999; Xia et al. 2006). Palmer et al. (2008) evaluated the 

interaction between VDR and CTNNB1 in transcriptional regulation, and identified putative 

response elements for VDR and CTNNB1/LEF1 in a number of genes including Shh, Ptch1 
and 2, and Gli1 and 2. Furthermore, they found that the ability of Ctnnb1 overexpression 

to induce trichofolliculomas was blocked by an analog of 1,25(OH)2D. Moreover, in the 

absence of VDR, BCC were induced rather than trichofolliculomas. In human tumors, 

Palmer et al. (2008) noted that trichofolliculomas have high nuclear levels of both CTNNB1 

and VDR, whereas BCC have high levels of CTNNB1 but low levels of VDR. These 

observations are consistent with their animal data showing that lack of VDR in the skin 

of animals with activated CTNNB1 results in BCC. Saldanha et al. (2004) likewise found 

nuclear localization of CTNNB1 in 20 of 86 human BCC, which correlated with increased 

proliferative activity in these tumors, but they did not correlate these results with VDR 

levels. Thus, in humans as well as in mice, VDR appears to modulate the differential action 

of CTNNB1in the hair follicle and in the epidermis. On the other hand, when CTNNB1 

transcriptional activity is deleted, hair follicle formation is blocked (Huelsken et al. 2001), 

and suppression of CTNNB1 transcriptional activity may protect against epidermal tumor 

formation (Wei et al. 2007), although our recent studies have not confirmed this hypothesis 

(Jiang et al. 2013).

Long noncoding RNAs (LncRNA) in epidermal tumor formation

LncRNAs are endogenous cellular RNAs larger than 200 bases. They are estimated to 

account for 80% of the transcriptome (Mercer et al. 2009). They are spliced and contain 

polyadenylation signals, much like messenger RNAs (Mattick 2011). LncRNAs have 

emerged as master regulators of embryonic pluripotency, differentiation, and body axis 

patterning, regulating histone modifications and so influencing the epigenetic programs of 

the transcriptome (Mattick 2011; Spitale et al. 2013). Of greater relevance to this review 

is that lncRNAs also regulate cancer development through mechanisms including tumor 

cell proliferation, evasion of growth suppressors, replicative immortality, angiogenesis, 

and invasion and metastasis (Gibb et al. 2011; Gutschner and Diederichs 2012; Li et 

al. 2013). As a first step to determining whether lncRNAs play a role in the protective 

effective of vitamin D signaling in epidermal carcinogenesis, we (Jiang and Bikle 2014) 

evaluated the profile of lncRNAs in the epidermis of VDR null mice and in keratinocytes 

lacking VDR. We found that H19, HOTTIP, and Nespas are significantly and consistently 

increased in both cultured keratinocytes and epidermis following VDR deletion, as were 

Air, HOTAIR, Malat1, and SRA. These lncRNAs are known to be oncogenic (Li et al. 

2013). H19 is normally expressed during fetal development, but is re-expressed in adult 

tumors, and is essential for human tumor growth (Berteaux et al. 2005;Barsyte-Lovejoy et 

al. 2006; Matouk et al. 2007). HOTTIP (HOXA transcript at the distal tip) is expressed 

from the 5′ end of the HoxA locus and drives histone H3 lysine 4 trimethylation and gene 

transcription of HoxA distal genes through the recruitment of the WDR5/MLL complex 

(Wang et al. 2011). On the other hand, the 7 lncRNAs that decreased after VDR deletion 

in vivo or in vitro included lincRNA-p21 and Kcnq1ot1, which are 2 well-characterized 
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tumor suppressors (Pandey et al. 2008; Li et al. 2013). LincRNA-p21 is a direct p53 target 

gene residing next to the p21 gene, which is up-regulated upon DNA damage in different 

tumor models (Huarte et al. 2010). LincRNA-p21 exerts its tumor suppressor function via 

association with hnRNP, a well-known RNA binding protein, and is itself a tumor suppressor 

(Huarte et al. 2010). Kcnq1ot1 localizes in the nucleus, interacting with chromatin and also 

with G9a (a H3K9- and H3K27-specific histone methyltransferase) and Ezh2 (histone-lysine 

N-methyltransferase), resulting in cluster-wide repressive histone marks, gene silencing, and 

DNA methylation of CpG islands. Hence it exerts its tumor suppressor effect via epigenetic 

gene silencing (Redrup et al. 2009). Together, our results indicate that part of the protective 

effect of VDR against epidermal carcinogenesis is due to reducing the expression levels of 

oncogenic lncRNAs while upregulating tumor suppressor lncRNAs.

Conclusions

VDR in combination with CaSR protects against epidermal carcinogenesis. In this paper 

we have reviewed 4 potential mechanisms by which this protective action is mediated. 

First, VDR is required for normal DNA damage repair (DDR). This appears to involve 

both genomic and nongenomic pathways. In the absence of VDR, DDR is impaired 

leading to accumulation of mutations predisposing to malignant transformation. The role 

for calcium signaling in DDR has not been tested. Calcium and vitamin D signaling are 

well known regulators of keratinocyte proliferation and differentiation of keratinocytes. Both 

the CTNNB1 and HH pathways contribute to the means by which calcium and vitamin 

D control these processes. Lack of VDR increases the activity of both HH and CTNNB1 

signaling pathways, shifting the epidermis away from differentiation to poorly regulated 

proliferation. Finally, VDR regulates the expression of oncogenic and tumor suppressing 

lncRNAs in keratinocytes. The lack of VDR shifts the profile of these lncRNAs to one 

predisposing to malignancy. It is likely that these different mechanisms interact, a subject 

of investigation in our laboratory. Moreover, we expect calcium signaling via the CaSR will 

affect the role of VDR in regulating these mechanisms, but the extent and means of this 

interaction remain poorly understood. Finally, not all of the actions of VDR to suppress 

tumor formation in the skin appear to require its ligand, 1,25(OH)2D, although some clearly 

do. How VDR functions without its ligand remains unclear. Thus, although the role of VDR 

as a tumor suppressor in skin is established, we still have much to learn about the precise 

mechanisms by which it does so.
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