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Abstract

Multiscale Simulations:
From Enzyme Kinetics to Fluctuating Hydrodynamics

by

Barry Zhongqi Shang

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Jhih-Wei Chu, Chair

The development of multiscale methods for computational simulation of biophysical sys-
tems represents a significant challenge. Effective computational models that bridge physical
insights obtained from atomistic simulations and experimental findings are lacking. An ac-
curate passing of information between these scales would enable: (1) an improved physical
understanding of structure-function relationships, and (2) enhanced rational strategies for
molecular engineering and materials design. Two approaches are described in this disserta-
tion to facilitate these multiscale goals.

In Part I, we develop a lattice kinetic Monte Carlo model to simulate cellulose decompo-
sition by cellulase enzymes and to understand the effects of spatial confinement on enzyme
kinetics. An enhanced mechanistic understanding of this reaction system could enhance the
design of cellulose bioconversion technologies for renewable and sustainable energy. Using our
model, we simulate the reaction up to experimental conversion times of days, while simultane-
ously capturing the microscopic kinetic behaviors. Therefore, the influence of molecular-scale
kinetics on the macroscopic conversion rate is made transparent. The inclusion of spatial
constraints in the kinetic model represents a significant advance over classical mass-action
models commonly used to describe this reaction system. We find that restrictions due to
enzyme jamming and substrate heterogeneity at the molecular level play a dominate role in
limiting cellulose conversion.

We identify that the key rate limitations are the slow rates of enzyme complexation with
glucan chains and the competition between enzyme processivity and jamming. We show
that the kinetics of complexation, which involves extraction of a glucan chain end from the
cellulose surface and threading through the enzyme active site, occurs slowly on the order
of hours, while intrinsic hydrolytic bond cleavage occurs on the order of seconds. We also
elucidate the subtle trade-off between processivity and jamming. Highly processive enzymes
cleave a large fraction of a glucan chain during each processive run but are prone to jamming
at obstacles. Less processive enzymes avoid jamming but cleave only a small fraction of a
chain. Optimizing this trade-off maximizes the cellulose conversion rate.



2

We also elucidate the molecular-scale kinetic origins for synergy among cellulases in en-
zyme mixtures. In contrast to the currently accepted theory, we show that the ability of
an endoglucanase to increase the concentration of chain ends for exoglucanases is insuffi-
cient for synergy to occur. Rather, endoglucanases must enhance the rate of complexation
between exoglucanases and the newly created chain ends. This enhancement occurs when
the endoglucanase is able to partially decrystallize the cellulose surface. We show generally
that the driving forces for complexation and jamming, which govern the kinetics of pure
exoglucanases, also control the degree of synergy in endo-exo mixtures.

In Part II, we focus our attention on a different multiscale problem. This challenge is
the development of coarse-grained models from atomistic models to access larger length- and
time-scales in a simulation. This problem is difficult because it requires a delicate balance
between maintaining (1) physical simplicity in the coarse-grained model and (2) physical
consistency with the atomistic model. To achieve these goals, we develop a scheme to coarse-
grain an atomistic fluid model into a fluctuating hydrodynamics (FHD) model. The FHD
model describes the solvent as a field of fluctuating mass, momentum, and energy densities.
The dynamics of the fluid are governed by continuum balance equations and fluctuation-
dissipation relations based on the constitutive transport laws. The incorporation of both
macroscopic transport and microscopic fluctuation phenomena could provide richer physical
insight into the behaviors of biophysical systems driven by hydrodynamic fluctuations, such
as hydrophobic assembly and crystal nucleation.

To develop the FHD model, we map all-atom molecular dynamics trajectories onto mass,
momentum, and energy density grids to generate a corresponding field trajectory. From the
field statistics, the response functions and transport coefficients of the atomistic model are
computed. These thermophysical properties are then used to parameterize an FHD model
for the fluid that reproduces the hydrodynamic correlations underlying the atomistic model.
We show that an FHD description of the fluid is preserved down to length scales of 5Å,
enabling application of this coarse-graining approach to molecular systems.

We further extend our coarse-graining method by developing an interfacial FHD model
using information obtained from simulations of an atomistic liquid-vapor interface. We
illustrate that a phenomenological Ginzburg-Landau free energy employed in the FHD model
can effectively represent the attractive molecular interactions of the atomistic model, which
give rise to phase separation. For argon and water, we show that the interfacial FHD
model can reproduce the compressibility, surface tension, and capillary wave spectrum of
the atomistic model. Via this approach, simulations that explore the coupling between
hydrodynamic fluctuations and phase equilibria with molecular-scale consistency are now
possible.

In both Parts I and II, the emerging theme is that the combination of bottom-up coarse
graining and top-down phenomenology is essential for enabling a multiscale approach to re-
main physically consistent with molecular-scale interactions while simultaneously capturing
the collective macroscopic behaviors. This hybrid strategy enables the resulting computa-
tional models to be both physically insightful and practically meaningful.
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Chapter 1

Introduction to Cellulase Kinetics

1.1 Overview
One of the most urgent challenges facing our generation is climate change due to rising levels
of greenhouse gases such as carbon dioxide into the atmosphere [1,2]. A significant fraction
of carbon emissions arises from the burning of fossil fuels. To reduce carbon emissions,
an attractive technology is the conversion of cellulosic biomass into transportation fuels
and chemicals, such as ethanol [3,4]. Cellulosic biomass sources include agricultural waste,
such as corn stover and wood chips, and dedicated “energy” crops that could be grown on
marginal lands. Among the most popular energy crops under consideration are Miscanthus
grass species, switchgrass, and poplar trees. These crops have received attention due to their
high yield per acre and low water usage [4].

The primary argument in support of cellulosic biofuel technologies is that cellulosic
biomass, as the most abundant organic material on Earth [5], represents a potentially vast
and renewable energy resource. According to a Department of Energy study, the United
States has the capacity to produce 1.3 billion tons of biomass per year, which could displace
up to 30% of the country’s petroleum consumption [6,7]. In addition, unlike ethanol pro-
duction from corn starch, cellulosic ethanol does not compete directly with food production
and does not require displacement of fertile agricultural land [8]. Cleaner transportation
fuels from biomass could also reduce net carbon emissions from sources which are more
distributed, from which carbon capture would be more difficult [4].

Despite these advantages, significant challenges remain before cellulosic biofuel produc-
tion at an industrial scale can become viable. The growth of energy crops will require large
amounts of land and water, which could impact soil quality, biodiversity, and sustainabil-
ity [4,9]. The low energy density of plants also implies that biomass resources will be highly
distributed, which requires the construction of new transportation infrastructures to consol-
idate the biomass feedstocks [10]. In addition, life-cycle analyses that take into account the
potential land-use changes from biomass harvesting suggest that under certain conditions,
the net carbon emissions from biofuel production is increased [9,11,12]. Biofuel production is
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also far from becoming economically competitive with petroleum refining and other technolo-
gies [10]. The impetus for renewable biofuels to become a clean energy solution is further
weakened by improvements in natural gas recovery within the past decade [13]. Climate
change, however, will not be solved by a single “silver bullet” idea, but rather by a portfolio
of technologies [1]. In this new “industrial revolution” [2], cellulosic biofuels can play an
important role.

1.2 Conversion routes
A variety of routes exist for converting cellulosic biomass into fuels and chemicals. They
can be divided into thermochemical and biochemical routes [4,14–16]. The most common
thermochemical route is gasification of biomass to produce syngas, which can later be trans-
formed into industrial chemicals such as alcohols, dimethyl ethers, and diesel products. The
main advantage of gasification is the ability to utilize a variety of biomass feedstocks [4],
while its main challenge is costs associated with removal of tar, ash, and sulfur that poison
the catalysts used during fuel synthesis [16]. By 2014, at least ten commercial-scale biore-
fineries producing cellulosic biofuels are expected to begin full operations. Two of these ten
commercial-scale plants are scheduled to utilize the gasification route [15]. Gasification is
seen as the major competitor against biochemical conversion technologies.

Biochemical conversion of biomass involves the use of enzymes and microbes to decon-
struct cellulose. This process is composed of four steps: (1) mechanical pretreatment, (2),
chemical pretreatment, (3) enzymatic hydrolysis, and (4) sugar fermentation [4]. Mechanical
pretreatment reduces the physical size of the biomass components, producing millimeter-sized
pellets [17]. Chemical pretreatment increases the internal surface area of the pellets, render-
ing the crystalline microfibrils within cellulose more accessible to enzymes [17–19]. These
crystalline microfibrils are embedded within a matrix of hemicellulose and lignin, which ob-
struct enzyme access to the microfibril surface [5,19]. Often, dilute sulfuric acid is used as
the catalyst, which solubilizes hemicellulose, redistributes lignin, and exposes the crystalline
surface of the cellulose microfibrils [17,19]. After pretreatment, a cocktail of different types
of cellulase enzymes are added, which act cooperatively to decompose cellulose into free sug-
ars [20]. Typically, a loading of around 20 mg enzymes per gram of cellulose is used [21,22].
For pretreated substrates, a conversion around 80% can be expected after 3 days [21–23].
The free sugars produced from enzymatic decomposition can be later converted into ethanol
or butanol by microbes [24] or into alkanes via aqueous phase processing [25]. An illustra-
tion of the main steps in the biochemical route is shown in Fig. 1.1. In 2014, four of the ten
scheduled commercial-scale plants are expected to utilize biochemical routes [15].

A primary challenge facing economically viable conversion of cellulosic biomass into liq-
uid fuels is the slow rate of enzymatic decomposition of cellulose into free sugars [3,20,26,27].
Cellulose is highly recalcitrant to saccharification due to the crystalline structure of cel-
lulose microfibrils, which consist of polysaccharide glucan chains ordered by an extensive
hydrogen-bonding network [3,28]. The high enzyme loadings and hence, costs required to
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Figure 1.1. Outline of chemical process to convert cellulosic biomass into ethanol. The
dotted red line encloses the process investigated in the dissertation work.

achieve appreciable cellulose conversion in industrial-scale processes limits economically vi-
able production of cellulosic transportation fuels [20,21,29]. For example, compared to starch
hydrolysis, up to 100-fold higher enzyme loading must be used [30]. Technoeconomic analy-
ses show that the second largest component among raw materials costs is the cost of cellu-
lases [21,31], which can be as high as $1.47/gal ethanol [22]. Given current cellulosic ethanol
production costs around $3.50/gal [32], the enzyme cost represents a significant contribu-
tion. Current targets aim to reduce the production cost to around $1.00/gal [33,34]. The
ability to use fewer enzymes and/or improve their specific activities would aid in achieving
more economically viable biofuel production. To this aim, an improved understanding of the
enzymatic cellulose decomposition process is essential. In particular, a deeper mechanistic
understanding of cellulase kinetics could facilitate more rational approaches to accelerate
cellulose bioconversion.

1.3 Enzymatic decomposition of cellulose
The kinetic mechanism of enzymatic decomposition of cellulose is difficult to investigate
primarily due to two features: (1) the complex structure of native plant cell walls, and (2)
the complicated kinetic behaviors of cellulase enzymes. A majority of this work is aimed at
understanding the latter. A brief overview of both the plant cell wall structure and enzyme
kinetic behaviors will be provided next.

1.3.1 Plant cell structure

In the plant cell wall, the primary structural units are the cellulose microfibrils, which form
a layered mesh within the cell wall to provide structural rigidity to the plant [28,35]. The
microfibrils exist in a matrix of hemicellulose and lignin. Hemicellulose is a branched polysac-
charide that links the microfibrils together, while lignin is complex network of aromatic car-
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Figure 1.2. Illustration of geometry of a model microfibril. (a–d) Four different angles
are shown. Each sphere represents a cellobiose residue (glucosidic dimer). The degree of
polymerization of the microfibril above is 40 glucose residues.

bons that provides structural rigidity to woody plants [27,36]. The microfibrils consist of an
ordered array of glucan chains [5,37,38], with length of 100 nm to microns and a diameter
of 3 to 5 nm [35]. In higher plants, typically 36 glucan chains compose a microfibril [37].
Different views of a model microfibril are illustrated in Fig. 1.2.

The recalcitrance of cellulose is due to the extensive hydrogen bonding network and van
der Waals interactions between the glucan chains, which impact high crystallinity to the mi-
crofibrils [3,38,39]. Therefore, a large amount of cellulase enzymes must be used to facilitate
conversion into sugars. Besides cellulases, other types of plant cell wall degrading enzymes
exist and are used for cell wall degradation. The most common are hemicellulases, which
remove xylans associated with the microfibrils and increase cellulose surface accessibility to
cellulases [36,40]. However, because the dominant component of the cell wall is cellulose
(35-50%) [27,41], existing primarily as insoluble crystalline microfibrils, and because hemi-
cellulose can be solubilized in water, cellulases are the most crucial polysaccharidase enzymes
for overcoming recalcitrance of the plant cell wall.

1.3.2 Kinetic mechanisms of cellulases

The most industrially important cellulases are those produced by the fungus Trichoderma ree-
sei. These cellulases are employed in current commercially available mixtures [26,30,42,43].
This fungus is important because it is able to secrete cellulases in large concentrations and
with high activity [26]. Therefore, using these cellulases is economically advantageous. The
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Figure 1.3. Illustration of cellulase as a ball-stick model. (a) A model TrCel7A cellulase
adsorbed onto a microfibril. (b) Illustration of modular structure of cellulase.

fungus produces three major cellulase enzymes, TrCel7A, TrCel6A, and TrCel7B [41,44].
The first two are exoglucanases (or cellobiohydrolases), and the last is an endoglucanase.
These two types of cellulases are distinguished by their kinetic mechanisms in decomposing
cellulose, which will be described in Section 1.3.2. All three types of these enzymes possess a
modular structure, consisting of a carbohydrate binding module (CBM) and a catalytic do-
main (CD) [45,46]. The CBM promotes adsorption of the cellulase onto insoluble substrates
by hydrophobic interactions [47–49], while the CD possesses the active site responsible for
hydrolytic bond cleavage [50]. A flexible linker connects both domains [51]. A schematic of
the enzyme modules is shown in Fig. 1.3.

The crystal structures of the CBM for TrCel7A and TrCel7B have been resolved [52,53],
while crystal structures of the CD for TrCel7A, TrCel6A, and TrCel7B have been re-
solved [50,54,55]. The CBM is much smaller; dimensions of the CBM of TrCel7A are
2 nm× 1 nm× 3 nm [52]. The CD is much larger, with dimensions for TrCel7A of 5 nm×
4 nm × 6 nm [50]. Therefore, the diameter of these enzymes is similar to the diameter of
the microfibrils, and diffusion of the enzyme along the microfibril is effectively constrained
to one dimension. The active sites of TrCel7A and TrCel7B accommodate 10 glucose
residues [56,57], while the active site of TrCel6A accommodates 6 glucose residues [58,59].
The length of the linker connecting the CBM and CD is around 5 nm [51]. Removal of
the CBM decreases adsorption onto insoluble substrates, lowering the cellulose conversion
rate, but has little effect on conversion of soluble substrates, since substrate adsorption is no
longer required [41].

The mechanism of enzymatic cellulose decomposition involves several elementary kinetic
steps [27,60,61]. From solution, enzymes can adsorb onto the hydrophobic faces of the
microfibril [49,62]. Once on the surface, enzymes can diffuse, desorb from the surface, or
complex with a glucan chain. Complexation involves extraction of a glucan chain from its
crystalline state in the microfibril and translocation into the active site of the CD [27,57].
Once complexed, the enzyme can decomplex or perform hydrolysis, which involves cleavage
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of the bonds connecting the glucose residues. These mechanisms will be further described in
Chapter 2.

Exoglucanases can only complex with the free end of a glucan chain. TrCel7A, an
exoglucanase, can only complex with the free reducing end of the chain, while TrCel6A,
complexes with the free non-reducing end of the chain [46]. This difference means that
these enzymes begin to cleave bonds from opposite ends of the chain. Complexation for
exoglucanases involves threading of a chain into the active site of the CD, which resembles
a tunnel [56]. The second bond from the end is cut by these enzymes, which releases a
glucosidic dimer, cellobiose, into solution [45]. Exoglucanases are also processive [63,64].
After hydrolysis, the enzymes translate forward by the length of a cellobiose molecule, which
moves the glucan chain within the tunnel into position to be cut again. The series of
hydrolysis and translation steps occurs until the exoglucanase decomplexes from the chain.

Endoglucanases, such as TrCel7B, can complex anywhere along the chain, not only at
chain ends [41,61]. In this case, the active site is shaped like a groove, rather than a tun-
nel [45,55], which allows interior portions of a glucan chain to be lifted up from the surface
and into the active site. The open active site, however, also makes endoglucanases non-
processive, since additional tunnel-forming loops that keep glucose residues locked into the
catalytic domain are lacking [55]. This means that after hydrolysis, the enzyme decomplexes
with the chain. Endoglucanases cut interior bonds within the glucan chain and typically do
not release soluble glucan products into solution after cleavage. Rather, they act primarily
to reduce the length, or degree of polymerization, of the glucan chains [41,65,66].

TrCel6A primarily acts as an exoglucanase, but displays some endo-like behavior [64,67–
69], since its active site possesses more flexible loops that alternate between a tunnel-like
and a groove-like structure [58,59]. Hence, TrCel6A can be considered to be an “endo-
processive” enzyme, initiating processive hydrolysis within interior portions of a glucan chain.
However, because the active site loops are also more flexible, TrCel6A is less processive than
TrCel7A [70]. An illustration of the differences between exo- and endoglucanase mechanisms
is shown in Fig. 1.4.

Synergy between exo- and endo-acting enzymes is well-studied [72,73], but its mecha-
nistic origins remain unclear [26,73]. It refers to the observation under certain conditions
that the net conversion achieved by a mixture of exo- and endoglucanases is greater than
the sum of conversions obtained from their pure activities. Since additive conversion would
appear if these enzymes acted completely independently, the presence of synergy indicates
the existence of cooperation between the enzymes. To exploit this synergy, industrial for-
mulations consist of a cocktail of enzymes, which typically include TrCel7A, TrCel6A, and
TrCel7B from Trichoderma reesei [26,30]. Mechanistic theories explaining the origins of
enzyme synergy will be further explored in Chapter 4.
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Figure 1.4. Similarities and differences between hydrolytic mechanisms of cellulases. (a)
Hydrolytic mechanism of exoglucanase TrCel7A, showing tunnel-like active site environment
holding 10 glucose residues [56]. The enzyme hydrolyzes from the reducing end and translates
after hydrolysis. (b) Hydrolytic mechanism of exoglucanase TrCel6A, showing tunnel-like
active site environment holding 6 glucose residues [59,71]. The enzyme hydrolyzes from the
non-reducing end and translates after hydrolysis. (c) Hydrolytic mechanism of TrCel7B,
showing active site holding 10 glucose residues [57]. The enzyme decomplexes after hydrol-
ysis.
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1.4 Limitations of current modeling techniques
To obtain a deeper mechanistic understanding of enzymatic cellulose decomposition, a variety
of experimental [20,41,74] and modeling [60,75] approaches have been employed. The broad
objectives in all of these studies are to identify features of the system that enhance conversion
and features that limit conversion. By identifying and understanding these features, a more
rational approach toward accelerating cellulose conversion could be pursued. Extensive re-
views of experimental and modeling studies have appeared in the literature [20,41,60,73,76].
Here, a few of the limitations of current techniques will be described in order to motivate
the development of a new kinetic model.

1.4.1 Spatial effects on cellulase kinetics

The key kinetic feature that many current techniques are unable to characterize well is that
the decomposition process occurs on a spatially confined and heterogeneous surface. Surface
enzymes are likely not well mixed and interfere with each other and with the substrate via
excluded volume interactions [64,77–79]. Solution phase experiments are unable to account
for the spatial heterogeneities associated with enzyme surface configuration and substrate
morphology. In these experiments, the primary observables are the concentration of enzymes
on the surface and in solution [80–84]. The spatial arrangement of surface enzymes cannot
be directly measured. For surface confined species in crowded environments, however, re-
actant configuration, in addition to concentration, affects the conversion rate because the
reactants are unable to fully explore the entire free surface area between consecutive reaction
events [85]. Therefore, the classical mass-action assumption of a dilute, well-mixed system
is not likely to hold. In this case, spatial configuration, in addition to surface concentration,
would affect the conversion rate. Physical insights developed from measurements of only the
surface enzyme concentration can provide only a partial explanation of the reaction kinetics.

In addition to solution-phase experiments, mass-action kinetic models also suffer from
limitations of spatial averaging. These models assume dilute, well-mixed surface reactants,
and therefore, model the reaction rate as a function of the reactant concentrations [60]. Since
these models are often used to interpret solution-phase experimental data, it is unsurprising
that they would share the same limitations. Many of these kinetic models, when best-fitted
to experimental data, describe the corresponding experiment quite well. However, they have
little transferability and give little insight into the kinetics of individual enzymes.

Recent high-speed atomic force microscopy (AFM) experiments have provided spatial res-
olution of the decomposition process at molecular scales and show cellulase enzymes are prone
to forming “traffic jams” along the surface [64]. These jammed configurations are believed to
contribute to lower cellulose conversion rates. They arise from surface obstacles that block
the processive movement of complexed enzymes [86–91]. Surface obstacles are either native
to the plant material or arise from gradual degradation of the microfibril. Mass-action kinetic
models, however, fail to account for jamming and excluded volume interactions explicitly.
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They also do not explicitly model the gradual surface erosion of the microfibril [63,92,93],
which in turn can promote jamming and inhibit enzyme activity [78,82,83].

1.4.2 Modeling spatial effects

A strategy to incorporate spatial features implicitly is to preserve the mathematical struc-
ture of the mass-action model, but introduce time-dependent rate constants [77,78], which
attempt to describe diffusional limitations that arise from spatial crowding. These rate con-
stants decrease as a function of time and at the physical level, attempt to describe the gradual
segregation of reactants as time progresses, which leads to a lower specific reaction rate [85].
However, spatial effects are treated implicitly, and the primary observable is again the species
concentration. Without explicit modeling of the reactant configurations, it becomes difficult
to determine if spatial effects are actually important, or if the observed trends arise as a
result of the model’s compensation for other neglected behaviors. In addition, with explicit
spatial resolution, there is the obvious benefit of being able to transparently visualize and
track the positions of individual reactants.

A few recent kinetic models have been developed to simulate enzymatic cellulose de-
composition with explicit molecular resolution. Two of them are briefly discussed here.
A cellular automaton model has been presented before for modeling cellulase kinetics on
cellulose [94]. However, this model assumes complexation and decomplexation occur instan-
taneously and underestimates bulk and surface diffusion rates. The method also employs ad
hoc probability parameters that are difficult to interpret in a physical context. A lattice-
based coarse-grained model has also been used to study cellulase kinetics [95]. This model,
however, employs lumped kinetic steps that obscure the rate-limiting behaviors. The model
combines adsorption and diffusion with complexation, and combines decomplexation with
desorption. By lumping the rates, it becomes difficult to identify which step is actually rate-
limiting. The effects of complexation and decomplexation cannot be studied independently
when their rates are lumped with others, although these processes are believed to govern
conversion rates on insoluble crystalline substrates and require the most attention [57,96,97].
The model also only describes the degradation of a two-dimensional surface rather than
a complete three-dimensional microfibril. Therefore, it does not capture the spatial con-
straints imposed by substrate morphology on enzyme configuration. In both models, the
complexation-exchange kinetics cannot be studied as isolated processes, and the simulations
do not quantitatively reproduce experimental conversion profiles.

1.5 Developing a comprehensive model
The development of kinetic models with spatial molecular resolution is essential for under-
standing the rate limitations that limit cellulose conversion. In this dissertation work, we
develop a comprehensive kinetic model to account for the rich kinetic behaviors of cellulases
acting on cellulose. We explicitly resolve the shape and structure of the enzymes and mi-
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Figure 1.5. Summary of features of various kinetic models for enzymatic cellulose decom-
position. The newly developed model in the thesis work is called the Stochastic LATtice
Enzyme model (SLATE). Reference numbers as as follows: Levine et al., 2010 [61]; Mauer
et al., 2012 [97]; Praestgaard et al., 2011 [89]; Cruys-Bagger et al., 2012 [90]; Warden et al.,
2011 [94]; and Asztalos et al., 2012 [95].

crofibrils in three dimensions. We explicitly track the locations of individual reactants with
molecular-scale spatial resolution. We incorporate excluded volume interactions and capture
jamming behavior among enzymes. We also isolate complexation and decomplexation of
the enzymes with the surface as stand-alone steps. These advances enable us to achieve
an enhanced kinetic understanding of the enzymatic decomposition process beyond current
mechanistic theories [27,60].

The Stochastic LATtice Enzyme (SLATE) model developed here is a lattice kinetic Monte
Carlo model [98] that simulates the spatiotemporal behavior of the enzyme reaction network
with molecular-scale spatial resolution. A graphical illustration of the full suite of spatiotem-
poral enzymatic behaviors incorporated in the newly developed model and comparison to
those of existing models is shown in Fig. 1.5. The insight gained from the model can be
used to interpret solution-phase experiments and AFM studies. In addition, these insights
can guide the focus of atomistic simulations, mass-action kinetic models, and single-molecule
studies. Therefore, we believe SLATE is an integral part of a multiscale and multidisciplinary
approach toward understanding and engineering enzymatic cellulose decomposition.

In SLATE, the shapes of individual TrCel7A enzymes and the microfibril glucan chains
are resolved onto a three-dimensional lattice consisting of cubic grid cells with side length
equal to the size of a glucose residue (5Å). Excluded-volume interactions are imposed
between the reactants to account for spatial confinement. A full suite of kinetic reactions
is incorporated, including (1) adsorption, (2) desorption, (3) diffusion, (4) complexation,
(5) decomplexation, and (6) hydrolysis. The system dynamics are governed by kinetic rate
constants, which are obtained from the experimental literature.
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1.6 Goals and objectives
The goals and objectives of Part I of this dissertation work are:

1. Identify the rate-limiting steps that hinder enzymatic cellulose decomposition.

2. Determine the role of complexation and decomplexation on cellulose conversion.

3. Investigate the extent to which spatial confinement and jamming limit conversion rate.

4. Understand the molecular and kinetic origins for synergism among different types of
cellulases.

5. Develop a unified mechanistic understanding of enzymatic cellulose decomposition to
facilitate rational engineering.
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Chapter 2

Computational Methodologies

In this chapter, a brief overview of the kinetic Monte Carlo (kMC) method is provided and
then the Stochastic LATtice Enzyme (SLATE) model for cellulases is described. The aim of
the first section is to provide only a brief overview of the kMC method, as more complete
and pedagogical explanations exist in publications and textbooks [98–100]. On the other
hand, the SLATE model, which is unique to this dissertation work, will be described in more
detail.

2.1 Kinetic Monte Carlo

2.1.1 Markov processes

The kinetic Monte Carlo (kMC) algorithm simulates a random walk in time through a reac-
tion network. It is a stochastic simulation technique that generates sample paths following
a Markov process [100]. A path refers to a sequence of states indexed by time. Two key
ideas are that the dynamics is stochastic and Markovian. For chemical reactions occurring
at molecular scales, the reaction kinetics behaves as a stochastic process due to the small
number of molecules in the system and the choice to model the system with only a few key
dynamical variables. The reaction kinetics is Markovian due to the large separation in time
scales between the slow dynamical variables and fast neglected variables. The slow dynamical
variables describe the state of the system, while the fast neglected variables are incorporated
as model parameters. Under the Markov condition, the future state of the system depends
only on its current state. The conditional dependence only on the current state refers to a
process that lacks “memory”. Mathematically, this condition is

P (Xn = xn |Xn−1 = xn−1, . . . , X0 = x0) = P (Xn = xn |Xn−1 = xn−1)

≡ P (xn, tn |xn−1, tn−1) (2.1)

where xn is the system state at time tn, xn−1 is the system state at time tn−1, etc., and
tn > tn−1 > tn−2 > . . . .
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2.1.2 Transition probability

The connection between the kinetic Monte Carlo algorithm and Markov processes is the
transition probability, which is the right-hand side of Eq. 2.1. The transition probability
gives the probability for the system to be at state xn at time tn, given that it is in state xn−1

at time tn−1 [99].
In the kinetic Monte Carlo algorithm, the most important transition probability is the one

that describes transitions between states separated by an infinitesimally small time difference
∆t [99]. This transition probability is proportional to the time difference,

P (n, t+ dτ |m, t) = am,ndτ (2.2)

Here, am,n is the rate constant, or transition probability per unit time, for a system at statem
at time t to jump to state n at time t+dτ . It has the units of a first-order rate constant. From
the fundamental transition probability in Eq. 2.2, all other joint probability distributions,
conditioned upon a given initial condition, can be constructed as a product of fundamental
transition probabilities, due to the Markov property for conditional independence. The
kMC algorithm uses this fundamental transition probability to exactly sample stochastic
paths consistent with the joint distributions of the Markov process.

2.1.3 Gillespie algorithm

During a random walk through a reaction network, the system spends a certain amount of
time in its current state and then instantaneously jumps to the next one. Therefore, to
sample this process, we need to determine two quantities to describe a jump from one state
to the next: (1) the amount of time spent in the current state, and (2) the location of the
next state. These quantities behave as random variables whose joint probability distribution
is described by the next-reaction probability p(τ,n |m, t) [99]. It is the probability that (1)
nothing has happened during the interval [t, t+ τ), and (2) the system jumps from state m
to n at time t+ τ + dτ Hence, it the product of two probabilities

p(τ,n |m, t) = P0(τ)am,ndτ (2.3)

The first is the probability that nothing has happened during the interval [t, t+ τ), which
is denoted P0(τ). We can write this recursively as follows. Note that the probability that
any reaction will occur in the time interval [t, t+ dτ), given that the system is in state m
at time t, is

amdτ =
∑
n

am,ndτ (2.4)

where the sum runs over all possible destination states n. Therefore, the probability that
nothing occurs in the time interval [t, t+ dτ) is 1 − amdτ . The probability that nothing
occurs in the time interval [t, t+ τ + dτ), P0(τ + dτ), can now be written recursively as
P0(τ + dτ) = P0(τ)(1− amdτ). Hence, we have

P0(τ) = exp(amτ). (2.5)
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The emergence of the exponential function from an “infinitesimal rate parameter” is not
unsurprising given the mathematical similarities here to continuously compounded interest.

From Eq. 2.3, the next-reaction probability becomes

p(τ,n |m, t) = exp(amτ)am,ndτ

= am exp(amτ)dτ × am,n
am

(2.6)

We can see that the next-reaction probability is the product of the probabilities of two
random variables: (1) the time to the next reaction (or waiting time), and (2) the location
of the next state. The waiting time and next state are statistically independent.

We can sample the next-reaction probability by generating two uniform random numbers
r1 and r2. To determine the next state, we first calculate r1am. We then accumulate a run-
ning sum of the rate constants starting from zero by looping through the possible reactions
until the total exceeds r1am, at which point we choose the current reaction in our loop. To
determine the time to the next reaction, we use the change of variables formula for proba-
bilities [101]. We determine the function τ = f(r2) such that τ has the desired exponential
distribution. Using τ = (1/am) ln(1/r2) satisfies the change of variables formula. Therefore,
we can sample the next-reaction probability distribution by only generating uniform random
numbers.

After updating the system to its new state, we then enumerate the possible reactions
from this new state to other states. We generate again two uniform random numbers and
pick a reaction and waiting time. We repeat this process until a certain end condition is met,
at which point the simulation is stopped. To sample all the different possible paths, we run
different simulations from the same initial state, but with different random number seeds.
The algorithm described above is called the direct method, or Gillespie algorithm [101], but
alternative methods can also be used to sample the paths. Specifically, in SLATE simulations,
the null-event algorithm is employed [98].

2.1.4 Null-event algorithm

The main difference between null-event kinetic Monte Carlo (kMC) and the Gillespie al-
gorithm is that in the null-event simulation, sometimes, no reaction is chosen. Hence, a
“null-event” occurs. At first glance, the null-event approach would seem to be computa-
tionally inefficient. We would generate random numbers but sometimes fail to advance the
system forward. The speed up in the null-event algorithm lies in the fact that not all reac-
tions need to be enumerated. In null-event kMC, we can save computational time by finding
only a partial reaction list, at the cost of sometimes failing to advance the system. When the
savings is larger than the cost, then the null-event algorithm can be more computationally ef-
ficient than the Gillespie algorithm. For spatially distributed systems, the enumeration of all
the possible reactions from the current state can be very computationally expensive, because
each location (or lattice site) within the system could participate in a reaction and the num-
ber of locations can be tens of thousands. Enumerating all the reactions here, as would be
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required in the Gillespie algorithm, would significantly slow down the computational speed.
A review of the null-event algorithm is provided by Chatterjee & Vlachos [98].

In the null-event algorithm, we group the possible reactions from the current state into
mutually exclusive and completely exhaustive families. Each reaction can only belong to one
family. We generate a random number to choose a family. Each family has equal probability
of being chosen. Once chosen, we only enumerate the reactions within the chosen family,
and choose one of these reactions with probability am,n/amax. Therefore, like the Gillespie
algorithm, the probability to choose a reaction is proportional to its rate.

The parameter amax is a special value chosen to ensure that the all reactions are indeed
selected with probabilities proportional to their rates. One potential way to do this is to
have amax equal to the sum of rate constants within the chosen family. However, this does
not ensure that reactions belonging to different families would be chosen with probabilities
in proportion to their rates, because the sum of rate constants within one family could be
different than that within another family. amax also cannot be smaller than the sum of rate
constants within any one family, or else the reaction probabilities within that family are not
properly normalized. Take the sum of rate constants within family f to be af . We have that
amax must be at least as large as the highest sum within the set {af}. For some families, the
sum of rates within that family will be less than amax. Therefore, 1− af/amax represents the
probability that no reaction will occur, given that we have chosen family f .

Because sometimes no reaction will occur, during each iteration, the average time elapsed
must be scaled to account for null-events. In the Gillespie algorithm, the mean time for a re-
action is equal to 1/am. Therefore, on average, time is advanced by 1/am per iteration. In the
null-event algorithm, the average time elapsed per iteration is smaller than the corresponding
time using Gillespie. This difference must occur because of the presence of null-events in
the null-event algorithm. Because sometimes a reaction is not performed, we do not want
to advance time by 1/am as in the Gillespie algorithm or else the system dynamics becomes
artificially slow. To synchronize the dynamics, in the null-event algorithm, we advance time
by 1/(Nfamax) per iteration, where Nf is the number of families. Notice that 1/(Nfamax) will
at most be the value of 1/am. It will equal 1/am if for all families, the sum of reactions within
that family equals amax. A greater probability of null-events corresponds to a reduction in
the average time elapsed per iteration. We can justify 1/(Nfamax) by computing the average
time elapsed before the next reaction takes place if we were to use the null-event algorithm.
The probability that any reaction is chosen (or that a null-event is not chosen) is computed
by adding up the probabilities of all ways that a reaction could be chosen, which gives

P (rxn) =
1

Nfamax

∑
f

af =
am

Nfamax
. (2.7)

Therefore, the average number of iterations before a reaction is chosen is 1/P (rxn). Hence,
if we update time by 1/(Nfamax) per iteration, the average time elapsed before a reaction is
chosen is 1/am, which is the Gillespie result.

Why is the null-event algorithm used in the SLATE model? It is used due to the large
spatial extent of the system, which introduces numerous (1000+) possible reactions that



CHAPTER 2. COMPUTATIONAL METHODOLOGIES 17

Initial Setup 
(36-Chain Model)

x

y

z

y

z

a Lattice structure of microfibril! b Resolution of microfibril and enzymes as spheres!

Hydrophobic faces!

Figure 2.1. Lattice geometry of cellulose and cellulases in the Stochastic LATtice Enzyme
(SLATE) model. (a) Lattice structure of microfibril from three different angles. The lines
indicate the lattice spacing (5Å). A cellobiose residue is shown as black. (b) Representation
of microfibril and enzyme shape.

would require extensive computational power if a complete list of reactions must be updated
during each iteration.

2.2 Stochastic LATice Enzyme (SLATE) model
The Stochastic LATice Enzyme (SLATE) model is based on the lattice kinetic Monte Carlo
framework [98] to simulate enzyme dynamics along a spatiotemporal reaction network. In
this Section, the system geometry and reactant components of SLATE will be described. In
addition, a stochastic quasi-equilibrium method used to accelerate kMC simulations that face
computational stiffness will be discussed [102]. This method is used in SLATE simulations
because the reaction rate constants in the kMC model vary by over eight orders of magnitude.

2.2.1 System geometry and components

We use SLATE to simulate the degradation of a single microfibril by cellulase enzymes.
Both the size and shape of the microfibril and enzymes are mapped onto a three-dimensional
lattice. Their shapes are represented by space-filling cubes of 5Å on this lattice, which is
the size of a glucose residue [103]. An illustration of the lattice structure of the microfibril is
shown in Fig. 2.1a. The primary building block is the cellobiose residue, which is modeled as
a 1 nm× 0.5 nm× 1nm (or 2×1×2 lattice units) rectangular prism [103]. The microfibril is
composed of 36 glucan chains and each chain has a degree of polymerization of 1024 glucose
residues (or 512 cellobiose residues). The structure and dimensions of the microfibril in the
model are consistent with its native crystalline structure in the plant cell wall [35,37,39].
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Kinetic reactions and enzyme states in SLATE model  !

Adsorption!

Desorption!

Diffusion! Complexation!

Decomplexation!

= cellobiose!

Hydrolysis!

Solution! Uncomplexed! Active!

Blocked!

Surface layers! Microfibril edge! Surface enzymes!

Decomplexation! Hydrolysis!

Figure 2.2. Kinetic reactions and enzyme states in SLATE model for TrCel7A. The kinetic
reactions are labeled red, and enzyme states are labeled blue.

Three different types of enzymes from the fungus Trichoderma reesei are modeled:
TrCel7A, TrCel6A, and TrCel7B. Their sizes and shapes are represented by space-filling
cubes on a lattice. A lattice representation of the structures of the microfibril and en-
zymes is shown in Fig. 2.1b. The carbohydrate binding domain (CBD) of each enzyme is a
2 nm× 1 nm× 3 nm rectangular prism, as determined from their crystal structures [52,53].
The catalytic domains for TrCel7A and TrCel7B are modeled as 5 nm× 4 nm× 6 nm rect-
angular prisms [50,55], while for TrCel6A, the CD is a 5 nm× 4 nm× 3 nm prism [54]. These
dimensions are chosen to mimic the sizes and shapes of enzymes as determined from their
crystal structures. For all three enzymes, a linker of length 5 nm connects the CBM to the
CD [51].

2.2.2 Elementary kinetic steps for TrCel7A

Each enzyme can perform a number of elementary kinetic steps, consistent with current the-
ories for their mechanisms [27,60,61,96]. The kinetic steps for the processive TrCel7A will be
described below. The elementary kinetic steps for TrCel6A and TrCel7B are best discussed
in comparison with those of TrCel7A and will be described afterward in Section 2.2.3.

In the SLATE model, TrCel7A can perform 7 elementary kinetic reactions: (1) adsorp-
tion, (2) desorption, (3) diffusion, (4) complexation, (5) decomplexation, and (7) hydrolysis.
These are illustrated in Fig. 2.2 and described in more detail.
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Figure 2.3. Top-down view of adsorption site and enzyme footprint. The grid lines indicate
the lattice spacing (5Å).

Adsorption and desorption

An enzyme in solution is considered well-mixed and its location is not considered. From
solution, the enzyme can adsorb onto the hydrophobic microfibril faces, shown in Fig. 2.1.
Since the enzyme is well-mixed in solution, adsorption follows classical mass-action kinetics,
as the net adsorption rate is proportional to the product of the number of solution enzymes
and available adsorption sites. An enzyme in solution may adsorb onto the surface if an
adsorption site is available. An adsorption site consists of three consecutive cellobiose units
at the hydrophobic surfaces of the microfibril. It is considered available if these cellobiose
units are unoccupied (or not covered) by other enzymes and if the adsorbed enzyme does
not overlap other enzymes. An illustration of an adsorption site and the enzyme “footprint”
in relation to this site is shown in Fig. 2.3.

After adsorption, the lattice sites occupied by the enzyme are filled. No lattice site can
be filled by more than one reactant, enforcing the excluded volume constraint. Enzymes are
assumed to adsorb in the orientation in which they process. That is, TrCel7A adsorbs in
an orientation such that its CBM is closer to the non-reducing end. Rotation of the enzyme
is not explicitly modeled, as these extra degrees of freedom can be effectively sampled via
translational diffusion.



CHAPTER 2. COMPUTATIONAL METHODOLOGIES 20

Cataly&c	
  Domain	
   Linker	
  
Carbohydrate	
  Binding	
  
Domain	
  

Glucan	
  Chain	
  
Unallowable	
  diffusion	
  hop	
  

Allowable	
  diffusion	
  hop	
  

Figure 2.4. Possible diffusion moves for an enzyme sitting on the edge of the microfibril.
It can only hop up, down, or to the left. Hopping to the right is not allowed.

An adsorbed, uncomplexed enzyme can always desorb. After desorption, the lattice sites
that were once occupied by the enzyme are unfilled and the enzyme returns to solution.

Diffusion

An adsorbed uncomplexed enzyme can perform two-dimensional hops on the microfibril
surface. The hopping distance is the length of a cellobiose residue (1 nm). An enzyme can
hop if its translation does not overlap another enzyme or microfibril surface layer. An enzyme
on the edge of the surface also cannot hop off the edge, as shown in Fig. 2.4, due to the high
affinity of the CBM for the surface [49].

Complexation and decomplexation

In SLATE, the complexation process represents the extraction of a portion of the glucan
chain from the surface and placement into the catalytic tunnel of the enzyme [27]. An
adsorbed, uncomplexed enzyme can only complex with a glucan chain if it is appropriately
aligned with the free reducing end of the chain. This configuration is shown in Fig. 2.5.
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Figure 2.5. Top-down view of configuration allowable for complexation. The grid lines
indicate the lattice spacing (5Å). In this configuration, the active site of the enzyme covers
the reducing end. Individual cellobiose residues in the middle glucan chain are outlined for
clarity.

In this configuration, the active site of the TrCel7A enzyme covers the reducing end. After
complexation, the portion of the glucan chain covered by the linker and catalytic domain
is considered to be complexed with the enzyme and no longer in the crystalline state. This
treatment ensures that cellobiose residues can only be complexed with one enzyme at a time.
The change in location of complexed cellobiose residues due to lifting from the surface and
threading through the active site is not explicitly modeled. Only the state of the cellobiose
residue is changed (from “crystalline” to “complexed”) after the complexation process. Section
2.2.4 describes in more detail the definition of system states.

A complexed enzyme can always decomplex with a chain. After decomplexation, the
complexed portion of the glucan chain is returned to its “crystalline” state within the mi-
crofibril.

Hydrolysis

Hydrolysis consists of cleaving off a cellobiose unit from the chain and translation of the
enzyme forward by a cellobiose residue distance. The catalytic tunnel consists of 10 glucose
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Figure 2.6. Top-down view of enzyme at the non-reducing end. The location of the
hydrolysis product (cellobiose) is also shown. The grid lines indicate the lattice spacing
(5Å). Individual cellobiose residues in the middle glucan chain are outlined for clarity.

residues, consistent with crystal structure observations [56]. During hydrolysis, the cellobiose
unit at the reducing end is removed from the glucan chain and an additional cellobiose unit
becomes complexed as the cellulase slides forward. A complexed enzyme can hydrolyze if
forward translation by a cellobiose distance (1 nm) is not blocked by the excluded volume of
other enzymes or surface layers. At the non-reducing end, two cases are considered in this
study. The “obstacle” case occurs when a complexed enzyme at the non-reducing end cannot
hydrolyze any further and can only decomplex. The “obstacle-free” case occurs when this
enzyme is able to hydrolyze. In this case, hydrolysis consists of removal of the remaining
glucan chain from the microfibril and desorption of the enzyme. In Fig. 2.6, the location
of the hydrolysis product (cellobiose) is shown, along with a complexed enzyme at the non-
reducing end.

The default case in the SLATE model assumes that the non-reducing edge of the microfib-
ril is an obstacle. Once a processing TrCel7A molecule reaches the non-reducing edge of the
microfibril surface, the enzyme stops and can only become mobile again by decomplexing
with its chain. If decomplexation occurs relatively slowly, complexed enzymes can remain
blocked at the edge for a significant amount of time (hours). The non-reducing edge of a
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finite microfibril thus acts as an obstacle (Fig. 2.2) and can induce jamming. This treatment
is based on the high affinity of TrCel7A to crystalline cellulose [49], which prevents process-
ing enzymes from passing over the edge. Effectively, the microfibril length in the SLATE
model defines a characteristic length for the obstacle-free region in cellulose. The impact of
changing this boundary condition on simulation results is addressed in Section 3.6.3.

2.2.3 Kinetic steps for TrCel6A and TrCel7B

The processive TrCel6A performs a similar set of kinetic steps as does TrCel7A, except it
complexes with the non-reducing end of the chain and moves processively in the opposite
direction [46]. Hence, while TrCel7A can be blocked at the non-reducing end, TrCel6A can
be blocked at the reducing end. Experimentally, it is known that TrCel6A also exhibits
some endo-like activity [64,67]. This means it can complex with the interior portion of a
chain and begin processive hydrolysis at this location. This behavior is also included in the
model, and further described in Section 4.2.

The endoglucanase TrCel7B is not processive [41], and therefore, it acts differently in
the SLATE model. Unlike TrCel7A and TrCel6A, it can complex anywhere with a chain.
After complexation, it can only hydrolyze a bond, which creates two new glucan chains,
one with a new reducing end and the other with a non-reducing end. Hydrolysis does not
release cellobiose product into solution unless an isolated cellobiose residue on the surface is
produced after the bond cleavage. After hydrolysis, the endoglucanase decomplexes imme-
diately. Therefore, in the SLATE model, hydrolysis and decomplexation of endoglucanases
are coupled steps.

2.2.4 Definition of system state

Here, we describe the set of variables that specify the system state in order to fully de-
fine the reaction network. The current system state determines the set of allowable re-
actions, and hence, the set of allowable destination states. The system state vector s =
(e1, . . . , eN ; c1, . . . , cM) is composed of vectors of dynamical variables characterizing the
state and location of each enzyme and cellobiose residue.

The enzyme vector ei = (sei , l
e
i ) can be further broken down into its state sei and location

lei . For processive enzymes, the state variable sei can hold the values “solution”, “unadsorbed”,
“complexed”, and “blocked”. The latter three states occur on the microfibril surface. An
uncomplexed enzyme can desorb, diffuse, or complex. Once complexed, an enzyme that is
processive is either active or blocked. An active enzyme can decomplex or perform hydrolysis.
A blocked enzyme can only decomplex since obstacles hinder the processive hydrolysis. For
endoglucanases, the blocked state does not exist, since they are not processive and their
hydrolysis is not impeded by surface obstacles.

As shown in Fig. 2.2, a processive TrCel7A enzyme can be in one of the four states: (1)
in solution, (2) uncomplexed, (3) active, and (4) blocked. A blocked enzyme is one that is
complexed but encounters obstacles that hinder the processive hydrolysis. Obstacles include
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(a) uneven surface layers, (b) the non-reducing edge of the microfibril surface, and (c) other
surface enzymes. An illustration of each blocking type is shown in Fig. 2.2. These states
will be revisited again when analyzing simulation results in Chapter 3.

The location variable lei holds the Cartesian coordinates of the enzyme and along with
the enzyme shape, determines which lattice units are filled by the enzyme. The location
variable also allows excluded volume constraints to be imposed and determines, for example,
if a complexed enzyme is either active or blocked. The explicit structure and location of each
enzyme is only mapped onto the lattice if the enzyme is on the surface. If the enzyme is in
solution, its location is not explicitly tracked, since it is assumed to be well-mixed. However,
once adsorption occurs, its location on the surface and its excluded volume contribution is
mapped onto the lattice. When the enzyme desorbs into solution, the location coordinates
are no longer tracked, and lattice sites become unfilled. Hence, the lattice does not fill the
entire simulation “box”. It is only introduced to track the structure of the microfibril and
to map the shapes of the adsorbed enzymes. This “on-off” treatment of enzyme location is
somewhat analogous to the treatment of particle location between the system and mass bath
in a grand canonical Monte Carlo simulation [104].

The cellobiose vector ci = (sci , l
c
i ) contains the state sci and location lci of the cellobiose

residue. The state can be crystalline, complexed, or hydrolyzed. A cellobiose residue can only
be complexed with one enzyme at the time. After hydrolysis, the location of the cellobiose
residue is no longer tracked, since the residue is now in solution. In addition, the lattice
units once filled by the cellobiose residue now become unfilled. Therefore, the microfibril
gradually disappears as hydrolysis proceeds.

2.2.5 Model input parameters

The input parameters to the model include (1) the numbers of TrCel7A, TrCel6A, and
TrCel7B enzymes, (2) the number of glucan chains and degree of polymerization, (3) the
shapes and structures of the enzymes and microfibril, and (4) kinetic rate constants. These
will be discussed in more detail in following Chapters when presenting specific applications.
An .xyz file of the lattice coordinates of a TrCel7A enzyme is provided in Section 2.3.

2.3 Supplementary information

2.3.1 .xyz file of lattice TrCel7A enzyme

This file gives the precise set of lattice coordinates defining the shape of a TrCel7A enzyme.
It can be uploaded into VMD 1.9.1 [105] for visualization of the lattice structure of the
TrCel7A enzyme used in the SLATE model. Each line in the file represents the center of
a rectangular prism with dimensions of a cellobiose residue (1 nm× 0.5 nm× 1 nm). “A”
denotes units belonging to the carbohydrate binding domain, “B” to the catalytic domain
(CD), and “D” to the linker region. The TrCel7B shape is identical to that of TrCel7A. The
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TrCel6A shape is different only in that it contains a smaller catalytic domain. The CD for
TrCel7A is a 5 nm× 4 nm× 6 nm rectangular prism [50,55], while the CD for TrCel6A is a
5 nm× 4 nm× 3 nm prism [54].

95
TrCel7A lattice coordinates
A 32 38 6
A 32 38 8
A 32 38 10
A 30 38 6
A 30 38 8
A 30 38 10
B 35 38 22
B 35 38 24
B 35 38 26
B 35 38 28
B 35 38 30
B 35 38 32
B 33 38 22
B 31 38 22
B 29 38 22
B 27 38 22
B 27 38 24
B 27 38 26
B 27 38 28
B 27 38 30
B 27 38 32
B 29 38 32
B 31 38 32
B 33 38 32
B 35 40 22
B 35 40 24
B 35 40 26
B 35 40 28
B 35 40 30
B 35 40 32
B 33 40 22
B 31 40 22
B 29 40 22
B 27 40 22
B 27 40 24
B 27 40 26
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B 27 40 28
B 27 40 30
B 27 40 32
B 29 40 32
B 31 40 32
B 33 40 32
D 31 40 12
D 31 42 14
D 31 42 16
D 31 42 18
D 31 42 20
B 35 42 22
B 35 42 24
B 35 42 26
B 35 42 28
B 35 42 30
B 35 42 32
B 33 42 22
B 31 42 22
B 29 42 22
B 27 42 22
B 27 42 24
B 27 42 26
B 27 42 28
B 27 42 30
B 27 42 32
B 29 42 32
B 31 42 32
B 33 42 32
B 35 44 22
B 35 44 24
B 35 44 26
B 35 44 28
B 35 44 30
B 35 44 32
B 33 44 22
B 31 44 22
B 29 44 22
B 27 44 22
B 27 44 24
B 27 44 26
B 27 44 28
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B 27 44 30
B 27 44 32
B 29 44 32
B 31 44 32
B 33 44 32
B 33 44 24
B 33 44 26
B 33 44 28
B 33 44 30
B 31 44 24
B 31 44 26
B 31 44 28
B 31 44 30
B 29 44 24
B 29 44 26
B 29 44 28
B 29 44 30
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Chapter 3

Identifying the Kinetic Limitations of
Processive Cellulases on Cellulose

In this Chapter, we study the decomposition of a single cellulosic microfibril by TrCel7A
enzymes using the Stochastic LATtice Enzyme (SLATE) model presented in Chapter 2.
The physical insights obtained from these simulations will be useful when we investigate the
effects of enzyme mixtures on the decomposition process.

Inter-protein and enzyme-substrate couplings in interfacial biocatalysis induce spatial
correlations beyond the capabilities of classical mass-action principles in modeling reaction
kinetics. Here, we develop a computational scheme to simulate the reaction network of
enzymes with the structures of individual proteins and substrate molecules resolved in three
dimensions. This methodology is applied to elucidate the rate-limiting mechanisms of a
renowned system with significant technological importance: decomposition of crystalline
cellulose by the processive exoglucanase TrCel7A. We illustrate that the primary kinetic
bottlenecks are the slow complexation rate of glucan chains with the enzyme active site and
excessive enzyme jamming along the crowded substrate. Jamming is alleviated by increasing
the decomplexation rate, but at the expense of reduced processivity. We demonstrate that
enhancing the apparent reaction rate requires a subtle balance between accelerating the
complexation driving force while simultaneously avoiding inter-enzyme jamming. Via a
spatiotemporal systems analysis, we develop a unified mechanistic framework that delineates
the experimental conditions under which different sets of rate-limiting behaviors emerge. We
find that optimization of the complexation-exchange kinetics is critical for overcoming kinetic
barriers imposed by interfacial confinement and accelerating enzymatic cellulose conversion
rates.

3.1 Motivation
Unraveling the importance of interfacial confinement on enzyme kinetics is a core problem for
in vivo biology [106]. However, enzymatic behaviors at molecular scales and in heterogeneous
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environments are difficult to resolve. Here, we overcome this difficulty for a very important
model system in the enzymatic decomposition of cellulose [3,20,27,41]. A model enzyme for
this investigation is the most abundant exoglucanase produced by the fungus Trichoderma
reesei, TrCel7A [46]. We devise a novel systems-level simulation method incorporating
molecular-scale spatial resolution to illustrate how surface restriction induces non-classical
kinetic behaviors among TrCel7A enzymes and limits the rate of converting cellulose into
soluble sugars. An enhanced understanding of cellulase kinetics could help in developing
strategies to reduce enzyme cost in cellulose bioconversion technologies [22,23].

The elementary kinetic reactions performed by TrCel7A are shown in Fig. 3.1a [27,60].
The enzymes adsorb onto crystalline cellulose microfibrils, which are composed of linear glu-
can chains held tightly by hydrogen bonding and van der Waals forces [3]. On the microfibril
surface, an adsorbed enzyme diffuses until it complexes with the free reducing end of a glucan
chain [46]. Complexation involves extraction of the chain from the surface and threading
through the active site tunnel [46]. After complexation, the enzyme processively hydrolyzes
β-1,4-glycosidic linkages within the complexed chain and releases a cellobiose molecule into
solution after each bond cleavage. The consecutive hydrolytic cleavage along a chain stops
when the enzyme decomplexes or becomes blocked by surface obstacles [64,82,86].

In interfacial biocatalysis, the heterogeneous and crowded environments around insoluble
substrates give rise to non-classical enzymatic behaviors which are difficult to model [60,85].
In enzymatic cellulose decomposition, the complexation-exchange kinetics of TrCel7A with
glucan chains represent important interactions [27,60], but are difficult to investigate as
stand-alone steps, since these processes occur at the solid-liquid interface. In addition, pro-
cessive enzyme displacement is sensitive to surface obstacles that block processive motion
and cause “traffic jams” among enzymes [60,64,82,86]. Similar phenomena exist in other ex-
amples of interfacial biocatalysis such as the functioning of motor proteins [107]. Substrate
heterogeneity disqualifies classical mass-action (such as Michaelis-Menten) approaches for
modeling kinetics, which assume a dilute, well-mixed environment and ignore excluded vol-
ume interactions [60,85]. Existing cellulase kinetic models, however, continue to employ
these simplifying assumptions [60]. Lacking spatial resolution, the impact of surface-induced
spatial constraints on cellulose conversion becomes difficult to identify.

3.2 Methods
To overcome these limitations, a novel kinetic model is developed to simulate the kinetic
behavior of individual cellulases on cellulose microfibrils with molecular-scale spatial resolu-
tion. The method is a lattice kinetic Monte Carlo (kMC) model and is called the Stochastic
LATtice Enzyme (SLATE) model, further discussed in Sections 2.2 and 3.5. In SLATE, the
shapes of individual TrCel7A enzymes [50,52] and glucan chains [37] are spatially resolved
on a three-dimensional lattice with 5Å cubic grid cells [103] (See Sections 2.2 and 3.5.1).
Excluded volume interactions are imposed between reactants to explicitly model spatial con-
straints arising from surface confinement. A full suite of kinetic reactions is incorporated



CHAPTER 3. PROCESSIVE CELLULASE KINETICS 30

a  Kinetic reactions and enzyme states in SLATE model  !

Adsorption!

Desorption!

Diffusion! Complexation!

Decomplexation!

= cellobiose!

Hydrolysis!

Solution! Uncomplexed! Active!

Blocked!

Surface layers! Microfibril edge! Surface enzymes!

Decomplexation!

Reaction! Rate (s-1)! Origin states!
Adsorption! ka ! = 8.9 × 10-4 ! Solution!
Desorption! kd ! = 1.0 × 10-3 ! Uncomplexed!
Diffusion! kdiff != 1.0 × 104 ! Uncomplexed!
Complexation! kc ! = 5.5 × 10-3 ! Uncomplexed!
Decomplexation! kdc != 1.0 × 10-3 ! Active or Blocked!
Hydrolysis! kh ! = 7.1! Active!
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Figure 3.1. Illustration of the Stochastic LATtice Enzyme (SLATE) model for TrCel7A.
(a) Kinetic reactions (labeled red) and enzyme states (labeled blue) in the SLATE model.
Cellulase enzymes can participate in one of the following reactions: adsorption, desorption,
diffusion, complexation, decomplexation, and hydrolysis. Only hydrolysis is treated as an
irreversible reaction. With these reactions, an enzyme can be in one of the four states: solu-
tion, uncomplexed, active, and blocked. These states are mutually exclusive and completely
exhaustive. A blocked enzyme can be stalled by uneven surface layers, the non-reducing edge
of the microfibril substrate, or the other surface enzymes. (b) Kinetic rates for the reference
system. The possible originating states for each reaction are shown under “Origin states”.

which includes complexation-exchange interactions and processive hydrolysis by TrCel7A,
as shown in Fig. 3.1a.

A key feature of the SLATE model is the ability to track the states of individual enzymes.
As shown in Fig. 3.1b, a TrCel7A enzyme can be in one of the four states: (1) solution, (2)
uncomplexed, (3) active, and (4) blocked. An uncomplexed enzyme can desorb, diffuse, or
complex. Once complexed, a TrCel7A molecule is either active or blocked. An active enzyme
can decomplex or perform hydrolysis, while a blocked enzyme can only decomplex. Enzymes
are blocked by surface obstacles, which include (a) uneven microfibril surface layers, (b) the
non-reducing edge of the microfibril, and (c) other surface enzymes. An illustration of each
obstacle type is shown in Fig. 3.1a. The non-reducing edge obstacle is based on the high
affinity of the carbohydrate binding domain of TrCel7A to crystalline cellulose [49], which
prevents processing enzymes from passing over the edge during hydrolysis (See Figure 2.6).
This obstacle could also represent the presence of immobile structural obstructions such as
hemicellulose and lignin [86,91]. The impact of removing the edge obstacle is addressed in
Section 3.6.3.

The SLATE model is calibrated to reproduce the experimental conversion profile based
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on a reference set of reported kinetic rate constants, listed in Fig. 3.1b, and further described
in Section 3.5.2. To estimate the complexation rate, the conversion profile is fit to the profile
measured by Gusakov et al. [108]. The simulation system consists of a single microfibril
composed of 36 glucan chains [37] with a representative degree of polymerization (DP) of
1024 glucose residues [41]. The averaged number of TrCel7A enzymes adsorbed on the
microfibril is 18. This loading corresponds to a cellulose surface coverage of 25%, which is
within the typical range employed in experiments [79]. This number is calculated as the
intersection between the loading line from Gusakov et al. [108] and Langmuir isotherm [47].
The reported quantities are averaged over a sufficient number of independent trajectories for
statistical uncertainties to become negligible. The kMC simulations are run for a reaction
time of 200 hrs.

3.3 Results

3.3.1 Complexation is the slowest elementary step

In Fig. 3.2a, snapshots from a SLATE simulation illustrate the gradual erosion of the mi-
crofibril by TrCel7A. Since the processive cellulase decomposes glucan chains starting from
their reducing ends [46], a more drastic thinning of the reducing edge develops with time
as observed in experiments [62,63,109]. In Fig. 3.2b, quantitative agreement between the
SLATE model and experimental conversion profile is illustrated.

The conversion profiles of several individual microfibrils are also shown in Fig. 3.2b;
they exhibit substantial deviation from one another and to the averaged profile. The flat
regions linked together by steep jumps are a signature of the single-microfibril kinetics that
becomes obscured after spatial averaging. They are indicative of a complexation-limited
mechanism. The flat regions represent the long waiting times required for uncomplexed
enzymes to become active. As shown in Fig. 3.3a, increasing the complexation rate constant
by 10-fold over the reference rate drastically enhances conversion, but the same increase in
the hydrolysis rate hardly affects conversion.

To quantify the kinetic limitations at the single-molecule level, the accumulated time an
enzyme spends in each state is recorded during the reaction. This is defined as the occupancy
time for that state, further described in Section 3.6.1. States with high occupancy times are
indicative of kinetic traps that prevent enzymes from becoming active. Fig. 3.3b plots the
occupancy time distribution from the reference simulation and those from increasing the
complexation or hydrolysis rate by 10-fold. The total reaction time is the time to reach 60%
conversion. It is the sum of occupancy times over each state and labeled above the bars in
Fig. 3.3b. The uncomplexed state clearly traps TrCel7A enzymes for the longest time in
all cases, reflecting the high kinetic barrier for complexation. Fig. 3.3b shows that a 10-fold
higher complexation rate can reduce the uncomplexed occupancy time by tens of hours. A
same increase in hydrolysis rate only reduces the active state time by tens of seconds.

SLATE simulations affirm that complexation is the slowest step in crystalline cellulose
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Figure 3.2. Illustration of kMC simulations with the SLATE model. (a) Snapshots from a
simulated trajectory showing the degradation of a microfibril substrate over time. A quarter
length of the microfibril in the model is shown; the non-reducing edge is located on the
right hand side of the figure. The processing TrCel7A enzymes move from left to right after
adsorbing onto the hydrophobic faces of the microfibril [49]. (b) The averaged substrate
conversion over time in a SLATE simulation (dark red line) and the conversion from the
study by Gusakov et al. [108] (blue squares) on the decomposition of Avicel by TrCel7A.
The conversion profile from averaging over 8 independent simulations (dark red line) quanti-
tatively agrees with the experimental data. Each simulation represents the decomposition of
a single microfibril. Four of the eight simulations involved in computing the average are also
shown for comparison as light red lines. The parameters used in the simulation are listed in
Fig. 3.1b.

decomposition [96,97,110,111], rather than hydrolytic bond cleavage. The complexation time
scale on the order of hours identified via SLATE simulations confirms recent experimental
findings [97]. In Section 3.6.2, we show that the complexation-limiting behavior is robust to
different assumptions in the model.

A key feature of Fig. 3.3b is that complexed enzymes spend more than 99% of their time
in a blocked state, in which they cannot perform hydrolysis. Stalled TrCel7A molecules have
been inferred from solution-phase “restart” experiments [82,86] and have been visualized by
high-speed atomic force microscopy experiments as well [64]. Therefore, slow complexation
and excessive blocking together make the active state short-lived and severely restrain the
conversion rate. As illustrated in the following, acceleration of cellulose conversion can be
achieved most effectively by increasing the complexation rate with coordinated removal of
enzyme blocking.
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Figure 3.3. The effects of using different values of kinetic rate constants in SLATE sim-
ulations for illustration of the rate-limiting mechanisms. (a) The profile of the averaged
substrate conversion over time using the reference parameters shown Fig. 3.1b (red line), a
10-fold higher value for the complexation rate constant kc while keeping others unchanged
(green squares), and a 10-fold higher value for the hydrolysis rate constant kh while keeping
others unchanged (blue circles). (b) The distributions of enzyme occupancy times in the
following four states: solution (violet), uncomplexed (yellow), active (green), and blocked
(red). Surface obstacles causing the blocked state include uneven surface layers, the non-
reducing edge of the microfibril, and the other surface enzymes. The values shown above the
bars are the total reaction times to reach 60% conversion. These values are the sum of the
occupancy times over all of the four enzyme states. (c) The averaged profiles of substrate
conversion over time using the reference parameters of Fig. 3.1b (red line) and varying the
decomplexation rate constant kdc from 0 to 10−1 s−1 while keeping others unchanged (sym-
bols). (d) The distributions of enzyme occupancy times in the four states listed in (b) as a
result of varying the decomplexation rate constant while keeping the others unchanged. The
total reaction times above the bars represent the times to reach 40% conversion. For all of
the data presented, the standard deviations are not shown for clarity, and they are within
5% of the averaged values.
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3.3.2 Decomplexation plays dual and opposing roles in affecting
conversion

Decomplexation is the primary mechanism by which an enzyme escapes from blocking, and
therefore, the degree of blocking can be controlled via the decomplexation rate. Fig. 3.3c
plots the SLATE conversion profiles from varying the decomplexation rate constant kdc
while fixing the other rates at their reference values. A maximum in conversion occurs at
the reference value of kdc = 1× 10−3 s−1, which is inferred from experiments [88–90,97]. In
Fig. 3.3d, the occupancy time distributions at 40% conversion illustrate that two opposing
forces occur from increasing kdc that give rise to the maximum. A higher kdc reduces the
blocked state fraction, but also decreases the net complexation driving force kc/kdc, leading
to an increase in the uncomplexed fraction.

To further dissect these opposing forces, the fractions of TrCel7A enzymes in each state
are tracked over time at different values of the decomplexation rate. Fig. 3.4a indicates that
at the reference value of 1× 10−3 s−1, roughly 95% of surface enzymes are uncomplexed,
since the complexation rate is low. Decreasing the decomplexation rate from this value low-
ers this uncomplexed fraction, which by itself would promote higher activity. However, the
blocked fractions also increase, as seen in Fig. 3.4b-d, compensating for the higher complex-
ation driving force. To reveal the molecular origins of these competing trends, the detailed
mechanism of enzyme blocking on the microfibril substrate is analyzed next.

In Fig. 3.4b, the fraction of surface layer-blocked enzymes is illustrated. When kdc is
zero, this fraction is zero because the surface is initially smooth and the enzymes cannot
decomplex to form uneven layers. When kdc = 1× 10−5 s−1, surface layers begin to form,
but the escape time from these layers is tens of hours, resulting in a large surface-layer
blocked fraction. When kdc = 1× 10−3 s−1, this fraction is low again because enzymes can
decomplex within minutes when encountering these obstacles.

In Fig. 3.4c, the edge-blocked fractions are illustrated. When the decomplexation rate
is low (kdc < 1× 10−3 s−1), a steady fraction of edge-blocked enzymes appears, because
enzymes performing processive hydrolysis are likely to reach the non-reducing edge before
decomplexing. These enzymes then nucleate other lagging enzymes to become stalled, and
form the head of the “traffic jam”. The lagging enzymes are in the enzyme-blocked state,
whose fractions are shown in Fig. 3.4d. An illustration of the traffic jam buildup on the
microfibril surface is shown in Fig. 3.4e. Because the non-reducing edge represents an im-
mobile obstacle, a majority of blocked enzymes are stalled within traffic jams, rather than
near surface layers, which disappear once the layer-forming chain is processed.

The optimal kdc value of 1× 10−3 s−1 that maximizes the conversion in Fig. 3.3c repre-
sents the ideal balance in maintaining enzyme processivity while reducing enzyme jamming
on the cellulose surface. Fig. 3.4f shows that if kdc assumes a higher value, the TrCel7A
enzymes would decomplex prematurely and fail to hydrolyze the glycosidic bonds near the
non-reducing edge of the microfibril after each complexation event. The optimal kdc thus
needs to be sufficiently high for the surface enzymes to be free from jamming but adequately
low for them to be as processive as possible. In this case, the decomplexation timescale is
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Figure 3.4. Fraction of surface enzymes in different states over time if the decomplexation
rate kdc (s−1) were 0 (green), 10−5 (blue), and 10−3 (light red) while the other rate constants
remain at the reference values of Fig. 3.1b. (a) The profiles of the fraction of uncomplexed
enzymes. (b) The profiles of the fraction of enzymes blocked by uneven surface layers of
glucan chains on the microfibril surface. (c) The profiles of the fraction of enzymes blocked
by the non-reducing edge of the microfibril. (d) The profiles of the fraction of enzymes
blocked by the other enzymes on the substrate surface. (e) An illustration of a “traffic
jam” developing at the non-reducing edge of the microfibril when the decomplexation rate
constant is low. Blocked enzymes are colored in orange. A quarter of the microfibril length is
plotted with the non-reducing edge located on the right hand side. (f) An illustration of the
interplay between enzyme processivity and jamming in affecting the reactivity of cellulose
decomposition. A less processive enzyme tends to decomplex prematurely and the glycosidic
bonds near the non-reducing ends of the glucan chains cannot be cleaved effectively. An
overly processive enzyme cleaves the entire glucan chain after each complexation event but
decomplexes very slowly and tends to be blocked at the non-reducing edge.
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Figure 3.5. The efficiency measures, processive length, performance, and apparent activity
of TrCel7A in cellulose decomposition as a function of the decomplexation rate kdc. (a) The
profiles of the complexation and activation efficiencies, ηC and ηA, respectively (red) and
processive length, Lp (purple). The maximum processive length is 512, which is set by the
average degree of polymerization of 1024 glucose residues per glucan chain. (b) The profiles
of performance (blue) and 200-hour conversion (green).

commensurate with the average duration for the enzyme to process through a glucan chain
on cellulose.

The conversion maximum is related to a leveling-off of the apparent processive length Lp
with decreasing decomplexation rate. Lp is defined as the average number of glycosidic bonds
cleaved per complexation event during the cellulose decomposition reaction [88]. When kdc <
1× 10−3 s−1, Fig. 3.5a shows that TrCel7A enzymes cleave almost the entire glucan chain
during each processive run. However, as illustrated in Fig. 3.4c-f, nearly complete cleavage
comes at the expense of jamming. When kdc > 1× 10−3 s−1, enzymes are likely to decom-
plex before reaching the non-reducing edge. Therefore, although jamming is avoided, Lp is
severely reduced. The optimal decomplexation rate (1× 10−3 s−1) corresponds to the value
where Lp begins to level off as kdc is reduced. At this optimal kdc, Lp is commensurate with
the value set by the chain degree of polymerization (512 cellobiose residues), but jamming
is minimized.
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3.3.3 Kinetic efficiencies of enzymes quantify the performance of
interfacial biocatalysts

The significant impact of TrCel7A jamming induced by surface heterogeneities and excluded
volume interactions motivates the development of efficiency measures to characterize enzyme
performance at an interface. These measures are further described in Section 3.6.1. The ra-
tio of surface to total enzymes is defined as the surface-binding efficiency, ηS. The ratio of
complexed to surface enzymes is the complexation efficiency, ηC . The ratio of active to com-
plexed enzymes is the activation efficiency, ηA. As such, ηS and ηC are efficiency measures
for adsorption and complexation processes, respectively. The effects of substrate heterogene-
ity and obstacle-induced jamming are then lumped into ηA. Fig. 3.5a plots ηC and ηA as
a function of kdc for a 200-hr decomposition and their dependences on the decomplexation
rate are clearly opposing as discussed earlier. ηC also has a close correspondence with the
apparent processivity Lp.

The overall conversion can be quantitatively related to the efficiencies through an enzyme
“performance” metric that incorporates the competing requirements for effective reactivity
on cellulosic substrates. In Section 3.6.1, the conversion after time T , denoted as XT , is
shown to be approximately proportional to ηCηA. The opposing effects of kdc on conversion
can then be described via the enzyme performance on the substrate surface, ηCηA. The
XT ∼ ηCηA correspondence is clearly seen in Fig. 3.5b.

The effects of removing the edge obstacle and/or changing the substrate degree of poly-
merization can be anticipated based on the opposing forces of jamming and processivity.
Further discussion is provided in Sections 3.6.3 and 3.6.4.

3.3.4 A unified mechanistic framework of cellulose decomposition
via the productivity map

A surprising but important finding is that less than one percent of the adsorbed TrCel7A
enzymes on cellulose are active. Because surface inactivity of TrCel7A is predominantly due
to slow complexation and excessive blocking, enhancement of cellulose decomposition likely
requires simultaneous consideration of these two factors. SLATE simulations can be used
to answer the following questions: If kc and kdc could be varied independently via protein
engineering or substrate pretreatment while keeping the other rate constants unchanged, to
what extent can the cellulose conversion rate be increased? How do the optimal kc and kdc
differ from those of native TrCel7A enzymes?

Fig. 3.6a-e plots the fractional occupancy times in different states for 100 hours of con-
version as a function of both the kc and kdc values of TrCel7A. The competition between
increasing the complexation driving force and reducing the fractions of blocked enzymes in
maximizing the final conversion (productivity) can be seen in Fig. 3.6. The region of ele-
vated occupancy in the active state in Fig. 3.6b can be reached via high complexation and
intermediate decomplexation rates. In this scenario, the enzymes complex relatively quickly
and process through entire glucan chains on cellulose without forming traffic jams. As seen
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Figure 3.6. The maps of fractional occupancy times (a-e) and productivity of conversion
(f) in the complexation-decomplexation (kc − kdc) plane. The fractional occupancy time
for a state is its occupancy time divided by the total reaction time. Four kinetic regions
are identified in the productivity map of (f), and a representative snapshot from a SLATE
simulation is shown for each region. Enzymes in the blocked state are colored in orange.
The kinetic characteristics of each region are also described.

in Fig. 3.6de, this high activity behavior corresponds to moderate occupancy fraction in the
edge-blocked state, but minimal fraction in the enzyme-blocked state. The contour of the
active-state fraction in Fig. 3.6b follows that of the 100-hr conversion in Fig. 3.6f due to the
XT ∼ ηCηA correspondence discussed earlier.

The productivity map in Fig. 3.6f reveals the rich variety of cellulase behaviors on cellu-
lose and unifies a diverse range of experimental observations. This comprehensive picture is
made possible because the reaction kinetics is spatially resolved at the single-enzyme level. In
Region 1, conversion is limited by excessive jamming rather than by slow complexation [88–
90]. Hence, a decrease in processivity would enhance conversion. This prediction is corrob-
orated in experiments with amorphous cellulose, on which complexation occurs quickly and
jamming is prevalent [88,112]. In Region 2, both slow complexation and jamming are rate-
limiting, which correspond to enzyme jamming on crystalline cellulose [64,96]. In Region 3,
a decrease in processivity would lower conversion, in contrast to Region 1. This trend is



CHAPTER 3. PROCESSIVE CELLULASE KINETICS 39

confirmed by experiments with mutated cellulases on crystalline cellulose [112]. To achieve
high productivity of Region 4, complexation must be enhanced along with a balance between
processivity and jamming.

Lignocellulosic substrates in biomass feedstocks inevitably contain defects and obstacles
arising from high contents of hemicellulose and lignin that would promote jamming [41,86]. A
higher density of surface obstacles from non-cellulosic biomass components is mechanistically
analogous to a lower decomplexation rate in the SLATE model. Therefore, kinetic behavior
on lignocellulosic substrates likely falls in Region 2. In this regime, enhancing complexation
or removing surface obstacles would increase productivity. In addition to protein engineering,
these objectives can be achieved by substrate pretreatment technologies that remove lignin
and decrystallize cellulose [17]. Therefore, the success of biomass pretreatment in promoting
cellulose decomposition can be assessed via movement within the productivity map. The
combined productivity and occupancy time analysis provides a framework for uncovering the
rate limitations unique to each reaction system and identifying specific conversion strategies
that would most effectively accelerate conversion.

3.4 Discussion
Kinetic simulations via the spatially resolved SLATE model elucidate the significant role of
interfacial confinement on cellulose decomposition by TrCel7A. By incorporating molecular-
scale spatial resolution, the factors that limit the rate of cellulose decomposition become
explicit. For native TrCel7A, SLATE simulations underscore that the most important lim-
iting factors are the slow rate of complexation and enzyme jamming. While complexation is
expected to remain rate-limiting throughout the entire reaction, enzyme jamming develops
further with reaction time and becomes important as the reaction proceeds. At later stages
of the reaction, decomplexation can emerge as an additional rate-limiting step. Although
this decomplexation-limited behavior has been inferred indirectly from experiments [88–
90], SLATE simulations delineate the quantitative bounds for its occurence. In general,
the SLATE model provides the conditions under which complexation [96,97], decomplexa-
tion [88–90], or both processes are rate-limiting. These findings underscore that a one-cause,
time-independent explanation of enzyme inefficiency on crystalline cellulose provides an over-
simplified and incomplete view. Such single-faceted approaches are likely inappropriate for
understanding interfacial biocatalysis in general.

The flow of processive cellulases along microfibrils [64], as well as motor proteins along
filaments [107], resembles in many respects vehicular travel along a highway. The reducing
ends of glucan chains are analogous to narrow ramps restricting the entering flow of pro-
cessing enzymes. The non-reducing edge of the microfibril acts as a “roadblock” that stops
the flow of forward-moving enzymes and causes traffic jams. These jams can be avoided
by introducing exit ramps via decomplexation. However, excessive decomplexation leads to
inefficient detouring of traffic that reduces processive enzyme flow. SLATE simulations show
that optimization of complexation-exchange kinetics can enhance the travel conditions along
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Figure 3.7. Microfibril and enzyme geometry in SLATE model. (a) End-on view of mi-
crofibril, showing hydrophobic faces available for adsorption. (b) A cellulase enzyme ad-
sorbed onto a microfibril. The spheres represent a space-filling volume of 1nm3.

microfibrils and accelerate the rate of cellulose decomposition.
The presence of substrate heterogeneity in interfacial biocatalysis demands a spatially re-

solved approach to describe enzyme kinetics. For cellulose decomposition, the SLATE model
illustrates that the inclusion of spatial confinement in the kinetic model is indispensable for
uncovering the kinetic bottlenecks. Since crowded, inhomogeneous environments are ubiqui-
tous in biological systems, the development of SLATE represents an important step toward
a systems-level analysis of the spatiotemporal behaviors of enzyme reaction networks.

3.5 Supplementary methods

3.5.1 Structure of microfibril and cellulose

The structures of both the microfibril and cellulase are represented by space-filling cubes on
a three-dimensional lattice. The cube size, or lattice spacing, is 5Å.

The basic building block of the microfibril lattice is the cellobiose residue, which is rep-
resented as a rectangular prism with dimensions 1 nm× 0.5 nm× 1 nm (or 2× 1× 2 lattice
units) [39,103]. The lattice structure of the microfibril is described in detail in Chang et
al. [103]. Only the hydrophobic faces of the microfibril are available for adsorption [49,62].
These faces are illustrated in Fig. 3.7a.

The structure of the cellulase enzyme follows the crystal dimensions of TrCel7A. The car-
bohydrate binding module is modeled as a rectangular prism with dimensions 2 nm × 1 nm×
3 nm [52]. The catalytic domain is modeled as a rectangular prism with dimensions 5 nm ×
4 nm× 6 nm [50]. A linker connects the two domains with length 5 nm, in accordance with
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computational studies [51]. An illustration of the enzyme and microfibril geometry is shown
in Fig. 3.7b.

3.5.2 Determination of elementary kinetic rates

To calibrate the model with experiment, the elementary kinetic rates were determined from
literature values to represent the conversion of Avicel by TrCel7A, as measured by Gusakov
et al. [108]. From experiments [97,113–115], the desorption rate is estimated to be between
1× 10−3 s−1 – 1× 10−2 s−1; a value of 1× 10−3 s−1 was chosen, although using 1× 10−2 s−1

did not alter conversion profiles by more than 5%. To find the adsorption rate, the equi-
librium adsorption constant K and system volume V are required. For TrCel7A on Avicel,
a representative value for the equilibrium adsorption constant is 0.28L/µmol [41,47]. The
volume was chosen such that the cellulose concentration in the system is the same as the
concentration used by Gusakov et al. [108], or 5mg/ml. The adsorption rate follows by
transforming the phenomenological bimolecular adsorption rate kdK to a first-order associ-
ation rate as ka = kdK/(V NAV10−6) = 8.9× 10−4 s−1 [116]. The factor NAV10−6 is used to
convert µmol to number of molecules and NAV is Avogadro’s number.

The surface diffusion rate is related to the self-diffusion coefficient DS from random walk
theory as kdiff = 4DS/l

2
h, where lh = 1 nm is the hopping distance [117]. An experimental

diffusion coefficient of 1× 10−10 cm2/s [118] gives a diffusion rate of 1× 104 s−1. The hydrol-
ysis rate is determined from the processive speed of TrCel7A, which is 7.1 nm/s [64]. Since
a cellobiose unit is about 1 nm long, the corresponding hydrolysis rate is 7.1 s−1.

From experiments [88–90,97], the decomplexation rate is estimated to be within the
range 1× 10−3 s−1 – 1× 10−2 s−1. In some studies [88–90], this rate is lumped together with
desorption. As an initial estimate for SLATE simulations, the decomplexation rate was set
to 1× 10−3 s−1, but its value is extensively varied here to account for the uncertainty.

The complexation rate is difficult to directly measure in experiment, although studies
suggest its value should be much lower than the hydrolysis rate [96,97,110,111]. This rate
was determined by fitting the simulated conversion profile to the experimental conversion
profile from Gusakov et al. [108]. In order to more precisely fit the experimental conversion,
two different complexation rates were necessary. The top and bottom layers of the microfibril
were assumed to be more loosely bound to the microfibril, and complexation with chains in
these layers is assumed to occur 10 times faster than chains elsewhere. Since Avicel is known
to be approximately 30% amorphous [119], the assumption that initial surface layers are more
susceptible toward complexation is not unreasonable. The best-fit values for the fast and
slow complexation rates are 5.5× 10−3 s−1 and 5.5× 10−4 s−1. Values for complexation rates
presented in the main text refer to this faster value. Although two different complexation
rates are introduced so that the experimental profile can be precisely fitted, the mechanistic
trends and conclusions in this work do not depend on this assumption and hold when a single
rate is used as well.

If only a single complexation rate were used, the sudden slow-down in conversion rate
near 30%, as seen in the experimental profile, could not be captured by the model. Fig. 3.8
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Figure 3.8. Effect of using single vs. dual complexation rates on shape of cellulose con-
version profle. Conversion over time for SLATE model using two complexation rates kc
s−1 (5.5× 10−3 and 5.5× 10−4) (solid red line), a single rate kc (1.5× 10−3) (dotted red
line), and from Gusakov et al. [108] (blue squares) for TrCel7A on Avicel. Conversions are
averaged over 8 independent simulations.

shows an example of conversion profiles that result from using a single complexation rate
(1.5× 10−3 s−1) and from using two different rates. Simulations results therefore suggest that
this slow-down in rate can be attributed to the heterogeneous nature of the substrate [81,120].
It is not unreasonable to assume that naturally synthesized microfibrils would contain por-
tions that are more easily decomposed and portions that are more recalcitrant. In particular,
the initial surface layers of the microfibril should be more susceptible to complexation by
enzymes. Therefore, the slow down in reaction rate can be attributed to the emergence of
the more recalcitrant surface layers as decomposition proceeds [121].

It should be noted that the decline in conversion observed in Gusakov et al. [108] and in
other experiments [78,80] could arise from factors such as product inhibition [122], enzyme
thermal denaturation [123], or irreversible enzyme adsorption [124,125]. That is, an increas-
ingly recalcitrant substrate may not be the only explanation for declining conversion rates.
These additional behaviors are not included in the SLATE model, and it is beyond the scope
of this work to evaluate their relative contributions on limiting conversion. The mechanistic
trends and conclusions presented here are not expected to depend on the existence of these
additional behaviors.

3.5.3 Lattice kinetic Monte Carlo simulations

The Stochastic LATtice Enzyme (SLATE) model applied here to simulate enzymatic cellu-
lose decomposition is a lattice kinetic Monte Carlo (kMC) model [98]. These models have
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been used extensively to study surface kinetic phenomena occurring in, for example, het-
erogeneous catalysis [98] and motor protein transport [107]. Given the kinetic similarities
that enzymatic cellulose decomposition shares with these systems, we apply kMC to model
cellulose bioconversion. A cellular automaton model has been presented before for mod-
eling cellulase kinetics on cellulose [94]. However, this model assumes complexation and
decomplexation occur instantaneously, underestimates bulk and surface diffusion rates, and
employs an ad hoc set of probability parameters that are difficult to interpret in a physical
context. A lattice-based coarse-grained model has also been used to study cellulase kinet-
ics [95]. This model, however, combines adsorption and diffusion processes with complex-
ation, and desorption with decomplexation. Its limitation to two-dimensions also prevents
spatial resolution of the microfibril degradation and enzyme-substrate coupling. In both
models, the complexation-exchange kinetics cannot be studied as stand-alone steps, and the
models do not quantitatively reproduce experimentally measured conversion profiles. The
incorporation of a full suite of spatiotemporal behaviors in the SLATE model overcomes
limitations in existing models that do not simultaneously account for spatial heterogeneity,
complexation-exchange, processivity, and jamming.

To simulate the decomposition reaction, the null-event kMC algorithm is used [98], which
is described further in Sections 2.1.4 and 3.5.4. The traditional lattice-based algorithm is
modified to overcome computational limitations imposed by the high rate of diffusion. Be-
cause the diffusion rate is at least three orders of magnitude higher than the other rates, a
naïve kMC simulation becomes computationally inefficient because the time step is severely
reduced and most reactions become uninteresting diffusive jumps. Here, a significant speed
up in computational time is achieved by treating diffusion adiabatically. A stochastic quasi-
equilibrium approximation [102] is applied, and further described in Section 3.5.5. Con-
version is found to be insensitive to diffusion if the diffusion rate is above 10 s−1 (See Sec-
tion 3.5.5). Given an experimental rate of 1× 104 s−1, the quasi-equilibrium approach, which
assumes infinitely fast diffusion, can be applied with high accuracy. Via this approach, the
computational speed up is 50-fold, and conversion profiles up to 200 hours of reaction time
can be simulated in less than five hours on a single CPU.

3.5.4 Null-event kinetic Monte Carlo algorithm

The kinetic Monte Carlo (kMC) algorithm is a method to generate stochastic trajectories
consistent with an underlying master equation parameterized by the kinetic rate constants, or
transition probabilities [116]. In particular, it involves choosing a reaction to perform during
each iteration and then advancing the system time. The null-event kMC algorithm [98] is
applied here. It consists of dividing the possible reactions from the current state into Nf

families. A particular family is chosen, with each family being chosen with equal probability.
Then, one particular reaction from that family, or no reaction is chosen. The probability for
choosing a particular reaction is proportional to its kinetic rate constant. The time is then
advanced by an amount determined by the number of families and kinetic rate constants.
Further details are given in Section 2.1.4.



CHAPTER 3. PROCESSIVE CELLULASE KINETICS 44

Specifically, in the Stochastic LATice Enzyme (SLATE) simulations, a subset of reactions
is chosen by randomly selecting a cellobiose residue on the surface with equal probability. If
the cellobiose residue is “linked” to an enzyme, then the possible reactions are enumerated
for that enzyme, depending on its state and whether obstacles are present. The “linked”
cellobiose residue is the one covered by the carbohydrate binding module (CBM) and closest
to the non-reducing edge. If the cellobiose residue is “unlinked”, then the possibility of enzyme
adsorption onto the cellobiose site is tested. In this manner, three types of subsets can be
chosen: (1) reactions involving an adsorbed enzyme, (2) reactions involving adsorption of
any enzymes in solution to the chosen site, and (3) an empty set of reactions in the case that
adsorption onto the chosen site is unallowable by excluded volume restrictions.

Once a subset of reactions is chosen, a reaction µ from that subset is chosen with proba-
bility aµ/amax. The parameter amax must be above a certain threshold, as explained by Chat-
terjee & Vlachos [98] and Section 3.5.4. The time is advanced by an increment 1/(Nfamax),
so that the mean time for a reaction to occur is identical to that in the Gillespie algo-
rithm [116]. The null-event algorithm is advantageous for spatially distributed systems, for
which a full enumeration of all possible reactions (as required in the traditional Gillespie al-
gorithm) would be too computationally expensive. The efficiency gained from only a partial
enumeration of reactions outweighs the cost of a reduced time step.

3.5.5 Quasi-equilibrium for diffusion

The high rate of diffusion poses severe limitations to the traditional kinetic Monte Carlo
(kMC) algorithm. First, because the probability to select a reaction is proportional to its
rate, in the naïve algorithm, a large number of reactions will be diffusive hops. Second,
because the time step is inversely proportional to the sum of the rates [98], the time step is
severely reduced if diffusion is left untreated.

To overcome computational limitations posed by fast diffusion, the stochastic quasi-
equilibrium approximation [102,126] is applied to the lattice kMC model. An outline of the
algorithm is presented here. Reactions are partitioned into fast and slow reactions. Diffusion
is the only fast reaction and all others are slow. After each slow reaction, a Metropolis Monte
Carlo (MMC) sampling of the uncomplexed enzyme configurations using local diffusional
hops of 1 nm is performed. After each MMC step, a set of slow reactions are tested to see
if they can occur. This set corresponds to those slow reactions whose rates depend on the
enzyme configurations (e.g. complexation and hydrolysis). If a slow reaction is allowed from
this configuration, it is added to the reaction list and the enzyme configurations are saved.
Therefore, after the MMC sampling, a new set of slow reactions are enumerated from the
enzyme configurations accessible by diffusion. After the MMC sampling, a slow reaction
(or null reaction) is selected. Following Samant & Vlachos [126], the probability of a slow
reaction s occurring from a particular configuration x is proportional to (Nx/Ntotal)ks(x),
where Nx is the number of times configuration x is accessed by the MMC sampling, Ntotal is
the total number of MMC steps, and ks(x) is the rate of slow reaction s as a function of x. We
find that Ntotal = 10,000 provides sufficient sampling of the fast diffusive degrees of freedom.
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Figure 3.9. Conversion profile up to 200 hours for different diffusion rates kdiff . The
quasi-equilibrium case is labeled as “∞”.

Note that ks(x) is either 0 or a constant in our model. For example, if an uncomplexed
enzyme is blocking the hydrolysis of another processing enzyme, the hydrolysis rate of the
blocked enzyme from this configuration is 0 s−1. If the uncomplexed enzyme diffuses away
after the next MMC step, then hydrolysis is no longer blocked and can proceed from this
new configuration at a non-zero rate. After a slow reaction is selected and performed, a new
cycle of MMC steps is initiated.

As a test of the algorithm, the conversion profile is plotted in Fig. 3.9 for diffusion rates
(s−1) of 0, 0.1, 1, 10, and ∞, where the latter represents the quasi-equilibrium assumption.
We see that the conversion converges once the diffusion rate reaches 10. Experimental
estimates of this rate range from 10 s−1 to 1× 104 s−1 [118,127] indicating that diffusion can
be approximated as being infinitely fast (i.e. conversion is not diffusion-limited).

3.6 Supplementary information

3.6.1 Occupancy times, enzyme efficiency measures, and enzyme
performance

Here, quantitative expressions for the occupancy times, enzyme efficiency measures, and
enzyme performance are derived and related to the overall cellulose conversion. First, it is
helpful to distinguish between the enzyme state and system state. The enzyme state refers
to whether a particular enzyme is in solution, uncomplexed, active, or blocked. The system
state contains information about the state and location of all enzymes and cellobiose residues
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in the system. The occupancy time for an enzyme state is the accumulated time an enzyme
spends in its enzyme state over the course of the reaction, averaged over all enzymes in the
system. In the kinetic Monte Carlo (kMC) simulation, the system jumps between system
states via elementary kinetic steps. The system first spends a certain amount of time in the
origin state, and then jumps instantaneously to the destination state. Over the course of the
reaction, the system will explore different states, jumping from one to the next. Thus, the
occupancy time for an enzyme state is a discrete sum over the system states encountered
during the reaction, where the time spent in the system state is added to the occupancy
time only if the enzyme is in the enzyme state of interest.

Let the system states encountered during the reaction be indexed by i, enzymes indexed
by j, and the enzyme state of interest be labeled as M . Let Sij be a function that returns
the state of enzyme j when the system is in state i. The occupancy time for enzyme state
M is

τM =
1

NTot

∑
i

∑
j

δ(Sij −M)∆ti, (3.1)

where NTot is the total number of enzymes, δ(· · · ) is the Kronecker delta, and ∆ti is the
length of time the system spends in state i. The occupancy time for stateM is roughly equal
to the number of times an enzyme encounters the state M multiplied by the mean reaction
time (or mean first-passage time) from state M . Therefore, it incorporates two qualitative
characteristics of a “kinetic trap”: (1) that it is easily accessed, and (2) that it is difficult to
escape from.

The fractional occupancy time, or fraction of time occupied in stateM , is xM = τM/τTot,
where τTot =

∑
i ∆ti is the total reaction time. The quantity xM can also be interpreted as

the time-averaged fraction of enzymes in state M , which becomes more apparent by writing
it as

xM =
1

τTot

∑
i

(
1

NTot

∑
j

δ(Sij −M)

)
(3.2)

The quantity in the outer parenthesis is the number of enzymes in state M when the system
is in state i. The time-averaged number of enzymes in state M is ÑM = xMNTot.

Enzyme efficiencies measure the degree to which certain kinetic processes are able to pro-
mote enzymes toward the active state. They quantify the fraction of an enzyme population
that belong to a more productive population. As such, they are evocative of thermodynamic
efficiencies that measure, for example, the fraction of heat converted into work. The enzyme
populations, ordered from least productive to most productive, are the following: total, sur-
face, complexed, and active. The total enzyme population consists of all the enzymes in the
system. The surface population consists of uncomplexed, active, and blocked enzymes, which
are all on the surface. The complexed population consists of active and blocked enzymes.
The active population consists only of the enzymes in the active state. For each population,
it is useful to consider the time-averaged number of enzymes in that population. It is the
sum of the time-averaged number of enzymes over states belonging to that population. For
example, the time-averaged number of enzymes on the surface is ÑS = ÑU +ÑA+ÑB, where
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U , A, and B refer to the uncomplexed, active, and blocked states, respectively. The surface-
binding efficiency is a measure of the fraction of all enzymes in the system that are bound to
the surface, and given as ηS = ÑS/NTot. The complexation efficiency is ηC = ÑC/ÑS, and
the activation efficiency is ηA = ÑA/ÑC ,

The enzyme efficiencies, and thus occupancy times, can be related to the cellulose conver-
sion. The rate of cellobiose production is given by the first-order rate law: dNCB/dt = khNA,
where NCB is the number of cellobiose residues. Integration up to a total reaction time
T = τTot gives NCB(T ) = khÑAτTot. The conversion XT is NCB(T )/NCB,tot, where NCB,tot

is the total number of cellobiose residues in the unreacted microfibril. Using the definition
of the efficiencies, the conversion is XT = (1/NCB,tot)khNTotηSηCηAτTot. The maximum in
conversion with decomplexation rate can be decomposed into the changes in efficiencies with
decomplexation. ÑS is nearly constant when changing the decomplexation rate, since its
magnitude is mainly governed by the surface area and adsorption/desorption rates. There-
fore, XT ∼ ηCηA. The opposing trends of ηC and ηA with decomplexation rate quantify the
competing requirements for maintaining processivity and avoiding blocking and explain the
maximum in conversion. Their product ηCηA is performance metric that accounts for these
competing requirements and is a clear reporter of the cellulose conversion.

The conversion is also proportional to the fractional occupancy time in the active state,
or the time-averaged fraction of active enzymes. This follows from NCB(T ) = khÑAτTot and
ÑA = xANTot. This relation XT ∼ khxANTotτTot is intuitively pleasing since it says that
conversion can be enhanced by maintaining a large pool of active enzyme over the course
of the reaction. Additionally, from xA = τA/τTot, the conversion is proportional to the
occupancy time in the active state XT ∼ khNTotτA. This result is also intuitive; more time
spent in the active state, from which hydrolysis directly proceeds, will increase conversion.
The “lost” time spent in the inactive states reduces xA and hence, decreases conversion.

3.6.2 Testing uncertainty in the complexation rate

The best-fit complexation rate obtained from the reference simulations could be underesti-
mated if the enzyme loading in the simulations were too high. Using a lower enzyme loading,
corresponding to 12% surface coverage, the complexation rate that best fits the experimental
conversion by Gusakov et al. [108] is 1× 10−2 s−1. This rate is still three orders of magnitude
lower than the hydrolysis rate (7.1 s−1). It is also interesting to determine if complexation
would be rate-limiting if a higher conversion of 80% is achieved after 3 days of sacchari-
fication, a common industrial target [23]. To achieve this target, a complexation rate of
5× 10−2 s−1 is required, still quite low compared to hydrolysis. An overestimation of the
diffusion coefficient could also yield an artificially low complexation rate. Recent evidence
suggests that the diffusion coefficient of 1× 10−10 cm2/s, as measured by Jervis et al. [118]
and used in the reference simulation, may have been too high, and suggests the diffusion
coefficient for mobile, uncomplexed cellulases may be as low as 1× 10−13 cm2/s [127]. Simu-
lations performed here indicate that the conversion is virtually unchanged even at this lower
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value, as shown in Section 3.5.5 for the diffusion rate of 10 s−1, which corresponds to a diffu-
sion coefficient of 10−13 cm2/s (See Section 3.5.2). This result indicates that diffusion is not
rate-limiting and that complexation is the primary step limiting conversion. A recent exper-
iment found that the lumped diffusion-complexation step is rate-limiting [96]; the isolation
of complexation as rate-limiting further elucidates this finding. An underestimation of the
decomplexation rate can also yield a best-fit complexation rate that is too low. However,
even when a decomplexation rate of 1 s−1 was used, corresponding to the higher bound on
literature estimates [114], the best-fit complexation rate was 1× 10−1 s−1, still more than
two orders of magnitude lower than hydrolysis.

3.6.3 Effect of non-reducing edge boundary condition on
conversion

The possibility of jamming requires the presence of obstacles that can impede an enzyme’s
processive path. In the reference model, the primary obstacle that induces jamming is
blocking at the non-reducing edge. Once a processing active enzyme reaches the non-reducing
edge, it becomes blocked and can only decomplex. If decomplexation occurs slowly, then this
enzyme remains inactive and the conversion rate is reduced due to loss of enzyme activity.
An important question is if the conversion rate is enhanced when this obstacle, and hence the
possibility of jamming, is removed. In the SLATE model, this is accomplished by coupling
the hydrolysis of the remaining bonds at the non-reducing end with decomplexation and
desorption of the enzyme. Because hydrolysis occurs more quickly than decomplexation,
enzymes reaching the non-reducing edge are no longer jammed but return to solution.

To compare the effect of blocking at the non-reducing edge on enzyme jamming, the
probability to find a surface enzyme at different positions along the microfibril is plotted for
simulations with and without the non-reducing edge obstacle in Fig. 3.10a. A high density of
enzymes near the non-reducing edge indicates the existence of jamming. This is seen when
the obstacle is included and kdc = 1× 10−5 s−1. Once kdc is increased to 1× 10−3 s−1, the
jamming disappears. Removal of the obstacle eliminates jamming when kdc = 1× 10−5 s−1,
but has a negligible effect on enzyme density when kdc = 1× 10−3 s−1, since jamming initially
is absent.

The elimination of jamming yields an increase in conversion. In Fig. 3.10b, the conversion
after 200 hours is compared for simulations with and without blocking at the non-reducing
edge. For kdc < 1× 10−3 s−1, removing the obstacle leads to a significant increase in con-
version, since jamming is eliminated. At higher kdc, obstacle removal has minimal effect
on conversion. Under these conditions, processing enzymes are less likely to reach the non-
reducing edge, and those enzymes that do reach it can decomplex quickly anyways. In
these cases, the presence of an obstacle at the non-reducing edge is less important. One
of the goals of cellulose pretreatment is to remove obstacles that limit substrate accessi-
bility [17,128]. These results show that the response of conversion to pretreatment could
depend not only on substrate modifications themselves, but also on the intrinsic enzyme
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Figure 3.10. Effect of non-reducing edge boundary condition on cellulose conversion by
TrCel7A. (a) Probability to find an enzyme at different locations along the microfibril aver-
aged over 200 hours of reaction. The non-reducing edge is located at x = 0. The length of
the enzyme is 14 nm. Two different decomplexation rates kdc (s−1) are shown: 10−5 (green)
and 10−3 (red). Traffic jams, shown as a buildup of density near x = 0, disappear for kdc =
10−3 s−1. (b) Conversion after 200 hours of reaction X200 for different decomplexation rates
kdc. In the reference case (red), the non-reducing edge is an obstacle. In the alternative
case (blue), the non-reducing edge is not an obstacle. In this case, enzymes that reach the
non-reducing edge decomplex and desorb immediately.

kinetics. Less processive enzymes in this case would be less sensitive to obstacle removal.

3.6.4 Effect of degree of polymerization on conversion

Lowering the degree of polymerization (DP) of glucan chains under fixed kinetic rate con-
stants (s−1) can either increase or decrease the conversion. The types of behavior can be
understood by examining if lowering DP (or obstacle-free length of the microfibril) induces
blocking at the non-reducing edge. A useful method to predict blocking is to compare the
DP with the enzyme intrinsic processivity Pintr. This is the processive length for a freely
processing enzyme in the absence of substrate limitations, which equals kh/kdc [88]. The
reference value is 7000 according to the rates in Fig. 3.1b. Unlike the apparent proces-
sive length, which depends on the substrate DP, Pintr depends on the kinetic rate constants
alone. As Pintr increases, the processing enzymes are more likely to become blocked at the
non-reducing edge.

In Fig. 3.11, the dependence of conversion on DP is illustrated for varying kdc (or equiv-
alently, varying Pintr). Microfibril DPs from 256 to 1024 are explored, and the total number
of enzymes in the system is adjusted to maintain a constant enzyme-to-substrate ratio.
Simulations in Fig. 3.11a consider the non-reducing edge as an obstacle that blocks further
hydrolysis. Therefore, DP here is also equal to the length of an obstacle-free path on the
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Figure 3.11. Effect of microfibril degree of polymerization (DP) on cellulose conversion
by TrCel7A. Conversions after 200 hours of reaction X200 for different decomplexation rates
kdc and substrate degrees of polymerization (DPs) are shown. (a) The non-reducing edge
is an obstacle, and therefore, DP is also equal to the length of an obstacle-free path. (b)
The non-reducing edge is not an obstacle. In these simulations, enzymes that reach the
non-reducing edge decomplex and desorb immediately.

initial substrate. The conversion is determined by the balance between Pintr and DP. When
Pintr is high, a decrease in DP can create or induce further jamming because more enzymes
reach the non-reducing edge and remain blocked for a longer period of time. This occurs
for kdc < 1× 10−2 s−1, and the conversion is lowered as DP is decreased. When Pintr is low,
enzymes tend to decomplex prematurely, and bonds closer to the non-reducing edge become
harder to hydrolyze. Therefore, a decrease in DP can make these bonds easier to hydrolyze
by placing them closer to the complexation sites. This occurs for kdc = 1× 10−1 s−1, and
conversion is increased as DP is decreased.

An interesting transition is seen at kdc = 1× 10−2 s−1. A decrease in DP from 1024 to 512
first increases the conversion by allowing bonds near the non-reducing end to be hydrolyzed
more easily. A further decrease in DP from 512 to 128, however, begins to induce jamming,
lowering conversion. A decomplexation rate around 1× 10−3 s−1 – 1× 10−2 s−1 based on
experimental estimates [88–90,97] appears to give near optimal conversion for a range of
substrate DPs. This result could indicate the outcome of an evolution toward the optimal
kdc to allow TrCel7A to cope with the diversity of cellulosic substrates encountered in nature.

Variations of the DP have also been performed under the case where the non-reducing
edge is not an obstacle. As seen in Fig. 3.11b, by removing blocking at the non-reducing
edge, a decrease in DP only enhances the conversion when Pintr is low. Under these condi-
tions (kdc > 1× 10−3 s−1), reduction in DP allows bonds closer to the non-reducing end to be
reached by a processing enzyme. When Pintr is high, the conversion is relatively insensitive
to reduction in DP, since blocking at the non-reducing edge is non-existent. Experimental
studies regarding the effect of DP on conversion do not show any consistent trends [129–131],
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and the results here point to substrate- and enzyme-related features that can account for
these inconsistencies. The non-trivial interplay between substrate features and enzyme kinet-
ics observed here underscores that conversion enhancement requires achieving coordination
between both substrate and enzyme interactions.
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Chapter 4

Elucidating the Molecular Origins of
Cellulase Synergy

4.1 Motivation
Harnessing the synergistic interactions among cellulases is one of the primary strategies
for enhancing cellulose conversion rates [73,76]. Industrial cellulase preparations employ a
cocktail of enzymes to exploit their synergistic interactions [26,30,42,76]. Among the most
important types of enzymes are those secreted by the fungus Trichoderma reesei, which
include two exoglucanases (or cellobiohydrolases) (TrCel7A, TrCel6A) and one endoglu-
canase (TrCel7B) [41]. These enzymes comprise the majority of cellulases secreted by
this fungus [44,132]. Exoglucanases complex with the free ends of glucan chains and per-
form processive hydrolysis, releasing cellobiose into solution after each bond cleavage [46].
TrCel7A complexes with the reducing end, while TrCel6A complexes with the nonreduc-
ing end [46,133,134]. Complexation for exoglucanases involves extraction of the chain from
the crystalline surface and threading through the active site tunnel [27,57]. Endoglucanases
can complex anywhere within the glucan chain [46,66,67] by lifting it up from the surface
and into its active site cleft [54,57]. These enzymes are not processive and decomplex after
hydrolysis.

Endo-exo synergy among these fungal cellulases is well-studied [65,72,73,80,86,91,96,135–
142], but its molecular origins remain an open question [26,73]. Synergy is mainly believed
to arise from the ability of endoglucanases to create more free ends with which exoglucanases
can complex [73,135]. Therefore, the slow rate of exoglucanase complexation can be partially
overcome by exploiting this endo-exo synergy. A second explanation for endo-exo synergy
is the putative ability of endoglucanases to remove surface obstacles that block processive
hydrolysis of exoglucanases, thereby alleviating enzyme jamming [86,96,137,138]. A third
explanation is that the internal cuts that endoglucanases create could promote decomplex-
ation of processing exoglucanases to prevent them from becoming jammed at obstacles [91].
Among these theories, it is unclear which one is dominant and if these theories require further
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refinement.
Exo-exo synergy between TrCel7A and TrCel6A [64,67,72,82,136,143–146] is believed to

arise due to the ability of TrCel6A to display some endo-like character [67,69,132]. The
shorter flexible tunnel-forming loops around the active site can occasionally open to form
a cleft-like topology, which would allow complexation with interior portions of the glucan
chain [41,59,68]. An additional theory is that TrCel6A, which processes in the opposing
direction of TrCel7A, could also play a role in clearing out isolated surface glucan chains left
by incomplete degradation by TrCel7A [82]. It is currently unclear if one or both of these
mechanisms operate within exo-exo mixtures.

Spatially-resolved kinetic models can provide molecular insight into the reaction kinetics
which is inaccessible to solution-phase experiments. An enhanced understanding of the
molecular origins of synergy could establish a more comprehensive framework for rational
engineering of cellulase enzymes and their substrates. However, the kinetic mechanisms for
synergy among cellulases have yet to be modeled comprehensively at the single-enzyme level.
To the best of our knowledge, current models for enzyme synergy [61,95,114,131,136,147–
150] do not simultaneously consider the effects of (1) spatial heterogeneity, (2) excluded
volume interactions, (3) complexation/decomplexation kinetics, and (4) enzyme jamming on
the degree of synergy among cellulases. These non-classical kinetic behaviors are difficult
to capture with traditional mass-action kinetic models which assume a dilute, well-mixed
reaction medium. Lacking a molecular understanding of enzyme synergy, a more rational
approach towards bioconversion design becomes prohibitive. To achieve deeper molecular
insight, we have developed a kinetic model that spatially resolves the enzyme and substrate
configurations in three dimensions and simulates the kinetic reactions at the single-enzyme
level. The Stochastic LATtice Enzyme (SLATE) model applied here captures these non-
classical enzymatic behaviors mentioned above. It based on a lattice kinetic Monte Carlo
framework further discussed in Section 2.2. In the SLATE model, the enzymes are able
to perform a full suite of kinetic reactions: (1) adsorption, (2) desorption, (3) diffusion,
(4) complexation, (5), decomplexation, and (6) hydrolysis. The locations and shapes of
individual enzymes and the microfibril glucan chains are explicitly tracked.

In this Chapter, we elucidate the molecular origins for cellulase synergy via simulations
with the SLATE model. We show that endo-exo synergy requires not only an increase in
the number of free glucan chain ends produced by endoglucanases. Instead, for synergy to
emerge, an increase in the complexation rate between exoglucanases and the newly created
free ends is required. The physical significance of this complexation rate enhancement is
that endoglucanases likely disrupt, or decrystallize, the surface during complexation and
hydrolysis. Therefore, the synergistic interaction with respect to exoglucanases is to not only
increase the chain end concentration but also the chain end susceptibility to complexation.

We also find that, during a reaction with an endo-exo mixture, the microfibril surface
becomes rougher and induces blocking of processing TrCel7A enzymes. This anti-synergistic
interaction is uncovered because substrate structure and excluded volume constraints are
explicitly incorporated in the SLATE model. We show that this anti-synergistic interaction
can be avoided by using less processive exoglucanases. The enhanced decomplexation rates
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of these enzymes alleviate the anti-synergistic effects of increasing surface roughness and
blocking, since the activities of these enzymes are limited primarily by their processivity and
not by the presence of obstacles, as discussed in Chapter 3. Under these conditions, the
complexation rate enhancement far outweighs the increase in blocking. In general, we find
that the endo-modulated competition between complexation and blocking of exoglucanases
determines the degree of synergism.

Lastly, we illustrate that exo-exo synergy requires an endo-like behavior in at least one
of the enzyme types. We show that anti-synergy occurs without this behavior. Gradual
mutation of one of the exoglucanase enzymes in an exo-exo mixture into a more endo-like
enzyme enables the exo-exo synergy to emerge.

4.2 Methods
Details of the SLATE model are provided in Section 2.2. These details include the kinetic
Monte Carlo algorithm used to simulate the reaction, the shape and geometry of the enzymes
and microfibril, and the elementary kinetic steps for all enzyme types in the reaction network.
In addition, in Section 3.5, further details are provided for the simulation of TrCel7A alone,
including the determination of a reference set of rate constants and the division of TrCel7A
enzymes into different states used to analyze the kinetic bottlenecks. In this Section, the
reference rate constants for TrCel7B and TrCel6A will be described.

4.2.1 Reference rate constants for TrCel7B

The adsorption and desorption rates of TrCel7B are the same as those of TrCel7A, similar
to findings by Levine et al. [114]. The adsorption rate is 8.9× 10−4 s−1, and the desorption
rate is 1.0× 10−3 s−1. The hydrolysis rate of TrCel7B is 9.2 s−1, adopted from work by
Claeyssens et al. [151]. This value is consistent with the general observation that the in-
trinsic rate of bond cleavage by TrCel7B is higher than that of TrCel7A [88,91,95,114,151].
After hydrolysis, decomplexation of TrCel7B occurs immediately, since the enzyme is non-
processive. Both hydrolysis and decomplexation are therefore treated as lumped kinetic
steps for TrCel7B.

The complexation rate of TrCel7B is adjusted such that the cellulose conversion from
TrCel7B alone is about half the value from TrCel7A alone. The lower conversion rate from
TrCel7B is generally observed in experiments [41,65,72,80,86,91,137,152]. This best-fit value
is 3.0× 10−3 s−1. The finding that the complexation timescale for TrCel7B is on the order
of hours is consistent with measurements by Maurer et al. [153]. After complexation, the
enzyme is only allowed to hydrolyze a bond and then decomplex.
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4.2.2 Reference rate constants for TrCel6A

The adsorption and desorption rates of TrCel6A are 10 times lower than those of TrCel7A to
account for its less reversible binding [113,114,154,155]. The adsorption equilibrium constant
is therefore unchanged, also consistent with experimental findings [41,44,143,145]. The de-
complexation rate of TrCel6A is estimated to be 1.0 s−1. This value aims to capture the more
flexible tunnel-forming loops of TrCel6A [59,68], which impart lower processivity [70] and
partial endo-like character onto the enzyme [67,69]. The occasional opening of these loops
would promote a faster decomplexation rate relative to that of TrCel7A, which possess more
rigid loops [56]. The hydrolysis rate is 14 s−1, as measured experimentally [156,157].

The complexation rate of TrCel6A with free chain ends assumed to be the same as
that of TrCel7A (kc,7A = 5.5× 10−3 s−1). This approximation is reasonable because both
of these enzymes have active site tunnels [50,54], and therefore, complexation involves the
similar physical steps of threading a chain into the active site. In addition to complexation
with the non-reducing end of a glucan chain, TrCel6A can also complex with the interior
portions of a chain. The complexation rate with these interior portions is taken to be
equal to β × kc,6A. Therefore, β is a measure of the ability of TrCel6A to create endo-like
interior cuts. We vary β from 0 to 1 in the simulations to modulate this ability. Unlike
TrCel7B, however, the enzyme does not decomplex immediately after hydrolysis, but can
perform processive hydrolysis until it decomplexes or become blocked. Therefore, it exhibits
an “endo-processive” behavior. In the simulations, the conversion from including this endo-
processive activity for TrCel6A is typically higher than the conversion from TrCel7A alone.
This observation is consistent with experiments, which generally find that the conversion
from TrCel6A is higher [41,64,72,82,143,152,158–160]. The conversion is enhanced because
TrCel6A can initiate processive hydrolysis from interior portions of a glucan chain, while
TrCel7A cannot.

The diffusion rate for both TrCel7B and TrCel6A is the same as that for TrCel7A,
1.0× 104 s−1, which from random walk theory [117] and a hopping length of 1 nm corresponds
to a diffusion coefficient of 1.0× 10−10 cm2/s, as measured experimentally for cellulases [118].

4.2.3 Scaling of TrCel7A complexation rate via α

An interior cut by TrCel7B or TrCel6A leaves a free glucan chain end that can be complexed
by TrCel7A. Complexation of TrCel7A with these newly created ends occurs with rate
α × kc,7A. We simulate the conversions using α = {1, 10, 100} to study this complexation
rate enhancement effect. We also assume that complexation occurs 10 times more quickly
with the initial top and bottom layers of the microfibril. Due to the heterogeneous structure
of even crystalline cellulose [119], it is not unreasonable to assume certain parts of the native
material are more susceptible to complexation than other parts. In the text, complexation
rates refer to the higher value. Although we assume this structural heterogeneity to more
precisely fit to experimental conversions (See Section 3.5.2), this treatment does not affect
the mechanistic trends discussed in this Chapter.
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Table 4.1. Reference rate constants for TrCel7A, TrCel7B, and TrCel6A used in SLATE
simulations.

Reference rates (s−1) TrCel7A TrCel7B TrCel6A

Adsorption, ka 8.9× 10−4 8.9× 10−4 8.9× 10−5

Desorption, kd 1.0× 10−3 1.0× 10−3 1.0× 10−4

Diffusion, kdiff 1.0× 104 1.0× 104 1.0× 104

Complexation, kc 5.5× 10−3 3.0× 10−3 5.5× 10−3

Decomplexation, kdc 1.0× 10−3 — 1.0

Hydrolysis, kh 7.1 9.2 14

Table 4.1 lists the reference rate constants used in the SLATE simulations. In the fol-
lowing simulations, when rate constants different from these are used, their values will be
provided in the accompanying text.

4.3 Results
In the following, we identify the kinetic mechanisms that govern cellulase synergy. We also
analyze the validity of current mechanistic theories for cellulase synergy via the SLATE
model. First, endo-exo synergy is investigated. We find that the degree of synergy depends
primarily on the competition between enhanced complexation and increased jamming of
TrCel7A (exoglucanase) that occurs due to the addition of TrCel7B (endoglucanase). Sec-
ond, exo-exo synergy is investigated. We find the ability of TrCel6A (exoglucanase) to create
interior endo-like cuts within the glucan chain is essential for synergistic exo-exo interaction.

4.3.1 Endo-exo synergy depends on mixture composition,
complexation rate enhancement, and reaction time

Here, the decomposition of a single microfibril by TrCel7A and TrCel7B is investigated. The
total enzyme number is 18, corresponding to an initial surface coverage of 25%, within the
range typically employed in experiments with enzyme mixtures [72,114,137]. This number
is calculated as the intersection between the loading line [72] and Langmuir isotherm [47].
The numbers of TrCel7A and TrCel7B enzymes are varied between 0 and 18, while keeping
the total enzyme number constant. We distinguish between rates of TrCel7A complexation
with a pre-existing chain end and an endo-created chain end. Complexation with an endo-
created chain end occurs at a rate of α × kc, and α takes on values of 1, 10, and 100.
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The effect of using α > 1 is to physically model the disruption of interior portions of glucan
chains after complexation and hydrolysis by TrCel7B. This complexation enhancement could
occur by loosening of the hydrogen bonds between glucan chains by endoglucanases during
complexation which would in turn increase the susceptibility of these ends toward TrCel7A.
The effect of endoglucanases and other cellulases to disrupt the cellulose fiber has been
suggested from experimental studies [92,161–167].

In Fig. 4.1, the conversion profiles for reactions with pure TrCel7A, pure TrCel7B, and
their mixtures at different α values are shown. The enzyme ratios (Number of TrCel7A :
Number of TrCel7B) are 2:16, 8:10, 10:8, and 16:2. The sum of the pure conversions is
also shown, representing the null-synergy case. This null-synergy case corresponds to the
conversion that would emerge if the two types of enzymes were to act completely indepen-
dently on the surface. Synergy is defined as the mixture conversion divided by the sum of
the conversions from the pure components.

For all enzyme ratios in Fig. 4.1, we observe that using α = 1 produces null- or anti-
synergy between the enzymes. Therefore, if the action of TrCel7B were to only increase
the number of chain ends without affecting the TrCel7A complexation rate with these chain
ends, no endo-exo cooperativity is achieved. In fact, at higher TrCel7B mole fractions
(Fig. 4.1a-c), the interaction is anti-cooperative. For α = 10 and 100, synergy is achieved at
shorter times (< 40 hr) for all mole fractions, and is maintained at longer times when the
TrCel7B mole fraction is low (Fig. 4.1d). At higher TrCel7B mole fractions (Fig. 4.1a-c),
however, anti-synergy appears at later times (> 40 hrs). In addition, under high TrCel7B
mole fractions, the conversion from α = 10 begins to approach the conversion from α = 1 at
later times, while the conversion from α = 100 drastically decreases, even falling below the
conversion from α = 1.

In Fig. 4.2, the conversion and synergy after selected times are shown for the pure enzyme
and mixture reactions at different mixture compositions. For α = 1, the synergy at all mole
fractions is either non-existent (∼ 1) or negative (< 1) throughout the reaction. For α
> 1, we see that the extents of synergy are around 1 – 3, which is consistent with the
values typically observed in experiments [41,65,72,80,86,91,137,142]. In addition, for all
values of α and mole fractions, synergy decreases with reaction time, a behavior observed in
experiments [65,80,86,91,137,141–143] but lacking a mechanistic explanation.

In general, Fig. 4.2 emphasizes the importance of the mixture composition, TrCel7A
complexation enhancement (via α), and reaction time scale on the degree of endo-exo synergy.
For example, at earlier times (< 24 hrs), increasing α increases the degree of synergy, while
at later times (72 hrs), increasing α decreases synergy when the TrCel7B mole fraction is
high, but increases synergy when the TrCel7B mole fraction is low. We now explain these
observations by analyzing the enzyme state fractions to identify the mechanistic origins for
these behaviors.
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Figure 4.1. Conversion vs. time for mixtures of TrCel7A and TrCel7B at different mixture
compositions and different values of α. Values for α are 1, 10, and 100. The blue line repre-
sents conversion from TrCel7A only. The red line represents conversion from TrCel7B only.
The magenta line represents the sum of conversions from TrCel7A only and TrCel7B only
and is the null-synergy conversion. The green lines indicate the actual mixture conversions
for different values of α. The mixture composition is given as Number of TrCel7A : Number
of TrCel7B. (a) 2:16, (b) 8:10, (c) 10:8, (d) 16:2.
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Figure 4.2. Conversion and synergy vs. mole fraction for mixtures of TrCel7A and TrCel7B
enzymes at different values of α and reaction times. The blue crosses represent conversion
from TrCel7A only. The red crosses represent conversion from TrCel7B only. The magenta
squares represent the sum of conversions from TrCel7A only and TrCel7B only and is the
null-synergy conversion. The green symbols indicate the actual mixture conversions and
synergy at different values of α: 1 (diamond), 10 (inverted triangle), and 100 (circle). Synergy
is defined as the mixture conversion divided by the sum of the individual conversions. The
reaction times (hr) are (a) 12, (b) 24, and (c) 72.

4.3.2 Enzyme state analysis reveals kinetic bottlenecks that
reduce synergy

To understand the trends observed in Figs. 4.1 and 4.2, the fractions of TrCel7A in different
states in both their pure and mixture environments are averaged over selected time inter-
vals. We ask the following question: how do the averaged fractions of TrCel7A in different
states change when TrCel7B is added to the system? Therefore, we assess the effect of
endoglucanase addition by comparing a system containing only TrCel7A enzymes with a
system containing the same number of TrCel7A but in the presence of endoglucanase. This
comparison allows us to understand how the addition of TrCel7B changes the distribution
of TrCel7A over its different states.

The enzyme states of TrCel7A are described in more detail in Section 3.2. In short,
a TrCel7A enzyme can be in one of the following states: (1) solution, (2) uncomplexed,
(3) blocked by uneven microfibril surface layers (or surface-blocked), (4) blocked by other
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enzymes, (5) blocked by the microfibril edge, or (6) active. An enzyme in solution can only
adsorb onto the surface. An uncomplexed enzyme is adsorbed, and can desorb, diffuse, or
complex with a free chain end. Once complexed, an enzyme is active or blocked. An enzyme
is active if no obstacles exist immediately in front of its processive path. A blocked enzyme
can only decomplex, while an active enzyme can perform hydrolysis or decomplex. In endo-
exo mixtures, we find that the largest fractions of inactive states are the uncomplexed and
surface-blocked ones. Therefore, in the following, we consider the fractions in these two
inactive states, along with the active fraction to investigate the observed trends in Figs. 4.1
and 4.2.

An analysis of the enzyme state fractions is insightful because it allows us to quantify the
relative importance of kinetic bottlenecks that reduce active enzyme fractions. The active
state fraction can be related to the mixture conversion rate using the first-order rate law
for cellobiose production. Therefore, a high active state fraction promotes a high conversion
rate. This relation is further discussed in Section 4.5. The active state fraction is reduced
when enzyme occupation in inactive states is increased. The inactive states act as kinetic
traps that reduce activity and conversion rate. The decomposition of inactive fractions into
different states thus allows the most important kinetic traps to be identified. For example,
a large fraction of surface-blocked enzymes indicates that processing enzymes often become
stalled at surface defect sites and that these sites present kinetic traps on the surface.

Figs. 4.3, 4.4, and 4.5 illustrate the enzyme state fractions in the uncomplexed, surface-
blocked, and active states, respectively, averaged from 0 to 12 hours and averaged from 12
to 48 hours. These two time intervals are used to capture the “biphasic” conversion behavior
that appears under certain conditions, as illustrated in Figs. 4.1 and 4.2. The first interval
captures the burst in the enzyme mixture conversion appearing for α > 1. The second
interval captures the time over which the mixture conversion slows down relative to the
null-synergy rate.

We first focus the discussion within the first time interval. For α > 1, the active fraction
of TrCel7A in the mixture within the first interval (0 – 12 hr) is greater than that of TrCel7A
in its pure environment, as seen in Fig. 4.5. This trend holds for all mixture compositions
investigated and corresponds to the initial burst in mixture conversion observed when α > 1.
Under these conditions, the addition of TrCel7B enhances TrCel7A activity. It does so by
not only creating new chain ends but by also enhancing the complexation rate of TrCel7A
with these new chain ends, since α > 1. Hence, the fractions of TrCel7A in the uncomplexed
state are significantly reduced, as seen in Fig. 4.3.

However, the addition of TrCel7B also increases the surface-blocked fractions of TrCel7A
within the first time interval, as seen in Fig. 4.4. This increase is more dramatic at higher
mole fractions of TrCel7B and when α > 1. Under these conditions, many chain ends are
created and subsequently complexed by TrCel7A. A higher fraction of complexed TrCel7A
shifts the enzyme distribution toward the active and blocked states.

The increase in TrCel7A blocking also arises from gradual roughening of the surface
when TrCel7B is added. Because a TrCel7B creates random interior cuts within the chain,
a processing TrCel7A is more likely to decomplex before reaching the end of the microfibril.
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Figure 4.3. Time-averaged uncomplexed state fractions of TrCel7A at different mixture
compositions. The two time intervals over which averaging is performed are 0 – 12 hr and 12
– 48 hr. The enzyme state fractions are computed for enzymes in their pure environments
(blue) and mixture environments (green) at different values of α. The mixture compositions
(Number of TrCel7A : Number of TrCel7B) are: (a) 2:16, (b) 8:10, (c) 10:8, and (d) 16:2.
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Figure 4.4. Time-averaged surface-blocked state fractions of TrCel7A at different mixture
compositions. The two time intervals over which averaging is performed are 0 – 12 hr and 12
– 48 hr. The enzyme state fractions are computed for enzymes in their pure environments
(blue) and mixture environments (green) at different values of α. The mixture compositions
(Number of TrCel7A : Number of TrCel7B) are: (a) 2:16, (b) 8:10, (c) 10:8, and (d) 16:2.
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Figure 4.5. Time-averaged active state fractions of TrCel7A at different mixture composi-
tions. The two time intervals over which averaging is performed are 0 – 12 hr and 12 – 48 hr.
The enzyme state fractions are computed for enzymes in their pure environments (blue) and
mixture environments (green) at different values of α. The mixture compositions (Number
of TrCel7A : Number of TrCel7B) are: (a) 2:16, (b) 8:10, (c) 10:8, and (d) 16:2.
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Figure 4.6. Surface roughening mechanism caused by combined actions of exoglucanase
TrCel7A and endoglucanase TrCel7B. Each green square represents a cellobiose residue. A
side view of the microfibril and three layers are shown. First, a TrCel7A enzyme decomplexes
at the interior of a glucan chain once it reaches a bond that has been cut by TrCel7B. This
leaves an uneven layer on the microfibril surface. Next, another TrCel7A enzyme complexes
with a chain in a layer underneath and begins processive hydrolysis. However, it then
becomes blocked by the uneven surface layer created previously. Therefore, the combined
actions of endo- and exoglucanases can lead to “surface inhibition” of exoglucanases via
increased surface roughness of the microfibril.

Each interior decomplexation event leaves an uneven layer (or step-like defect) on the mi-
crofibril surface. This rougher surface increases the probability that a processing TrCel7A
encounters an uneven surface layer and becomes surface-blocked. This surface roughening
mechanism is illustrated in Fig. 4.6. When a relatively large amount of TrCel7B is added,
more random interior cuts are created, which lead to increased surface roughening and block-
ing of TrCel7A enzymes. At high α values, this surface roughening process is accelerated
by the increasing numbers of TrCel7A that complex and then decomplex within the interior
of the chain. Both high values of α and high mole fractions of TrCel7B hence accelerate
the surface roughening process and increase “surface-inhibition” of the processing TrCel7A
enzymes. The increased surface blocking of TrCel7A due to TrCel7B addition is shown in a
simulation snapshot in Fig. 4.7.

The increased surface-blocking due to addition of TrCel7B explains why synergy is not
observed for α = 1. The complexation enhancement due to only the increase in the number
of chain ends is insufficient to counterbalance the increased blocking of TrCel7A. Hence,
as seen in Fig. 4.5, the active fractions of TrCel7A in the mixture are not significantly
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Figure 4.7. SLATE simulation snapshot illustrating the increasing surface roughness and
surface blocking of TrCel7A enzymes in the presence of TrCel7B. Half of the microfibril
is shown, with the reducing end on the left hand side. (a) Snapshot from simulation with
12 TrCel7A enzymes only. (b) Snapshot from simulation with 12 TrCel7A enzymes and
6 TrCel7B enzymes. For comparison to (a), only the TrCel7A enzymes on the microfibril
are shown. The blocked TrCel7A enzymes are shown as orange. In (b), a larger fraction
of the microfibril has been converted, due to the complexation enhancement provided by
TrCel7B to TrCel7A. However, the surface is also increasingly rougher, which begins to
inhibit TrCel7A activity and conversion rate as the reaction proceeds. As shown, a larger
fraction of TrCel7A enzymes are blocked in (b). In both (a) and (b), the snapshot is taken
after 24 hours of reaction time.

different from those in its pure environment. When α = 1, the benefit of increased chain end
number is erased by the costs of increased blocking. Only when TrCel7B also enhances the
complexation rate of TrCel7A via surface disruption can the increased blocking be overcome
to yield synergistic behavior.

As the mixture reaction proceeds, we observe in Figs. 4.4 and 4.5 generally that the
activity decreases and blocking increases. In the second time interval (12 – 48 hr), the active
fraction is lower relative to its value in the first interval for all values of α and mixture
compositions. The drop off between time intervals is enhanced at higher values of α and
TrCel7B mole fractions, because these conditions favor increased surface roughening and sur-
face blocking. The drop off in the mixture active fraction between time intervals corresponds
to the drop off in mixture conversion rate relative to the null-synergy rate, as illustrated in
Fig. 4.1a-c. This lower activity leads to the appearance of anti-synergy at longer times for
sufficiently high TrCel7B mole fractions, as illustrated in Figs. 4.1a-c and 4.2c. Under these
conditions, both the high TrCel7B mole fraction and long reaction time contribute towards
magnifying surface inhibition sufficiently to cause the mixture conversion to drop from the
synergistic to anti-synergistic regime.

At high mole fractions of TrCel7B (Fig. 4.5), the active fraction within the second time
interval actually decreases with α. This trend is seemingly counterintuitive, but occurs
when complexation of TrCel7A tends to only lead to a blocked state, without any preceding
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activity. In this case, enhanced complexation acts as a trap that prevents the enzyme from
finding a more productive free end that leads to processive activity. The number of these
“complexation traps” is expected to increase with the mole fraction of TrCel7B, since more
free ends could be created that could act as traps. These complexation traps explain why
the mixture conversions for high TrCel7B mole fractions (Figs. 4.1a-c) and α = 100 actually
drops off below the mixture conversion for α = 1. This drop off corresponds to the seemingly
counterintuitive decrease in active fraction with increasing α within the second time interval,
as observed in Fig. 4.5ab.

At low TrCel7B mole fractions (Fig. 4.5d), the drop off in activity with time is less
dramatic and synergy is maintained at longer times as long as α > 1, as seen in Fig. 4.2c. The
surface-blocked fractions of TrCel7A remain at relatively low values, even when α = 100. At
these lower TrCel7B mole fractions, fewer chain ends are created, which retards the surface
roughening process. As long as α > 1, the number of new chain ends is sufficient to maintain
synergistic conversion (Figs. 4.1d and 4.2c). Here, an optimal balance is struck between
complexation enhancement and increased blocking. As a result, high mixture conversions
can be achieved after 72 hours (Fig. 4.2c).

Our finding that a low TrCel7B mole fraction (< 0.2) is favorable for maximum conversion
(Fig. 4.2) is consistent with the hypothesis by Henrissat et al. [72] that the optimal enzyme
mixture should contain only a small fraction of endoglucanases, which is sufficient just to
enhance complexation by TrCel7A. We find that adding excessive amounts of TrCel7B
depletes the mixture of the more active TrCel7A enzymes and causes them to become surface-
blocked. The conversion maximum favoring low endoglucanase mole fractions (∼ 0.1) is also
seen in experimental results [91,141,142].

4.3.3 Developing a mechanistic picture of endo-exo interaction

We can now outline a comprehensive mechanistic picture of the effects of mixture composi-
tion, TrCel7A complexation enhancement, and reaction time scale on the degree of endo-exo
synergy.

1. Mixture composition: Addition of TrCel7B creates more free ends for TrCel7A
but also increases surface blocking of TrCel7A by inducing surface roughening. The
former effect dominates at early times, while the latter effect dominates as the reaction
proceeds. These competing trends are reflected in Fig. 4.2, where we see a shift in
the synergy vs. mole fraction curve over reaction time. As the reaction proceeds,
the location of maximum synergy shifts toward lower TrCel7B mole fractions, where
surface roughening is less severe. We are unaware of experiments probing the behavior
of the synergy vs. mole fraction curve over time, but our model results presented here
show such measurements could be useful for revealing the underlying kinetic behaviors.

2. TrCel7A complexation enhancement: The ability of TrCel7B to enhance the
complexation rate of TrCel7A with the newly created ends is necessary for synergy to
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occur. The rate enhancement is required to overcome the increased surface blocking
introduced by TrCel7B. Increasing α generally enhances the mixture conversion rate.
In some cases, however, increasing α lowers the active fraction of TrCel7A and con-
version rate. Under these conditions (high TrCel7B mole fraction and later reaction
times), complexation traps emerge, and increasing α induces TrCel7A enzymes to en-
ter these inactive traps, lowering the active state fraction (Figs. 4.5ab). Eventually,
the conversion from α = 100 drops below the conversion from α = 10 and even α = 1
(Fig. 4.1a-c).

3. Reaction time: As the reaction proceeds, synergy gradually decreases due to in-
creased roughening of the surface by the combined actions of TrCel7A and TrCel7B
via the mechanism illustrated in Fig. 4.6. This rougher surface reduces the processiv-
ity of TrCel7A and increases its tendency to become surface-blocked. This emergent
“surface-inhibition” leads to anti-synergy in different ways. When α = 1, the surface
inhibition dominates at all times, leading to anti-synergy for all mixture compositions
(Fig. 4.2). When α > 1, anti-synergy appears at longer times and high TrCel7B mole
fractions. These conditions favor surface roughening and increased surface-blocking of
TrCel7A. Hence, a transition from synergistic to anti-synergistic conversion occurs as
the reaction proceeds (Fig. 4.2).

The effects of mixture composition, TrCel7A complexation enhancement, and reaction
time scale on the degree of endo-exo synergy can be summarized graphically as a decision
tree, shown in Fig. 4.8.

4.3.4 Understanding endo-exo synergy via an endo-exo
productivity map

The productivity map of conversion introduced in Section 3.3.4 for cellulose conversion by
pure TrCel7A can be helpful in understanding the effect of TrCel7B on the activity of
TrCel7A. In Fig. 3.6, the conversion was illustrated to be affected by the complexation and
decomplexation rates. The complexation rate represented the rate for complexation between
TrCel7A and a pre-existing chain end. To understand the behavior of TrCel7A in a mixture
with TrCel7B, we can consider more qualitatively the “complexibility” between TrCel7A
and the surface. This measure is a net complexation rate per TrCel7A enzyme, which is
determined by the number of pre-existing chain ends, the number of newly created chain
ends, and the complexation rates with each type of end. With this measure in mind, we can
represent the effect of TrCel7B on the location of TrCel7A within the productivity map.
Increasing α and/or increasing reaction time leads to increased complexibility.

Similarly, an increase in surface roughness, and hence obstacle density, is mechanistically
analogous to a lowering of the decomplexation rate, since both effects act to increase the
blocking of processing TrCel7A enzymes. Therefore, rather than considering as before the
effect of decomplexation rate on conversion, we consider at a more qualitative level the effect
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Figure 4.8. Decision tree representation of the effects of mixture composition, TrCel7A
complexation enhancement, and reaction time scale on the degree of endo-exo synergy. The
TrCel7B mole fraction is x7B. Null-synergy is indicated as “0”. Anti-synergy and synergy are
indicated as “–” and “+”, respectively, and high anti-synergy and high synergy are indicated
as “– –” and “++”, respectively.

of the “blocking propensity” between TrCel7A and the surface on conversion. This property
measures how likely a complexed TrCel7A would be blocked rather than active. Finally,
instead of conversion, we can consider this new endo-exo productivity map to represent the
mixture conversion rate instead, as the physical trends are still preserved upon this change.
Therefore, we can use the same TrCel7A-only productivity map of Section 3.3.4 to illustrate
the effect of TrCel7B addition on TrCel7A activity.

The addition of TrCel7B can now be represented as a change in the location of TrCel7A
within this endo-exo productivity map. As shown in Fig. 4.9, the effect of TrCel7B on
TrCel7A is to increase the complexibility and blocking propensity over time. For high α, in
the initial stages, the mixture conversion rate is enhanced, as the increase in complexibility
dominates over the increase in blocking. In the later stages, however, although the complex-
ibility continues to increase, the high blocking propensity of the surface begins to dominate
and cause a drop off in the conversion rate. This drop off in mixture conversion rate relative
to the null-synergy rate due to surface roughening and inhibition is seen in Fig. 4.1. For low
α, the complexibility only increases slightly with time and the increase in conversion rate
is hence marginal. Eventually, it begins to decrease due to increased blocking induced by
TrCel7B. The mixture conversion rate hence remains near or below its initial value, and the
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Figure 4.9. Endo-exo productivity map illustrating the qualitative trends of complexibility
and blocking propensity on mixture conversion rate. The red arrows indicate the changes
in mixture conversion rate over time at both high and low α values. Here, Fig. 3.6f from
Section 3.3.4 has been adopted to illustrate these qualitative trends. Therefore, the influ-
ence of TrCel7B on TrCel7A activity can be effectively represented as a modulation of the
complexation and decomplexation rates of TrCel7A.

endo-exo synergy is absent, as illustrated for low α in Fig. 4.2. Therefore, we have illustrated
here that many of the mechanistic trends observed in the endo-exo mixture can be explained
using the principles developed earlier in Chapter 3 for pure TrCel7A kinetics.

4.3.5 Physical significance of α > 1

The requirement for complexation enhancement by TrCel7B to produce synergy arises from
the increased surface blocking of TrCel7A induced by TrCel7B. In particular, when TrCel7B
only creates free chain ends without complexation enhancement of TrCel7A, the surface
blocking of TrCel7A dominates over the increase in chain end number. In this case, the
mixture conversion is anti-synergistic. When TrCel7B, however, can enhance the TrCel7A
complexation rate, the increased surface blocking caused by TrCel7B can be overcome to
produce an endo-exo interaction that is synergistic.

Figs. 4.1 and 4.2 illustrate that for endo-exo synergy to occur, a mere increase in the
number of free chain ends produced by TrCel7B is insufficient. Rather, the complexation
rates of TrCel7A with these newly created chain ends must be enhanced over those with
pre-existing chain ends. Physically, this enhancement arises if TrCel7B is able to disrupt
the surface and loosen hydrogen bonds between glucan chains to make them more suscepti-
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ble toward complexation by TrCel7A. Therefore, these simulations provide evidence for an
”amorphogenic” character of endoglucanases that not only cuts glucan chains, but weakens
the local crystalline cellulose environment as well [163]. The fiber-disrupting behavior of
cellulases has been suggested in experimental studies [92,161–167]. This work represents
one of the first computational studies assessing the effect of surface disruption on cellulose
conversion.

Kinetic models that do not account for surface blocking of TrCel7A have observed syn-
ergy when α = 1 [61,95]. In these models, however, the ability of TrCel7B to promote
surface roughening and surface blocking of TrCel7A is lacking. Hence, these models fail to
uncover that a complexation rate enhancement by TrCel7B is required to produce synergy.
Including spatial constraints in the kinetic model, as done in SLATE, not only uncovers this
requirement, but also provides evidence for the amorphogenic character of endoglucanases.
Therefore, we show that the addition of surface disrupting components to facilitate TrCel7A
complexation is a viable strategy for accelerating cellulose conversion because addition of
these components aims to enhance the complexation process, which is rate-limiting, as dis-
cussed in Section 3.3.1.

4.3.6 In silico protein engineering to enhance endo-exo synergy

Given an enhanced mechanistic understanding of endo-exo interaction, we perform “protein
engineering” experiments on the computer to assess how changes in the kinetic rate constants
of TrCel7A affect enzyme synergy and the mixture conversion. We make two predictions
based on the mechanistic picture described above and confirm them via the SLATE simula-
tions.

First, we predict that synergy will be increased if the intrinsic processivity of TrCel7A is
decreased. The intrinsic processivity is a measure of the processive length in the absence of
any surface obstacles. It is inversely proportional to the decomplexation rate, as explained
further in Section 3.6.4. We expect an increase in synergy to occur from increasing the
TrCel7A decomplexation rate because the enzyme becomes less sensitive to blocking by
uneven surface layers created when TrCel7B is added. At a higher decomplexation rate,
the conversion is more limited by low processivity than excessive blocking, and a processing
enzyme is less likely to encounter an obstacle. If the enzyme does encounter an obstacle,
the rate of escape is high due to its enhanced decomplexation rate. Therefore, the activity
of the less processive enzyme will be less inhibited by the rougher surface, while it will still
retain the benefits of enhanced complexation rate.

In Fig. 4.10, we plot the conversion and synergy at different mixture compositions and
reaction times for a system in which the TrCel7A decomplexation rate is increased to
1.0× 10−1 s−1. In these simulations, α is equal to 10. Compared to the cases where the
decomplexation rate is 1.0× 10−3 s−1 (Fig. 4.2), the degrees of synergy are significantly
higher at all mixture compositions and reaction times. This high synergy occurs because
the low processivity of TrCel7A reduces the sensitivity of the enzyme toward the blocking
promoted by a rougher surface.
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Figure 4.10. Conversion and synergy vs. TrCel7A mole fraction for mixtures of “mutated”
TrCel7A and TrCel7B enzymes, where the TrCel7A decomplexation rate is 1.0× 10−1 s−1.
The blue crosses represent conversion from TrCel7A only. The red crosses represent con-
version from TrCel7B only. The magenta squares represent the sum of conversions from
TrCel7A only and TrCel7B only and is the null-synergy conversion. The green inverted
triangles indicate the actual mixture conversions and synergy at α = 10. Synergy is defined
as the mixture conversion divided by the sum of the individual conversions. The reaction
times (hr) are (a) 12, (b) 24, and (c) 72.

Conversely, synergy should be decreased if the intrinsic processivity of TrCel7A is in-
creased. This is achieved here by decreasing the decomplexation rate to 1.0× 10−5 s−1. In
this case, the enzyme becomes more sensitive to surface obstacles because escape from these
obstacles requires significantly more time. The effect of TrCel7B to increase surface rough-
ness and blocking of TrCel7A dominates over the complexation enhancement it provides for
TrCel7A. Hence, the mixture conversion is more anti-synergistic relative to the behavior at
higher decomplexation rates, as shown in Fig 4.11.

One could ask the question: given a value of α = 10, what is the optimal TrCel7A
decomplexation rate and enzyme mixture composition that yields the highest conversion
after 72 hours? As shown in Figs. 4.2, 4.10, and 4.11, the highest conversions are between 50
– 60%. This level can be achieved at high TrCel7A mole fractions when the decomplexation
rate is 1.0× 10−3 s−1. It can also be achieved for a broader range of TrCel7A mole fractions
when the decomplexation rate is 1.0× 10−1 s−1. At this higher decomplexation rate, a larger
TrCel7B mole fraction can be afforded because sensitivity to surface blocking is minimized.
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Figure 4.11. Conversion and synergy vs. TrCel7A mole fraction for mixtures of “mutated”
TrCel7A and TrCel7B enzymes, where the TrCel7A decomplexation rate is 1.0× 10−5 s−1.
The blue crosses represent conversion from TrCel7A only. The red crosses represent con-
version from TrCel7B only. The magenta squares represent the sum of conversions from
TrCel7A only and TrCel7B only and is the null-synergy conversion. The green inverted
triangles indicate the actual mixture conversions and synergy at α = 10. Synergy is defined
as the mixture conversion divided by the sum of the individual conversions. The reaction
times (hr) are (a) 12, (b) 24, and (c) 72.

Therefore, for the enzyme mixtures investigated here, using a higher decomplexation rate
(or less processive exoglucanase) allows for a wider concentration range of endoglucanases to
be used in the mixture to provide conversions near 50 – 60%. Engineering the exoglucanase
to become less processive in the endo-exo mixture overcomes its sensitivity to blocking and
strengthens its synergistic interaction with endoglucanases over a broader range of mixture
compositions.

4.3.7 Partial endo-activity of TrCel6A is essential for exo-exo
synergy

In this section, synergy between TrCel7A and TrCel6A is investigated. To tease out the
kinetic origins for synergy, we gradually “morph” the TrCel6A enzyme from TrCel7A-like
to TrCel7B-like behavior. We show that synergy only emerges in our model if TrCel6A
possesses sufficient endo-like behavior, as anticipated previously [67,69,132]. The morphing
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Morphing of TrCel6A variant!

TrCel7A! 1! 2! 3! 4! 5!

Complexation site! R! NR! NR + 
interior!

Adsorption (s-1)! 8.9 × 10-4! 8.9 × 10-5!

Desorption (s-1)! 1.0 × 10-3! 1.0 × 10-4!

Hydrolysis (s-1)! 7.1! 14!
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Figure 4.12. Morphing of TrCel6A in different stages from TrCel7A to endo-like behavior.
At each stage, a variant TrCel6A enzyme is simulated along with TrCel7A to determine
the degree of synergy. In Stage 1, only the complexation site for TrCel6A is changed from
the “reducing” to “non-reducing” end. In Stage 2, the adsorption, desorption, and hydrolysis
rates are changed. In Stage 3, the decomplexation rate is increased to reduce the TrCel6A
processivity. In Stage 4, the TrCel6A variant is allowed to complex with and begin hydrolysis
from interior portions of a glucan chain. In Stage 5, the decomplexation rate is further
increased.

process is shown in Fig. 4.12. In Stage 1, the only difference between the two enzyme types
is that TrCel6A complexes with the non-reducing end of a glucan chain and processes in the
opposite direction of TrCel7A. Here, the kinetic rate constants for TrCel6A are the same as
those of TrCel7A, listed in Table 4.1. In Stage 2, the adsorption, desorption, and hydrolysis
rates for TrCel6A enzymes are changed to their reference values, listed in Table 4.1, while
the decomplexation rate is unchanged. In Stage 3, the decomplexation rate for TrCel6A
is increased to its reference value of 1.0 s−1. In Stage 4, the TrCel6A enzymes are allowed
to complex and begin hydrolysis at interior portions of glucan chains, acting as an endo-
processive enzyme. We set β = 1 to allow for this behavior, where the complexation rate
between TrCel6A and interior portions of glucan chains is β × kc,6A. An internal cut by
TrCel6A creates a new free end that can be complexed by TrCel7A, with rate α×kc,7A. We
set α = 10 to model the increased susceptibility of the free ends created by TrCel6A. In Stage
5, we further increase the decomplexation rate 10.0 s−1, which reduces TrCel6A processivity
and allows it to act more as a non-processive TrCel7B enzyme. Hence, in Stages 4 and 5,
the TrCel6A enzyme adopts more endo-like behavior.

At each stage, we perform simulations with enzyme mixtures of TrCel7A and the TrCel6A
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Figure 4.13. Conversion and synergy vs. TrCel7A mole fraction for mixtures of TrCel7A
and TrCel6A enzymes for Stages 1, 2, and 3. The blue crosses represent conversion from
TrCel7A only. The red crosses represent conversion from TrCel6A only. The magenta
squares represent the sum of conversions from TrCel7A only and TrCel6A only and is the
null-synergy conversion. The green inverted triangles indicate the actual mixture conversions
and synergy at α = 10. Synergy is defined as the mixture conversion divided by the sum of
the individual conversions. The reaction time is 24 hours. The stage variants of TrCel6A
are (a) 1, (b) 2, and (c) 3.

stage variant and calculate synergy as a function of mixture composition. In the simulations
performed at each stage, the total enzyme number in the mixture is 18. The numbers of
TrCel7A and TrCel6A enzymes are varied between 0 and 18, while keeping the total enzyme
number constant.

Stages 1–3

Fig. 4.13 plots the conversion and synergy as a function of TrCel7A mole fraction for mixtures
of TrCel7A and different variants of TrCel6A from Stages 1, 2, and 3. The Stage 1 TrCel6A
enzyme is completely identical to the TrCel7A enzyme, except it complexes with the non-
reducing end and processes in the opposite direction. Therefore, to determine the conversion
by the pure TrCel6A in Stage 1, we simply use the conversion from pure TrCel7A, due
to the symmetry of the microfibril and enzyme behaviors. The Stage 1 mixture can be
constructed by taking a selected number of enzymes from a pure TrCel7A system with 18
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enzymes and having them complex and process from the opposite end of the microfibril.
Therefore, comparing conversions from the pure TrCel7A system with the Stage 1 mixture
reveals the effect of changing the chain end specificity and processive direction of a selected
number of enzymes in the mixture.

We see in Fig. 4.13a that the 24-hr mixture conversion is slightly lower than that from
using 18 TrCel7A enzymes and that the exo-exo interaction is anti-synergistic. This behavior
also holds at earlier (6 hrs) and later times (72 hrs). The lower conversion arises because
a TrCel7A enzyme blocked at the microfibril edge prevents other TrCel6A enzymes from
complexing with free ends at that edge, and vice versa. Although the presence of enzymes
processing in opposite directions could promote further blocking, this limitation would only
occur under high complexation rate conditions. For the low complexation rates used here
(See Table 4.1), the existence of more than one enzyme processing along a microfibril face
is extremely rare.

In Stage 2, the adsorption, desorption, and hydrolysis rate constants of TrCel6A are
changed to their reference values listed in Table 4.1. We first examine the effect of changing
these rates on the activity of TrCel6A alone. Changing the hydrolysis rate from 7.1 s−1 to
14 s−1 does not affect conversion, since the hydrolysis rates are already high. The decrease in
conversion relative to Stage 1, as illustrated in Fig. 4.13, arises from the less reversible binding
of TrCel6A. Since diffusion along the microfibril is single-file, enzymes cannot pass over one
another by diffusion and may require desorption and re-adsorption to find a complexation
site. Lowering the desorption rate would hence retard this process. As seen in Fig. 4.13b,
using the Stage 2 TrCel6A enzyme in a mixture only gives rise to anti-synergy, much like
the case for Stage 1.

In Stage 3, the decomplexation rate of TrCel6A is changed to its reference value of 1.0 s−1,
listed in Table 4.1. At this higher decomplexation rate, the conversion from pure TrCel6A
is nearly zero due to the low processivity of the enzyme, shown in Fig. 4.13c. Since TrCel6A
has such low activity in this case, the resulting mixture conversion vs. TrCel7A mole fraction
curve acts as if the TrCel6A is absent, and synergy does not emerge.

Physically, the high decomplexation rate emerges from the flexible tunnel-forming loops
of TrCel6A that can occasionally open to form a cleft-like topology [41,59,68], resembling
more the active site geometries of endoglucanases. Therefore, the ability of TrCel6A to
complex with interior portions of glucan chains should be incorporated upon increasing its
decomplexation rate. This ability is adopted in Stage 4. The rate of TrCel6A complexation
with the interior regions is β×kc,6A, where we set β = 1. In Fig. 4.14, we show the dependence
of mixture conversion and synergy on mixture composition at 6 and 24 hours.

We see that by allowing TrCel6A to create interior cuts, synergy with TrCel7A is achieved
at early times when the TrCel6A mole fraction is low. Under these conditions, the com-
plexation enhancement afforded to TrCel7A outweighs the increase in surface-blocking of
TrCel7A. When these conditions are not met, however, synergy disappears due to the in-
creasing surface inhibition of TrCel7A, as discussed in Section 4.3.2. As shown in Fig. 4.14b,
however, the absence of synergy does not imply the lack of an optimal mixture composition
that gives maximum conversion. For this system, the optimum TrCel7A mole fraction is
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Figure 4.14. Conversion and synergy vs. TrCel7A mole fraction for mixtures of TrCel7A
and TrCel6A enzymes for Stage 4. The blue crosses represent conversion from TrCel7A only.
The red crosses represent conversion from TrCel6A only. The magenta squares represent the
sum of conversions from TrCel7A only and TrCel6A only and is the null-synergy conversion.
The green inverted triangles indicate the actual mixture conversions and synergy at α = 10.
Synergy is defined as the mixture conversion divided by the sum of the individual conversions.
The reaction times (hr) are (a) 6 and (b) 24.

around 0.8.
In Stage 5, we further “engineer” the TrCel6A to behave more like TrCel7B by increas-

ing the TrCel6A decomplexation rate to 10.0 s−1. At this higher decomplexation rate, the
enzyme on average will perform about one cut before decomplexing, acting as if it were
a non-processive TrCel7B. Comparing Fig. 4.15 with Fig. 4.14, we see that lowering the
TrCel6A processivity further enhances the synergy. This synergy enhancement, however,
largely arises due to the decrease in conversion from pure TrCel6A, as the mixture con-
version also generally decreases after lowering the processivity. Therefore, the existence of
high synergy does not always indicate high mixture conversion, because its calculation also
considers the base line conversions from the pure components.

Comparing the 24-hr mixture conversions from all 5 stages illustrated in Figs. 4.13–4.15,
we see that the highest conversion exists in Stage 4. Relative to the other stages, the Stage 4
TrCel6A enzyme plays a multitude of roles to accelerate conversion. First, unlike the Stage
1–3 enzymes, it is able to complex with interior portions of glucan chains. Second, unlike the
Stage 5 enzyme, it can perform processive hydrolysis. Finally, since α = 10, it enhances the
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Figure 4.15. Conversion and synergy vs. TrCel7A mole fraction for mixtures of TrCel7A
and TrCel6A enzymes for Stage 5. The blue crosses represent conversion from TrCel7A only.
The red crosses represent conversion from TrCel6A only. The magenta squares represent the
sum of conversions from TrCel7A only and TrCel6A only and is the null-synergy conversion.
The green inverted triangles indicate the actual mixture conversions and synergy at α = 10.
Synergy is defined as the mixture conversion divided by the sum of the individual conversions.
The reaction times (hr) are (a) 6 and (b) 24.

complexation of TrCel7A by creating free chain ends and locally disrupting the crystalline
structure. This latter effect represents the cooperative interaction between TrCel6A and
TrCel7A. Notably, the mixture behavior in Stage 4 is actually anti-synergistic over a wide
range of TrCel7A mole fractions. However, due to the leveling-off, or concave shape of
the pure TrCel6A conversion curve, an optimal mixture composition exists even though the
mixture conversion is anti-synergistic. This example highlights that the traditional definition
of synergy can in some cases be misleading and fail to capture underlying cooperative enzyme
interactions that give rise to an optimal mixture composition for highest conversion.

4.4 Discussion
We have developed a kinetic Monte Carlo model to simulate the reaction kinetics of individ-
ual cellulases on a cellulose microfibril. This kinetic model is the first model to incorporate
spatial constraints, complexation-exchange kinetics, and enzyme processivity into the reac-
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tion network. Using this Stochastic LATtice Enzyme (SLATE) model, we have elucidated
the molecular-scale kinetic mechanisms that govern enzyme synergy. We delineate the condi-
tions under which endo-exo interactions are not only cooperative, but also anti-cooperative.
We find in general that addition of TrCel7B to the reaction system introduces two effects: (1)
complexation enhancement for TrCel7A and (2) increased surface roughness and subsequent
blocking of TrCel7A. The relative magnitudes of these two factors depend on the mixture
composition, TrCel7A complexation enhancement, and reaction time scale. The balance be-
tween complexation enhancement and surface blocking determines if the enzyme mixture acts
synergistically. Remarkably, the general theme that complexation rate and blocking control
reaction rate, emergent from our investigations of pure TrCel7A exoglucanase systems, also
holds for enzyme mixtures.

By explicitly incorporating spatial constraints on the enzyme mixture behavior, we ex-
tend and refine current mechanistic theories for cellulase synergy. The most widely accepted
explanation for endo-exo synergy is that the creation of more free chain ends by endoglu-
canases enhances the complexation of exoglucanases [135]. Our simulations, however, show
that an increase in only the number of free chain ends is insufficient for synergy to occur.
In particular, when TrCel7B only creates free chain ends without enhancing the TrCel7A
complexation rate with each of these endo-created chain ends, the mixture conversion is
anti-synergistic. This occurs because the combined actions of TrCel7B and TrCel7A in-
crease the roughness of the microfibril surface, which in turns leads to surface blocking of
processing TrCel7A enzymes. Without complexation rate enhancement, the surface block-
ing of TrCel7A dominates over the increase in chain end number. When TrCel7B, however,
can enhance the TrCel7A complexation rate with the endo-created chain ends, the increased
surface blocking of TrCel7A can be overcome to produce a synergistic endo-exo interaction.

The major outcomes of this work are the identification of anti-synergistic factors that
impede cellulose decomposition by cellulase mixtures and the requirement for complexa-
tion rate enhancement for synergistic conversion. These findings are uncovered because our
SLATE model explicitly accounts for the complexation step and resolves the reactant con-
figurations in three dimensions. A previous spatial kinetic model found that a complexation
rate enhancement was not required to give rise to synergy [95]. However, in this model, the
complexation step was not resolved explicitly, but lumped with adsorption and diffusion.
In addition, the model was two-dimensional, and as such, surface-blocking of processing en-
zymes was not captured. Incorporation of an explicit slow complexation step and spatial
constraints on processivity would likely eliminate the observed synergy in this model and
require complexation rate enhancement to recover synergistic conversions. Classical mass-
action models [60,61,131,147,150], which assume a dilute, well-mixed environment, also lack
the capability to uncover the underlying anti-synergistic interactions that arise from spa-
tial constraints on the reaction rate. In one study [61], the authors observed anti-synergy
in their model under low surface area conditions and suggested it was due to competitive
adsorption between endo- and exoglucanases, which decreased the endoglucanase ability to
create new free ends. Although such an explanation for anti-synergy cannot be ruled out, the
effect of complexation rate enhancement on recovering enzyme synergy was not explored. In
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addition, surface-blocking of processive exoglucanases was also not captured, which would
decrease the degree of synergy.

In addition to resolving the effects of spatial confinement, our work also represents one of
the first computational studies assessing the effect of surface disruption and substrate mor-
phology on cellulose conversion. Physically, the complexation rate of TrCel7A with endo-
created chain ends is enhanced if TrCel7B is able to disrupt and loosen hydrogen bonds
between glucan chains on the surface, which makes them more susceptible toward complexa-
tion by TrCel7A. Therefore, our SLATE simulations provide evidence for an “amorphogenic”
character of endoglucanases, which refers to their ability to not only create internal glucan
chain cuts, but also weaken the local crystallinity and hydrogen bond structure of the surface
as well [163]. The fiber-disrupting behavior of cellulases has been suggested in experimental
studies [92,161–167]. Using these insights from the SLATE simulations, we show that the
addition of surface disrupting components to facilitate TrCel7A complexation is a viable
strategy for accelerating cellulose conversion. Addition of these “amorphogenic” components
is advantageous because it enhances the rate of the slow complexation process.

The surface blocking induced by TrCel7B in our simulations could explain two general
experimental trends regarding cellulase synergy. First, the optimal enzyme mixtures in many
studies contain only a small fraction of endoglucanase [72,91,141,142]. In our simulations,
we find that using high TrCel7B mole reactions is unfavorable because it leads to a rough
surface that blocks the processive hydrolysis by TrCel7A. Surface-blocking of TrCel7A can
only be avoided by keeping the amount of TrCel7B low (Fig. 4.4). Second, the decrease in
synergy with reaction time (Fig. 4.2), as observed experimentally [65,80,86,91,137,141–143]
could be due to increased surface-blocking. Previously, this decrease has been attributed
to loss of reactive sites for endoglucanases over time as the cellulase surface becomes more
recalcitrant [141,142]. We show an additional mechanism could be at play. The decrease in
synergy could originate from a growing fraction of TrCel7A that remain blocked at uneven
surface layers, illustrated in Fig. 4.7. The prevalent of surface-blocking, found here, which is
an example of spatial confinement, also emphasizes the importance of spatial resolution in
kinetic models to describe interfacial biocatalysis.

The increased surface blocking of TrCel7A introduced by TrCel7B is seemingly at odds
with an auxiliary “obstacle-based” theory for endo-exo synergy [86,96,137,138]. In this the-
ory, endoglucanases preferentially attack amorphous regions of cellulose, which can act as
surface obstacles for processing exoglucanase enzymes. In this way, endoglucanases act to
smoothen the surface rather than to roughen it. Processing exoglucanases therefore experi-
ence a decrease in surface blocking rather than an increase. In one experimental study [96],
the processive length of an exoglucanase was found to increase in the presence of an endoglu-
canase, providing support for the reduced blocking of exoglucanases.

However, the assumption of endoglucanase specificity for amorphous cellulose regions
must be treated with care. First, the observed high rate of sugar release from endoglucanase
action on amorphous substrates does not mean that endoglucanases cannot adsorb or com-
plex with more crystalline regions on cellulose. The higher rate of sugar release could be
due in part to the fact that short isolated glucan chains on the surface are more likely to be
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released faster from an amorphous surface. These isolated chains could still be created by
endoglucanases on crystalline surfaces but remain attached and experimentally undetected
. Further, both exo- and endoglucanases from Trichoderma reesei contain family 1 carbo-
hydrate binding domains, which display affinity for crystalline cellulose [168]. Therefore,
endoglucanases likely do not solely adsorb onto amorphous cellulose regions. Clearly, a key
outstanding question is the degree of specificity for endoglucanase activity on amorphous
cellulose, which would further elucidate the validity of the auxiliary “obstacle-based” theory
for endo-exo synergy.

For exo-exo synergy, our simulations show that a necessary requirement is an endo-
like behavior for one of the exoglucanase enzymes [67,69,132]. We show that synergy does
not emerge solely from having two types of enzymes with opposing chain end specificities.
Therefore, our results do not support the mechanism by which synergy emerges from each
type of enzyme clearing out isolated surface chains left by the other type [82]. Effectively,
we find that exo-exo synergy essentially follows the mechanism of endo-exo synergy.

Endo-endo synergy [141,169–171] could also be explained in light of our findings. It could
emerge if at least one of the endoglucanases displays some exo-like behavior, namely, that it
can occasionally prefer to complex with free chain ends. For example, a mixture with a pure
endoglucanase and a partial exo-like endoglucanase could display synergy in the following
way. The pure endoglucanase can cut a bond in the interior glucan chain, thus creating
two new free ends. The exo-like endoglucanase can now complex with interior glucan chain
regions or with one of the new free ends. Therefore, synergy would manifest itself in this
endo-endo mixture effectively as an endo-exo mechanism.

The possibility for shared mechanisms for endo-exo, exo-exo, and endo-exo synergy raises
the question if such strict traditional classifications of cellulase synergy are useful for describ-
ing the underlying kinetic behaviors. In general, the division of cellulases into either endo- or
exoglucanases is likely too severe, as each enzyme likely falls within a continuum of behav-
iors ranging from pure endo- to pure exoglucanase activity [46,67]. Further understanding
of synergy likely requires consideration of the dual behaviors that some cellulases may ex-
hibit and replacing the traditional synergy classifications with those more descriptive of the
kinetic interactions among enzymes.

In this work, we show via spatially-resolved kinetic simulations that a more complete
understanding of cellulase synergy requires consideration of both the synergistic and anti-
synergistic interactions among enzymes. The balance between complexation rate enhance-
ment and increased surface blocking of TrCel7A determines the degree of synergy. These
interactions, as we have shown, are largely surface-mediated and require spatial resolution of
the reaction system at the molecular scale in order to identify. Understanding the interplay
between these factors enables a more rational approach toward designing optimal cellulase
mixtures for accelerated cellulose conversion.
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4.5 Supplementary information

4.5.1 Relation between active state fraction, conversion rate, and
synergy

We will show here the relation between the fraction of active enzymes and the mixture
conversion rate for an endo-exo mixture of TrCel7A and TrCel7B. This follows from the
first-order rate law for conversion,

dNCB

dt
= kh,7Ax7AN7A + kh,7Bx7B,1N7B + 2kh,7Bx7B,2N7B. (4.1)

In Eq. 4.1, NCB is the number of cellobiose monomers produced, kh,i is the hydrolysis rate
constant, xi is the active state fraction, and Ni is the total number of enzymes of type i,
where i is either 7A and 7B. Two active state fractions exist for TrCel7B because an endo-cut
can create one or two cellobiose residues on the surface, which are assumed to be released
quickly into solution.

In the analysis of enzyme states, we have focused only on the effect of TrCel7B addition
on TrCel7A, but not the reverse. However, we find that the effect of TrCel7A on TrCel7B
only causes a minimal change in the TrCel7B state fractions, since these endoglucanases are
not processive and their activity is less sensitive to the presence of surface obstacles that
appear once TrCel7A is added. Therefore, an analysis of only the changes in the TrCel7A
state fractions between its pure and mixture environments is sufficient for analyzing synergy.

If both TrCel7A and TrCel7B were acting independently (null-synergy case), the ex-
pected conversion would be,

dN0
CB

dt
= kh,7Ax

0
7AN7A + kh,7Bx

0
7B,1N7B + 2kh,7Bx

0
7B,2N7B. (4.2)

N0
CB denotes the expected cellobiose number if null-synergy were to occur, and x0

i denotes
the active fractions resulting from enzymes acting in their pure environments.

Since the quantities x7B,1 − x0
7B,1 and x7B,2 − x0

7B,2 are relatively low, the actual mixture
rate is likely to be higher than the summed rate if x7A−x0

7A. Therefore, the quantity x7A−x0
7A

is a reliable reporter for the existence of synergy. This means that synergy typically occurs if
the active fraction of TrCel7A is enhanced by the presence of TrCel7B. Specifically, synergy
at time t is maintained as long as the active fraction x7A averaged up to time t is higher than
the fraction x0

7A averaged up to time t. Analysis of the changes in the active and inactive
TrCel7A state fractions upon TrCel7B addition therefore isolates and reveals the individual
driving forces for synergy and anti-synergy.
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Part II

Fluctuating Hydrodynamics for
Multiscale Modeling
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Chapter 5

Bridging Fluctuating Hydrodynamics
and Molecular Dynamics Simulations

Part II of this dissertation will present the development of hydrodynamic field models using
information obtained from all-atom molecular dynamics (MD) simulations. The presented
framework provides a practical bridge between atomistic and continuum descriptions of a
fluid, and hence provides methods that could facilitate multiscale approaches toward mod-
eling complex fluid systems. In this work, a fluctuating hydrodynamics (FHD) simulation
model is developed for fluids from their all-atom models. An accurate passing of information
to a more macroscopic scale will enable larger length- and time-scales to be accessed via
simulation, while maintaining physical fidelity with properties of the molecular system.

Our multiscale approach is unique because we coarse-grain a particle representation of
a fluid into a hydrodynamic field representation. This partice-to-field approach is advanta-
geous over traditional particle-to-particle approaches for several reasons. First, the physical
interpretation of the hydrodynamic model is clearer, because the dynamical variables are the
mass, momentum, and energy densities commonly used to describe a fluid at the macroscopic
level. Therefore, the transition from Newtonian mechanics used to describe molecular dy-
namics to continuum mechanics used to describe fluid dynamics is naturally followed by the
coarse-graining method. In contrast, the “collective beads” in coarse-grain particle models
are difficult to interpret in a physical context, especially if they represent the solvent. For
example, one cannot easily trace the positions of a solvent bead from an atomistic trajec-
tory of solvent molecules, and therefore, it becomes unclear to what extent these particles
faithfully represent the atomistic fluid. Second, the hydrodynamical relaxation within the
atomistic system can be captured by the hydrodynamic model by specifying the fluid trans-
port coefficients, which are well-measured by experiments. In coarse particle models, these
dynamics are governed by friction coefficients of a Langevin equation, which are not easily
extracted from knowledge of the atomistic forcefield and do not have simple relations to the
fluid transport coefficients.

In addition to this dissertation, the work presented in Part II is also discussed in the
following publications.
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• Chapter 5: Shang, B. Z., Voulgarakis, N. K. & Chu, J. W. Fluctuating hydrodynamics
for multiscale modeling and simulation: energy and heat transfer in molecular fluids.
J. Chem. Phys. 137, 044117 (2012).

• Chapter 6: Shang, B. Z., Voulgarakis, N. K. & Chu, J. W. Fluctuating hydrody-
namics for multiscale simulation of inhomogeneous fluids: mapping all-atom molecular
dynamics to capillary waves. J. Chem. Phys. 135, 044111 (2011).

The goals and objectives of Part II of this dissertation are:

1. Develop a mapping protocol to coarse-grain atomistic degrees of freedom into fluctu-
ating hydrodynamic fields.

2. Determine and achieve metrics that establish thermophysical consistency between
atomistic and hydrodynamic models.

3. Construct an interfacial fluctuating hydrodynamic model for water to study the cou-
pling between thermal fluctuations and phase equilibrium in biophysical processes.

In Chapter 5, a general scheme is developed to construct a coarse-grained (CG) fluctuat-
ing hydrodynamic (FHD) field model from all-atom molecular dynamics (MD) simulations
for a homogeneous fluid. The FHD model preserves the thermophysical properties of the all-
atom model by reproducing the fluctuation and relaxation behavior of the atomistic density
fields. We illustrate that fluctuating hydrodynamics simulations can be used to capture the
thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including
those associated with energy and heat transfer.

Using all-atom molecular dynamics trajectories as the reference data, the atomistic co-
ordinates of each snapshot are mapped onto mass, momentum, and energy density fields
on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale
associated with finite molecule size is explicitly imposed during this coarse-graining by re-
quiring that the variances of density fields scale inversely with the grid volume. From the
fluctuations of field variables, the response functions and transport coefficients encoded in
the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD
simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantita-
tively match with those observed in the reference all-atom MD trajectory, hence establishing
compatibility between the atomistic and field representations. We also show that inclusion
of energy transfer in the FHD equations can more accurately capture the thermodynamic
and hydrodynamic responses of molecular fluids. The results indicate that the proposed
MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust
framework for coarse-graining the solution phase of complex molecular systems.

Chapter 5 is reprinted with permission from Shang, B. Z., Voulgarakis, N. K. & Chu,
J. W. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat
transfer in molecular fluids. J. Chem. Phys. 137, 044117 (2012). Copyright 2012, American
Institute of Physics.
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5.1 Motivation
Hydrodynamic fluctuations are important forces in affecting molecular transport at the
nanometer to micrometer scales [172]. Self-assembly [173], mixing [174,175], capillary dy-
namics [176–178], and molecular motor actions [179] are only several examples that are of
fundamental as well as technological importance [180]. A key signature at small length
scales is the significant influence of thermal energy. To capture hydrodynamics and thermal
fluctuations under the same footing, a powerful theoretical framework is fluctuating hydrody-
namics (FHD) [172,181,182]. The FHD equations are stochastic partial differential equations
that introduce stochastic fluxes into the conservation equations of momentum and energy
transport to represent thermal noise. The magnitude of fluctuations depends on the grid
size used to spatially discretize the system [172,182]. In the limit of large (>µm3) volumes
of grid cells, the deterministic conservation equations are recovered. In addition to solving
the FHD equations directly in the Eulerian frame, the FHD equations have also been casted
into different forms for developing mesoscale simulation methods such as the fluctuating
Lattice-Boltzmann [183] technique and smoothed dissipative particle dynamics [184].

The explicit incorporation of thermal fluctuations into the conservation laws of con-
tinuum mechanics makes FHD an ideal framework for mesoscopic simulation. Indeed, some
examples where FHD simulations have been applied include the modeling of Rayleigh-Taylor
instability [174], diffusive mixing of miscible fluids [175], breakup of nanojets [176], capillary
wave phenomena [177,178], droplet spreading [185], and dynamics of nanoparticles [186–188]
and polymers [189,190]. Numerical techniques for simulating the FHD equations are also
being developed [191–195] and assessed [192,196]. However, the potential for using FHD as
a framework to coarse-grain (CG) atomistic systems has been less explored. A key issue
is whether consistency between FHD and all-atom molecular dynamics (MD) can be estab-
lished. Specific concerns include whether a small length-scale (0.5− 1 nm) of discretization
is physically appropriate for solving the FHD equations in order to match with the all-atom
MD model and if the observables from FHD and MD simulations can be bridged to estab-
lish consistency in thermodynamic and hydrodynamic responses at different scales. These
questions must be addressed before FHD can be applied as a framework of CG modeling for
molecular fluids at the nanoscale.

To extend the accessible length- and time-scales of molecular simulation, an obvious
strategy is to reduce the degrees of freedom in the model by coarse-graining [197]. Since the
solvent part often constitutes the majority of computational cost in molecular simulation,
especially for all-atom MD, proper coarse-graining of the solvent is critical for successful
modeling and simulation at the mesoscopic scale. Ideally, a coarse-graining method should
be simple and be able to retain the essential physics for predicting the behaviors of the sys-
tem of interest. In the category of explicit-solvent modeling, the most common approach is
to group one or more solvent molecules together into a bead [198]. An immediate difficulty
of such particle-to-particle coarse-graining is that it is very difficult to control bulk and in-
terfacial properties separately through the pair potentials between particles [198,201]. Using
a field-theoretic framework to coarse-grain the solution phase, on the other hand, not only
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removes the computational cost of tracking the positions and neighbor list of the solvent
beads but also allows interfacial properties to be tuned separately from the bulk equation
of state [178]. Furthermore, for particle-based coarse-graining, connection to experimental
transport coefficients such as viscosity is only implicit through the interaction potentials and
friction coefficients in the equations of motion [198,199,202]. In field-theoretic coarse-graining
using the FHD framework, on the other hand, the system dynamics are explicitly controlled
by the equations of state and transport coefficients of the fluid, making the connection to
experimental dynamics explicit [172,181,182].

Utilizing FHD as a framework of multiscale modeling is also advantageous in connecting
the CG model with the atomistic-scale simulation. It has been shown that an all-atom MD
trajectory can be mapped onto hydrodynamic fields of mass and momentum to establish
common observables between MD and FHD simulations [195]. By matching the statistics
of common observables, the FHD model can be parameterized to be consistent with the
finer resolution all-atom model [178,195,203,204]. A key finding is that for such consistency
to hold at the sub-nanometer length-scale, the finite sizes of atoms or molecules need to
be explicitly considered in mapping the atomistic configurations and velocities onto field
variables [178,195,203,204]. This consideration is necessary to ensure that thermodynamic
and hydrodynamic responses of the fluid are preserved at the coarser scale.

In regards to performing FHD simulations, it has been established that a staggered finite
volume scheme allows the FHD equations to be solved with high accuracy in satisfying
the fluctuation-dissipation theorem at 300K even if the grid size is as small as 5Å [195].
The combination of mapping all-atom MD onto fields and constructing a corresponding
FHD model has been applied to investigate the viscoelastic response of molecular fluids at
nanoscales [203,204], but not yet to (1) the responses of energy and heat transfer [205], and
(2) the interfacial properties that enable a fluid to phase separate and form interfaces [178].
The first of these two areas is investigated in this Chapter while the latter is explored in
Chapter 6.

This Chapter aims to establish the applicability of FHD for coarse-graining the transport
of energy via thermal fluctuations in all-atom MD simulations by generalizing the framework
developed by Voulgarakis & Chu [195]. In particular, we couple the stochastic energy bal-
ance [172] with the equations of mass and momentum conservation according to FHD and
identify the proper molecular length scales for coarse-graining all-atom MD onto the FHD
model to capture the behaviors of energy and heat transfer.

In short, the atomistic coordinates, velocities, and internal energies calculated in MD
simulations are mapped onto hydrodynamic variables on grid cells of nanometer scale. The
finite size of an atom or molecule is explicitly considered during mapping, and is identified
based on the criterion that density fluctuations within a grid cell should scale inversely
with grid cell volume [182,195]. We illustrate that the fluid properties of argon and water
extracted from this MD-to-FHD mapping are in quantitative agreement with the values
determined from conventional methods that are mapping-free. Therefore, the results of this
work establish that even at the sub-nanometer length-scale of grid cells, FHD can capture the
thermodynamic and hydrodynamic responses of all-atom MD, establishing the applicability
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of FHD as a framework for multiscale modeling of systems that involve energy and heat
transfer (EHT) of molecular fluids. Furthermore, we show that including EHT in the FHD
equations more accurately captures the hydrodynamic responses encoded in all-atom MD
simulations. We also investigate the effects of the non-linear terms in FHD equations on the
thermodynamic and hydrodynamic responses of molecular fluids.

The rest of this Chapter is organized as follows. In Section 5.2, we provide the background
on the FHD equations with EHT. In Section 5.3, we describe the methods used to calculate
fluid properties from the statistics of field variables. In Section 5.4, we describe the mapping
procedure to convert atomistic coordinates into hydrodynamic fields and the calculations of
fluid properties from the field representation of an all-atom MD trajectory. In Section 5.5,
we simulate the FHD model, using parameters obtained from MD, and demonstrate that
hydrodynamic fluctuations in the FHD model are consistent with those of MD. In Section 5.6,
we summarize the results of this work.

5.2 Fluctuating hydrodynamics with energy and heat
transfer

5.2.1 Governing equations

The equations of fluctuating hydrodynamics (FHD) incorporate thermal fluctuations into
fluid flow by modeling the time evolution of mass, momentum, and energy density fields via
Langevin-type dynamics [172,181,182,192]. The governing equations for mass, momentum,
and energy transfer are, respectively:

∂

∂t
ρ =−∇ · (ρv), (5.1)

∂

∂t
ρv =−∇ · (ρv ⊗ v) +∇ · (P)−∇ · (Π + δΠ), (5.2)

∂

∂t
ρe =−∇ · (ρev) +∇ · (P · v)−∇ · (Π + δΠ) · v −∇ · (q + δq). (5.3)

The field variables include the mass density ρ, momentum density ρv, total energy density
e, and streaming velocity v. The reversible (pressure), dissipative, and fluctuating stress
tensors are P, Π, and δΠ, respectively. For homogeneous fluids considered in this work,
the pressure tensor is isotropic, P = −pI, where p is the thermodynamic pressure, and I is
the unit tensor. The dissipative and fluctuating heat fluxes are q and δq, respectively. The
dissipative stress is assumed to be Newtonian,

Π = −ηS
(
∇v +∇vT)− (ηB −

2

3
ηS

)
(∇ · v)I. (5.4)

where ηS is the shear viscosity and ηB is the bulk viscosity. The dissipative heat flux is
modeled by Fourier’s Law to represent conductive heat transfer with thermal conductivity
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λ,
q = −λ∇T. (5.5)

The fluctuating forces in momentum and energy transfer are described as Gaussian
white noise with zero mean and covariance according to the fluctuation-dissipation theo-
rem [172,181,182],

〈δΠij(r, t)δΠkl(r
′, t′)〉 = 2kBT0

[
ηS(δilδjk + δikδjl) +

(
ηB −

2

3
ηS

)
δijδkl

]
δ(r − r′)δ(t− t′)

(5.6)
〈δqi(r, t)δqj(r′, t′)〉 = 2λkBT

2
0 δijδ(r − r′)δ(t− t′) (5.7)

In a numerical simulation, these stochastic fluxes are discretized in both space and time and
therefore, care must be taken to scale the covariances among the discretized stochastic fluxes
to preserve the time-dependent probability distribution of the field variables implied by the
original partial differential equations. Because the resulting field variables are calculated
as sums and differences of these discretized fluxes, their covariances are scaled by the grid
volume VG and time step ∆t as [192],〈

δΠij

(
n, t̂
)
δΠkl

(
n′, t̂′

)〉
∼ 2kBT0/(VG∆t), (5.8)〈

δqi
(
n, t̂
)
δqj

(
n′, t̂′

)〉
∼ 2λkBT

2
0 /(VG∆t). (5.9)

The grid index is n and time index is t̂. The magnitude of the stochastic fluxes is governed
by the equilibrium temperature T0. The dissipative and fluctuating forces represent the
effective contribution from the microscopic degrees of freedom that have been coarse-grained
away.

In this work, we consider liquids with fluctuations close to equilibrium and employ a
linear equation of state [182,195],

p(ρ, T ) =
1

ρ0κT
ρ+

αP
κT
T. (5.10)

This approximation will be verified in Section 5.5, since the fluctuations calculated from
all-atom MD are essentially Gaussian. To close the system of equations, the energy balance
is now written in terms of the temperature T as [172],

∂

∂t
ρcV T = −∇ · (ρcV Tv)− TαP

κT
∇ · v −∇ · (q + δq). (5.11)

The constant volume specific heat is cV , the thermal expansivity is αP , and the isothermal
compressibility is κT . The temperature equation follows from the differential relation between
the specific internal energy, temperature, and mass density.

This work generalizes the model presented by Voulgarakis & Chu [195] by incorporating
energy and heat transfer (EHT) into the FHD equations. The FHD model with EHT is a
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more complete coarse-grained (CG) representation of the atomistic system because energy
is constantly being exchanged at nanometer scales due to spontaneous fluctuations, even in
systems at equilibrium. Therefore, the temperature degree of freedom is explicitly considered
here. The additional parameters introduced by incorporating EHT into the FHD equations
are the specific heat cV , thermal expansivity αP , and thermal conductivity λ.

5.2.2 Linearized FHD model

In this section, the linearized FHD equations are introduced [172,181,182,206,207], which will
be later used to assist in parameterizing the full non-linear FHD model from MD simulations.
The linear equations allow analytic expressions to be derived that relate response functions
and transport coefficients to the fluctuations and time correlation functions of the hydrody-
namic field variables. Therefore, the fluid properties of an atomistic model can be estimated
by fitting the MD data to these analytical expressions as the starting point; the details of
model parameterization will be discussed in Section 5.3. The linearized FHD equations are:

∂

∂t
δρ = −ρ0∇ · δv, (5.12)

ρ0
∂

∂t
δv = −∇δp+ ηS∇2δv +

(
ηB +

1

3
ηS

)
∇(∇ · δv)−∇ · δΠ, (5.13)

ρ0cV
∂

∂t
δT = −T0αP

κT
∇ · δv + λ∇2δT −∇ · δq. (5.14)

The fluctuations of field variables are δφ = φ − φ0, where φ = {ρ,v, T}, and φ0 is the
equilibrium average. The fluctuation of the local pressure δp is related to the density and
temperature fluctuations by [172,206],

δp =
1

ρ0κT
δρ+

αP
κT
δT. (5.15)

5.3 Calculation of fluid properties
To obtain parameters for the FHD equations, the response functions (κT , cV , αP ) and trans-
port coefficients (ηS, ηB, λ) are calculated from an all-atom MD trajectory by mapping
atomistic coordinates onto density fields with explicit consideration of the finite sizes of
atoms or molecules. The values of these fluid properties are compared with those obtained
via mapping-free methods to assess the accuracy of the mapping procedure. Using the calcu-
lated fluid properties in an FHD simulation, we show later in Section 5.4 that the resulting
fluctuations and relaxation of field variables quantitatively match with those observed in the
reference all-atom MD trajectory, thereby establishing compatibility between FHD and MD
models.
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5.3.1 Response functions

With the MD-to-FHD mapping

To map atomistic coordinates onto density fields, the MD simulation box is discretized into
cubic grids, and the atomistic coordinates in each snapshot in the MD trajectory are then
used to calculate the mass and internal energy density of each grid. Details of this mapping
will be described in Section 5.4. The all-atom MD trajectory is thus transformed into a
field trajectory. Since each grid cell can be viewed as an open system that contains a grand
canonical ensemble of microstates, response functions can be determined from the density
fluctuations within each grid [208,209]. The isothermal compressibility is

κT =

〈
(δρ)2〉

µV T
VG

ρ2kBT
, (5.16)

the specific heat is

cV =
VG

ρkBT 2

(〈
(δu)2〉

µV T
−
〈δuδρ〉2µV T〈
(δρ)2〉

µV T

)
, (5.17)

and the thermal expansivity is

αP =
κT
T

(P + ε)−
〈δεδρ〉µV TVG

ρkBT 2
. (5.18)

In the above, u is the internal energy density, P is the pressure, and ε is the potential energy
density. Thermal averages are taken over the grand canonical ensemble µV T distribution.
Eqs. 5.16 and 5.17 also follow from the Gaussian stationary distribution satisfied by the lin-
earized FHD equations [172,207,210]. The derivation of isothermal compressibility relation is
commonly found in textbooks [211], but the derivations for the latter two response functions
are less well-known. As a reference, their derivations are provided in Section 5.7.

Without the MD-to-FHD mapping

To assess the results obtained via mapping to grid cells, response functions are also computed
using an alternate method that does not involve mapping. In particular, all-atom MD
simulations of a molecular system are performed under both NVT and NPT conditions, and
appropriate formulas [208] are used to determine the response functions. In particular, the
compressibility can be calculated as

κT =

〈
(δV )2〉

NPT

V kBT
, (5.19)

the specific heat can be calculated as

cV =

〈
(δU)2〉

NV T

ρV kBT 2
, (5.20)
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and the thermal expansivity can be calculated as

αP =
〈δV δ(U + PV )〉NPT

V kBT 2
. (5.21)

In the above, V is the volume of the MD simulation box and U is the total internal energy.
Response functions calculated using Eqs. 5.16, 5.17, and 5.18 will be compared with those
calculated from Eqs. 5.19, 5.20, and 5.21 to assess the accuracy of the mapping scheme.

5.3.2 Transport coefficients

With the MD-to-FHD mapping

Transport coefficients are calculated from all-atom MD using the mapping scheme followed
by computing the time correlation functions of density and velocity fields in Fourier space.
The results are then fit to analytical expressions derived from the linearized FHD equations.
The density time correlation function from linearized FHD is [172,182,206]

Cρ =
〈ρ(−k, 0)ρ(k, t)〉
〈|ρ(k, 0)|2〉

=
γ − 1

γ
exp

(
−DTk

2t
)

+
1

γ
cos (cSkt) exp

(
−Γk2t

)
. (5.22)

The specific heat ratio is γ = cP/cV , the thermal diffusivity is DT = λ/ρcP , the sound
attenuation coefficient is Γ = 1/2(DV + (γ − 1)DT ), and the sound speed is cS = (γ/ρκT )1/2.
The longitudinal kinematic viscosity is DV = (4ηS/3 + ηB)/ρ, and k is the wave number. For
transverse velocity, the correlation function is [182]

Cv,t =
〈vt(−k, 0)vt(k, t)〉
〈|vt(k, 0)|2〉

= exp
(
−νk2t

)
. (5.23)

where ν = ηS/ρ is the kinematic shear viscosity, while for longitudinal velocity [182],

Cv,l =
〈vl(−k, 0)vl(k, t)〉
〈|vl(k, 0)|2〉

= cos (cSkt) exp
(
−Γk2t

)
, (5.24)

which is valid for small k. In our analysis, we choose the wave vector to point in the z
direction, i.e. k = (0, 0, k), so vt = vx,y and vl = vz.

Without the MD-to-FHD mapping

As an independent check, transport coefficients can also be determined from all-atom MD
data without mapping to grid cells by using the Green-Kubo relations [182,211,212]. The
shear viscosity is related to the relaxation of the microscopic pressure as

ηS =
V

kBT

∞∫
0

〈
P̃αβ(0)P̃αβ(t)

〉
dt, (5.25)
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the bulk viscosity is

ηB =
V

kBT

∞∫
0

〈
δP̃ (0)δP̃ (t)

〉
dt, (5.26)

where δP̃ (t) = (1/3)
∑

α
P̃αα −

〈
P̃αα

〉
, and the thermal conductivity is

λ =
V

kBT 2

∞∫
0

〈
δJ̃α(0)δJ̃α(t)

〉
dt. (5.27)

In the above, P̃αβ are the components of the microscopic pressure [182,208,211], and J̃α
are the components of the microscopic heat flux [182,211]. Transport coefficients calculated
using Eqs. 5.22, 5.23, and 5.24 will be compared with those calculated from Eqs. 5.25, 5.26,
and 5.27 to assess the accuracy of the mapping scheme.

To establish consistency between FHD and MD models, we next describe the mapping
of atomistic coordinates from MD simulation onto density fields, taking into account finite
molecule sizes, and analyze the field trajectory obtained from MD to calculate fluid proper-
ties, which are used later as input into FHD simulations.

5.4 Mapping an all-atom MD trajectory onto snapshots
of field configurations

In this section, we describe the details of all-atom MD simulations and our proposed map-
ping scheme. In particular, we show that the finite size of an atom or molecule needs to
be explicitly considered to ensure that the magnitude of density fluctuations is inversely
proportional to the volume of grid cells, as illustrated in Eqs. 5.16, 5.17, and 5.18. Liquid
argon and water are employed as illustrative examples.

5.4.1 Simulation details

For both argon and water, all-atom MD simulations were performed in the NVT ensemble
using a Nosé-Hoover thermostat [213] in a 60Å cubic box with periodic boundary conditions
for 10 ns. Lennard-Jones (LJ) interactions were smoothly switched off from 10 to 12Å. The
time step is 2 fs, the neighbor list was updated every 10 integration steps, and a snapshot was
saved every 0.1 ps. For argon, the LJ parameters are ε = 0.238 kcal/mol, σ = 3.405Å [214],
and the atomic mass is 39.948 amu. Simulation conditions for argon were T = 86.5K, and
ρ = 0.844 amu/Å3. For water, the TIP3P potential was used with particle-mesh Ewald [215]
to compute electrostatic interactions and the SHAKE algorithm [216] was used to constrain
bond lengths. Simulation conditions for water were T = 300K and ρ = 0.603 amu/Å3. To
compute response functions from fluctuation formulas, NPT simulations were also performed



CHAPTER 5. BRIDGING FHD AND MD 91

via the Langevin piston method [217]. To compute time correlation functions, simulations
were performed under NVE conditions with a box size of 60Å× 60Å× 240Å and a simu-
lation time of 50 ns.

To map atomistic positions and velocities onto mass, momentum, and energy density
fields, the simulation box was first discretized into an array of cubic grids varying in size
from 5 to 20Å. Each argon atom or water molecule was also discretized as a space-filling
cube. For each grid, the total mass m, momentum p, and internal energy U are calculated
as

m =
∑
i

φimi, (5.28)

p =
∑
i

φipi, (5.29)

U =
∑
i

φi(UK,i + UP,i), (5.30)

where the sum i runs over atoms (argon) or molecules (water). The volume fraction φi is
the volume of an atom or molecule that overlaps with the grid divided by the total volume
of the atom or molecule. The kinetic contribution to the internal energy is calculated as

UK,i = (1/2)
∑
j

mj(vj − v)2, (5.31)

where the sum j runs over the atoms of molecule i, and the streaming velocity in a grid is
v = p/m. The potential energy UP,i includes Lennard-Jones and the real-space electrostatic
interactions (for water). To determine errors introduced by neglecting the long-range contri-
butions, the real-space contribution was gradually increased when computing the potential
energy until the response functions became independent of the cutoff. We found that this
convergence occurs at a cutoff around 42Å. To determine the volume fraction inside a grid,
each argon atom or water molecule is modeled as a cube with length dmol. Physically, this
means the mass, momentum, and internal energy of an atom or molecule is spread uniformly
over a cube with side length of dmol. For water, the geometric center of the cube coincides
with the molecule center of mass.

5.4.2 Fluid properties from MD

After the mapping with dmol, fluctuations of mass and energy density fields in each grid are
used to calculate the response functions encoded in an all-atom MD trajectory. For a grid
size in the nanometer regime, the magnitude of fluctuations also depends on the molecular
length scale dmol [195]. A criterion based on statistical mechanics for determining dmol is
that the variances of density fluctuations within a grid should scale inversely with grid cell
volume. The fluctuations of mass and internal energy densities mapped from all-atom MD
trajectories are plotted as a function of cubic grid length dG and molecule size dmol for argon
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Table 5.1. Response functions of liquid argon and water calculated by mapping with dmol

and without mapping. Values calculated with the MD-to-FHD mapping were calculated us-
ing Eqs. 5.16, 5.17, and 5.18, while values without the MD-to-FHD mapping were calculated
using Eqs. 5.19, 5.20, and 5.21. The isothermal compressibility is κT [atm−1], the constant
volume specific heat capacity is cV [cal/molK], and the thermal expansivity is αP [K−1].
Standard errors are determined from results using three independent MD simulations of 1 ns
each.

Argon With mapping Without mapping

κT × 10−4 1.7± 0.2 2.1± 0.2

cV 2.5± 0.5 2.3± 0.1

αP × 10−3 3.6± 0.2 3.6± 0.1

Water With mapping Without mapping

κT × 10−5 5.3± 0.1 5.6± 0.6

cV 16.7± 0.2 16.8± 0.4

αP × 10−4 7.4± 0.2 7.5± 0.5

and water in Figs. 5.1 and 5.2, respectively. For argon, the optimal dmol based on the criterion
of size consistent scaling of variances is 2.4Å for mass density and 0.4Å for energy density.
For water, the optimal dmol is 2.2Å for mass density and 1.8Å for energy density. For
the covariance of mass and energy density, the optimal dmol is 1.6Å for argon and 2.0Å for
water. In general, density fluctuations gradually become overestimated with decreasing dmol,
as the molecule mass is over-concentrated in a small volume. On the other hand, density
fluctuations gradually become underestimated with increasing dmol, since volumes of different
molecules overlap and cause artificial correlation. For larger grid sizes, the effects of dmol

become less significant, as the open system of a given grid cell is closer to the thermodynamic
limit. The response functions are computed from the covariances via Eqs. 5.16, 5.17, and
5.18 using the optimal values of dmol and a grid size of 10Å, the same grid size that is
used in FHD simulations. In Table 5.1, the response functions obtained via mapping to
grids are listed, which agree well with results obtained from NVT and NPT simulations,
affirming the self-consistency of mapping with dmol. The inverse scaling of variances with
grid volume down to 5Å-sized grids, observed in Figs. 5.1 and 5.2, also underscores that the
thermodynamic limit is satisfied even at sub-nanometer length scales, ensuring that an FHD
model employing nanometer spatial discretization can be valid.
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Figure 5.1. Variation of dmol for argon as a function of cubic grid size dG. Conversion
of the snapshots in an all-atom MD simulation into a trajectory of field variables by the
MD-to-FHD mapping with dmol using different length-scales for coarse-graining the solvent
molecules. Variances of the fluctuations of (a) mass density ρ and (b) internal energy density
u of argon as a function of the length of cubic grid cells, dG, and the molecular length scale
of coarse-graining, dmol. (c) Covariance of ρ and u fluctuations. The volume of the grid cell
is VG = d3

G. Lines are plotted for dmol ranging from 0.4 to 2.8Å with 0.4Å increments. Units
are ρ [amu/Å3], u [amuÅ2/ps2], VG [Å3], and dmol [Å].
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Figure 5.2. Variation of dmol for water as a function of cubic grid size dG. Conversion
of the snapshots in an all-atom MD simulation into a trajectory of field variables by the
MD-to-FHD mapping with dmol using different length-scales for coarse-graining the solvent
molecules. Variances of the fluctuations of (a) mass density ρ and (b) internal energy density
u of water as a function of the length of cubic grid cells, dG, and the molecular length scale
of coarse-graining, dmol. (c) Covariance of ρ and u fluctuations. The volume of the grid cell
is VG = d3

G. Lines are plotted for dmol ranging from 0.4 to 2.8Å with 0.4Å increments. Units
are ρ [amu/Å3], u [amuÅ2/ps2], VG [Å3], and dmol [Å].
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Table 5.2. Transport coefficients of liquid argon and water calculated by mapping with
dmol and without mapping. Values calculated with the MD-to-FHD mapping were obtained
via best-fitting to Eqs. 5.22, 5.23, and 5.24, while values without the MD-to-FHD mapping
were obtained via the Green-Kubo relations in Eqs. 5.25, 5.26, and 5.27. The shear viscosity
is ηS [cP], the bulk viscosity is ηB [cP], and the thermal conductivity is λ [W/mK]. Standard
errors are determined from results using three independent MD simulations of 50 ns each
(mapping) and 10 ns each (without mapping).

Argon With mapping Without mapping

ηS 0.27± 0.02 0.28± 0.02

ηB 0.09± 0.02 0.10± 0.01

λ 0.13± 0.03 0.12± 0.01

Water With mapping Without mapping

ηS 0.31± 0.01 0.32± 0.01

ηB 0.77± 0.04 0.77± 0.05

λ 1.04± 0.03 0.99± 0.03

The observation that the thermodynamic limit holds even at molecular length scales has
also been supported by calculations of local stress tensor fluctuations in LJ liquids [218],
which exhibit an inverse scaling with volume down to length-scales on the order of the size
of the atom. These calculations also show that spatial covariances of the local stress tensor
become uncorrelated at distances less than two LJ diameters, confirming the delta function
assumption made in fluctuating stress in Eq. 5.6. In these studies, the temporal correlations
also appear to decay rapidly, justifying the use of white noise in the FHD equations.

To determine transport coefficients, the density and velocity time correlation functions
were computed from the mapped coordinates and fitted to Eqs. 5.22, 5.23. and 5.24, using
both transport coefficients and response functions as adjustable parameters. The correlation
functions and resulting fit are shown for argon in Fig. 5.3 and for water in Fig. 5.4. The
best-fit transport coefficients listed in Table 5.2 agree well with the values obtained from
independent Green-Kubo calculations. These results underscore the importance of account-
ing for finite molecule size, such as using dmol, upon coarse-graining atomistic coordinates to
density fields. This procedure ensures that the values of fluid properties are preserved upon
mapping atomistic positions, velocities, and interaction energies onto field variables.

We note that in prior work [219–221], others have computed mass density and velocity
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Figure 5.3. Time correlation functions of (a) mass density and (b) transverse vt and
longitudinal vl velocity of argon at 86.5K. The wave vector is k = (0, 0, k), where k =
2π/240Å−1. All-atom MD results are shown as circles, while the best-fit curves of Eqs. 5.22,
5.23, and 5.24 are shown as solid lines.
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Figure 5.4. Time correlation functions of (a) mass density and (b) transverse vt and
longitudinal vl velocity of water at 300K. The wave vector is k = (0, 0, k), where k =
2π/240Å−1. All-atom MD results are shown as circles, while the best-fit curves of Eqs. 5.22,
5.23, and 5.24 are shown as solid lines.
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time correlation functions and fit these results to analytical predictions from linearized hy-
drodynamics to obtain fluid properties. The distinction of this work from prior analyses is
that our MD-to-FHD mapping concerns the coarse-graining from the atomistic phase space
onto density fields represented by grid cells, The earlier works, on the other hand, computed
the time correlation functions by off-lattice Fourier transform and were primarily interested
in assessing the dependence of fluid properties on wave number. As a result, for model-
ing complex systems with spatial heterogeneity, our coarse-graining method can provide the
required generality.

5.5 Simulation with FHD equations
In this section, we present results of FHD simulations with energy and heat transfer using
the response functions and transport coefficients of argon and water calculated from the
MD-to-FHD mapping with dmol. We illustrate that the density, velocity, and temperature
fluctuations observed in FHD and MD simulations quantitatively agree with each other.
We also show that density and velocity time correlation functions between the FHD and
MD simulations are matched. These results demonstrate that the FHD model accurately
describes the emergent hydrodynamic fluctuations of molecular fluids and is a promising tool
for coarse-graining the solvent in multiscale simulations.

5.5.1 Simulation details

FHD simulations were performed for argon and water in a 60Å cubic box replicated peri-
odically and discretized by 10Å cubic grids. The total simulation time was 10 ns, the time
step was 5 fs, and a snapshot was saved every 0.1 ps. For argon, simulation conditions were
T = 86.5K, and ρ = 0.844 amu/Å3, and for water, T = 300K and ρ = 0.603 amu/Å3. These
conditions are identical to those used in all-atom MD simulations. To compute time cor-
relation functions, simulations were performed using a box size of 60Å× 60Å× 240Å and
a simulation time of 50 ns. The FHD equations are solved using a staggered finite volume
scheme in space and second-order Runge-Kutta integration in time [195]. Details for the
random number generation for the stochastic fluxes can be found in Voulgarakis et al. [203].
The FHD input parameters are the response functions (κT , cV , αP ) and transport coefficients
(ηS, ηB, λ), which were determined previously from the MD-to-FHD mapping.

5.5.2 FHD-MD consistency in the statistics of fluctuations

We compare the fluctuations of mass density, streaming velocity, and temperature within
a grid cell observed in MD and FHD simulations. Before doing so, we first establish the
connection of the fluctuating temperature to molecular mechanical variables. From thermo-
dynamic fluctuation theory [182,210,222], the fluctuating temperature can be estimated by
expanding the internal energy density fluctuation to linear order in temperature and mass
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density,

δu =

(
∂u

∂T

)
ρ

δT +

(
∂u

∂ρ

)
T

δρ. (5.32)

In the above, (∂u/∂T )ρ = ρcV , where cV is found from Eq. 5.17. The temperature and
mass density fluctuations are uncorrelated [182,210,222], which implies [222](

∂u

∂ρ

)
T

=
〈δuδρ〉〈
(δρ)2〉 . (5.33)

Eqs. 5.17, 5.32, and 5.33 allow the temperature within each grid to be determined from
the mass and internal energy density fluctuations in the MD simulation. After mapping with
dmol, the fluctuating temperature fields in each grid cell represent the part of the internal
energy density fluctuation that is uncorrelated with mass density.

In Figs. 5.5 and 5.6, the probability distributions for mass density, streaming velocity, and
temperature from MD and FHD simulations are compared for argon and water, respectively.
The results from linear and non-linear FHD simulations are both shown to illustrate the
effects of non-linear advection on these fluctuations. As expected, solving the linearized
FHD equations with the response functions obtained from MD using the analytic formulas
gives rise to statistics that quantitatively agree with those extracted from MD directly.
This result illustrates that the FHD equations can be solved accurately with nanometer-
scale discretization. The presence of non-linear advection appears to affect the equilibrium
fluctuations only slightly. Therefore, under the conditions of MD simulation conducted in
this work, advection does not have an appreciable effect on the equilibrium distributions and
hence the equation of state. The agreement between the atomistic and CG scales indicates
that by mapping atomistic trajectories onto hydrodynamic fields with scaling consistency by
optimizing dmol, an FHD model can be developed to capture the thermodynamic responses
of the molecular fluid.

5.5.3 FHD-MD consistency in time correlation functions

The time correlation functions obtained from the MD simulation and the linear and non-
linear FHD simulations are plotted in Fig. 5.7 for argon and in Fig. 5.8 for water. Since the
response functions and transport coefficients used in FHD simulations are determined by an-
alyzing the field representation of all-atom MD trajectories with linearized hydrodynamics,
the correlation functions calculated from the linearized FHD simulations indeed match with
those calculated from all-atom MD. Therefore, solving the FHD equations with nanometer-
scale discretization also gives an accurate representation of the dynamics of molecular fluids.
As seen in Figs. 5.7 and 5.8, the primary difference between the linear and non-linear cor-
relation functions for both argon and water is that the oscillation period is about 10% less
due to the additional flux from advection. Fitting the MD results to the linear correlation
function thus slightly underestimates the fluid compressibility, and can be easily corrected by
iteration through simulations using the non-linear FHD model. Since this underestimation
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Figure 5.5. Probability distribution functions of (a) mass density, (b) streaming velocity,
and (c) temperature of liquid argon at 86.5K. The streaming velocity is defined in Sec-
tion 5.4, and the temperature is defined in Eq. 5.32. Results of the all-atom MD simulation
are shown as black curves. Results of the linear and non-linear FHD simulations are shown
as red circles and green squares, respectively. φ = ρ, v, or T

0.9 1 1.1
ρ × 10-3 [kg/m3]

0.01

0.1

1

10

P 
(φ

)

-2 0 2
v ×10-2 [m/s]

1e-3

0.01

0.1

1

250 300 350
T [K]

1e-3

0.01

(a) (b) (c)

Figure 5.6. Probability distribution functions of (a) mass density, (b) streaming velocity,
and (c) temperature of liquid water at 300K. The streaming velocity is defined in Section 5.4,
and the temperature is defined in Eq. 5.32. Results of the all-atom MD simulation are shown
as black curves. Results of the linear and non-linear FHD simulations are shown as red circles
and green squares, respectively. φ = ρ, v, or T
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Figure 5.7. Comparison of time correlation functions for liquid argon at 86.5K between MD
and FHD simulations. Time correlation functions of (a) mass density and (b) transverse
vt and longitudinal vl velocity are shown. The wave vector is k = (0, 0, k), where k =
2π/240Å−1. Results of the all-atom MD simulation are shown as black circles. Results
of the linear and non-linear FHD simulations with energy transfer are shown as solid red
and dotted orange curves, respectively. The dotted purple curve shows the result of FHD
simulations without energy transfer.
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Figure 5.8. Comparison of time correlation functions for liquid water at 300K between MD
and FHD simulations. Time correlation functions of (a) mass density and (b) transverse
vt and longitudinal vl velocity are shown. The wave vector is k = (0, 0, k), where k =
2π/240Å−1. Results of the all-atom MD simulation are shown as black circles. Results
of the linear and non-linear FHD simulations with energy transfer are shown as solid red
and dotted orange curves, respectively. The dotted purple curve shows the result of FHD
simulations without energy transfer.
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is within the statistical uncertainties of the MD results presented in Table 5.1, satisfactory
agreement between MD and non-linear FHD simulations is achieved for both fluids even
without iteration. With the MD-to-FHD mapping, the time scales in the all-atom MD and
FHD models can be transparently compared and synchronized, which remains difficult in
current particle-based CG models [198,199,202].

In addition, Figs. 5.7 and 5.8 also show the time correlation function obtained by solving
the FHD equations without EHT. In this case, the effects of the advection term on the time
correlation functions becomes unnoticeable, indicating that the primary contribution of non-
linearity lies in the advection of energy directly, rather than momentum through fluid flow.
Clear deviation of the results using the simpler model without EHT from the all-atom MD
results is observed. The difference is larger for argon due to its higher specific heat ratio (2.1
vs. 1.1 for water), which enhances the dissipative contribution from the thermal diffusivity,
as seen in Eq. 5.22. Therefore, to accurately capture the dynamics of a molecular fluid in a
CG representation, it is important to include the energy transport equation to capture the
coupling between mass and energy transfer. The results show that the FHD equations with
energy transfer – along with a self-consistent MD-to-FHD mapping – can be used to coarse-
grain a molecular fluid to preserve both the thermodynamic and hydrodynamic responses.

5.6 Discussion
In this work, the FHD equations are shown to accurately capture the thermodynamic re-
sponses and hydrodynamic relaxation of molecular fluids, including those associated with
energy and heat transfer. The results thus endorse FHD as a promising framework to coarse-
grain the liquid phase environment in complex molecular systems. An essential component in
connecting MD and FHD is a mapping procedure that converts atomistic positions, masses,
velocities, and interaction energies into density fields of mass, momentum, and energy on
Eulerian grid cells. For nanometer grids, the finite size of an atom or molecule needs to be
explicitly considered to ensure that the variances of density fluctuations scale inversely with
grid volume, and that the density fluctuations are consistent with the response functions
of the fluid. An important finding is that for different hydrodynamic variables, different
molecule sizes are required in order to achieve the correct scaling of the fluctuations with
grid size. Remarkably, the mass and energy density fluctuations obey this inverse scaling for
grid sizes down to 5Å, affirming the applicability of FHD modeling at the nanoscale.

By using fluid properties extracted from all-atom MD simulations to simulate the FHD
equations, the resulting fluctuations of mass density, streaming velocity, and temperature are
shown to quantitatively agree with those observed in all-atom MD simulations. This result
indicates that the FHD equations with EHT can be solved accurately with nanometer-scale
discretization. Furthermore, dynamical relaxations in FHD simulations also synchronize
with those observed in all-atom MD simulations. Therefore, the proposed procedure of con-
verting and matching common observables between MD and FHD simulations is capable of
establishing thermodynamic and hydrodynamic compatibility between atomistic and hydro-
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dynamic representations of a fluid. The results of this work indicate that FHD modeling
can be used as an accurate and robust framework for coarse-graining the solution phase of
complex molecular systems.

5.7 Supplementary information
In this Section, the fluctuation formulas for specific heat capacity (Eq. 5.17) and thermal
expansivity (Eq. 5.18) will be derived. Although the relation in Eq. 5.16 is well-known,
the latter two are found less commonly in the literature [208,209], and their derivations are
harder to find. As a reference, they will be derived in this Section. These derivations assume
the reader is familiar with material in standard texts [211,223].

5.7.1 Derivation of specific heat capacity in grand canonical
ensemble

Our strategy is to relate the variances in Eq. 5.17 to thermodynamic derivatives. The energy
is E, the number of particles is N , the volume is V , the inverse temperature is β = 1/kBT ,
and the chemical potential is µ. In the following, the brackets indicate expectations taken
over the grand canonical ensemble distribution. First, we would like to show〈

(δE)2〉 = −
(
∂〈E〉
∂β

)
βµ,V

. (5.34)

The expectation 〈E〉 is

〈E〉 =
∑
ν

PνEν =

∑
ν Eν exp(−βEν + βµNν)

Ξ
. (5.35)

where Pν is the probability of microstate ν and Ξ is the grand canonical partition function
Ξ =

∑
ν exp(−βEν + βµNν). Differentiation of Eq. 5.35 gives(
∂〈E〉
∂β

)
βµ,V

=
(
∑

ν E
2
ν exp(−βEν + βµNν))Ξ

Ξ2
− (
∑

ν Eν exp(−βEν + βµNν))
2

Ξ2
,

=
〈
E2
〉
− 〈E〉2,

=
〈
(δE)2〉. (5.36)

Following similar manipulations, we can show

〈δNδE〉 =

(
∂〈E〉
∂βµ

)
β,V

=

(
∂〈N〉
∂β

)
βµ,V

, (5.37)

〈
(δN)2〉 =

(
∂〈N〉
∂βµ

)
β,V

. (5.38)
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The key step now is to use the expansion rule [224] to rewrite (∂〈E〉/∂β)βµ,V . First,
consider the energy E as a function of β, N , and V , and write its total derivative,

dE =

(
∂E

∂β

)
N,V

dβ +

(
∂E

∂N

)
β,V

dN +

(
∂E

∂V

)
β,N

dV (5.39)

Dividing both sides by (∂β)βµ,V , we have(
∂E

∂β

)
βµ,V

=

(
∂E

∂β

)
N,V

+

(
∂E

∂N

)
β,V

(
∂N

∂β

)
βµ,V

,

=

(
∂E

∂β

)
N,V

+

(
∂E

∂βµ

)
β,V

(
∂βµ

∂N

)
β,V

(
∂N

∂β

)
βµ,V

, (5.40)

where we have used the chain rule on the second line. The specific heat cV is defined as

cV =
1

M

(
∂E

∂T

)
N,V

, (5.41)

where M is the total mass of the system. Therefore,(
∂E

∂β

)
N,V

=

(
∂E

∂T

)
N,V

(
∂T

∂β

)
N,V

,

= McV kBT
2. (5.42)

Plugging Eqs. 5.34, 5.37, 5.38, and 5.42 into Eq.5.40, we obtain

〈
(δE)2〉 = kBT

2McV +
〈δNδE〉2〈

(δN)2〉 . (5.43)

Defining the mass density ρ = 〈M〉/V and energy density u = 〈E〉/V and rearranging
Eq. 5.43, we arrive at Eq. 5.17.

5.7.2 Derivation of thermal expansivity in grand canonical
ensemble

Following the similar procedure used to derive Eq. 5.34, we can show

〈δNδ(E − µN)〉 = −
(
∂〈N〉
∂β

)
µ,V

. (5.44)

Let ρN be the number density 〈N〉/V and the volume per particle v = 1/ρN . We therefore
have

−
(
∂〈N〉
∂β

)
µ,V

= −V
(
∂ρN
∂β

)
µ

= −〈N〉kBT
2 1

v

(
∂v

∂T

)
µ

. (5.45)
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Let us now consider v as a function of T and P and write out its total differential

dv =

(
∂v

∂T

)
P

dT +

(
∂v

∂P

)
T

dP. (5.46)

Dividing both sides by v(dT )µ, we have

1

v

(
∂v

∂T

)
µ

=
1

v

(
∂v

∂T

)
P

+
1

v

(
∂v

∂P

)
T

(
∂P

∂T

)
µ

. (5.47)

We will now identify each of the derivatives in Eq. 5.47 above. The thermal expansivity αP
and isothermal compressibility κT are defined as

αP =
1

v

(
∂v

∂T

)
P

, (5.48)

κT = −1

v

(
∂v

∂P

)
T

. (5.49)

The entropy per volume s is

s =
〈E〉
TV

+
P

T
− µ〈N〉

TV
, (5.50)

which from the Gibbs-Duhem equation dP = sdT + ρNdµ is also

s =

(
∂P

∂T

)
µ

. (5.51)

Plugging in Eqs. 5.44, 5.45, 5.48, 5.49, 5.50, 5.51 into Eq. 5.47, and rearranging, we have

αP = κT

(
〈E〉
TV

+
P

T
− µ〈N〉

TV

)
− 1

〈N〉kBT 2

(
〈δNδE〉 − µ

〈
(δN)2〉). (5.52)

The term
〈
(δN)2〉 can be related to the compressibility κT through the relation

κT =

〈
(δN)2〉V
〈N〉2kBT

, (5.53)

so we can cancel the terms involving κTµ〈N〉/TV in Eq. 5.52 and arrive at

αP = κT

(
〈E〉
TV

+
P

T

)
− 〈δNδE〉
〈N〉kBT 2

. (5.54)

We now break down the total internal energy E into the potential energy U and kinetic
energy K,

αP = κT

(
〈U〉
TV

+
〈K〉
TV

+
P

T

)
− 〈δNδU〉
〈N〉kBT 2

− 〈δNδK〉
〈N〉kBT 2

. (5.55)
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The fluctuation 〈δNδK〉 = 〈NK〉 − 〈N〉〈K〉 in Eq. 5.55 will now be further manipulated.
The kinetic energy is K =

∑N
i=1 p

2
i /2mi. For classical fluids with position ri and momentum

pi degrees of freedom, the quantity 〈NK〉 is

〈NK〉 =

∑
N Ne

βµN
∫
dr1...Ne

−βU(r1...rN )
∫
dp1...N

∑N
i=1 p

2
i /2mi exp

(
−β
∑N

i=1 p
2
i /2mi

)
∑

N e
βµN

∫
dr1...Ne−βU(r1...rN )

∫
dp1...N exp

(
−β
∑N

i=1 p
2
i /2mi

) .

(5.56)
Let us consider the quantity∫

dp1...N

N∑
i=1

p2
i /2mi exp

(
−β

N∑
i=1

p2
i /2mi

)
,

=

∫
dp1...N

(
p2

1

2m1

e−β
∑
i p

2
i /2mi + · · ·+ p2

N

2mN

e−β
∑
i p

2
i /2mi

)
. (5.57)

This expression is a sum of integrals. To begin, let us evaluate the integral for particle 1∫
dp1...N

p2
1

2m1

e−β
∑
i p

2
i /2mi ,

=

∫
dp1

p2
1

2m1

e−βp
2
1/2m1

∫
dp2...Ne

−β
∑N
i=2 p

2
i /2mi ,

=

∫
dp1(p2

1/2m1)e−βp
2
1/2m1∫

dp1e−βp
2
1/2m1

∫
dp1...Ne

−β
∑N
i=1 p

2
i /2mi ,

=
3

2
kBT

∫
dp1...Ne

−β
∑N
i=1 p

2
i /2mi . (5.58)

In Eq. 5.57, we have N terms identical to the expression in Eq. 5.58. Therefore, Eq. 5.56
becomes

〈NK〉 =

3
2
kBT

∑
N N

2eβµN
∫
dr1...Ne

−βU(r1...rN )
∫
dp1...N exp

(
−β
∑N

i=1 p
2
i /2mi

)
∑

N e
βµN

∫
dr1...Ne−βU(r1...rN )

∫
dp1...N exp

(
−β
∑N

i=1 p
2
i /2mi

) ,

= 〈NN〉3
2
kBT. (5.59)

Likewise, following the same procedure as above, we have

〈K〉 =
3

2
〈N〉kBT. (5.60)

For the fluctuation 〈δNδK〉, we have, using Eqs. 5.59 and 5.60,

〈δNδK〉 = 〈NK〉 − 〈N〉〈K〉,

=
〈
(δN)2〉3

2
kBT. (5.61)
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Plugging Eqs. 5.60 and 5.61 into Eq. 5.55, we have

αP =
κT
T

(
〈U〉
V

+ P

)
+ κT

3
2
〈N〉kB

V
− 〈δNδU〉
〈N〉kBT 2

−
〈
(δN)2〉3

2
kBT

〈N〉kBT 2
. (5.62)

Using the isothermal compressibility relation in Eq. 5.53, we can simplify further by canceling
the second and fourth terms

αP =
κT
T

(
〈U〉
V

+ P

)
− 〈δNδU〉
〈N〉kBT 2

. (5.63)

Defining the potential energy density as ε = 〈U〉/V , we arrive at Eq. 5.18.
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Chapter 6

Developing an Interfacial Fluctuating
Hydrodynamics Model from Molecular
Dynamics

The fluctuating hydrodynamic model developed in Chapter 5 is extended in this Chapter to
describe the physics of phase separation and equilibria within the solvent. We introduce a
multiscale framework to simulate inhomogeneous fluids by coarse-graining an all-atom molec-
ular dynamics trajectory onto sequential snapshots of hydrodynamic fields. We show that
the field representation of an atomistic trajectory is quantitatively described by a dynamic
field-theoretic model that couples hydrodynamic fluctuations with a Ginzburg-Landau free
energy. For liquid-vapor interfaces of argon and water, the parameters of the field model can
be adjusted to reproduce the bulk compressibility and surface tension calculated from the po-
sitions and forces of atoms in an MD simulation. These optimized parameters also enable the
field model to reproduce the static and dynamic capillary wave spectra calculated from atom-
istic coordinates at the liquid-vapor interface. In addition, we show that a density-dependent
gradient coefficient in the Ginzburg-Landau free energy enables bulk and interfacial fluctu-
ations to be controlled separately. For water, this additional degree of freedom is necessary
to capture both the bulk compressibility and surface tension emergent from the atomistic
trajectory. The proposed multiscale framework illustrates that bottom-up coarse-graining
and top-down phenomenology can be integrated with quantitative consistency to simulate
the interfacial fluctuations in nanoscale transport processes.

Chapter 6 is reprinted with permission from Shang, B. Z., Voulgarakis, N. K. & Chu, J.
W. Fluctuating hydrodynamics for multiscale simulation of inhomogeneous fluids: mapping
all-atom molecular dynamics to capillary waves. J. Chem. Phys. 135, 044111 (2011).
Copyright 2011, American Institute of Physics.
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6.1 Motivation
In biology and nanotechnology, emergent phenomena in the nanometer to micrometer regimes
– such as hydrophobic self-assembly [173], dynamics of Brownian motors [179], and breakup of
fluid nanojets [176] – are governed by the interplay between molecular interactions and hydro-
dynamic fluctuations [172,174,180]. The analysis of these processes via computer simulation
inevitably requires a multiscale approach to link molecular and continuum mechanics [180].
Although all-atom molecular dynamics (MD) simulations can provide a detailed description
of the interactions among individual atoms, the range of accessible length- and time-scales
is severely limited. While particle-based coarse-grained (CG) methods [200,225,226] have
been developed to reduce the computational cost of atomistic simulations and to capture
hydrodynamic behaviors approximately [184,227], it remains difficult to derive formal equa-
tions of motion for these CG methods and establish their consistency with atomistic sim-
ulations [202,228–230]. Consequently, most adopted approaches employ phenomenological
Langevin-type models [202,225,228]. Meanwhile, continuum and field-theoretic models have
found only limited application in CG methods [195], yet they conveniently describe the
thermodynamic and transport behaviors of a fluid at the hydrodynamic level. Therefore,
an inevitable mapping in multiscale simulation is the coarse graining of all-atom molecular
dynamics onto hydrodynamics.

To map atomistic coordinates onto hydrodynamic fields, we recently introduced a strat-
egy [195,203–205] to coarse-grain the positions and velocities of atoms onto hydrodynamic
field variables in the spirit of the Irving-Kirkwood procedure for identifying expressions
of thermodynamic forces and fluxes in terms of molecular degrees of freedom [231,232].
Further details are also provided in Chapter 5. From the field representation of atom-
istic coordinates, we determine the equation of state and transport properties of the fluid
by comparing the spectra of density and momentum field fluctuations calculated from all-
atom MD with the spectra predicted by solving the equations of fluctuating hydrodynamics
(FHD) [172,206,233]. The FHD equations introduced by Landau and Lifshitz [181] are em-
ployed to describe thermal fluctuations at the hydrodynamic level by adding stochastic stress
to the equation for momentum conservation. Mapping atomistic positions and velocities onto
field variables and computing the transport and thermodynamic properties from the spectra
of field fluctuations enables a systematic and self-consistent coarse-graining of a molecular
fluid into a hydrodynamic description.

We have shown previously in Chapter 5 that mapping atomistic coordinates onto Eule-
rian grids with nanometer size is non-trivial, and that an additional length-scale, namely the
excluded volume of the molecule, must be considered to reproduce density field fluctuations
with size scaling consistent with statistical mechanics [195,205]. By considering the addi-
tional molecular length-scale, we showed that density and momentum field fluctuations in
all-atom MD simulations can be matched to those obtained from solving the FHD equations
on Eulerian grids [195,205]. The emergent viscoelastic response of molecular fluids at the
nanoscale can also be captured quantitatively by the equations of generalized fluctuating
hydrodynamics [203,204]. For both argon and water, we found that a hydrodynamic de-
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scription using the FHD equations remains valid with a grid size as small as 5Å, affirming
their applicability to modeling nanoscale transport processes [195,205].

However, the conventional FHD equations only describe the spectra of fluctuations for
bulk, homogeneous fluids [181,195,205], while nanoscale transport processes ubiquitously
involve phenomena occurring at interfaces [173,180,234]. For example, material self-assembly
depends upon interfacial thermodynamics and kinetics to drive the separation and partition
of individual molecular components [235]. To describe the dynamics of proteins and the self-
assembly of hydrophobic solutes, it is necessary to consider inhomogeneities within the fluid
induced by interfaces [173,180]. Therefore, field-theoretic coarse-graining must go beyond
homogeneous fluids and capture the behaviors of surface tension and phase separation from
molecular interactions and dynamics.

In this work, we generalize our multiscale framework to inhomogeneous fluids by cou-
pling the FHD equations with a Ginzburg-Landau (GL) free energy functional [236–238],
which introduces surface tension and bending rigidity into the hydrodynamic model. The
Ginzburg-Landau free energy has been used to study a wide range of interfacial problems
including critical phenomena, spinodal decomposition, and nucleation [237]. Surface tension
is introduced in the model by expanding the free energy in terms of density gradients. We
validate the combined FHD-GL equations by simulating the liquid-vapor and liquid-liquid
interfaces of model inhomogeneous systems. We show that the fluctuation-dissipation the-
orem is satisfied and that the computed capillary wave (CW) spectra agree quantitatively
with the predictions of CW theory [239]. To establish consistency with all-atom MD sim-
ulations, we present a systematic method to determine the Ginzburg-Landau free energy
functional of argon and water by matching the hydrodynamic fluctuations calculated from
an all-atom MD trajectory of a liquid-vapor interface with those observed in the FHD-GL
field simulations. We show that the field simulations can reproduce the bulk compressibility,
surface tension, and static and dynamic capillary wave spectra extracted from the positions,
velocities, and forces of atoms recorded in a MD trajectory. By using a density-dependent
gradient coefficient in the Ginzburg-Landau free energy, density fluctuations in the bulk can
be decoupled from height fluctuations at the interface, allowing the field model to explore
a wider range of fluid behaviors. The results in this work thus illustrate that the attractive
and unbalanced molecular interactions at interfaces in an all-atom MD simulation can be
mapped effectively and self-consistently onto the coupling between hydrodynamic fields.

The rest of this Chapter is organized as follows. In Section 6.2, we describe the governing
FHD-GL equations. In Section 6.3, we validate our equations for liquid-vapor and liquid-
liquid interfaces of model systems. In Section 6.4, we determine the Ginzburg-Landau free
energy for argon and water and establish consistency between hydrodynamic fluctuations
observed in field and MD simulations. In Section 6.5, we provide concluding remarks and
directions for future work.
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6.2 Coupled fluctuating hydrodynamics and
Ginzburg-Landau model

We describe the time evolution of density and momentum fields using the equations of
fluctuating hydrodynamics (FHD) [181]. The mass and momentum balances are:

∂ρ

∂t
=−∇ · (ρv), (6.1)

∂g

∂t
=−∇ · (g ⊗ v) +∇ · (P)−∇ · (Π + δΠ), (6.2)

In Eqs. 6.1 and 6.2, ρ is the mass density, g ≡ ρv is the momentum density, and v is the
fluid velocity. The reversible, dissipative, and fluctuating stress tensors are P, Π, and δΠ,
respectively. For a homogeneous fluid, P = −p0I , where p0 is the thermodynamic pressure
and I is the unit tensor. For inhomogeneous fluids, P can be derived from the free energy
functional, as will be explained later. In this work, we consider the Newtonian dissipative
stress,

Π = −ηS
(
∇v +∇vT)− (ηB −

2

3
ηS

)
(∇ · v)I. (6.3)

The fluctuating counterpart δΠ is modeled as Gaussian white noise with zero mean and
covariance determined by the fluctuation-dissipation theorem [207,240],

〈
δΠij

n(t)δΠkl
n′(t′)

〉
=

2kBT

VG

[
ηS(δilδjk + δikδjl) +

(
ηB −

2

3
ηS

)
δijδkl

]
δ(t− t′)δ(n− n′). (6.4)

Here, δΠij
n(t) is the ij component of the stress tensor δΠ associated with a grid of index

vector n at time t, kB is Boltzmann’s constant, T is the fluid temperature, VG is the volume
of a grid in which the density and momentum fields are defined, ηS is the shear viscosity,
and ηB is the bulk viscosity.

6.2.1 Two-phase fluid

For an isothermal two-phase fluid, we describe the total Helmholtz free energy (or effective
Hamiltonian) F [ρ(r)] by the Ginzburg-Landau functional,

F [ρ(r)] =

∫ (
ψ0(ρ) +

m

2
|∇ρ|2 +

α

2

(
∇2ρ

)2
)
d3r, (6.5)

where ψ0 is the local free energy density, m is the density gradient coefficient, and α is
the density curvature coefficient. From the least-action principle [241], the reversible stress
tensor is related to the free energy by ∇ · P = −ρ∇(δF/δρ), where P = −p0I + Pm + Pα,
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and

Pm =

[
mρ∇2ρ+

(m+m′ρ)|∇ρ|2

2

]
I−m∇ρ⊗∇ρ, (6.6)

Pα =

[
−ρ∇2

(
α∇2ρ

)
− (α + α′ρ)(∇2ρ)

2

2
−∇

(
α∇2ρ

)
· ∇ρ

]
I (6.7)

+∇ρ⊗∇
(
α∇2ρ

)
+∇

(
α∇2ρ

)
⊗∇ρ.

The primed variables denote differentiation with respect to density ρ. In Section 6.6.1,
we describe in detail the derivation of Eqs 6.6 and 6.7. The thermodynamic pressure is
related to the free energy functional by p0 = µ0ρ − ψ0, and µ0 ≡ ∂ψ0/∂ρ is the local
chemical potential. We model the local free energy density as a double-well potential ψ0(ρ) =
A(ρ− ρl)2(ρ− ρv)2/2, with minima at liquid ρl and vapor ρv densities. The coefficient A
is a measure of the barrier height ψ0,max separating the two phases through the relation
ψ0,max = A(∆ρ/2)4/2, where ∆ρ = ρl − ρv.

6.2.2 Binary fluid

For a binary fluid, we have the additional equation for component mass conservation [172],

∂(ρc)

∂t
+∇ · (ρcv) = −∇ · (j + δj), (6.8)

where c ≡ c2−c1 is the mass fraction difference between components 1 and 2, j = j2−j1 = 2j2

is the diffusive component mass flux, and δj is the component mass flux due to thermal
fluctuations. The diffusive flux j is given by the constitutive equation, j = −λ∇µ , where λ
is the mobility coefficient, and µ ≡ µ2 − µ1 is the generalized chemical potential difference.
The fluctuating component mass flux δj is modeled as Gaussian white noise with zero mean
and covariance determined by the fluctuation-dissipation theorem [242],

〈
δjin(t)δjjn′(t

′)
〉

=
2λkBT

VG
δijδ(t− t′)δ(n− n′). (6.9)

We model the total Helmholtz free energy F [ρ(r), c(r)] of a binary fluid by

F [ρ(r), c(r)] =

∫ (
ψ0(ρ, c) +

m

2
|∇ρ|2 +

α

2

(
∇2ρ

)2
+
k

2
|∇c|2 +

β

2

(
∇2c

)2
)
d3r, (6.10)

where k is the concentration gradient coefficient and β is the concentration curvature coef-
ficient. From the least-action principle [241,243], we have

∇ ·P = −ρ∇(δF/δρ)c + (δF/δc)ρ∇c, (6.11)
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where P = −p0I + Pm + Pα + Pk + Pβ, and

Pk =

[
k

2
|∇c|2

]
I− k∇c⊗∇c, (6.12)

Pβ =

[
−β

2

(
∇2c

)2 −∇
(
β∇2c

)
· ∇c

]
I (6.13)

+∇c⊗∇
(
β∇2c

)
+∇

(
β∇2c

)
⊗∇c.

Similar to the case of two-phase fluids, p0 = ρg0 − ψ0, where g0 ≡ (∂ψ0/∂ρ)c is the local
specific Gibbs free energy. The generalized chemical potential difference is defined by µ =
(δF/δc)ρ/ρ. The local free energy density is a double-well potential

ψ0(ρ, c) = A(ρ− ρl)2(ρ− ρv)2/2 +B
(
c− cmin

1

)2(
c− cmin

2

)2
/2, (6.14)

with minima at ρl, ρv, cmin
1 , and cmin

2 . The double-well potential requires the concentration in
each cell to remain near the potential minima, while the gradient and curvature coefficients
constrain the neighboring cells to have similar concentrations, giving rise to phase separation.
The governing FHD-GL equations describe compressible, viscous, isothermal flow of an inho-
mogeneous fluid, and are similar to the conventional Model H [236] and diffuse-interface [237]
equations used to investigate dynamic critical phenomena and two-phase flows. We solve
these equations using a staggered finite volume scheme in space [195,196], and second-order
Runge-Kutta integration in time. In the staggered scheme, the system volume is discretized
into an array of cubic grids. The mass density fields are placed at grid centers, while the
momentum density fields are placed at grid faces. We found that the staggered scheme is
advantageous because it prevents unphysical non-local transport of mass, which may occur in
conventional non-staggered schemes [195]. Compared to all-atom MD simulations of water,
the FHD-GL field simulations using a grid size of 5Å yield a total speed up of 50 times and
allows an increase in time step by at least a factor of two. Furthermore, the computational
cost of FHD simulations scales linearly with system size.

6.3 Liquid-vapor and liquid-liquid interfaces of model
systems

To validate the FHD-GL approach for modeling multiphase fluids, we perform simulations
of fluctuating liquid-vapor and liquid-liquid interfaces in model systems. We explore four
distinct cases, and the fluid parameters for each are listed in Table 6.1. Models A1 and
A2 are two-phase fluids, while Models B1 and B2 are binary fluids. For Models A1 and
B1, the curvature coefficients are set to zero, while for Models A2 and B2, the gradient
coefficients are set to zero. This selection allows us to investigate separately the effects of
gradients and curvature on the spectra of interfacial fluctuations. Simulations for the model
fluids were performed for a system of volume 240Å× 240Å× 240Å, replicated periodically
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Table 6.1. Model fluid parameters of Ginzburg-Landau free energy. The grid size d used
for solving the FHD equations is 5Å, the density ratio is ρv/ρl = 1/3, the temperature T is
300K, and kB is Boltzmann’s constant. For all model systems, the shear and bulk viscosities
are ηS = 4.0 (ρlkBT/d)1/2 and ηB = 8.0 (ρlkBT/d)1/2, respectively. For binary fluids, the mass
fraction differences are cmin

1 = −1, cmin
2 = 1, and the mobility is λ = 18.0 (ρ3

l d
5/kBT )

−1/2.
Units of parameters listed in the table are as follows: A [kBT/ρ

4
l d

3], B [kBT/d
3], m [kBT/ρ

2
l d],

k [kBT/d], α [kBTd/ρ
2
l ]], and β [kBTd].

Model A B m k α β

A1 406 — 90.3 — 0.0 —

A2 406 — 0.0 — 72.2 —

B1 406 5.01 90.3 10.0 0.0 0.0

B2 406 5.01 0.0 0.0 72.2 8.02

in all directions and discretized by cubic grids of length 5Å. We initially prepare a slab
of thickness 120Å of either liquid or a pure component and create two independent fluid
surfaces. We use a time step of 5 fs and perform field simulations for 10 ns, using the last
9 ns for analysis. In Fig. 6.1a, we show a snapshot for system A1, and in Fig. 6.1b, we
plot its kinetic temperature. The averaged temperature is 300.03K, identical to the input
temperature 300.0K in the fluctuating stress, indicating that the fluctuation-dissipation
theorem is numerically satisfied in our solution of the FHD-GL equations. Results for the
binary fluid models are similar.

To determine if the field model samples interfacial fluctuations consistent with an equi-
librium distribution, we compute the capillary wave (CW) spectra for each of the model
systems and compare with the predictions of mean-field [238] and CW [239] theories. For a
planar liquid-vapor interface, mean-field theory (MF) gives

σMF =

∫
m

(
dρMF

dz

)2

+ 2α

(
d2ρMF

dz2

)2

dz, (6.15)

and

κMF =

∫
α

(
dρMF

dz

)2

dz, (6.16)

where σMF is the macroscopic surface tension, κMF is the bending rigidity, and ρMF = ρMF(z)
is the density profile that minimizes F [ρ(z)]. For a liquid-liquid interface, σMF and κMF follow
the form of Eqs. 6.15 and 6.16 after making the substitution ρMF → cMF, where cMF = cMF(z)
is the concentration profile that minimizes F [ρl, c(z)]. In the absence of bending rigidity,
the intrinsic mean-field density profile ρMF(z) for a liquid-vapor interface described by a
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Figure 6.1. Illustration of snapshot from an interfacial FHD simulation and temperature
equilibration. (a) A snapshot of the model fluid at liquid-vapor coexistence. (b) Kinetic
temperature, T̂ , (solid line) as a function of time. T̂ is calculated as (1/2)

∑
n ρnv

2
n =

(3/2)NkBT̂ , where n denotes the grid index, and N is the number of grids. The input
temperature T appearing in Eq. 6.4 is shown as the dashed line.

double-well potential is given by [244],

ρMF(z) =
(ρl + ρv)

2
+ (ρl − ρv)

tanh(z/2ξ)

2
, (6.17)

where the interfacial width is

ξ = 2−5/2(ρl − ρv)
√
m/ψ0,max, (6.18)

and the surface tension is

σMF = (2/3)(ρl − ρv)
√

2mψ0,max. (6.19)

In the presence of bending rigidity, we find the mean-field density profile numerically, from
which the surface tension and bending rigidity are calculated by quadrature. Capillary wave
theory provides an alternate route to obtain the surface tension. For a smooth, nearly flat
interface described by a height function h(r`), where r` = (x, y) is the lateral coordinate,
CW theory predicts the spectrum [244],

〈
|h(q)|2

〉
=

kBT

L2γCW(q)q2
. (6.20)

In Eq. 6.20, L = Lx = Ly is the lateral system length, and

h(q) =
1

L2

∫
h(r`) exp(iq · r`)d2r`. (6.21)
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Figure 6.2. Capillary wave spectra of the model fluids used in FHD simulations. (a)
Models A1 and B1, and (b) Models A2 and B2. Two-phase fluids are shown as black circles
and binary fluids as red squares. Solid lines correspond to Eq. 6.20, which is used to best fit
σCW and κCW values. Data for two-phase fluids are multiplied by ten for clarity. Black and
red symbols correspond to systems with lateral size L = 240Å. Orange and green crosses
indicate results for L = 120Å.

is the Fourier transform of h(r`). Also, the wave vector-dependent surface tension is

γCW(q) = σCW + κCWq
2. (6.22)

In the limit of small fluctuations about the interface, one expects σMF = σCW and κMF = κCW.
From the results of simulations, we identify the height of the interface h(r`) as an isosurface
of density ρs = (ρ` + ρv)/2, or concentration cs =

(
cmin

1 + cmax
2

)
/2 , from which h(q) is found

by discrete Fourier transform.
In Fig. 6.2a, we show the CW spectra for systems A1 and B1, and in Fig. 6.2b, the

spectra for systems A2 and B2, along with best-fit curves. For all model systems, the CW
spectra obtained from the field simulations agree closely with the predictions by CW theory
at wavelengths larger than about five times the grid size, providing evidence that in the
hydrodynamic limit, the field model samples interfacial fluctuations in accordance with an
equilibrium distribution. At smaller wavelengths, deviations from the theory emerge due to
compressibility of the fluid [245]. From the best-fit values for σCW and κCW, we find that
σCW ' σMF and κCW ' κMF, as shown in Table 6.2. The mean-field approximation provides
an accurate estimate for γCW(q), indicating that thermal fluctuations in our model systems
do not significantly perturb the mean-field density profile [238,239]. In Fig. 6.2, we also
show the CW spectra for a lateral system size L = 120Å, illustrating that the scaling of
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Table 6.2. The capillary wave (CW) and mean-field (MF) surface tension σ [kBT/nm2] and
bending rigidity κ [kBT ] of the model fluid interfaces.

Model σCW σMF κCW κMF

A1 35± 2 37 — —

A2 25± 2 24 8± 1 8.4

B1 36± 1 37 — —

B2 22± 2 24 8± 1 8.4

the spectra with the projected area L2, as predicted by Eq. 6.20, is achieved in our field
simulations.

6.4 Consistency between FHD and MD simulations for
argon and water

We have shown that the field FHD simulations for model systems satisfy the fluctuation-
dissipation theorem and sample the spectrum of interfacial fluctuations in accordance with
CW theory. We now explore to what extent the field model captures the fluctuations and cor-
relations observed in a field representation of an all-atom MD simulation. In order to trans-
parently compare field and atomistic simulations, we recently developed a scale-consistent
mapping scheme to coarse-grain atomistic configurations sampled in a MD trajectory onto
sequential snapshots of field coordinates. This mapping enables the comparison of atomistic
and field-theoretic models under a unified and self-consistent framework [195,203,204]. In the
following, we present a method to determine the Ginzburg-Landau free energy parameters
for argon and water by comparing field trajectories obtained from MD and field simulations.
We show that a relatively simple Ginzburg-Landau model can reproduce the bulk compress-
ibility, surface tension, and static and dynamic CW spectra observed in MD simulations of
argon and water.

The main parameters of the Ginzburg-Landau free energy are the double-well barrier
height ψ0,max and the gradient coefficient m. We set the curvature coefficient α to zero,
since the bending rigidity κ is nearly zero, as will be inferred from the capillary wave spectra
of argon and water. We determine the Ginzburg-Landau parameters by requiring that the
bulk compressibility and surface tension computed from a field simulation match with those
computed from the field representation of a MD simulation. The compressibility can be
measured by fluctuations in liquid density

〈
(δρ)2〉, while from CW theory, the surface tension
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can be measured by fluctuations in interfacial height
〈
(δh)2〉 (where δρ ≡ ρ−〈ρ〉 and likewise

for h). Since thermal fluctuations are important driving forces for nanoscale processes [172–
174,176,179,180], it is important to preserve these fluctuations quantitatively upon coarse-
graining from a molecular model to ensure that the field model accurately describes the
physical mechanisms responsible for transport at the nanoscale. The fluctuations can be
computed directly from field statistics obtained from MD and field simulations with the
mapping procedure described by Voulgarakis & Chu [195] and in Chapter 5. In short, the
mass of each fluid molecule is associated with a cubic volume of side length dmol, which
corresponds to the excluded volume radius inferred from the radial distribution function.
The contribution of each fluid molecule to the mass density of an Eulerian grid cell is then
calculated as the mass density of the fluid molecule weighted by the volume fraction of the
molecule in the grid cell [195]. In this work, we focus on developing field-theoretic models
for liquid-vapor interfaces of argon and water from atomistic simulations.

6.4.1 Argon

A slab of liquid argon (σLJ = 3.8Å and εLJ = 0.238 kcal/mol) of thickness 60Å is placed in
the center of the MD simulation cell (120Å× 120Å× 120Å) to create two interfaces. The
positions and velocities of argon atoms in MD simulation were saved every 2 ps for mapping
onto the corresponding field trajectory. The objective is to illustrate if field simulations can
match both the fluctuation patterns of density fields and interfacial height observed in MD
simulations. Both MD and field simulations of the argon slab were performed at 76K, and
the field trajectories from both MD and field simulations were spatially discretized using
cubic grids of length 5Å. Both simulations were performed for 10 ns, using the last 9 ns for
analysis. The time step is 2 fs in MD simulations and 5 fs in field simulations. The shear and
bulk viscosities in the FHD-GL equations are calculated by matching the momentum time
correlation functions computed from field simulations to the correlation functions from MD
simulations, as described by Voulgarakis & Chu [195] and in Chapter 5. This procedure yields
ηS = 13 amu/(Åps) and ηB = 17 amu/(Åps) for argon. The double-well minima for ψ0(ρ)
are determined by the axial density profile computed from MD simulations. For argon,
we found ρl = 0.92 amu/Å3 and set ρv = 10−3ρl. In the field simulations, we avoid the
unphysical appearance of negative densities caused by fluctuating stresses by introducing
a flux correction scheme satisfying mass and momentum conservation; further details are
described in Section 6.6.2. Bulk density fluctuations are computed for grids inside a liquid
slab of thickness 15Å placed around the center of mass of the liquid phase. The statistics
of density and height fluctuations of interfaces calculated from MD simulation are used to
determine the values of ψ0,max and m in the FHD-GL equations.

In Fig. 6.3, we show the contour curves on a plot of ψ0,max vs. m that represent the
loci satisfying

〈
(δρ)2〉

FHD =
〈
(δρ)2〉

MD and
〈
(δh)2〉

FHD =
〈
(δh)2〉

MD. We observe that〈
(δρ)2〉

FHD decreases with increasing ψ0,max and m. This can be understood from a harmonic
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Figure 6.3. The ψ0,max vs. m parameter diagram for the bulk density and inter-
facial height fluctuations of argon and water. Black circles represent the contour of〈
(δρ)2〉

FHD =
〈
(δρ)2〉

MD, red squares represent
〈
(δh)2〉

FHD =
〈
(δh)2〉

MD, dashed lines
represent σMF = σMD

CW, and dotted lines represent ξFHD = ξMD, where for constant
m, σMD

CW = (2/3)(ρl − ρv)
√

2mψ0,max and ξFHD = 2−5/2(ρl − ρv)
√
m/ψ0,max. For argon,

σMD
CW = 14.7 ± 0.4 kBT/nm2 and ξMD = 1.2Å, and for water, σMD

CW = 12.6 ± 0.5 kBT/nm2

and ξMD = 1.1Å. Values for σMD
CW are obtained by best fit to the capillary wave spectrum.

approximation to the Ginzburg-Landau free energy around ρl, which gives〈
(δρ)2〉 ∼∑

q>0

(
mq2 + A(ρl − ρv)2)−1

, (6.23)

where A is proportional to the double-well barrier height, discussed in Section 6.2.1. Along
similar lines,

〈
(δh)2〉

FHD decreases with increasing ψ0,max andm, since from CW theory [244],
we expect

〈
(δh)2〉 ∼ σ−1 and from a mean-field estimate, σ ∼

√
mψ0,max. Therefore, along

the curves of constant
〈
(δρ)2〉

FHD and
〈
(δh)2〉

FHD, ψ0,max decreases with increasing m. One
can anticipate this trend upon physical grounds by noting that m penalizes the appearance
of density gradients and ψ0,max determines the local curvature at the free energy minimum.
For argon, two sets of values for ψ0,max and m satisfy the constraints on bulk and interfacial
fluctuations. However, they correspond to different interfacial widths ξ appearing in the
intrinsic density profile. The best-fit parameters can be determined by requiring additionally
that ξ is matched between field and MD simulations. The interfacial width observed in MD
simulations ξMD is obtained by fitting the mean-field expression for the Ginzburg-Landau
density profile in Eq. 6.17 to the intrinsic density profile found from MD using a local
Gibbs dividing surface method [245]. Setting ξMD = ξFHD, where ξFHD is given by Eq. 6.18,
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Table 6.3. The optimized Ginzburg-Landau free energy parameters from all-atom liquid-
vapor simulations of argon at 76K and water at 300K. The liquid density ρl at phase
coexistence is 0.92 amu/Å3 for argon and 0.603 amu/Å3 for water. The grid size d in the
field representation is 5Å for both fluids. Units are m [kBT/ρ

2
l d] and ψ0,max [kBT/d

3].

Fluid m mbulk mint ψ0,max

Argon 7.2 — — 3.8

Water — 2.8 12 1.8

Table 6.4. Comparison of bulk density ρ and interfacial height h fluctuations computed
from all-atom MD and FHD simulations of argon and water. The FHD simulations are
performed with the Ginzburg-Landau free energy parameters listed in Table 6.3.

〈(δρ)〉1/2/ρl 〈(δh)〉1/2

Argon (MD) 0.086 3.4

Argon (FHD) 0.084 3.3

Water (MD) 0.12 3.8

Water (FHD) 0.13 3.9

introduces an additional constraint on ψ0,max and m. From the parameter diagram shown in
Fig. 6.3, we choose the intersecting point that most closely satisfies this additional constraint
as optimal parameters, which are listed in Table 6.3. Using the optimal values in a field
simulation, the relative differences in density and height fluctuations compared to those
obtained from MD are less than 5% (Table 6.4).

6.4.2 Water

The results of an argon liquid-vapor interface indicates that a simple Ginzburg-Landau free
energy with constant coefficients is sufficient to reproduce the fluctuations of bulk density
and interfacial height occurring in all-atom MD. For polyatomic fluids, on the other hand, the
intrinsic molecular structure at an interface tends to be distinct from that in the bulk due to
the imbalance of intermolecular forces across the phase boundary. In a field representation,
it is thus expected that fluid densities have different extents of spatial correlation in the
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bulk and at an interface. In this section, we show that this is indeed the case for all-atom
MD simulations of a water slab. To capture the density and height fluctuations occurring in
atomistic simulations, the Ginzburg-Landau free energy must be amended with a density-
dependent gradient coefficient m = m(ρ).

The simulation geometry of a water slab with two interfaces is the same as the argon
simulation. From the MD simulation using a TIP3P potential, the calculated water density
is ρl = 0.603 amu/Å3 and we set ρv = 10−3ρl . The calculated viscosities using the same
procedure described earlier are ηS = 21 amu/(Åps) and ηB = 45 amu/(Åps) [195]. In contrast
to argon, the ψ0,max − m contour curves of

〈
(δρ)2〉

FHD =
〈
(δρ)2〉

MD and
〈
(δh)2〉

FHD =〈
(δh)2〉

MD of water do not intersect when a constant value form is used (Fig. 6.3). Therefore,
if height fluctuations are matched, the bulk density fluctuations of field simulations are
smaller than those in all-atom MD; if density fluctuations are matched instead, the height
fluctuations of field simulations are exaggerated. This result indicates that the field statistics
of a Ginzburg-Landau free energy with constant m are inconsistent with the field statistics
calculated from all-atom MD simulations of a liquid-vapor interface of water.

A potential solution for this inconsistency is a density-dependent gradient coefficient in
the Ginzburg-Landau functional for water, i.e., m = m(ρ). As suggested in Fig. 6.3, m(ρ)
should be higher at interfacial densities and lower elsewhere. This modification is expected to
suppress interfacial fluctuations without significantly restricting density fluctuations in the
bulk liquid. We model m(ρ) with an auxiliary Gaussian function centered at the interfacial
density ρs to represent the increase in m(ρ) at the interface,

m(ρ) = mbulk +mint exp
(
−(ρ/ρs − 1)2/w

)
. (6.24)

This decomposition of m(ρ) allows the separate control of bulk and interfacial fluctuations
by mbulk and mint, respectively, where w regulates the degree of decoupling. In Section 6.6.3,
we show that using w = 0.1 sets the largest degree of decoupling. The parameters mbulk,
mint, and ψ0,max are determined by three constraints:

〈
(δρ)2〉

FHD =
〈
(δρ)2〉

MD,
〈
(δh)2〉

FHD =〈
(δh)2〉

MD, and ξFHD = ξMD, with the interfacial width approximated as Eq. 6.18 based on
the mean-field theory. The resulting Ginzburg-Landau parameters for water are listed in
Table 6.3. The results of a field simulation using these parameters are compared with those
of all-atom MD in Table 6.4. The relative differences in density and height fluctuations
are within 5%, illustrating that the density-dependent gradient coefficient in the Ginzburg-
Landau free energy functional for water reestablishes consistency between the fluctuation
patterns of field and MD simulations.

The unique molecular structure of water causes it to form a specific hydrogen-bonding
network in the liquid state. At an interface, the imbalance of intermolecular interactions
causes water molecules to adopt a hydrogen-bonding network different from that in the
bulk [173,246–248] with suppressed interfacial density fluctuations as observed in the all-atom
MD simulation. At the field-theoretic level, this phenomenon can be effectively represented
by a higher interfacial gradient coefficient.

We note that in practice, the Ginzburg-Landau parameters for a molecular fluid depend
on the grid size used for solving the FHD-GL equations. However, if capturing the field
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fluctuations mapped from all-atom MD with the field model is employed as a constraint,
the allowable range of grid sizes is limited. In the case of water, for example, using 10Å
grids severely suppresses density fluctuations and capillary waves at the liquid-vapor inter-
face [195]. Using a grid size smaller than the length scale of a single water molecule, on the
other hand, challenges the local thermodynamic approximation employed in the FHD equa-
tions. A heuristic analysis of the van der Waals equation of state of water showed that the
square-gradient free energy becomes valid when the mean molecular density field is coarse-
grained over a length scale larger than 4Å [173], questioning the applicability of a grid size
below this length scale. In addition, when using grid sizes less than 6Å to convert atomistic
configurations into a field trajectory, we found that the observed mean-square interfacial
fluctuations are invariant under spatial translation of atomistic coordinates, indicating that
potential artifacts due to periodicity of the lattice are not present. Therefore, a grid size of
5Å appears to be an ideal coarse-graining length scale for capturing hydrodynamic fluctua-
tions, since this size resolves the stochastic behavior of density and momentum fields while
ensuring the validity of a hydrodynamic description.

6.4.3 Capillary wave spectra

To go beyond averaged fluctuations, we examine in this section if using the Ginzburg-Landau
parameterization in field simulations for argon and water can capture the static and dynamic
capillary wave spectra at the liquid-vapor interface observed in all-atom MD simulations.
Since the temporal and spatial correlation at interfaces are key properties in governing the
transport processes at the nanoscale, it is important for a coarse-grained field model to
describe such fluctuation patterns.

The static CW spectrum given in Eq. 6.20 describes the equal-time correlations between
Fourier modes of a liquid-vapor interface. In Fig. 6.4, we plot the static CW spectra ob-
tained from MD and field simulations using the optimized Ginzburg-Landau parameters for
argon and water. Close agreement between the MD and field simulations are clear, indicat-
ing that the coarse-grained field models for argon and water preserve equal-time interfacial
correlations and samples fluctuation modes in accordance with CW theory. From the CW
spectra of MD simulations, we have also extracted the best-fit values for surface tension
and compared these values with virial calculations of the surface tension [249]. As seen
in Table 6.5, these values are in close agreement. Since the virial surface tension is di-
rectly computed from atomistic coordinates, the agreement demonstrates that our mapping
scheme [195] is scale-consistent when applied to interfacial configurations. Furthermore, al-
though the Ginzburg-Landau model is typically used to describe fluids with diffuse interfacial
profiles (such as those near the critical point) [236,237], we illustrate that consistency with
CW theory can be obtained accurately even for cold fluids with relatively sharp interfacial
profiles.

As shown in Table 6.5, applying the mean-field prediction with Ginzburg-Landau pa-
rameters to water and argon overestimates the surface tension as compared with the value
computed from the CW spectra. This discrepancy can be rationalized by examining the
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Figure 6.4. Static capillary wave spectra computed from FHD (red squares) and all-atom
MD (black circles) simulations for argon and water. Solid lines represent Eq. 6.20 using the
surface tension obtained from the virial tensor.

Table 6.5. Comparison of surface tensions [kBT/nm2] computed from the capillary wave
(CW) spectra of MD and FHD simulations with virial and mean-field calculations.

Argon Water

CW (MD) 14.7± 0.4 12.6± 0.5

CW (FHD) 15± 1 14.1± 0.5

Virial 15.2± 0.3 11.9± 0.4

Mean-field 19.1 28.5
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ratio of thermal to surface energy, θ ≡ kBT/(σMFÅ2). For the model fluids discussed earlier
in which the mean-field prediction is accurate, this ratio (θ = 2.6) is about three times lower
than the ratio for argon (θ = 6.8) and water (θ = 7.9). Therefore, at higher temperatures,
the mean-field density profile is disrupted by thermal fluctuations and the mean-field esti-
mate no longer provides an accurate prediction for the surface tension calculated from the
CW spectra. For the model fluids, we found that this behavior occurs when θ = 6.

In addition to the equilibrium spectra of fluctuations, we also probe the relaxation of
interfacial fluctuations by comparing the dynamic CW spectra obtained from field and MD
simulations of argon and water. This comparison allows us to assess to what extent the
coarse-grained field model preserves the relaxation time-scales at the liquid-vapor interfaces
observed in all-atom MD simulations. The dynamic CW spectra, S(q, ω), is defined as the
Fourier transform of the time correlation function of interfacial Fourier modes,

S(q, ω) =

+∞∫
−∞

dt exp(iωt)〈h(q, 0)h(−q, t)〉. (6.25)

In Fig. 6.5, we plot the normalized dynamic CW spectra S0(q, ω) for field and MD simulations
of argon and water, where q1 = (2π/L, 0, 0) corresponds to the longest wavelength along the
interface. The close agreement in S0(q, ω) between field and MD simulations is clear. It is
also important to emphasize that agreement in S0(q, ω) was not imposed when parameter-
izing the Ginzburg-Landau functional. The input viscosity values in the FHD-GL equations
were determined by matching the bulk momentum time correlation functions between field
and MD simulations. The Ginzburg-Landau free energy was determined by matching density
and interfacial fluctuations. Since S0(q, ω) depends uniquely on the transport coefficients
and free energy, a robust field-theoretic model for a molecular fluid is expected to capture
this dynamical observable without explicit fitting. Therefore, the additional agreement we
find with S0(q, ω) underscores that the Ginzburg-Landau model coupled with hydrodynamic
fluctuations is capable of capturing the spatial and temporal correlations among field vari-
ables observed in MD simulations.

We also compare the dynamic CW spectra obtained from MD and field simulations with
predictions by linearized hydrodynamics. For a fluctuating liquid-vapor interface for an
incompressible fluid [250–252], S(q, ω) is expected to follow,

S(q, ω) = −2kBT
q

L2ρω

ImD(q, ω)

|D(q, ω)|2
, (6.26)

where D(q, ω) is given by,

D(q, ω) = σq3/ρ−
(
ω + 2iνq2

)2 − 4ν2q4
(
1− iω/

(
νq2
))1/2

, (6.27)

and ν = ηS/ρ is the kinematic shear viscosity. In Fig. 6.5, we plot best-fit curves described
by Eq. 6.25, using the shear viscosity ηS as an adjustable parameter. In the long wavelength
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Figure 6.5. Dynamic capillary wave spectra computed from FHD and all-atom MD (black
circles) simulations for argon and water. Here, q1 = (2π/L, 0, 0) corresponds to the longest
wavelength along the interface. Best-fit curves using Eq. 6.25 are shown as solid curves,
along with the best-fit values for shear viscosity ηS [amu/(Åps)]. FHD and MD simulations
were performed for a total of 50 ns with box size 120Å× 120Å× 120Å

.

limit, we find Eq. 6.25 is an accurate model for S0(q, ω) computed from simulation, as
the effects due to density compressibility are expected to be small. We compare the best-
fit values for interfacial viscosity shown in Fig. 6.5 using Eq. 6.25 to the values for shear
viscosity determined from the bulk momentum time correlation functions [195,204] and used
as input for the field simulations. For both argon and water, the best-fit interfacial viscosities
agree with the input viscosities to within statistical error. We observe, however, that time
correlation functions for long wavelength modes converges slowly in both MD and field
simulations, and longer simulation times up to one microsecond may be required to reduce
errors in estimates for interfacial viscosity. Nevertheless, the agreement among the dynamic
CW spectra obtained from MD and field simulations and predicted by theory is satisfactory.
This result underscores that the mapping of atomistic simulations onto a coupled Ginzburg-
Landau fluctuating hydrodynamics field model may be a practically useful strategy for coarse-
graining atomistic simulations of fluid interfaces.
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6.5 Discussion
In this work, we develop a coarse-grained (CG) field-theoretic model for inhomogeneous
molecular fluids by coupling a Ginzburg-Landau free energy with hydrodynamic fluctuations.
We show that fluctuating hydrodynamic (FHD) simulations of liquid-vapor and liquid-liquid
interfaces of model systems satisfy the fluctuation-dissipation theorem accurately and de-
scribe interfacial fluctuations in accordance with capillary wave theory. To achieve consis-
tency with molecular dynamics (MD) simulations, we use a scale-consistent mapping scheme
to coarse-grain atomistic configurations into a field representation, enabling FHD and MD
simulations to be compared transparently. By optimizing the transport coefficients and
free energy functional in FHD simulations for argon and water, we show that a Ginzburg-
Landau model coupled to hydrodynamic fluctuations can capture the compressibility, surface
tension, and static and dynamic capillary wave spectra observed in MD simulations. To de-
scribe these fluctuation patterns, a grid size of 5Å was found to be ideal for solving the FHD
equations to balance the requirements of resolving the density profile of an interface and
approaching the local thermodynamic approximation in a CG field-theoretic model. The
results of this work thus illustrate that combining bottom-up coarse-graining with top-down
phenomenology provides a practical framework for constructing field-theoretic models from
the hydrodynamic fluctuations and correlations that emerge from the underlying molecular
interactions.

6.6 Supplementary information

6.6.1 Derivation of reversible stress tensor

We describe the derivation of the reversible stress tensor P from the free energy functional
F [ρ(r)] by using the least-action principle [241]. We note that an alternative route, involving
entropy production, can also be used and gives identical results [253].

We consider an inviscid, isothermal fluid with total Helmholtz free energy

F [ρ(r)] =

∫ (
ψ0(ρ) +

m

2
|∇ρ|2 +

α

2

(
∇2ρ

)2
)
d3r, (6.28)

where ρ is the mass density, ψ0 is the local free energy density, m is the density gradient
coefficient, and α is the density curvature coefficient. The dynamical action is

S =

∫
dt

∫
d3r

1

2
ρv2 − F [ρ(r; t)], (6.29)

where v is the fluid velocity. We impose that the continuity equation is satisfied and that
advected quantities χ, such as fluid particle identities, are carried with the flow,

S =

∫
dt

∫
d3r

1

2
ρv2 − F [ρ(r; t)] + φ

(
∂ρ

∂t
+∇ · (ρv)

)
+ λ

(
∂ρχ

∂t
+∇ · (ρχv)

)
, (6.30)
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where φ and λ are Lagrange multipliers. Taking the extremum of action S with respect to
variations in v, ρ, and χ gives the following relations:

δv : v = ∇φ+ χ∇λ,

δρ :
1

2
v2 −

(
δF

δρ

)
−
(
∂φ

∂t
+ v · ∇φ

)
− χ

(
∂λ

∂t
+ v · ∇λ

)
= 0, (6.31)

δχ :
∂λ

∂t
+ v · ∇λ = 0, (6.32)

where we have used integration by parts and allowed the boundary conditions to vanish.
Taking the gradient of the second line in Eq. 6.32 and utilizing the other two equations, we
obtain

ρ
Dv

Dt
= −ρ∇

(
δF

δρ

)
. (6.33)

The reversible stress tensor P (up to a divergence-free contribution) is defined through the
expression,

∇ ·P = −ρ∇
(
δF

δρ

)
. (6.34)

The functional derivative of F is given by the Euler-Lagrange equation,

δF

δρ
=
∂ψ0

∂ρ
+

1

2
m′|∇ρ|2 −∇ · (m∇ρ) +

1

2
α′
(
∇2ρ

)2
+∇2

(
α∇2ρ

)
, (6.35)

where primed variables denote differentiation with respect to density ρ. Substitution of
Eq. 6.35 into Eq. 6.34 gives

∇ ·P =− ρ∇
(
∂ψ0

∂ρ

)
(6.36)

− ρ∇
(

1

2
m′|∇ρ|2

)
+ ρ∇(∇ · (m∇ρ))

− ρ∇
(

1

2
α′
(
∇ρ2

)2
)
− ρ∇

(
∇2
(
α∇2ρ

))
.

The first term on the right hand side is

−ρ∇
(
∂ψ0

∂ρ

)
= −ρ∇µ0 = −∇p0, (6.37)

by the Gibbs-Duhem equation, where p0 is the thermodynamic pressure. We divide P into
gradient and curvature contributions,

∇ ·Pm =− ρ∇
(

1

2
m′|∇ρ|2

)
+ ρ∇(∇ · (m∇ρ)), (6.38)

∇ ·Pα =− ρ∇
(

1

2
α′
(
∇2ρ

)2
)
− ρ∇

(
∇2
(
α∇2ρ

))
. (6.39)
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First, we derive the expression for ∇ ·Pm. The first and second terms on the right hand
side of Eq. 6.38 need to be manipulated into the form of a divergence of a tensor. The first
term can be rewritten using the product rule,

−ρ∇
(

1

2
m′|∇ρ|2

)
= −∇

(
1

2
m′ρ|∇ρ|2

)
+

1

2
m′∇ρ|∇ρ|2. (6.40)

The second term can be identified using the following manipulations,

−∇ · (m∇ρ⊗∇ρ) =−m∇ρ · ∇∇ρ− (∇ ·m∇ρ)∇ρ,
=−m∇ρ · ∇∇ρ− (∇ ·m∇ρ)∇ρ− ρ∇(∇ ·m∇ρ) + ρ∇(∇ ·m∇ρ),

=−m∇ρ · ∇∇ρ−∇(ρ∇ ·m∇ρ) + ρ∇(∇ ·m∇ρ),

=−∇
(

1

2
m|∇ρ|2

)
+

1

2
m′∇ρ|∇ρ|2 (6.41)

−∇(ρ∇ ·m∇ρ) + ρ∇(∇ ·m∇ρ).

In the first, third, and fourth lines, we have applied the product rule, and in the second line,
added zero. Note that the last term in Eq. 6.41 is equal to the second term on the right hand
side in Eq. 6.38. Combining Eqs. 6.38, 6.40, and 6.41, we obtain the gradient contribution
to the reversible stress,

Pm =

[
mρ∇2ρ+

(m+m′ρ)|∇ρ|2

2

]
I−m∇ρ⊗∇ρ. (6.42)

The curvature contribution Pα is found by manipulating the first and second terms on
the right hand side in Eq. 5.30. The second term can be rewritten as,

−ρ∇
(
∇2
(
α∇2ρ

))
= −∇

(
ρ∇2

(
α∇2ρ

))
+∇2

(
α∇2ρ

)
∇ρ,

= −∇
(
ρ∇2

(
α∇2ρ

))
+∇2

(
α∇2ρ

)
∇ρ

+∇
(α

2

(
∇2ρ

)2
)
−∇

(α
2

(
∇2ρ

)2
)
,

= −∇
(
ρ∇2

(
α∇2ρ

))
+∇2

(
α∇2ρ

)
∇ρ (6.43)

+α∇2ρ∇2(∇ρ) +
α′

2
∇ρ
(
∇2ρ

)2 −∇
(α

2

(
∇2ρ

)2
)
,

where we have used the product rule in the first and fifth lines and added zero on the third
line. We introduce the following identities,

∇ ·
(
∇ρ⊗∇

(
α∇2ρ

))
= ∇ρ · ∇∇

(
α∇2ρ

)
+∇

(
α∇2ρ

)
∇2ρ, (6.44)

∇ ·
(
∇
(
α∇2ρ

)
⊗∇ρ

)
= ∇

(
α∇2ρ

)
· ∇∇ρ+∇2

(
α∇2ρ

)
∇ρ. (6.45)

Adding Eqs. 6.44 and 6.44 gives

∇ ·
(
∇ρ⊗∇

(
α∇2ρ

))
+∇ ·

(
∇
(
α∇2ρ

)
⊗∇ρ

)
=∇

(
∇
(
α∇2ρ

)
· ∇ρ

)
(6.46)

+∇
(
α∇2ρ

)(
∇2ρ

)
+∇2

(
α∇2ρ

)
∇ρ.
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Combining Eqs. 6.39, 6.43 and 6.47, we have

Pα =

[
−ρ∇2

(
α∇2ρ

)
− (α + α′ρ)(∇2ρ)

2

2
−∇

(
α∇2ρ

)
· ∇ρ

]
I (6.47)

+∇ρ⊗∇
(
α∇2ρ

)
+∇

(
α∇2ρ

)
⊗∇ρ.

Expressions for reversible stress for a two-component fluid can be derived similarly by
introducing the inviscid component mass balance as a constraint in the expression for the
action, and taking additionally an extremum of action S with the associated Lagrange mul-
tiplier ξ,

S =

∫
dt

∫
d3r

1

2
ρv2 − F [ρ(r; t)] + φ

(
∂ρ

∂t
+∇ · (ρv)

)
+ λ

(
∂ρχ

∂t
+∇ · (ρχv)

)
(6.48)

+ ξ

(
∂ρc

∂t
+∇ · (ρcv)

)
. (6.49)

The result after following similar manipulations described above is Eq. 6.11. For viscous
fluids, the dissipative and fluctuating stress are added in parallel alongside the reversible
stress in the momentum balance.

Why should we go through the trouble of rewriting the momentum balance as the diver-
gence of tensors? It is advantageous for numerical simulation because it allows the identifi-
cation of the momentum flux, which provides a straightforward procedure to ensure that the
integration scheme conserves momentum. The momentum added to one grid cell can then
be exactly subtracted (up to floating point precision) from the other cell.

6.6.2 Low density flux correction scheme

We solve the FHD-GL equations using the staggered discretization scheme described by
Voulgarakis & Chu [195]. Briefly, the total mass density ρ is located at grid centers, while
the momentum density g and mass flux j are located at grid faces. We associate each grid
with an index vector n = (nx, ny, nz), with the integers nx, ny, and nz corresponding to the
grid index in the x, y, and z directions, respectively. The unit vector along each direction is
denoted as iα, where α = x, y, or z. The total mass density associated with the center of
the grid at n and time t is ρtn. The component of mass flux associated with the grid face
between grid centers with index n and n+ iα is jta,n. The discretized continuity equation is
given by

ρt+∆t
n = ρtn −

∆t

d

∑
α

(
jtα,n − jtα,n−iα

)
, (6.50)

where d is the length of the cubic grid and ∆t is the time step.
Since the fluctuations in density are approximately Gaussian, the discretized continuity

equation does not prevent the appearance of negative densities especially in the presence of
fluctuating stresses and small grid volumes. The magnitude of density fluctuation δρ ≡ ρ−〈ρ)
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in each cell scales with grid size as 〈(δρ)〉1/2 ∼ d−3/2, as shown in Chapter 5. If no corrections
are introduced in the identity jtα,n = gtα,n, then unphysical negative densities can occur even
for bulk water simulations at average density 〈ρ〉 = ρwater = 103 kg/m3 and temperature
T = 300K using grid size d = 5Å. In addition, positive, near-zero values of ρtn introduce a
singularity in the calculation of fluid velocity from momentum density vtα,n = gtα,n/ρ

t
α,n, and

disrupt the fluctuation-dissipation balance in a fluid. The density ρtα,n is the average of the
densities at grid centers n and n+ iα.

To circumvent these problems, we use a flux correction scheme that avoids the appearance
of negative densities and satisfies total mass and momentum conservation. First, the velocity
is calculated as vtα,n = gtα,n/ρvel, where ρvel = max

(
ρtα,n, ρ

∗
l

)
, and ρ∗l specifies a lower density

threshold, which removes the singularity in the velocity calculation. The mass flux jtα,n is
then determined by jtα,n = ρjv

t
α,n , where

ρj =


ρtn if jtα,n > 0 and (ρtn < ρ∗2 or ρtn+iα

< ρ∗2),
ρtn+iα

if jtα,n < 0 and (ρtn < ρ∗2 or ρtn+iα
< ρ∗2),

ρtα,n otherwise.
(6.51)

Physically, this assignment has the effect of suppressing the amount of mass exchanged be-
tween two grids when mass flows from a lower density grid to a higher one, and exaggerating
the mass exchange when mass flows from a higher density grid to a lower one. Therefore,
the change in density of a grid with low density at time t is biased in the direction of higher
density at time t+ ∆t. For argon and water, we use ρ∗1 = 0.25ρl and ρ∗2 = 0.15ρl, where ρl is
the liquid density. Although the choice for these values is somewhat arbitrary, we find that
variation of these values between the physically reasonable range of 0.1ρl < {ρ∗1, ρ∗2} < 0.3ρl
does not affect values of the observables

〈
(δρ)2〉

FHD and
〈
(δh)2〉

FHD. Note that when cor-
rections to the mass flux are unnecessary, jtα,n = gtα,n is recovered. We caution that our
FHD-GL model does not attempt to describe the dynamics of rarified vapor. Rather, the
flux correction scheme is a computationally efficient method to allow a background vapor
phase to exist in simulation and enables us to solve the FHD-GL equations throughout the
entire volume of the system without having to explicitly track regions of low density. In
addition, our scheme ensures that simulations of bulk water remain numerically stable when
small grid volumes are used, allowing for transient cavitation within a grid but avoiding the
numerical singularities associated with the appearance of low density.

Conservation of mass and momentum is ensured because the exchanges of these quanti-
ties obey “equal and opposite”. The amount of mass or momentum leaving one cell is equal
to the amount entering the neighboring cell. We note that alternative strategies are possible
but they do not conserve mass and/or momentum. One may consider using a cut-off scheme,
which resets the mass in a cell to zero, if it were to become negative. However, this modi-
fication does not conserve mass. One may also consider scaling the momentum densities –
assumed here to be equal to mass fluxes – to increase (decrease) the mass entering (leaving)
a low-density cell. While this scheme conserves mass, it does not always conserve momen-
tum. By decoupling momentum density and mass flux for low density cells, both mass and
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momentum are conserved. We find such conservation is crucial for the computed capillary
wave spectra for argon and water to agree with predictions by capillary wave theory.

6.6.3 Effect of density-dependent gradient coefficient

We show that a density-dependent gradient coefficient m = m(ρ) in the Ginzburg-Landau
free energy allows fluctuations in bulk liquid density and interfacial height to be decoupled.
To match the fluctuations in TIP3P water, we use the function,

m(ρ) = mbulk +mint exp
(
−(ρ/ρs − 1)2/w

)
, (6.52)

where ρs = (ρl + ρv)/2. Here, we explore the effects of the width w on decoupling bulk
and interfacial fluctuations. In Fig. 6.6ab, we show the effects of using different values of w
on interfacial and bulk fluctuations of fluids, respectively. Note that for w = ∞, we have
constant m = mbulk + mint. The optimal w = w∗ should be large enough such that

〈
(δh)2〉

computed using w∗ is close to the value computed using w = ∞, for given values of mbulk

and mint. Also, w∗ should be small enough such that
〈
(δρ)2〉 computed using w∗ is close

to the value computed using mint = 0, for a given value of mbulk. An objective function
quantifying the degree of decoupling reads

χ(mbulk,mint, w) =

abs
(〈

(δh)2〉− 〈(δh)2〉∣∣∣∣
w=∞

)
〈
(δh)2〉∣∣∣∣

w=∞

+

abs

(〈
(δρ)2〉− 〈(δρ)2〉∣∣∣∣

mint=0

)
〈
(δρ)2〉∣∣∣∣

mint=0

. (6.53)

In Fig. 6.6, we plot χ for mbulk = 2.8 kBT/ρ2
l d, corresponding to the value for water,

and different values of mint and w. In the range where the optimal mint for water lies
(mint = 12 kBT/ρ2

l d), we find χ is smallest for w = 0.1. At higher values, bulk fluctuations
become too suppressed as mint increases, while at lower values, height fluctuations become
less sensitive to changes in mint. By decoupling bulk and interfacial fluctuations using a
density-dependent gradient coefficient, a wider range of fluid behavior can be explored within
the coupled Ginzburg-Landau fluctuating hydrodynamics model.
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Figure 6.6. Parameterization of the density-dependent square gradient coefficient in the
Ginzburg-Landau free energy functional for fluid interfaces. (a) Fluctuations in interfacial
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