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ABSTRACT

Volumetric video (VV) recently emerges as a new form of video
application providing a photorealistic immersive 3D viewing ex-
perience with 6 degree-of-freedom (DoF), which empowers many
applications such as VR, AR, and Metaverse. A key problem therein
is how to stream the enormous size VV through the network with
limited bandwidth. Existing works mostly focused on predicting the
viewport for a tiling-based adaptive VV streaming, which however
only has quite a limited effect on resource saving. We argue that the
content repeatability in the viewport can be further leveraged, and
for the first time, propose a client-side cache-assisted strategy that
aims to buffer the repeatedly appearing VV tiles in the near future
so as to reduce the redundant VV content transmission. The key
challenges exist in three aspects, including (1) feature extraction and
mining in 6 DoF VV context, (2) accurate long-term viewing pattern
estimation and (3) optimal caching scheduling with limited capacity.

In this paper, we propose CaV3, an integrated cache-assisted
viewport adaptive VV streaming framework to address the chal-
lenges. CaV3 employs a Long-short term Sequential prediction
model (LSTSP) that achieves accurate short-term, mid-term and long-
term viewing pattern prediction with a multi-modal fusion model
by capturing the viewer’s behavior inertia, current attention, and
subjective intention. Besides, CaV3 also contains a contextual MAB-
based caching adaptation algorithm (CCA) to fully utilize the viewing
pattern and solve the optimal caching problem with a proved upper
bound regret. Compared to existing VV datasets only containing
single or co-located objects, we for the first time collect a compre-
hensive dataset with sufficient practical unbounded 360° scenes. The
extensive evaluation of the dataset confirms the superiority of CaV3,
which outperforms the SOTA algorithm by 15.6%-43% in viewport
prediction and 13%-40% in system utility.

1 INTRODUCTION

Volumetric video (VV) is an emerging new form of video applica-
tion providing unbound 360° watching experiences in photorealistic
dynamic 3D scenes. Wearing a head-mounted display device, peo-
ple can fully immerse themselves into a virtual 3D video scene and
freely change their positions as well as rotate their heads to watch
the video content from any angle. Compared to traditional 2D videos
and 360° videos [16], VV provides interactivity with 6 degree-of-
freedom (DoF), including three dimensions of position (X, Y, Z)
and three dimensions of orientation (yaw, pitch, roll). With such
experience of full immersion and interactivity, VV is envisioned as
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a killer application of the next generation of videos in the 5G/6G
era, and will empower various multimedia services such as VR,
AR, MR, and Metaverse [14]. The global VV market for industrial
applications is expected to reach 22.5 billion USD by 2024 [26].

Among the several VV data formats such as point cloud [13, 20],
voxel [53], mesh [41], or V-PCC [11], the most popular one is point
cloud given its simplicity, which is composed of vast quantities
of points with 3D coordinates and RGB attributes in a 3D space.
Although VV brings a fantastic viewing experience, a key problem
lies in how to stream VV with high quality of experience (QoE)
given the huge gap between the enormous volumetric video size
and the limited network bandwidth capacity. Taking a common 30
frames per second video as an example, when the number of points
per frame is near 760,000, the bandwidth requirement for a VV is
up to 2.9 Gbps [20].

Pioneer works have made efforts towards this problem in multiple
aspects, i.e., codec [22,44], compression [11], bitrate adaptation [20],
etc. A major direction is viewport prediction and tiling-based adap-
tive VV streaming to reduce the transmitted content. For example,
ViVo encoded tiles into different qualities according to their relation-
ship with users’ viewport, distance, and occlusion and designed a
simple adaptive streaming scheme. Li et al. [20] proposed a saliency-
based algorithm for more accurate tiling. However, though such
viewport adaptive solutions to some extent reduce the transmission
volume, the state-of-the-art (SOTA) streaming systems can only
save 40% of data usage [13] on average. The content within the
viewport still requires large bandwidth resources, leading to poor
QoE, especially under unstable network conditions.

In this paper, we further investigate the VV content features and
watching behaviors with a comprehensive measurement and obtain
a key observation: quite a portion of video tiles will appear in the
viewport repeatedly only with slightly different angle changes, even
across a long timespan. This is easy to understand since the user
can freely navigate the 3D scene, so the attractive objects are more
likely to enter the user’s viewport. Therefore, we, for the first time,
propose a client-side cache-assisted strategy that aims to buffer the
popular VV tiles in the viewport in the near future so as to reduce
the redundant VV content transmission. Achieving this goal is not
straightforward, facing three major challenges: (1) How to extract
and integrate the implicit features in VV for accurate viewport pre-
diction. Compared with 2D video, the spatial complexity and the
6 DoF interactivity in 3D video scenes make accurate prediction
extremely difficult. (2) How to achieve an accurate and long-term
viewing pattern estimation of each tile to maximize the cache hit
ratio. Different from most prediction tasks that only require the next
moment prediction, a Long-short term Sequential Prediction is cru-
cial in the future caching decision. (3) Given the limited client-side
buffer size, how to find the popular VV tiles and optimally determine
the caching policy to reduce the redundant VV transmission and
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achieve a high QoE?

We propose CaV3, an integrated VV streaming framework that
tackles all the above challenges. CaV3 employs a Long-short term
Sequential Prediction model (LSTSP) that achieves hybrid prediction
by integrating the viewer’s behavior inertia, current attention, and
subjective intention. Besides, CaV3 contains a contextual MAB-
based caching adaptation algorithm (CCA) which can fully utilize
the viewing pattern and solve the optimal caching problem with a
proven upper bound regret.The contributions can be summarized as:

• We propose a novel cache-assisted viewport adaptive VV stream-
ing framework CaV3, which, to our best knowledge, is the first
work that leverages content repeatability and client-side intelligent
caching to reduce redundant video content transmission and the
first work to integrate accurate sequential prediction and client-
cache to achieve efficient streaming. Our framework is compatible
with existing bitrate adaptation solutions in VV streaming.

• We propose a Long-short term Sequential Prediction (LSTSP)
model in VV that expands existing 3 DoF viewport prediction into
an integrated temporal 6 DoF prediction. The method allows us to
accomplish tile predictions for a long timespan rather than a single
moment. Through a three-stage multimodal fusion of the viewer’s
gaze trajectory, attention perception, and intention inference, it
not only outperforms the SOTA single-moment prediction for
better performance but also achieves accurate long-term prediction
adapting to VV content dynamics and personal preference.

• We propose a contextual MAB-based caching adaptation algo-
rithm (CCA) which effectively assimilates the short-term, mid-term,
and long-term predicted viewport from LSTSP as prior information
to find the popular VV tiles. It trains a variant of the multi-armed
bandit (MAB) model with delayed feedback, which learns the
optimal mix of three-stage policies using a regret minimization
strategy to make an adaptive client-cache policy under complex
interactions. We prove its vanishing regret over time, which shows
that its cache accumulation is optimal for a long time.

• Different from existing works only considering VV with single
or co-located objects, we collect a new dataset of VV with more
practical unbounded 360° scenes. Extensive evaluations on our
dataset show that our prediction model outperforms baselines
by 15.6%-91.8% and the caching-assisted algorithm outperforms
baselines by 13%-40%.

2 BACKGROUND

Volumetric Video Format: Existing works mainly focused on
two main data formats for VV: 3D mesh [57] or 3D point cloud
(PtCl) [42]. The mesh-based VV uses dynamic polygon meshes
with texture images [4] to store the video component. The mesh
topology builds objects out of a set of polygons with vertices, edges,
and faces, which makes it difficult and costly to initial. VV based
on the PtCl [43] consists of a series of spatial points. Each point
contains space coordinates and RGB attributes. Compared to the 3D
mesh-based algorithm, the 3D PtCl algorithm does not need complex
pre-processing and is more effortless to encode and decode. In this
paper, we mainly focus on PtCl-based VV due to its simplicity,
flexibility and potential for better spatial resolution.

Volumetric Video Streaming System: The enormous VV size
brings a great burden to the network bandwidth for viewer-friendly
streaming. Fortunately, the flexibility in PtCl density change enables
an easy bitrate adjustment, which further offers an opportunity for bi-
trate adaptive VV streaming while ensuring user QoE [1]. Existing
works like DASH-PC and PCC-DASH [47] extend dynamic adaptive
streaming over HTTP (DASH) to VVs and provide bitrate adaptation
support. Pietrangelo et al. [36] propose a streaming framework that
dynamically fetches objects with their level-of-details (LODs). Park
et al. leverage 3D tiling for adaptive volumetric streaming. Further-
more, several existing works [12,60] extend viewport prediction and
tile-based streaming to the VV scenario, which divides the video

PtCl into smaller tiles and only transmits the tiles inside the user’s
FoV (i.e., viewport) with adjusted density or bitrate [35, 47]. For
example, ViVo [13] proposes three visibility-aware optimizations
for video tiles in order to better save bandwidth consumption. Li
et al. [21] consider the high computation complexity of point cloud
video encoding during transmission optimization. Furion [18] uses
cloud-assisted VR streaming with separated foreground and back-
ground. Yuzu [58] utilizes cache for coloring rather than PtCl data
transmission. Previous works try to improve the VV streaming
system from codec, compression, and mostly the tile-based bitrate
adaptive streaming. Different from them, we comprehensively inves-
tigate the content repeatability and the long-short term sequential VV
viewing patterns, and for the first time propose a caching-assisted
framework to improve both the viewport prediction and the stream-
ing efficiency.

3 MEASUREMENT, MOTIVATION AND CHALLENGES

Measurement. Unlike existing synthetic datasets with a single dy-
namic human, we construct a more comprehensive and practical VV
dataset, which to our best knowledge is the first VV dataset that
covers 360° unbounded scenes. More dataset details can be found
in Sec. 7.1. To explore user behaviors under this scenarios, we have
recruited 20 volunteers including 13 males and 7 females with ages
ranging from 19 to 26, and asked them to watch the VVs from our
dataset.Through an analysis of the viewing behaviors together with
the VV contents, we have an interesting finding: the popularity of dif-
ferent objects/tiles are quite diverse and some attractive objects/tiles
will appear in the viewport back and forth only with small angle
shift, even across a long timespan. In other words, some attractive
VV content objects/tiles demonstrate strong temporal repeatability
appearing in the viewport.
Motivation. The key observation on temporal repeatability moti-
vates us to further improve the tile-based VV streaming with PtCl,
i.e., instead of streaming the tiles in the viewport every time, we
cache those tiles with strong temporal repeatability so as to reduce
the later data transmission for the same tiles if cache hits. Note that
we mostly focus on the caching of static objects/tiles (accounting
for more than 78.3% in a VV scene according to our dataset), of
which the tiles generally keep stable only with viewing angle adjust-
ment. Dynamic objects/tiles are also compatible if the incremental
transmission is supported, which is our future work.

Challenges. Achieving cache-assisted VV streaming is not intu-
itive with three key challenges. First, an appropriate VV caching
strategy highly relies on the viewport prediction, which is quite
challenging, especially in the 360° unbounded 3D scenes. On one
hand, the viewport can be quite flexible and dynamic due to the
6 DoF interactivity. On the other hand, people’s viewport can be
affected by multiple impact factors, such as moving inertia, object
saliency, people’s subjective intention, etc. How to extract effective
features from complex information is a key problem. Second, tem-
poral repeatability characteristics in VV call for more accurate and
general sequential viewport prediction even across a long timespan,
rendering the traditional next-moment viewport prediction no longer
enough. The longer term we can predict, the higher caching effi-
ciency we expect to achieve, while such prediction can become much
more difficult. It is also challenging to address this contradiction.
Last but not least, given the limited cache capacity and the dynamic
network resources, how to better allocate the caching resource and
design a caching strategy adaptive to the uncertain user behaviors
and network dynamics, remains a challenging problem.

We further propose CaV3 to address the challenges above, which
include a Long-short term Sequential Prediction model (Sec. 5) and
a contextual MAB-based caching adaptation algorithm (Sec. 6). We
will describe it in later sections.
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(a) Different resolutions (b) Adaptive Bitrate Allocation

Figure 1: Different resolutions and user’s viewport

4 FRAMEWORK DESIGN OF CAV3
In this section, we formulate the VV streaming problem with QoE
and bandwidth consumption modeling. We then introduce the overall
framework of CaV3.

4.1 Problem Formulation
We first perform fine-grained tiling of all frames in the dataset,
dividing the PtCl into small 3D blocks with a size of L × L × L and
dividing into T groups of frames (GoFs) with 10 frames each group.
Since the video content does not change much during a single GoF
time. We assume the number of tiles is the same in a GoF. VVs
are encoded into different resolution versions (Shown in Fig. 1(a))
according to the user’s network condition.

For the user, his/her QoE depends on the quality of the video
with the viewport. We define FoV as δt . We define the following
indicator matrix AAAt,n for each GoF t:

AAAt,k =

{
1, if tile k is within the viewport

0, if tile k is out of the viewport
(1)

where AAAt,k means the high-quality tile k in FoV in GoF t. We
use peak signal-to-noise ratio (PSNR) for PtCl [37] to denote the
average video quality, So we can use at,k = ∑t ∑k

(
PSNRt,k×AAAt,k

)
,

and bt,k = ∑t ∑k
(
PSNRt,k× (1−At,k

)
to denote QoE of high and

low quality tiles. Thus, we can define the QoE at GoF t as

Ut =
at +βbt

∑k AAAt,k
(2)

The QoE has a proportional relationship between how many tiles are
in FoV and their quality. The parameter β is the discount factor as a
penalty for changing the resolution.

The bandwidth consumption between the client and content server
comes from two quality video tiles. The bandwidth caused by high
quality is from requesting video tiles. The bandwidth caused by low
quality is all low-quality tiles in the video. Thus, the bandwidth
consumption can be defined as:

Bt = H1(St+1−St)+H2(Lt+1) (3)

where H(.) is the function to calculate the bandwidth consumption
caused by the inputted tiles ID. St+1 is the set of tile ID within the

predicted FoV ˆδt +1. , Ct is the tile ID that has been cached in GoF
t and triggers cache hit in GoF t+1, Lt+1 is the set of tile ID without
the predicted FoV δt +1.

The objective of the cache manager is to optimize the system
performance,i.e., maximize the QoE and minimize the bandwidth
consumption, by finding the best cache policy S, and best on. Thus,
the utility of this problem can be formulated as:

utility :max
T

∑
t=0

(Ut −βBt) (4)

Sec. 5 shows that the prediction of the the future trajectory
using LSTSP can improve the QoE of the system. Sec. 6 takes

Figure 2: The Framework of CaV3

the obtained prediction sequences and uses the CCA algorithm to
complete the cache adaptation, which ensures that we reduce the
bandwidth consumption at a fixed QoE.

4.2 The Framework of CaV3
Our key idea for optimizing framework performance is to have better
prediction accuracy and leverage client cache to reduce bandwidth
consumption. Therefore, based on the VV streaming system in
Background, we propose CaV3 (Shown in Fig. 2) which consists of
two main modules: a Long-short term Sequential Prediction model
LSTSPthat obtains an accurate 6 DoF prediction in a complex en-
vironment and an efficient cache adaptationalgorithm CCA that can
assess the priority of each tile and heavily reduce the bandwidth con-
sumption. We evaluate elaborate investigations on potential factors
for viewport prediction. Important sensory input from the fovea’s
ability to see minute details can guide the human agent’s future
behaviors when it is controlled by foveal fixation, or alternatively,
eye gazing [46]. The viewport movement is also highly correlated
with video content, including the scene feature and salient agents.
Motivated by these, as shown in Fig. 3, we propose a Long-short
term Sequential prediction model (LSTSP) including a three-stage
prediction pipeline, which fuses user viewport trajectory, agents
trajectories, 3D gaze (intention), and scene feature. Then we adopt
an online learning algorithm called Passive-Aggressive (PA) to adapt
to personalized preferences.

The procedures of the framework can be summarized as Fig. 2:

1. We segment each frame into tiles with the same granularity and
encode them into different resolution versions (As in Fig. 1(a)).

2. Based on results from the Long-short term Sequential Predic-
tion model. CCA calculates the cache priority of each tile and
sets the cache policy. The client will request high-quality tiles
within the predicted viewport and low-quality tiles out of the
viewport (Shown in Fig. 1(b)).

3. If the requested tiles are in the client cache, return them. If not,
delayed feedback will be sent to CCA (Discuss in Sec. 6).

4. Prefetched tiles in GoF are stored in the local buffer. Then play
and render them.

5 LSTSP: LONG-SHORT TERM SEQUENTIAL PREDICTION
MODEL

Our main content in this section is to propose a Long-short term
Sequential Prediction model LSTSP, which consists of history-based,
attention-based, and intention-based predictions, and to explain each
of these three prediction methods in detail, and finally fuse, integrate
the three-stage predictions to generate the predicted short, medium
and long term viewport and adapt using an online learning approach.

It not only extracts the prediction sequences to provide cached
content for cache adaptation, but also effectively maximize QoE Ut .

5.1 History-based Prediction
During watching volumetric videos, the user’s movement is rela-
tively smooth most of the time. Next motion is essentially a temporal
function of user movement, which is quite correlated with the user’s

175

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 29,2024 at 19:08:55 UTC from IEEE Xplore.  Restrictions apply. 



Figure 3: The Structure of LSTSP

historical trajectory under the effect of inertia. Time-series model
is effective for short-period prediction within 0.5s [30]. Therefore,
we leverage LSTM, an efficient and lightweight model, to predict a
series of user’s viewport (x,y,z,P,Q,R).

HT :T+t = LSTM(HT−1,HT−2, . . . ,HT−n) (5)

where HT−1 represents user’s viewport (x,y,z,P,Q,R) at time T −1,
given user’s previous 100 time steps (totally 2000ms) viewport and
the model will outputs (xt+1,yt+1,zt+1,Pt+1,Qt+1,Rt+1), the user’s
viewport at the next predicted time step, then a series of future view-
port HT :T+t as sequential prediction from T to T + t. However, the
accuracy decreases as time increases. The viewport trajectory can
be unstable. The viewer may move and rotate drastically under the
impact of saliency-informed agents and the generation and vanish-
ment of intention [40]. For the sake of better prediction accuracy,
we design methods introduced in Sec. 5.2 and 5.3.

5.2 Objective Attention-based Prediction
For VV, a kind of 3D dynamic scene, the actionable spatial repre-
sentations are be divided into objects (time-invariant physical) and
agents (time-variant physical) [39]. The content of the video influ-
ence the viewport prediction. Inspired by related works [6, 46,55]
in autonomous driving, we found that the content grabs the user’s
saliency and attention. For example, depending upon his/her per-
sonal choice, the viewer may want to follow his/her favorite player
or might be interested in the whole soccer field range. The viewport
of the viewer follows the dancer closely as the dancer moves around.

In conclusion, the attention-based method has the potential to
perform high prediction accuracy. We claim that the viewport of
the viewer is likely to follow or with great potential to follow the
movement trajectory of the prime objects in the video, depending
upon the user’s personal choice. This is a prediction based on
objective scenarios. For a VV, we adopt object detection, activation,
deactivation and tracking in preprocessing procedures to get the
agents’ trajectories.

Tracking agents essentially involves tagging them and assigning
the same ID to agents in successive frames. We apply GF3D [27],
the most advanced object detection network for PtCl, to detect the
position and shape of saliency objects. For each agent Oi, its position
trajectory from T to T + t can be described as a series of position
(xT ,yT ,zT ), (xT+1,yT+1,zT+1), · · · (xT+t ,yT+t ,zT+t). For the sake
of simplicity, we represent the middle point of 3D agents as its
position. We get the object’s trajectory following the procedures:
Find the active agent Oactive

j , such that:

diff(Ocurrent
i ,Oactive

j )<= diff(Ocurrent
i ,O)∀O ∈ Oactive

diff(Ocurrent
i ,Oactive

j )<= diff(O′,Oactive
j )∀O′ ∈ Ocurrent

(6)

where Ocurrent is the sequence of agents detected in the current
frame, Oactive is the sequence of active agents up to the previous
frame. Assign the Ocurrent

i with the same ID as the active agent.

Activate New agent. If an agent Ocurrent
i in the current frame has

not been assigned any existing active object, it shows that it appears
for the first time in this video. We assign the agent a new ID and set
Oactive = Oactive ∪{

Ocurrent
i

}
Deactivate Old Objects. If an active agent Oactive

k is not assigned
to any new agent in the current frame, it means that either the agent
has disappeared or it went undetected. If the number of consecutive
frames for which the object is not assigned any new agent crosses a
heuristic threshold of 30 , we declare the agent to have disappeared,
and we set Oactive = Oactive −{

Oactive
k

}
.

Object Trajectory. For 3 DoF Rotational Movement Prediction,
the rotation caused by object i is varying to the viewer’s current
position (xt ,yt ,zt), object i’s current position (xt,oi ,yt,oi ,zt,oi). The
unit quaternion (qx,qy,qz,qw) represents the rotations of objects in
3D space. With the quaternion of the viewer known, we calculate the
unit quaternion from the user’s perspective to the object’s perspective
and convert into (P,Q,R). Hence we get the trajectories of each

agent: ∑Nob j
i=1 Oi;T :T+t , where Oi;T :T+t = ((xi,yi,zi,Pi,Qi,Ri)T :T+t

5.3 Subjective Intention-based Prediction

5.3.1 Prediction Problem Formulate

Scene understanding is one of the most essential aspects of inten-
tion prediction that has not been explored by prior VV systems.The
global and local features of the video scene influence the viewer’s
tendency to act intentionally. To fully utilize the geometry informa-
tion from the 3D scene and intention indications from past motions
and 3D gaze for viewport prediction, we present an architecture with
a bidirectional fusion model that facilitates communication between
different modalities. This is a paradigm for making predictions
based on subjective intentions. Followed by a variety of cross-modal
transformers to transcend information from multi-modality embed-
dings. We employ PointNet ++ [37] as the encoding backbone to
extract per-point scene features.

We represent viewport trajectory sample as a parametric sequence
Vi: j =

{
vi,vi+1, · · · ,v j

}
where vk = (xk,yk,zk,Pk,Qk,Rk) is a view-

port sequence at time k. The 3D scene is a point cloud S ∈ Rn×3,
and the 3D gaze point g ∈ R3 is defined as the intersection loca-
tions of the gaze direction and the 3D scene. Given the a series of
history viewport trajectories V1:t , the corresponding 3D gaze infor-
mation GT−n:T−1 = {gT−n,gT−n+1, · · · ,gT−1} and the 3D scene S,
we aim to predict the future viewport trajectory from T to T + t:
VT :T+t = Φ(VT−n:T−1,GT−n:T−1,S | θ) where θ represents the net-
work parameters, Φ represents the cross-modal transformer.
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Cross-modal transformer. The cross-modal transformer [15] is
used to capture the interplay of several elements and to establish
communications among the multi-modal information. It is largely
based on attention mechanisms [48]. The attention function [15]
corresponds to a query and key-value pairs to output as:

Attention(Q,K,V ) = softmax

(
QKT
√

dK

)
V,

Q = qWq,K = kWk,V = vWv

(7)

where d denotes the dimension of the input vector, l is the sequence

length, q ∈ Rlq×dq ,k ∈ Rlkv×dk ,v ∈ Rlkv×dv are input query, key and

value vectors, and three types of weights matrix Wq ∈ Rdq×dK ,Wk ∈
Rdk×dK ,Wq ∈ Rdv×dV are used to project the omput modality se-
quence into a different representation subspace. The cross-modal
attention block consists of eight multi-head cross-modal attention
layers, as depicted in Fig. 3. Each input sequence of ti length into a
tq length output by querying a tq length feature. We denote cross-
modal transformer as ℜ. It is also efficient in fusing other multi-
modal signals like audio, which has the potential to predict users’
future viewport.

5.3.2 Feature Extraction

By inputting sequences of multimodality features, various modalities
are processed by the Modal Fusion Cores, resulting in a collection
of fused modalities. Instead of extracting the multi-modal features
independently [19], we propose a pipeline to overall integrate the
history viewport feature, 3D gaze feature, and scene features, which
enhances the communication between motion and gaze features, so
their future uncertainties can be mutually decreased, resulting in
more utilization of the gaze information.

Scene feature extraction. To learn the constraints information (e.g.
the surface and topology of furniture) from the 3D scene and retrain
the network to pay attention to local geometric structures, we apply
PointNet ++, one of the most effective PtCl backbones, to extract
both global and local scene features. Specially, we derive the per-
point feature map and a global descriptor of the scene as follows:

FP,Fo = Φscene (S | θs) (8)

where S ∈ Rn×3 is the input point cloud, FP ∈ Rn×dp is the per-point

dp dimensional feature map, and Fo ∈ Rdo is the global descriptor of
the scene. Given the per-point feature FP, the feature of an arbitrary
point e can be computed through the inversed distance weighted
interpolation [37]:

FP|e =
∑ne

i=1 wiFP|pi

∑ne
i=1 wi

,wi =
1

‖pi− e‖2
(9)

where {p1, p2, · · · , pne} are the nearest neighbors of e in the scene.

Gaze feature extraction. The gaze point feature fg is then retrieved
from the per-point scene feature map FP using Eq. 9, i.e., fg =
FP|g. Consequently, the interpolated gaze feature with corresponding
scene information provides indications to infer the intention.

Viewport feature extraction. A linear layer is used to extract
the viewport feature embedding fm from multidimensional viewport
information input. The viewport is well-aligned with the video scene.
To endow the feature awareness of the 3D scene, we further query
the scene features with the viewport features using Eq. 9. These
viewport-related scene features are then supplied to PointNet++ to
get the contextual scene context feature fm−v of the current viewport:

fm−v = PointNet++(FP|v) (10)

5.3.3 Multimodal Feature Fusion
In lieu of directly concatenating the features, which would bring
modalities features redundancy and impair the prediction accuracy
[23], we propose a model by deploying a cross-modal transformer
[29] to fuse the gaze, viewport, and scene features (Fig. 3).
Feature fusion. As an intermediary element, the viewport features
strive to be cognizant of the 3D scene features and the subject’s
intention inferred from the gaze features. First, we utilize the scene
feature fm−v acquired from the 3D environment (Eq. 10) as the query
to update the viewport feature fm in viewport-scene transformer.
Then, the output viewport embedding fm−s is expected to be aware
of the 3D scenewhich results in the final viewport embedding fm−g.
Inspired by [59], we handle the gaze embedding in a bidirectional
manner, i.e., the viewport embedding fm is also utilized as the query
to update the gaze features into fg−m. The bidirectionally fused
multi-modal features are then assembled into holistic temporal input
representations to perform human viewport prediction. As shown
in Fig. 3, the updated gaze feature fg−m, viewport feature fm−g and
the global scene feature FO are used to predict the future viewport
trajectories from t to T by:

VT :T+t = ℜ
(

hpos,concat
(

fg−m, fm−g,FO
)

T−n:T−1

)
(11)

where concat denotes operator of concatenation, and hpos is the latent
vector containing temporal positional encodings for the output [37].
Experiments validate the effectiveness of our design in utilizing
gaze, 3D scene and previous viewport trajectories.

5.4 Model Fusion: Passive-Aggressive Regression
The efficiency of each step of a three-stage prediction might vary
greatly depending on the setting and the user’s preferences. The
learning job must be rapid, precise, and online, and it should progres-
sively update the model weights in order to quickly adjust to user
choices. Therefore, we execute a lightweight Passive-Aggressive Re-
gression model that integrates the results of three-stage and outputs
a series of (x,y,z,P,Q,R) future viewport sequences.

The above set of intermediate viewports obtained is fed as an
input to the Passive-Aggressive Regression model.

General Model Definition: Passive-Aggressive Regression [7] is
an efficient online learning regression algorithm that computes the
mapping f :Rn→R, f (x;θ) = θ T x where, parameters θ , predictors
x ∈ R

n. The algorithm uses the Hinge Loss Function, given by:

L(θ ,ε) =max(0, |y− f (xt;θ)|− ε) (12)

where y is the actual value of the response variable. The parameter
ε determines a tolerance for prediction errors. The weight update
rule for PA Regression is:

θ t+1 = θ t +α
max

(
0,
∣∣yt −θ T xt

∣∣− ε
)

‖xt‖2+ 1
2C

sign
(

yt −θ T xt
)

xt (13)

We run Passive-Aggressive Regression model that predicts the 6 DoF
viewport (X ,Y,Z,P,Q,R) for the next set of GoF (see Fig. 3). Along
with the history viewport, the model uses the object trajectories that
were pre-calculated by object detection, and object tracking and
predicted viewport from multimodal fusion. The equations for the
predictions in a future chunk of viewports T to T + t are given by:

FT :T+t = θ0+θH ·HT :T+t +
Nob j

∑
i=1

θi ·Oi;T :T+t +θV ·VT :T+t (14)

where FT :T+t is the predicted sequential viewports from LSTSP,
HT :T+t is the predicted viewport obtained from history-based model
for GoF f , Oi;T :T+t is the space coordinates and calculated rotation
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of the ith object, VT :T+t is the predicted viewport obtained from
intention-based model from T to T + t, and θ0;T :T+t ,θH , θi;T :T+t ,

θV are bias and corresponding parameters of each model. ∈ Rt· f ps

For Eq. 14, we get the contribution of each stage in the predic-
tion. For example, the contribution of object trajectories at frame f
are ∑Nob j

i=1 θit ·OTi f . When the next chunk of point cloud frames is
rendered in the video streaming, the current set of user viewports is
obtained, and the weights of each part of the Passive Aggressive
Regression model are updated using the predicted and actual values
of viewports as per the update rule in Eq. 13.

Especially, having obtained the sequential viewport, we extract
short, medium and long-term predicted viewport for time T as cache
policy for CCA. The calculation process can be is given by:

Fshort
T+n =θ0+θH;T+n ·HT+n +

Nob j

∑
i=1

θi;T+n ·Oi;T+n +θV ;T+n ·VT+n

Fmed
T+3n =θ0+θH;T+3n ·HT+3n +

Nob j

∑
i=1

θi;T+3n ·Oi;T+3n +θV ;T+3n ·VT+3n

Flong
T+5n =θ0+θH;T+5n ·HT+5n +

Nob j

∑
i=1

θi;T+5n ·Oi;T+5n +θV T+5n ·VT+5n

(15)
where FT+n is the predicted single-point viewport at time T +n, n
represents the value of time segmentation. In this paper, we assume
n = 1s.

6 CCA: CONTEXTUAL MAB-BASED CACHE ADAPTATION

In Sec. 5, we get the sequential predicted viewport and extract the
predicted viewport of short, medium and long term, which have
one-to-one correspondence caching policy. Based on three time-
varying policies, We propose the CCA algorithm, a variant of MAB
with delayed reward, whose goal is to minimize the number of
cache misses under limited cache capacity and thus minimize the
bandwidth consumption Bt . We show its upper bound and prove its
regret vanishes over time.

6.1 Background and Motivation of CCA
In our scenario, classical algorithms such as LRU and LFU and ex-
isting adaptive algorithms like ARC [32]perform poorly. The most
adaptive algorithm assumes that the best strategy at a given time is a
probabilistic mix of the two policies (LFU/LRU). Among the recent,
the SOTA adaptive cache replacement algorithm LeCaR [51] using
Multi-armed bandit(MAB) to learn the optical probabilistic mix
outperforms ARC by 18x. Their performances are highly limited
because of viewport shifting. So we introduce the CCA, an enhanced
adaptive cache adaptation algorithm based on MAB. The enhance-
ment mainly lies in three aspects, including (1) We address viewport
shifting using the predicted viewport from LSTSP as a cache strategy.
We assume the best cache strategy is a probabilistic mix of short,
medium and long-term policy and learn the optimal mix using a
regret minimization strategy. (2) If an evicted item is requested
immediately after its eviction, the regret is much higher [9], which
assumes the cost decreases with increased delay. So we introduce a
delayed feedback module (3) One of the main drawbacks of LeCaR
is its fixed learning rate. We give a theoretically adaptive optimal
learning rate to improve its performance.

6.2 Cache Adaptation Problem Formulation
For cache replacement problems, each expert represents a distinct
cache replacement policy, which advises cache and evicts when
reaching the cache size. When playing the VV GoF of t, three
experts (short, medium, long term prediction model) are consulted.
From their three-stage predicted FoV for t + 1, tiles within the

Figure 4: The Structure of CCA

FoV will be cached, and tiles out of the FoV will be evicted. The
probability of each tile depends on the three-stage FoV and their
weights. Without scene-cut, the number of tiles is stable, and the
content of nearly 90% of tiles does not change. The recorded newly
activated and deactivated tiles will be empty. Assume there are K
tiles in the video scene.

If no prior knowledge is available about the experts, CCA initial-
izes by assigning equal weights. Thus, wi(1) = 1, i = 1, . . . ,N. The
probability, p j(t), of picking cache action for tile j = {1, . . . ,K} in
GoF t is proportional to the sum of the weights of the experts that
recommend action j. If more experts recommend an action, that
action will have a higher probability to be chosen by the algorithm.
This is interpreted as exploitation the information accumulated by
the learning algorithm so far. If the player chooses to explore with a
random action, the algorithm will choose an action randomly from
the available tiles. The probability can be summarized by Eq. 16:

p j(t) = (1−η)
N

∑
i=1

wi(t)×ξ j
i (t)

Wt
+

η
K

(16)

where η is the learning rate, wi(1) = 1, i= 1, . . . ,N, Wt =∑N
i=1 wi(t),

and ξ j
i (t) is the probability of choosing action j by expert i at GoF t.

The learning rate η controls the amount of exploration and exploita-
tion at each GoF. If the learning rate is too high, the algorithm will
explore more and exploit less. Feedback on the eviction comes in
the form of a cache miss(extra), but at an indeterminate time after
the action is taken, and the cost of the eviction is set to be inversely
proportional to the response time.

We assume that in GoF t, the vector of values of the cost function
for each cache action are denoted by x(t) = (x1(t), . . . ,xK(t)), where
x j(t) ∈ [0,1]. The main objective of the CCA is to minimize the
regret (minimize bandwidth consumption) over a T GoFs. The
cumulative cost after T GoFs for the best strategy is given by:

Cbest (T ) = min
1≤i≤N

T

∑
t=1

ξi(t) ·x(t) (17)

which assumes that the best of the N expert recommendations are
followed in each GoF. Also, the cumulative cost incurred by CCA
selecting action a(t) in t GoF is given by:

CCCA(T ) =
T

∑
t=1

ξ (t) · xit (t) (18)

To measure the performance of adaptive learning algorithms,
regret can be defined in terms of the cumulative difference between
the costs of the best strategy in each step and the algorithm in
consideration. Thus, the regret RCCA(T ) of algorithm CCA after GoF
T can be calculated from:

RCCA(T ) =Cbest(T )−CCCA(T ) (19)

The main objective of any learning algorithm is to minimize the total
regret over time while ensuring it vanishes over a long time horizon.
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In other words, It aims to minimize the number of cache misses thus
minimizing bandwidth consumption.

When feedback is non-zero, the weights of the experts get updated.
A feedback is generated at GoF t, triggered by an action, it ′ , taken
back in GoF t ′. As the delay in feedback, t−t ′, increases, the relative
cost of the chosen action decays. Since regret is proportional to cost,
the weights of experts who chose the action it ′ are decreased using
the estimated cost value observed at GoF t. The estimated cost is
calculated as:

x̂it (t) =
xit (t)

d× pit (t)
(20)

In summary, the pseudocode of our cache adaptation algorithm is
shown in Algorithm 1.

6.3 CCA Algorithm
In conclusion, the CCA algorithm is formulated in Algorithm 1: Fi-

Algorithm 1 The CCA Algorithm

Input: Request sequence, σ ; Cost vectors, x(t); Learning rate,
η ∈ (0,1]; Cache size, h; Number of tiles, K; set of experts
= {Short,Medium,Long}; Number of experts, N;
for t = 1,2, ... to T do

while Existing cache ≤ Cache Size h do
Obtain expert advice ξ1(t), . . . ,ξN(t) for request σ(t);
Cache tile j ∈ {1, . . . ,K} with prob,

p j(t) = (1−η)∑N
i=1

wi(t)×ξ j
i (t)

Wt
+ η

K
end while
for i = 1, · · · ,N do

x̂it (t)=

{
xit (t)

d , if it ′ = j and σ (t ′) is in history in position d
0, otherwise

wi(t +1) = wi(t)exp
(−η x̂(t)·ξi(t)

K

)
end for

end for

nally, we would like to draw a conclusion on the performance of
the generic CCA algorithm. As with other RL algorithms, we for-
malize the regret bound for CCA. Based on the proof of the previous
MAB-based caching method [2, 52, 56], we theoretically guaranteed
to have vanishing regret over time.

Our method is not necessarily restricted to short, medium and
long-term policy. In Theorem 1, we prove the upper bounded of CCA
for any policies and tiles of any positive number.
Upper Bound of the vanishing regret:

Theorem 1. For any K,T > 0, for any learning rate, η ∈ (0,1], for
any family of N experts, and for any assignment of arbitrary costs
decaying with delay d, the expected regret of the algorithm can be
upper bounded by: RCCA(T )≤ 2ηT + K lnN

η .

The Proof of Theorem 1 is available in the supplementary material.
Selecting the optimal learning rate for vanishing regret:

One of the main drawbacks of MAB-based cache replacement is
its fixed learning rate. Theorem 1 shows that cumulative regret is a
function of the learning rate. We argue that picking the right learning
rate can minimize regret and ensure that it vanishes. We differentiate
the above quantity and set it to 0. Thus the equation, R′CCA(T ) =
2T − K lnN

η2 = 0, gives us the optimal value of η as follows:

ηOpt =min

(
1,

√
K lnN
2T

)
(21)

Finally, plugging this back into the upper bound gives us the fol-

lowing regret bound:RCCA(t)≤ 2
√

2KT lnN. As T → ∞, the regret
bound vanishes with the time horizon.

Figure 5: (a) Movement of agent. (b) A series of sequences of
woman’s movement. (c) are the layout in the room in VV.

7 EVALUATION

7.1 Dataset

Dataset overview. Limited by capturing techniques, existing dy-
namic PtCl datasets [3, 17] use a single or co-located synthetic 3D
object/person (e.g. loot and longdress), which lack authenticity and
expression and restricts people’s viewport to a limited range. To this
end, we construct a more comprehensive and practical VV dataset.
It achieves unbounded 360-degree scenarios with five daily scenes ,
eight sets of dance moves and 1-4 moving agents in each VV. Human
interaction in social XR settings are dipicted. As shown in Fig. 5,
it provides ten kinds of intention-scene relation. It provides data
including gaze, scene, and tracking trajectories. We collect tracking
data from twenty people under different settings. In summary, our
dataset is more enjoyable, interactive, and realistic.

Dataset setup: We convert existing dynamic 3D models into dy-
namic PtCl sequences. For example, we collect the joint capture
data of several dance sequences, fit them into the SMPL model [28]
and convert it into dynamic PtCl, which averagely takes 17MB/s
per agent. We then combine them with the existing scene dataset
Scannet [8], Sunrgbd [45], animate and render the VV in Unity
and Blender to produce scenes containing different interior layouts,
different objects, and agents that move with different patterns in the
scenes. Having areas ranging from 2.5 × 2.5m2 to 7 × 7m2 with a
height of 3.5m. Viewers freely watch and explore these one-minute
videos. The 6 DoF information is recorded every 0.01s.

Dataset capture: The gaze and head tracking data are measured by
VIVE Pro Eye1, a VR headset with precision eye tracking. VIVE
provided SRanipal software development kit (SDK)2 for developers
to collect the gaze data. We develop a Unity project based on
OpenVR3 and OpenXR4 to capture and save to a log file gaze data
and head tracking data from the headset.

7.2 Setup and Baseline

Model Setup: The implementation of the prediction model and
cache management is based on Python and Pytorch. We build our
pipeline by incorporating 6 cross-modal transformer layers to ex-
tract 256 dimension gaze and viewport features. We adopt L1 loss
between the predicted viewport and the ground Truth, Adam opti-
mizer and learning rate 1e−5. The head number of each multi-head
cross-modal attention and self-attention is 5. For cache adaptation,
the learning rate is from the proof in Sec. 6.2. We set each video
chunk to be 1s and the buffer capacity to be 5 seconds.

Communication and Computational Resource: In the experi-
ments, two typical real wireless network traces, denoted as BW1 and
BW2, are selected with average downlink rates of about 40 Mbps
and 120 Mbps, respectively. We assume that the decoding process

1https://www.vive.com/us/product/vive-pro-eye/overview/
2https://developer-express.vive.com/resources/vive-sense/
3https://github.com/ValveSoftware/openvr
4https://www.khronos.org/openxr/
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Figure 6: (a) Average utility value over different number of agents, and (b) over different scene size
schemes(c) Average QoE over different tiling granularity,

Figure 7: Maximal streaming times
over different scene size schemes.

Figure 8: Average MAEA for view-
port prediction

Figure 9: Attention-based prediction
over different numbers of agents

Figure 10: Intention-based predic-
tion over different scene schemes

Figure 11: Average contribution of
each part in prediction model

can be multithreaded. The whole pipeline is running on a high-
performance laptop with GTX 1660 Ti GPU, Intel i7 9750H CPU,
and 32GB memory. The number of CPU cores owned by the client
is assumed to be 2 (denoted as NC1) and 4 (denoted as NC2), which
reflects the different amounts of computational resources available.
Baseline: We compare CaV3 with systems and algorithms below.
• ViVo [13]: an integrated streaming system adopting visibility-

aware optimizations. It determines the density of PtCl to fetch
based on the viewer’s perception. The bitrate selection scheme is
assigned homogeneous bitrate to the content within the viewport.

• Saliency tiling (ST) [20]: A saliency-based tiling method that
achieves VV streaming with high viewer’s QoE. It calculates the
saliency value of the cells and derives a tiling optimization for
joint computational and communication resources.

• VolParima: We extend the key idea of Parima [5] into VV. It
adopts a pyramid prediction algorithm using both LSTM and
video content to predict and Passive-Aggressive to adjust.

• Rate Utility Optimized Streaming (RUOS) [35]: It utilizes a rate-
utility greedy heuristic optimization to allocate bitrate and adopts
a non-learning statistical approximation method to predict.

• LRU/LFU [31, 34]: The least recently/frequently used cache is
evicted when reaching the cache’s capacity limit.

• ARC [32]: It keeps track of both frequently used and recently
used pages plus a recent eviction history for both.

• LeCaR [52]: It models cache replacement as a MAB problem and
explores online learning with variants of MAB.

7.3 Evaluation Result
In this part, we explain our experimental results. From the perspec-
tive of the dynamic and static states, we analyze the impact of the
number of agents and different scene sizes. Our goal is to examine
the effectiveness of the whole framework, prediction model, and
cache adaptation algorithm and analysis.

7.3.1 Long-Short Term Sequential Prediction Performance
We evaluate LSTSP against ViVo, VolParima and transformer-
based Vanilla-TF (VTF) [49]. We also do the ablation study
to compare the contribution of each part of our framework.
Prediction Accuracy: We can use the Average Mean Absolute
Error Angle (MAEA) of the 3 DoF rotation prediction. As shown in
Fig. 8, our CaV3 reduces MAED by 15.63%, 23.56%, and 40.12%
compared with VolParima, ViVo and VTF, which demonstrates that

our model can fuse our three-stage models, learn user’s preference
and achieve a higher prediction accuracy.
Ablation Study: We then compare each part contribution of the
model: history-based (H), saliency-based (S), intention-based (I),
and its corresponding ablation study include: without gaze (w/o g),
without PointNet ++ (w/o p) and without cross-modal transformer
(w/o mm). It proves that each part has a positive contribution. The
gaze and scene understanding is well utilized and helpful to the
task. It can be seen from Fig. 11 that CaV3 can effectively fuse
the information, adjust the parameter according to preference and
achieve better accuracy.

7.3.2 CCA Performance
We evaluate CCA against LRU, LFU, ARC, and LeCaR under dif-
ferent cache sizes to show its performance. Compared with other
cache replacement algorithms, our contextual CCA effectively as-
similates the predicted viewport as prior information. As shown
in Fig. 13 and Fig. 14, our model can heavily resist interference
from dynamic agents and complex static scenes, which proves that
our model could well fuse the results from three stages and adopt
a reinforcement learning algorithm to find the novel cache strategy.
To further present the finding, we conduct ablation studies shown
in Fig. 12. Compared with the single prediction model result, our
model reduces bandwidth consumption from 13.4% to 30.2%. It
also shows that the delayed mechanism plays an important role and
is beneficial to the task. As Fig. 15 shows, the CCA has a relatively
fast increase in hit rate as the cache size increases, which means it
can well utilize the limited cache size.

7.3.3 Impact of Number of Agents
Different numbers of agents (dynamic objects in the viewport) can
have different impacts on the framework. We evaluate the same
scene with 1 to 4 agents inside the video with 25cm tiling granularity.
The average utility of different schemes is shown in Fig. 6(a). As
the number of agents increases, the performance of the proposed
model increases and achieves the highest utility, showing an average
improvement of 11.7% over other best frameworks. To further
excavate the reason, results in Fig. 9 and Fig. 13 show that the
contribution (its corresponding parameter in online learning) of
saliency-based prediction increase, and the hit rate of CCA is basically
unaffected, which show that our model has the capacity to capture
the dynamic scene and get an accurate prediction.
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Figure 12: Bandwidth consumption
over different prediction methods.

Figure 13: Hit rate over different
numbers of agents.

Figure 14: Hit rate over different
number of scene schemes.

Figure 15: Hit rate of different algo-
rithms over different cache sizes
.

7.3.4 Impact of Different Video Scenes

A further finding is about scene understanding. Different types of
video scenes can have different impacts on the framework, which is
highly correlated with scene understanding and intention prediction.
We first fix the scene size to be several schemes, a: 2.5×2.5m2, b:
3.5×3.5m2, c: 5×5m2, d: 7×7m2, two agents. The height of all
scenes is 3.5m and the tiling scheme is 50×50×50cm3. According
to Fig. 6(b), CaV3 outperforms the four baselines, showing an aver-
age 8.3%-20.3% improvement of utility value over the best working
framework. As shown in the figure, when the size of the scene
increases, only CaV3 and VolParima maintain a stable utility, while
the other three baselines have relatively declining utilities. Since
the rest of the three baselines’ prediction models only focus on the
viewer’s pattern. The prediction model will result in lower accuracy
when the size of the scene and bandwidth consumption increase.
Fig. 9 and 14 show that our intention-based model contributes more
and the cache hit rate remains stable compared with another model
in the large scene, which demonstrates higher prediction accuracy
and lower bandwidth consumption.

7.3.5 Impact of Different Tiling Granularity

When the tiling granularity changes, the performance of each model
and streaming time is affected, especially for models with adap-
tive bitrate allocation like ViVo, ST, RUOS. A fine-grained bitrate
allocation will increase QoE to varying degrees. We select four
tiling schemes, including 25cm, 50cm, 75cm and 100cm. Then
we compare CaV3 against four baselines under scene including one
agent. Fig. 6(c) shows that CaV3 has a higher QoE value than other
baselines under all tiling schemes. As the granularity increases, the
QoE of these adaptive model decrease, which shows that CaV3 is
also sensitive to granularity because of fine-grained cache adaptation.
Our model achieves an average QoE promotion of 14.6% over ST,
32.4% over ViVo, 78.3% over VolParima and 91.8% over RUOS.
As the PtCl is a series of 3D points, we can directly implement the
methods at the coordinate level without extra overhead. Too many
tiles will bring extra overhead and computation consumption for
processes such as bitrate allocation and cache adaptation.

7.3.6 Impact of Video Chunk Size

We deploy our streaming framework in different scene size schemes.
Fig. 6(a) shows a little QoE promotion from 50cm to 25cm. There-
fore, we select the 25cm tiling scheme to investigate the overhead
caused by tiling. As the scene becomes larger, larger numbers of
tiles increase the computation consumption and network consump-
tion. The network time, prediction time, and cache adaptation time
are highly corrected with numbers of tiles. The model update is
meager and not a bottleneck for any of the videos. As Fig. 7 shows,
in schemes 5x5m2 and 7x7m2, the maximal streaming time exceeds
0.5s. The total streaming time is comfortably under 1 second for a
chunk duration of 1s. Hence, we use a chunk size of 1s. The results
show that the refine tiling scheme and large numbers of tiles will not
break the real-time transmission.

8 DISCUSSION

More application support: Our model provides a universal view-
port prediction paradigm for 3D video, including mesh-based
VV and potential future 3D video formats like Neural radiance
field (NeRF) video [24]. Existing mobile VV streaming based on
cloud rendering [25] is heavily dependent on viewport prediction to
alleviate the increased latency. Our prediction model can offer great
relief to discomforted spinning sensations by Motion-To-Photon
latency and higher QoE. For Multi-user XR or Metaverse, our model
has excellent compatibility that can be combined with Multi-Range
Transformers [54] for interaction-based prediction.

More optimization support: Our framework can concatenate with
more streaming optimizations like bitrate selection [38], coarse-
grained cell bitrate allocation, [20] and CODEC methods for Point
cloud [33]. For simplicity, our model assumes each cell has the
same bitrate. This approach can be improved into arbitrary bitrate
by adopting a variant of the knapsack problem. The multimodal
transformer can fuse more features like spatial audio [50] and caption
text [10], which will bring better immersion and prediction accuracy.
Streaming dynamic content: Without the scene-cut, the content
of each tile change slightly over time. We conduct differential
transmission that extra residual is transferred when cache hits. For
tiles with dynamic agents, the content may largely changed because
of the movement. We search the target tile, calculate the motion
vector [20], and conduct differential transmission. With the scene-
cut, the recorded newly activated and deactivated tiles will be empty,
the client request the entire contents.

9 CONCLUSION

In this paper, We propose a VV streaming framework CaV3, where
accurate prediction and cache adaptation algorithms are first inte-
grated to achieve efficient streaming. The Long-short term Sequen-
tial Prediction model LSTSP utilizes a multi-modal transformer to
achieve accurate 6 DoF viewport prediction and quickly learn to
adapt to the viewer’s preference and video contents. In addition,
with prior information from LSTSP, the cache adaptation model CCA
can make a novel cache policy and minimize the total regret over
time. Extensive trace-driven experiments have shown the superior-
ity of our framework in prediction, cache adaptation and achieving
better utility under different scenarios.
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R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li, et al. Emerging mpeg

standards for point cloud compression. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 9(1):133–148, 2018.

[44] X. Sheng, L. Li, D. Liu, and Z. Xiong. Attribute artifacts removal

for geometry-based point cloud compression. arXiv: Computer Vision

and Pattern Recognition, 2021.

[45] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d scene un-

derstanding benchmark suite. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 567–576, 2015.

[46] B. W. Tatler, M. Hayhoe, M. F. Land, and D. H. Ballard. Eye guidance

in natural vision: reinterpreting salience. Journal of Vision, 2011.

[47] J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, and H. Hell-

wagner. Towards 6dof http adaptive streaming through point cloud com-

pression. In Proceedings of the 27th ACM International Conference

on Multimedia, pp. 2405–2413, 2019.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. neural

information processing systems, 2017.

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[50] P. Verma and J. Berger. Audio transformers:transformer architectures

for large scale audio understanding. adieu convolutions. arXiv: Sound,

2021.

[51] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-

gaswami, M. Zhao, and G. Narasimhan. Driving cache replacement

with ml-based lecar. In A. Goel and N. Talagala, eds., 10th USENIX

Workshop on Hot Topics in Storage and File Systems, HotStorage

2018, Boston, MA, USA, July 9-10, 2018. USENIX Association,

2018.

[52] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-

gaswami, M. Zhao, and G. Narasimhan. Driving cache replacement

with ml-based lecar. usenix annual technical conference, 2018.

[53] P. Visutsak, F. Pensiri, and O. Chaowalit. Smooth voxel surface for med-

ical volumetric rendering. 2019 International Conference on Image

and Video Processing, and Artificial Intelligence, 2019.

[54] J. Wang, H. Xu, M. Narasimhan, and X. Wang. Multi-person 3d motion

prediction with multi-range transformers. 2022.

[55] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao. Gaze

prediction in dynamic 360 immersive videos. In proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp.

5333–5342, 2018.

[56] F. B. Yusuf, V. Stebliankin, G. Vietri, and G. Narasimhan. Cache

replacement as a mab with delayed feedback and decaying costs, 2020.

doi: 10.48550/ARXIV.2009.11330

[57] E. Zerman, C. Ozcinar, P. Gao, and A. Smolic. Textured mesh vs

coloured point cloud: A subjective study for volumetric video com-

pression. In 2020 Twelfth International Conference on Quality of

Multimedia Experience (QoMEX), pp. 1–6. IEEE, 2020.

[58] A. Zhang, C. Wang, B. Han, and F. Qian. Yuzu: Neural-enhanced

volumetric video streaming. In A. Phanishayee and V. Sekar,

eds., 19th USENIX Symposium on Networked Systems Design and

Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022, pp.

137–154. USENIX Association, 2022.

[59] Y. Zheng, Y. Yang, K. Mo, J. Li, T. Yu, Y. Liu, K. Liu, and L. J. Guibas.

Gimo: Gaze-informed human motion prediction in context. 2022.

[60] M. Zink, R. Sitaraman, and K. Nahrstedt. Scalable 360° video stream

delivery: Challenges, solutions, and opportunities. Proceedings of the

IEEE, 2019.

183

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 29,2024 at 19:08:55 UTC from IEEE Xplore.  Restrictions apply. 


