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Pore- and State-Dependent Cadmium Block of IKs Channels Formed
with MinK-55C and Wild-Type KCNQ1 Subunits

Haijun Chen, Federico Sesti, and Steve A. N. Goldstein
Departments of Pediatrics and Cellular and Molecular Physiology, Boyer Center for Molecular Medicine,
Yale University School of Medicine, New Haven, Connecticut

ABSTRACT Human MinK and KCNQ1 subunits assemble to form IKs channels. When MinK position 55 is mutated to cysteine
(MinK-55C), IKs channels can be blocked by external cadmium (Cd21). We have supported a pore-associated location for MinK-
55C because Cd21 block is sensitive to voltage, permeant ions on the opposite side of the membrane (trans-ions), and external
tetraethylammonium (TEA), an IKs pore-blocker. Two recent reports argue that MinK-55C is distant from the pore: one finds TEA
does not affect Cd21 block if channels are formed with a KCNQ1 mutant (K318I, V319Y) that increases TEA affinity; the second
proposes that Cd21 binds between MinK-55C and a cysteine in KCNQ1 that is posited to lie toward the channel periphery. Here,
these discrepancies are considered. First, Cd21 block of MinK-55C channels formed with wild-type KCNQ1 is shown to depend
not only on voltage and trans-ions but state (showing decreased on-rate with increased open time and blocker trapping on
channel closure). Conversely, MinK-55C channels with K318I, V319Y KCNQ1 are found to demonstrate Cd21 block that is
independent of voltage, trans-ions and state (and to have a lower unitary conductance): thus, the KCNQ1 mutations alter the
process under study, yielding Cd21 inhibition that is pore-independent and, perforce, TEA-insensitive. Second, MinK-55C
channels are found to remain sensitive to Cd21 despite mutation of any single native cysteine in KCNQ1 or all nine
simultaneously; this suggests no KCNQ1 cysteine binds Cd21 and can serve to localize MinK-55C. Despite many concerns that
are enumerated, we remain obliged to conclude that Cd21 enters and leaves the pore to reach MinK-55C, placing that residue in
or near the pore.

INTRODUCTION

Classical voltage-gated potassium channels contain four

pore-forming a-subunits that supply the domains that sense

and respond to voltage and catalyze ion permeation. In native

cells, potassium channels contain additional subunits such as

the single-transmembrane domain MinK-related peptides

(MiRPs; see Abbott and Goldstein, 1998). MiRPs establish

the functional attributes of native complexes through their

influence on surface expression, gating kinetics, unitary con-

ductance, regulation/modulation, and pharmacology (Abbott

and Goldstein, 2001, 2002). Thus, IKs channels are formed

by KCNQ1 (a canonical a-subunit with 676 residues, one

pore-forming P domain, and six transmembrane segments)

and MinK (129 residues) (see Barhanin et al., 1996;

Sanguinetti et al., 1996). Whereas channels formed only of

KCNQ1 activate rapidly, exhibit current saturation, and have

a small single-channel conductance, assembly with MinK

yields IKs channels that activate slowly, do not saturate with

prolonged depolarization, have a fourfold greater unitary

conductance, exhibit altered discrimination among mono-

valent cations, and display modified responsiveness to

a variety of activators and inhibitors (Busch et al., 1997;

Kaczmarek and Blumenthal, 1997; Tai et al., 1997; Pusch,

1998; Sesti and Goldstein, 1998; Yang and Sigworth, 1998;

Sesti et al., 2000b). Inherited missense mutations in KCNE1,
the gene for MinK, are associated with cardiac arrhythmia

and deafness and produce IKs channels that pass less potas-

sium due to changes in these same functional attributes

(Schulze-Bahr et al., 1997; Splawski et al., 1997; Tyson et al.,

1997; Duggal et al., 1998; Sesti and Goldstein, 1998). Simi-

larly, mutations in KCNE2 (Abbott et al., 1999; Sesti et al.,

2000a) and KCNE3 (Abbott et al., 2001) are associated with

cardiac arrhythmia and periodic paralysis, respectively, and

decreased potassium flux through channels formed with

those subunits.

The location of MinK relative to KCNQ1 in IKs channels

remains a matter of controversy. Some posit that it crosses the

membrane at the channel periphery (Romey et al., 1997;

Wang et al., 1998; Tapper and George, 2001) or traverses the

S4 canaliculus (Kurokawa et al., 2001). We have argued that

MinK residues gain exposure in the outer pore vestibule

(Wang et al., 1996), reside close to the ion conduction path-

way near the selectivity filter (Tai and Goldstein, 1998), and

influence the structure of the internal pore vestibule from an

unknown distance (Sesti et al., 2000b). Most controversial

have been our studies in which MinK residues 42–78 were

sequentially altered to cysteine and IKs channels formed with

wild-type KCNQ1 probed with sulfhydryl-reactive reagents

and metals; some MinK sites were found to be accessible via

a path whose attributes matched those of the IKs pore, sug-

gesting they reside in or near the ion-conduction pathway

(Tai and Goldstein, 1998). Thus, a cysteine at human MinK

positions 54 or 55 allows blockade by external cadmium
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(Cd21), but not Cd21 applied from the inside; reciprocally,

cysteine at positions 56 or 58 mediates inhibition by Cd21 (or

zinc) only from the inside (Tai and Goldstein, 1998). We

reasoned that Cd21 reaches these residues via the pore (rather

than another transmembrane pathway) as follows: first, in-

hibition is voltage-dependent as if the blockers enter the

transmembrane electric field to bind at 55 (from the outside)

and 56 (from the inside). Second, permeant ions entering

from the opposite side of the membrane alter inhibition in

direct relationship to their relative permeability through the

pore (a trans-ion effect that suggests ions traversing the pore

interfere with blockade). Third, two adjacent residues (55 and

56) behave as if they are separated by the ion selectivity filter

because transmembrane movement of sodium, Cd21, and

zinc are restricted at these residues; indeed, mutations at 55

alter permeation by cesium and ammonium, allow measur-

able sodium flux, and modify open-channel pore blockade by

tetraethylammonium (TEA) (Goldstein and Miller, 1991;

Wang et al., 1996; Tai and Goldstein, 1998). Finally, con-

current application of external TEA slows the timecourse of

external Cd21 blockade as if the two inhibitors compete for

entry into the pore.

Recently, Kurokawa et al. (2001) sought to re-evaluate

these findings through study of KCNQ1 mutants with en-

hanced affinity for the pore-blocker TEA. Failing to observe

competition between external TEA and Cd21 when channels

contained MinK-55C and K318I, V319Y KCNQ1 subunits,

they concluded that Cd21 did not inhibit via the pore in

mutant channels and, therefore, that MinK-55C was not

pore-associated in channels with wild-type KCNQ1. How-

ever, we demonstrate here that changes attendant with these

KCNQ1 mutations alter not only TEA affinity but the

channel property under study—Cd21 blockade. First, MinK-

55C channels formed with wild-type KCNQ1 are confirmed

to demonstrate Cd21 inhibition that is voltage- and trans-ion-

dependent when studied in the mammalian cells employed

by Kurokawa et al. (2001), as previously found in oocytes

(Tai and Goldstein, 1998). Next, MinK-55C channels

formed with K318I, V319Y KCNQ1 are studied and found,

in contrast, to be blocked by Cd21 in a voltage- and trans-

ion-insensitive fashion. Access and egress of Cd21 is then

observed to be state-dependent in channels with wild-type

but not mutant KCNQ1 subunits. Finally, K318I, V319Y

KCNQ1 subunits are judged to decrease single-channel po-

tassium flux by noise-variance analysis. The results indicate

that MinK-55C channels formed with K318I, V319Y

KCNQ1 do not retain the conduction pathway attributes of

channels with wild-type KCNQ1—specifically, those used

to infer a pore locale for MinK-55C—and that failure to

observe an effect of TEA on Cd21 block should be expected,

because Cd21 no longer acts in a pore-dependent fashion.

Cadmium binding sites in proteins usually involve

multiple coordinating side chains. To evaluate the contribu-

tion of native KCNQ1 cysteine residues to Cd21 block of

MinK-55C channels (and thereby identify potential sites of

intersubunit contact), Tapper and George (2001) mutated the

three cysteines predicted to lie in KCNQ1 transmembrane

spans. Finding the C331A mutation to suppress Cd21 block-

ade, they concluded that KCNQ1-331C and MinK-55C re-

side close together in IKs channels. In contrast, we studied all

nine native cysteines altered individually or as a group

(cysteine-free KCNQ1) and found no support for their role in

Cd21 blockade; we therefore conclude that these sites cannot

serve to localize MinK-55C in IKs channels.

METHODS AND MATERIALS

Molecular biology

The K318I and V319Y KCNQ1 variant studied by Kurokawa and

colleagues (2001) was made available to us immediately by those authors

on our request. These and other mutants of human MinK and KCNQ1 were

produced using the QuikChange mutagenesis kit (Stratagene, La Jolla, CA)

followed by insertion of altered gene fragments into translationally silent

restriction sites, as previously described (Sesti et al., 2000a). All products

were confirmed by automated DNA sequencing. Human MinK (S38

isoform) and KCNQ1 cDNAs were, initially, gifts from R. Swanson (Merck)

and M. T. Keating and M. Sanguinetti (University of Utah), respectively.

cRNAs were synthesized using a mMessage mMachine kit (Ambion,

Austin, TX) after constructs were moved into pRAT (Bockenhauer et al.,

2001) and quantified by spectroscopy and comparison to control samples

separated by electrophoresis and stained with ethidium bromide.

Expression protocols

Oocytes were isolated from Xenopus laevis frogs, defolliculated by

collagenase treatment, injected the following day with 46 nl of sterile water

containing 5 ng KCNQ1 and 1 ng MinK cRNA, and studied 2–4 days

thereafter. Chinese hamster ovary (CHO) cells were transiently transfected

by DEAE-Dextran, chloroquine, and DMSO shock, and were studied 20 h

later, as before (Sesti et al., 2000a).

Electrophysiology

All experiments were performed at room temperature. Whole oocyte

currents were measured by two electrode voltage clamp (Oocyte Clamp,

Warner Instruments, Hamden, CT) with constant perfusion (;1 ml/min,

solution exchange\3 s). Data were sampled at 1 kHz and filtered at 0.25

kHz; if applied, leak correction was performed off-line. Standard bath

solution was ND-96 (in mM): 96 NaCl, 2 KCl, 1 MgCl2, 0.3 CaCl2, and 5

HEPES/NaOH, pH 7.5.

Whole-CHO cell currents were recorded with the Axopatch 200B

amplifier and Quadra 800 computer using Pulse software (HEKA Electro-

nik, Lambrecht/Pfalz, Germany). For noise-variance analysis, data were

stored filtered at 100 kHz on VHS tape (InstruTECH, Great Neck, NY) and

analyzed with ACQUIRE and TAC software (Bruxton, Seattle, WA) and

IGOR software packages (WaveMetrics, Lake Oswego, OR). Data are mean

6 SE. The pipette contained (in mM): 100 KCl, 1 CaCl2, 1 MgCl2, 10

EGTA, and 10 HEPES/KOH, pH ¼ 7.5. In trans-ion experiments, 100 KCl

was replaced with 20 KCl and 80 NMDG. Bath solution was (in mM): 130

NaCl, 4 KCl, 2 CaCl2, 1.2 MgCl2, and 10 HEPES/NaOH, pH ¼ 7.5.

Chloride salts of Cd21 and TEA were used without osmotic compensation.

Data analysis

The voltage-dependence of block was modeled assuming that occupying

a single receptor was sufficient to block. The corresponding energy profile
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was composed of two barriers and onewell following (Woodhull, 1973), with

an internal barrier assumed to be infinitely high, so that blocked current was

I

Imax

¼ Imin 1 Io exp
zð1� dÞeV

kT

� �
; (1)

where e, k, T, and z represent the electronic charge, the Boltzmann constant,

absolute temperature and the charge on the blocker, respectively. Imin is the

value of the blocked current for V ! ‘ and Io is related to the part of the

energy profile that is voltage-independent. d is the apparent electrical distance

and represents that fraction of the voltage drop experienced by the blocker.

Nonstationary noise-variance analysis was performed essentially as

before (Sesti et al., 2000b). Currents and variances were obtained by fitting

with a single Gaussian function all point histograms computed from 50- to

100-ms traces. IKs currents are characterized by slow development and fai-

lure to reach saturation. Currents elicited in the first 100 ms of each test pulse

showed no time delay and were assumed to be non-channel-dependent; these

leak currents and their variances were subtracted. Variance-current rela-

tionships were fitted to

s
2 ¼ � I

2

Nc

1 is:c:I; (2)

where s2 is the variance, I is the macroscopic current, Nc is the number of

channels, and is.c. is the unitary current. Open probability, po, was obtained
according to I/(Ncis.c.).

RESULTS

We have previously reported that IKs channels containing

wild-type MinK and KCNQ1 subunits were insensitive to

Cd21, whereas mutation of MinK position 55 from glycine

to cysteine (MinK-55C) allowed blockade by external (but

not internal) Cd21 (Tai and Goldstein, 1998). This work

begins with consideration of channels formed by MinK-55C

and a KCNQ1 variant with two point mutations, K318I and

V319Y, as reported by Kurokawa and colleagues (Kurokawa

et al., 2001). We find, as they did, that channels with MinK-

55C and the KCNQ1 mutant are blocked by TEA with in-

creased affinity compared to wild-type and that TEA does not

alter the kinetics of Cd21 blockade (not shown). Kurokawa

and colleagues (2001) reasoned that loss of this evidence for

Cd21 block via the pore in mutant channels brought into

question our conclusion that MinK-55C is accessed via the

pore when assembled with wild-type KCNQ1 subunits. In

this study, we sought to evaluate a simple explanation for the

discordant conclusions: that K318I, V319Y KCNQ1 double

mutation changed the attribute under study, that is, the ef-

fects of Cd21, so that studies of the mutant were not germane

(in this regard) to channels with wild-type KCNQ1. First,

MinK-55C channels formed with wild-type KCNQ1 were

compared to channels with the mutant for hallmarks of pore-

dependent Cd21 blockade.

Channels with wild-type, but not mutant, KCNQ1
show voltage-dependent Cd21 block

Charged blockers that bind within a channel pore reveal the

influence of the transmembrane electric field by changes in

magnitude and/or kinetics of inhibition with applied voltage

(Woodhull, 1973). Previously, we found Cd21 inhibition of

channels formed by MinK-55C and wild-type KCNQ1 in

oocytes showed an effective electrical distance across the

voltage drop (zd) of ;0.4 (Tai and Goldstein, 1998).

Here, we compare the voltage-dependence of Cd21 block of

MinK-55C channels formed with wild-type or K318I,

V319Y KCNQ1 subunits transiently expressed in Chinese

hamster ovary (CHO) cells using whole-cell configuration in

the fashion of Kurokawa and colleagues (2001). Although

the application of 5 mM Cd21 inhibits channels with wild-

type KCNQ1 subunits (Fig. 1 A, WT) and those with mutant

subunits (Fig. 1 B, Mutant), blockade of channels with wild-

type KCNQ1 is sensitive to transmembrane voltage (Fig. 1C,
zd¼ 0.366 0.06, from �10 to 40 mV) while suppression of

channels with mutant subunits is not (Fig. 1 D). Failure of

voltage to alter block in the latter case suggests that the

KCNQ1 mutations alter the pathway taken by Cd21, and/or

the location of the Cd21 binding site, and/or the function of

the Cd21-occupied channel.

Trans-ions alter Cd21 block of channels with
wild-type, but not mutant, KCNQ1

Pore blockers (especially those that are charged) are often

affected by ions in the conduction pathway; thus, efflux of

internal potassium, rubidium, and cesium alters external

Cd21 block of channels with MinK-55C and wild-type

KCNQ1 expressed in oocytes (Tai and Goldstein, 1998). The

same effect is observed here with CHO cells: when internal

potassium concentration is lowered from 100 (Fig. 1 A) to 20
mM (Fig. 2 A) by isotonic substitution with NMDG, external

Cd21 blocks MinK-55C channels with wild-type KCNQ1

more effectively, decreasing the fraction of unblocked

current at 40 mV from 0.50 6 0.03 to 0.30 6 0.02 (Fig.

2 C). Conversely, channels with mutant KCNQ1 subunits are

insensitive to altered trans-potassium level (Figs. 1 B, 2 B,
and 2 C; fu ¼ 0.51 6 0.03 and 0.53 6 0.02). Further, the

effective electrical distance for Cd21 block of channels with

wild-type KCNQ1 decreases with lowered internal permeant

ion concentration, from zd ¼ 0.36 (Fig. 1 B) to 0.20 (Fig.

2 D), as expected for a pore-dependent process; in contrast,

block of channels with mutant KCNQ1 subunits remains

voltage-insensitive (Fig. 2 E).

Cd21 block is state-dependent in channels with
wild-type, but not mutant, KCNQ1

Inhibition can be altered by channel state if the path taken by

a blocker (or its binding site) change with gating transitions;

in extreme cases, agents bind significantly in only one state

(Armstrong, 1971; Yellen et al., 1994) or can be trapped in

the channel by a state change (Miller et al., 1987). When the

timecourse for current decline is assessed, channels with

wild-type KCNQ1 and MinK-55C show state-dependent

Cd21 block kinetics whereas those with mutant KCNQ1 do

Cadmium in the IKs Pore 3681
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not (Fig. 3, Table 1). Thus, acute Cd21 application (in oo-

cytes to facilitate long recording sessions) with repetitive

depolarizing test pulses of 2 or 8 s and an interpulse interval

of 11 s reveals channels with MinK-55C and wild-type

KCNQ1 to have a slower apparent Cd21 on-rate and dimi-

nished steady-state block with longer test pulses (Fig. 3 A,
Table 1). This suggests that Cd21 blocks channels with wild-

type KCNQ1 less readily when they are open. Conversely,

block proceeds in a state-insensitive manner for channels

with mutant KCNQ1 subunits (Fig. 3 B, Table 1).

Closure sustains block of channels with
wild-type, but not mutant, KCNQ1

Cadmium unblock was assessed first by cyclical stimulation

in the presence of Cd21 to achieve steady-state blockade,

hyperpolarization to hold channels closed for 3 min after

bath Cd21was removed, and cyclical restimulation in the ab-

sence of blocker: channels with MinK-55C and wild-type

KCNQ1 remained inhibited (Fig. 4 A, arrow) on average by

50% (Fig. 4 B) whereas those with mutant subunits were

fully unblocked (Fig. 4, B and C). Thus, Cd21 appears to exit

closed channels containing wild-type KCNQ1 subunits

slowly compared to those formed with mutant subunits.

State-dependent unblock of channels with wild-type (but

not mutant) KCNQ1 is also apparent when block is achieved

by sustained application of Cd21 to hyperpolarized channels

(Fig. 5). Resumption of cyclical stimulation in the continued

presence of Cd21 reveals slow relaxation to a higher current

level for channels with wild-type KCNQ1 (Fig. 5, A and B);
changes with mutant KCNQ1were either too rapid to discern,

or minimal (Fig. 5, B and C). This may reflect diminished

block with increasing open time, as observed above (Fig. 3).

Finally, removal of Cd21 during continuous stimulation

shows unblock to be slow for channels with wild-type

KCNQ1 (Fig. 5 A, t ¼ 69 6 15 s, n ¼ 4 cells) compared to

those with the mutant (Fig. 5 B, t \ 10 s, n ¼ 5 cells). Of

note, channels with wild-type KCNQ1 that are closed before

removal of Cd21 (Fig. 4 A) show somewhat faster unblock

kinetics (Fig. 4 A, t ¼ 27 6 4 s, n ¼ 5 cells) suggesting that

the two blocked states are not equivalent.

Taken together, these findings suggest that Cd21 enters

and leaves MinK-55C channels containing wild-type

KCNQ1 in a state-dependent manner; Cd21 enters open

channels less readily (perhaps revealing a destabilizing in-

fluence of ions traversing the open pore, in keeping with

trans-ion effects, Fig. 2 C), and acts as if ‘‘locked’’ inside

closed channels. Conversely, Cd21 appears to enter and exit

channels with mutant KCNQ1 subunits in a state-indepen-

dent manner.

K318I, V319Y KCNQ1 double mutation decreases
unitary current

Since the KCNQ1 mutations alter pore block by TEA and the

effects of Cd21 on the channels, other pore-associated attri-

FIGURE 1 Voltage alters cadmium block of

channels with MinK-55C and wild-type (but

not mutant) KCNQ1 subunits. Macroscopic

current families in CHO cells. (A) MinK-55C

and wild-type KCNQ1 (WT) channels in the

absence (left) or presence of 5 mM cadmium

(Cd21) using 4 mM potassium bath solution

and 100 mM potassium solution in the pipette.

Voltage protocol: holding voltage �80 mV

with 6-s steps from �60 mV to 140 mV in 10

mV increments. Interpulse interval, 2 s. Scale

bars represent 0.5 nA and 1.5 s. (B) MinK-55C

and K318I, V319Y KCNQ1 (Mutant) channels

in the absence (left) or presence of 5 mM

cadmium (Cd21) as in A. Scale bars represent

0.5 nA and 1.5 s. (C) Cadmium block of

outward current through channels formed with

MinK-55C and wild-type KCNQ1 is voltage-

dependent, studied as in A; fit to Eq. 1 gives zd

¼ 0.36 6 0.06 (n ¼ 5 cells). (D) Cadmium

block of outward current through channels with

MinK-55C and mutant KCNQ1 is not voltage-

dependent; studied as in B (n ¼ 5 cells).
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butes were evaluated. The mutations produce no apparent

change in selectivity of the channel for potassium over

sodium based on bi-ionic reversal potential measurements;

CHO cells expressing MinK-55C with wild-type or mutant

KCNQ1 show shifts in reversal potential of 53 6 0.2 and 51

6 0.1 mV, respectively, with a change in bath potassium

concentration from 4 to 40 mM (n ¼ 3–8 cells). Conversely,

the mutations do alter unitary current as judged by noise-

variance analysis. This approach is helpful because IKs
channels open only briefly to pass small currents, but it is

limited by failure of the currents to saturate despite

prolonged depolarizing pulses (Sesti and Goldstein, 1998;

Yang and Sigworth, 1998; Sesti et al., 2000b). Channels

formed with MinK-55C and mutant KCNQ1 subunits exhibit

a threefold decrease in the unitary current compared to those

with wild type KCNQ1, is.c. ¼ 0.10 6 0.03 and 0.30 6 0.08

pA, respectively, without significant differences in open

probability (Fig. 6). This suggests the KCNQ1 mutations

change the structure and function of the pore not only to

increase TEA affinity and alter the character of Cd21 block,

but to decrease single-channel conductance.

No cysteine in KCNQ1 is required for
Cd21 block

As Cd21 binding sites often involve the collaboration of

multiple sulfhydryl groups, we interrogated each of the nine

cysteine residues in KCNQ1 through their individual mu-

tation to serine or alanine, and replacement en toto to pro-

duce a cysteine-free subunit. Changing each or all the native

cysteines in KCNQ1 did not relieve MinK-55C channels

from blockade after 3 min exposure to 5 mM external Cd21

(Fig. 7). This screen included two mutants of KCNQ1

residue C331 (see Fig. 7 B, C331S or C331A) and was per-

formed in oocytes, the experimental cells used by Tapper and

George (2001); nonetheless, we were unable to reproduce

their finding of loss of Cd21 sensitivity with mutation of

KCNQ1 C331. This discrepancy was not due to the level of

Cd21 employed, as when oocytes were studied first with 0.5

mM Cd21 and then 5 mM Cd21, the unblocked fractional

current at steady state (5–8 min Cd21 application) for MinK-

55C channels with wild-type KCNQ1 was 0.89 6 0.02 and

0.346 0.02 (n ¼ 7 cells); with KCNQ1-331A it was 0.796

FIGURE 2 Trans-ions alter cadmium block of channels with MinK-55C and wild-type (but not mutant) KCNQ1 subunits. Macroscopic current families in

CHO cells. (A) MinK-55C and wild-type KCNQ1 (WT) channels in the absence (left) or presence of 5 mM cadmium (Cd21) using 4 mM potassium bath

solution and 20 mM potassium solution in the pipette. Protocol: holding voltage �80 mV with 6-s steps from �60 mV to 40 mV in 10-mV increments;

interpulse interval 2 s. Scale bars represent 0.1 nA and 1 s. (B) MinK-55C and K318I, V319Y KCNQ1 (Mutant) channels in the absence (left) or presence of 5

mM cadmium (Cd21); conditions as in A. Scale bars represent 0.05 nA and 1 s. (C) Current inhibition by 5 mM cadmium at 40 mV with 100 mM or 20 mM

potassium in the pipette for groups of six cells studied as in A and B; mean6 SE. (D) Cadmium block of outward current through channels formed with MinK-

55C and wild-type KCNQ1when internal potassium is lowered shows voltage-dependence, studied as in A; fit to Eq. 1 gives zd¼ 0.206 0.03 (n¼ 4 cells). (E)

Cadmium block of outward current through channels with MinK-55C and mutant KCNQ1 when internal potassium is lowered is not voltage-dependent; as in B
(n ¼ 5 cells).
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0.03 and 0.30 6 0.04 (n ¼ 11 cells); and with cysteine-free

KCNQ1 it was 0.88 6 0.01 and 0.33 6 0.03 (n ¼ 9 cells).

Cd21 effects on channels with wild-type MinK in
CHO cells

As previously reported (Tai and Goldstein, 1998), 5 mM

external Cd21 has no significant effect on channels formed

with wild-type MinK and KCNQ1 subunits studied in oo-

cytes (Fig. 7 B). Conversely, as noted by Kurokawa and

colleagues (2001), the same channels in CHO cells show

;11% suppression after just 75 s of cyclical stimulation and

inhibition is not readily reversed on Cd21 removal (Fig. 8 A).
This effect is observed whether the KCNQ1 subunits em-

ployed are wild-type or cysteine-free (Fig. 8 B). The effect is
slow to reverse and insensitive to voltage with both wild-

type KCNQ1 and K318I, V319Y KCNQ1 subunits (Fig.

8 C); it follows that the effect is not a confounding variable

in studies of voltage or trans-ions performed in CHO cells

with MinK-55C channels (Figs. 1 and 2). As in oocytes,

inhibition of MinK-55C channels in CHO cells was readily

recognized by its magnitude and reversibility whether

KCNQ1 subunit were wild-type, cysteine-free, C331S (Fig.

8 B) or C331A (Fig. 8, B and D).

DISCUSSION

A KCNQ1 mutant that alters TEA affinity, Cd21

block, and potassium flux

This study supports the case that external Cd21 blocks IKs
channels formed with MinK-55C and wild-type KCNQ1 in

a pore-dependent fashion. Previously, we demonstrated that

Cd21 block is altered by transmembrane voltage, trans-ions,

and concurrent application of the pore-blocker TEA; we also

found that mutation of position 55 influenced open-channel

pore blockade and selectivity among monovalent cations

consistent with its proximity to the pore (Goldstein and

Miller, 1991; Tai and Goldstein, 1998). Here, we show that

Cd21 appears to enter and exit the channels in a state-de-

pendent manner, and that no native KCNQ1 cysteine residue

is required to achieve Cd21 blockade. Conversely, we ob-

serve none of these pore-associated attributes for Cd21 block

of channels containing MinK-55C and a KCNQ1 mutant

(K318I, V319Y) that binds TEA with high affinity. This

indicates that the K318I, V319Y mutations alter the effects

of Cd21 on the channels. A decrease in unitary conductance

with K318I, V319Y KCNQ1 subunits supports the idea that

the structure and function of the pore are changed by the

mutations. Because these channels do not show pore-de-

pendent Cd21 blockade, pore occlusion by TEA cannot be

expected to influence Cd21 inhibition. It follows that failure

to observe an affect of TEA on Cd21 inhibition of channels

with K318I, V319Y KCNQ1 subunits neither supports nor

contradicts our prior assertion that block of channels with

wild-type KCNQ1 is pore-dependent, or the inference that

MinK-55C is in, or near, the ion-conduction pathway.

FIGURE 3 Cadmium block kinetics are state-dependent with MinK-55C

and wild-type (but not mutant) KCNQ1 subunits. Macroscopic current in

oocytes (mean 6 SE for 8–15 cells). The data are fitted to a single

exponential function, and values are reported in Table 1. Protocol: repeated

steps from �80 mV to 120 mV for 2 s (circle) or 8 s (square) with 11-s

interpulse interval and 2 mM potassium bath solution; the bar indicates

application of 5 mM Cd21. (A) MinK-55C and wild-type KCNQ1 (WT)

channels. (B) MinK-55C and K318I, V319Y KCNQ1 (Mutant) channels.

TABLE 1 Kinetics and steady-state cadmium block with

varied open time

KCNQ1 type OT/CT (s) I‘ Ia t (cycles)

WT 2/11 0.34 6 0.02 0.63 6 0.04 2.2 6 0.3

WT 8/11 0.52 6 0.01 0.46 6 0.02 3.0 6 0.3

Mutant 2/11 0.49 6 0.01 0.49 6 0.03 2.2 6 0.4

Mutant 8/11 0.47 6 0.02 0.52 6 0.04 2.0 6 0.2

The timecourse of cadmium blockade (5 mM) was measured in 8–15

oocytes expressing MinK-55C and wild-type (WT) KCNQ1 or K318I,

V319Y KCNQ1. Currents were elicited with cycles of 2- or 8-s steps from

�80 mV to 120 mV with 11-s interpulse intervals. OT and CT indicate

duration, in seconds, of the depolarizing and interpulse intervals. Data were

fitted to a single exponential function: I‘ 1 Ia EXP(�n/t) where I‘
represents the asymptotic fractional current, n is the cycle number, and t

and Ia are constants.
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One possible explanation for differences in Cd21

blockade with wild-type and mutant KCNQ1 subunits is

that binding occurs at the same location in the two channel

types but that Cd21 travels via different pathways to its

blocking site. Our findings suggest that Cd21 enters channels

with wild-type KCNQ1 via the pore, doing so more rapidly

when channels are closed (perhaps due to the absence of

trans-ion flux), and that changes associated with opening

expedite unblock. Conversely, channels with mutant

KCNQ1 show no significant dependence of Cd21 inhibition

on voltage, trans-ions, or state suggesting pore-independent

access and egress of the blocker. Another possibility is that

KCNQ1 mutation produces an additional Cd21 blocking site

outside the electric field; however, equilibrium inhibition of

channels with wild-type or mutant KCNQ1 subunits is

roughly similar and multiple blocking sites are not suggested

by studies of the mutant. A third possibility is that mutation

alters one site that influences TEA affinity, Cd21 block, and

unitary conductance—a plausible scenario in light of

evidence that TEA and magnesium bind at interacting sites

inside the pore of an inward rectifier potassium channel and

that both agents manifest voltage-dependence due to trans-

membrane movement of permeant ions rather than signifi-

cant entry of the blockers into the electric field (Spassova and

Lu, 1998, 1999). While we favor the notion that Cd21

reaches its blocking site via the pore when channels contain

wild-type KCNQ1 and an alternative pathway with mutant

subunits, our findings do not eliminate the other possibilities,

nor stipulate the location where Cd21 binds.

A puzzling model stands

These results continue to support a pore-associated location

for MinK-55C in IKs channels; this is an unsettling notion for

at least three reasons. First, the microbial potassium-selective

channels visualized at high resolution (KcsA and MthK)

offer little guidance as to how MinK subunits might be ac-

commodated in close proximity to those pores (Zhou et al.,

2001; Jiang et al., 2002). On the other hand, these subunits

have just two transmembrane segments and significant se-

quence variations compared to the pore-forming a-subunits

of voltage-gated potassium channels that may rationalize

assembly with MinK and its relatives. Indeed, structural dif-

ferences are suggested by functional studies of a-subunits

from eukaryotes with two-transmembrane segments (Minor

FIGURE 4 Cadmium-unblock kinetics from the closed state are slow with MinK-55C and wild-type (but not mutant) KCNQ1 subunits. Macroscopic current

in oocytes with 2 mM potassium bath solution. Cells are repeatedly stepped from�80 mV to120 mV for 8 s with an 11-s interpulse interval; 5 mM Cd21was

added (bar) until equilibrium blockade was achieved; cells were then held for 3 min at�80 mV and Cd21washed away; cyclical stimulation was then resumed.

(A) MinK-55C and wild-type KCNQ1 (WT) channels unblock slowly when held closed. (B) MinK-55C and K318I, V319Y KCNQ1 (Mutant) channels
unblock readily when held closed. (C) Fractional recovery from block during 3-min closed period after cadmium washout; as in A and B (arrow) for groups of

six cells.
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et al., 1999) or six-spans (del Camino et al., 2000), as

predicted for KCNQ1.

A second issue is that our ideas about location rest on the

assumption that Cd21 binds directly to the substituted cys-

teine (MinK-55C) rather than some other site. The as-

sumption seems reasonable, first, because Cd21 does not

block channels with wild-type MinK and, second, because

cysteine substitution across MinK yields Cd21 blocking sites

with unique attributes; for example, some substitutions me-

diate block only by external Cd21 while others yield block

only from inside solution (Tai and Goldstein, 1998). Direct

Cd21-cysteine interaction is also supported by observation

that zinc blocks reversibly at the same sites whereas covalent

modification by sulfhydryl reagents produces irreversible

effects (Wang and Goldstein, 1995; Tai and Goldstein,

1998).

A third concern is that Cd21 inhibits channels with

MinK-55C slowly and weakly compared to cysteine-

FIGURE 5 Cadmium-unblock kinetics from

the open state are slow with MinK-55C and

wild-type (but not mutant) KCNQ1 subunits.

Macroscopic current in oocytes with 2 mM

potassium bath solution. Cells are repeatedly

stepped from �80 mV to 120 mV for 8 s with

an 11-s interpulse interval, then held at�80 mV

for 3 min with 5 mM added Cd21 (bar) to

achieve steady-state closed state block; cyclical

stimulation is then resumed in the continued

presence of Cd21 and then on Cd21 washout.

(A) MinK-55C and wild type KCNQ1 (WT)

channels unblock slowly. (B) MinK-55C and

K318I, V319Y KCNQ1 (Mutant) channels

unblock readily. (C) Fractional change in block
after steady-state closed state block is achieved;

and cyclical stimulation resumed; as in A and B

for groups of 4–5 cells.

FIGURE 6 Channels with MinK-

55C and mutant KCNQ1 have a de-

creased unitary conductance compared

to those with wild-type KCNQ1 sub-

units. Macroscopic current families

studied in CHO cells. (A) Representa-
tive variance-current relationships for

cells expressing MinK-55C with wild-

type KCNQ1 (WT, solid squares) or

K318I, V319Y KCNQ1 (Mutant, open

squares) at 40 mV. Curves are best fit of

the data to Eq. 2 with is.c. ¼ 0.27 pA, Nc

¼ 5,000 channels, po ¼ 0.37 for WT;

and is.c. ¼ 0.08 pA, Nc ¼ 14,000

channels, and po ¼ 0.44 for mutant

channels. (B) Unitary current at 40 mV

by noise-variance for MinK-55C chan-

nels with wild-type (WT) or mutant

KCNQ1; each bar represents the aver-

age 6 SE for five cells, and corre-

sponded to po ¼ 0.38 6 0.08 and 0.45

6 0.06, respectively.
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substituted Shaker channel a-subunits, some of which dem-

onstrate on-rates approaching free diffusion (Yellen, 1998).

Slow block kinetics of a pore-associated MinK-55C site

might result from infrequent exposure of MinK-55C in

the pore or slow movement of Cd21 from the pore to a

location adjacent to the ion conduction pathway. It seems

unlikely that Cd21 moves extensively within the IKs chan-

nel complex, because it inhibits channels containing MinK-

54C or MinK-55C only by entering from the outside, and

must be applied from the inside to block those with MinK-

56C or MinK-58C. Weak blockade might result from inter-

action with just one or two MinK-55C residues; indeed, we

have suggested that just two MinK monomers are present in

each IKs complex (Wang and Goldstein, 1995), although

others argue MinK number is variable and can be greater

(Wang et al., 1998).

FIGURE 7 Cadmium blocks chan-

nels with MinK-55C and wild-type

KCNQ1 like those with KCNQ1 sub-

units with altered native cysteine resi-

dues. Macroscopic currents measured

in oocytes with and without 5 mM

cadmium. (A) Cadmium block of

channels formed with MinK-55C and

KCNQ1-C331A in oocytes. Protocol: 5

s pulse to 20 mV from �80 mV every

20 s; current is shown normalized to the

value before cadmium application; in-

set shows indicated current traces. (B)

No native cysteine in KCNQ1 is

required for cadmium blockade of

channels with MinK-55C subunits in

oocytes; protocol as in A, mean6 SE, n

¼ 6–13 cells. Oocytes expressed MinK

or MinK-55C and wild-type KCNQ1

or KCNQ1 with the indicated cysteine

altered to serine (S) or alanine (A). Fraction unblocked current after 3 min cadmium application, normalized to unblocked current level. Values plotted are:

MinK/KCNQ1, 0.976 0.03; MinK-55C/KCNQ1, 0.426 0.05; MinK-55C/KCNQ1-D34, 0.426 0.06; MinK-55C/KCNQ1-C122S, 0.456 0.03; MinK-55C/

KCNQ1-C136S, 0.376 0.05; MinK-55C/KCNQ1-C180S, 0.406 0.03; MinK-55C/KCNQ1-C214S, 0.316 0.04; MinK-55C/KCNQ1-C331S, 0.486 0.03;

MinK-55C/KCNQ1-C331A, 0.44 6 0.03; MinK-55C/KCNQ1-C381S, 0.26 6 0.02; MinK-55C/KCNQ1-C445S, 0.40 6 0.03; MinK-55C/KCNQ1-C642A,

0.436 0.02; andMinK-55C/cysteine-free KCNQ1, 0.456 0.02. KCNQ1-D34 is a native splice variant of KCNQ1 (Sanguinetti et al., 1996) and lacks C34 that

is found in the longer KCNQ1 variant used otherwise in this work.

FIGURE 8 Studies in CHO cells. Macroscopic currents

with and without 5 mM cadmium with a holding voltage

of �80 mV, a test pulse of 5 s to 20 mV and a 10-s

interpulse interval. Macroscopic current families studied

in CHO cells. (A) Cadmium effect on channels with wild-

type MinK in CHO cells: weak and poorly reversible

inhibition whether KCNQ1 is cysteine-free (shown) or

wild-type, B. Plot is current from a cell at the end of a test

pulse; inset shows indicated current traces. (B) Removal

of native cysteines in KCNQ1 does not alter the effect of

cadmium on channels with wild-type or MinK-55C

subunits. Plot is fraction of unblocked current after 75 s

cadmium application, normalized to unblocked current

level (Mean 6 SE), n ¼ 8 cells; MinK/KCNQ1, 0.89 6

0.05; MinK/cysteine-free KCNQ1, 0.88 6 0.02; MinK-

55C/KCNQ1, 0.59 6 0.04; MinK-55C/cysteine-free

KCNQ1, 0.61 6 0.05; MinK-55C/KCNQ1-C331S, 0.59

6 0.04; and MinK-55C/KCNQ1-C331A, 0.51 6 0.05.

(C) Cadmium effects on channels with wild-type MinK

are insensitive to voltage whether channels carry wild-

type KCNQ1 (solid square) or K318I, V319Y KCNQ1

subunits (open square); protocol and plot are as in Fig. 1

C (n ¼ 4–8 cells). (D) Cadmium block of channels with

MinK-55C and KCNQ1-C331A; plot as in A.
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A fourth concern is that these studies are performed with

a MinK mutant (55C) and just as K318I, V319Y KCNQ1

mutations alter Cd21 blockade from that observed with wild-

type KCNQ1, so, too, MinK mutation could alter the channel

in a difficult-to-discern fashion.

If MinK-55C sites do not coordinate Cd21 on their own,

identification of non-sulfhydryl KCNQ1 residues that colla-

borate in binding may offer some answers to these concerns.

Ultimately, direct visualization may be required to address

outstanding conundra such as the trajectory of MinK through

the IKs channel complex, the usual number of MinK subunits

in wild-type channels, and the location where Cd21 binds.
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