
UC Berkeley
Research Reports

Title
Fault Diagnosis for Intra-platoon Communications

Permalink
https://escholarship.org/uc/item/3fq6247t

Authors
Simsek, Hidayet Tunc
Sengupta, Raja
Yovine, Sergio
et al.

Publication Date
1999-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fq6247t
https://escholarship.org/uc/item/3fq6247t#author
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

July 1999

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 332

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Fault Diagnosis for Intra-platoon
Communications

UCB-ITS-PRR-99-24
California PATH Research Report

Hidayet Tunc Simsek, Raja Sengupta,
Sergio Yovine, Farokh Eskafi

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Fault Diagnosis for Intra-platoon
Communications

(MOU332 Final Report)

Hidayet Tun�c S�im�sek, Raja Sengupta, Sergio Yovine, Farokh Eska�

fsimsek,raja,sergio,farokhg@path.berkeley.edu

California PATH, UC Berkeley

Richmond Field Station Bldg. 452

1301 S. 46th St, Richmond CA 94804

February 26, 1999

1 Introduction

We are interested in studying the fault diagnostics of platooning vehicles. It
is understood that a platoon is a string of vehicles with distributed control
strategies. Vehicles rely on real-time control data from other vehicles for correct
execution of their control laws. A time-driven system is responsible for delivering
the control data.

This document formalizes the design and logical veri�cation of a fault di-
agnosis and monitoring system for intra-platoon communication systems. The
design presented here is motivated by the ideas given in [1, 2, 3, 4]. The design
is formally speci�ed using the shift programming language, [5, 6, 7, 8], for net-
works of hybrid automata. We embellish the shift speci�cation with the meta
language grizzly, [9]. Finally, the shift-kronos connection, [9, 10], is used
to verify the logical correctness of the design. One advantage of this approach
is that the same speci�cation is used for both veri�cation and simulation. This
aspect is emphasized since veri�cation of the speci�cation refers to the correct-
ness of the underlying logic whereas simulation deals with performance issues.
In addition, ongoing research at PATH will allow us to generate real-time code
suitable for implementation from the same speci�cation.

The next section summarizes the system requirements for a category of intra-
platoon communication systems studied at California PATH. By doing so we
try to clarify and state precisely the diagnosis problem that is the subject of
the remainder of this report. In Section 3 we revise our mathematical model for
general diagnoser systems. In Section 4 we present in detail the complete design
of our diagnoser system for intra-platoon communication systems. Section 6

1

Radio Device Modulation

WaveLAN Direct sequence spread spectrum
Infra-red Clock encoding

Broadcast Frequency hopping spread spectrum modulation
Broadcast CDMA spread spectrum modulation

Table 1: Intra-platoon radio devices.

presents the computer aided veri�cation of our design. Finally, in Section 7 we
summarize the veri�cation results.

2 Intra-platoon communication systems

Four kinds of radio devices have been considered at PATH for intra-platoon
communications. We do not deal with the analysis of these device con�gurations,
however, we have listed them in Table 1 to illustrate the domain of our fault
diagnosis problem. We have learned from experience that these con�gurations
are representative of a large class of intra-platoon communication systems and
as such we will formally specify the diagnoser problem within their context. For
a detailed analysis of radio devices refer to [11, 12, 13, 14].

Figure 1 illustrates the overall layout of the intra-platoon communication
networks. The communication domain consists of a wide area network (WAN)
and several local area networks (LAN). A message is called non-critical if there
is no timing constraint associated with it, and similarly a message is called
critical if its content expires with time. Vehicles may transmit non-critical
messages over the WAN to another vehicle (point-to-point), group of vehicles
(multi-cast) or the the entire network (broadcast). The WAN is a �xed and
reliable1. The WAN consists of a dedicated radio in each vehicle, and the �xed
access points (FAP) on the road-side. Vehicles transmit critical messages2 over
the LAN. A LAN is a temporary network and unreliable network that is created
within platoons and message passing over the LAN is restricted to that platoon.
The LAN consists of a dedicated radio in each vehicle.
Messages transmitted over the LAN contain control data such as vehicle veloc-
ity, acceleration, etc. A typical LAN communication scheme has the following
properties (refer to Figure 2):

� Each vehicle receives a periodic update message (control message) from
the lead vehicle and vehicle-in-front,

� Each vehicle transmits a periodic control message to the vehicle-in-back
every 20ms. (The lead vehicle transmits to every vehicle in the platoon),

1Messages eventually reach their destinations.
2These critical messages are assumed to be the real-time control data

2

Mobile Host

PATH Host

FAP

FAP

FAP
(Fixed Access Point)

Vehicle

Vehicle

Vehicle

Vehicle

Platoon

Platoon

i

j

j3

j2

j1

i1

WAN
(Wide Area Network)

Figure 1: Overall layout of radio networks.

� The lead vehicle does not receive any messages from the vehicles in its
platoon over the LAN,

� The last vehicle does not transmit any messages over the LAN.

Messages transmitted over the WAN contain regulation data. Such data is used
for regulated maneuvers; e.g. lane change, merging to a platoon, splitting from
a platoon, etc.

2.1 Formal statement of the diagnoser design problem

We assume a layered architecture for the LAN. Our purpose is to design a
diagnostic system that resides at the application level of this hierarchy. The
proposed hierarchy is illustrated in Figure 3.

3 Mathematical Background

This section reviews the notions of a plant, a decentralized diagnoser system
and the results obtained thereof from [1]. The formalism adopted here is that
of discrete event systems, [1, 15, 16, 17]. The reader may also be interested
in studying the Petri net approach for modeling fault diagnosis in distributed
systems, [18, 19].

3

Back Vehicle

Follower Vehicle

Leader Vehicle

Second Vehicle

PLATOON LAN

Mobile HOST

Figure 2: Message passing within a platoon.

3.1 Decentralized diagnoser system architecture

The decentralized diagnoser system architecture of Figure 4 illustrates the adopted
architecture for our design. The system for which the diagnosers are to be de-
signed is called the plant, P . The plant is modeled as a language Lp � ��

p

over the �nite alphabet �p. The plant may concurrently and asynchronously
execute multiple processes where the behavior of a process is represented by a
string w 2 Lp. Concurrency is modeled with interleaved semantics. An event
�p 2 �p is said to be observable to a diagnoser di when di is capable of recording
the occurrence of that event in a string generated by the plant. Observable plant
events are denoted by �o � �p and unobservable plant events by �uo � �p and
it should be intuitively clear that �p = �o]�uo

3. Of signi�cant importance is
a subset, �f , of the unobservable events that represents the faults in the plant:
�f � �uo � �p.

Assume that there are n diagnosers. Each diagnoser, di, is capable of observ-
ing a subset, �di , of the observable events generated by the plant: �di � �o �
�p. Each diagnoser, di may generate and communicate estimates (messages),
�mi

2 �mi
to any other diagnoser via a reliable communication channel that

is assumed to be di�erent from any communication channel used by the plant.
This communication of estimates is modeled with the function �i : ��

di
! �mi

.

We will associate with each diagnoser, di, a subset of the plant failure events

3The notation Q = Q1]Q2 is shorthand for Q = Q1 [Q2 and Q1 \Q2 = ;.

4

Application Layer
A diagnostic protocol that can separate channel faults from hardware faults and
isolate the vehicle in which the hardware fault is located. A persistent channel
fault may be diagnosed as a hardware fault.
Network Layer
Assume there is a redundant WAN. ARP is assumed to be correct and there is
trivial routing
Data Link Layer
No LLC is required
MAC Layer
Token Ring
Physical Layer
Spread Spectrum/WaveLAN. Performs synchronization and CRC

Figure 3: Formal statement of the diagnoser design problem.

�fi � �f such that �f =
S
i
�fi

4. The diagnoser di is responsible for inferring
whether a �f 2 �fi occurred. That di indeed inferred the occurrence of �f is
modeled with the function �i : ��

di
���

m! �mfi where �m =
S
i �mi

. We note

that for practical purposes �mfi = �mf for each i.
Finally, we may formally de�ne a design.

De�nition 1 (Design, L) Let a diagnoser di be represented by the tuple di =
(�di ;�mi

;�mfi ; �i; �i). Then, given a plant P = (Lp � ��
p;�o;�f), a design is

a pre�x-closed language L � �� over the �nite alphabet � with respect to the
diagnosers di, i = 1; : : : ; n where:

� � = �p]�m]�mf ,

� �m =
S
i �mi

, i = 1; : : : ; n is the �nite estimate set of the n diagnosers,

� �mf =
S
i �mfi , i = 1; : : : ; n is the �nite fault messages of the n diag-

nosers.

Intuitively, a design is a language L that captures all the interleaved behav-
iors of the plant, the messages transmitted amongst the diagnosers and the fault
messages output by the diagnosers.

Before we can de�ne diagnosability we will require that a design is admissible
and correct.

3.2 Admissibility, Correctness and Diagnosability

The notion of an admissible design stems from the intuitive fact that the diag-
nosers do not force, disable plant processes, or more simply put, the diagnosers
do not control the plant.

4Note that for i 6= j, �fi
\�fj

is not necessarily ;. That is, more than one diagnoser may
try to isolate the same fault.

5

P = (Lp � ��
p;�o;�f)

d1 d2 dn

�d1 �d2
�dn

�m1
�m2 �mn

�mf1
�mf2 �mfn

Reliable Communication Channel

Figure 4: Decentralized Diagnoser System Architecture.

De�nition 2 (Admissibility) A design L is said to be admissible whenever:

� Consistency: Lp � L,

� Passivity: P�p
(L) = Lp,

� Causality: For each di, �mi
2 �mi

[�mfi , u; v 2 L:

P�di
(u) = P�di

(v)) �mi
2 u i� �mi

2 v.

Proposition 1 If for each diagnoser di the functions �i, �i are injective then
the causality condition is satis�ed.

De�nition 3 (Correctness) Assume that there exists a bijection enumerate :
�f! �mf . A design L is said to be correct if for each diagnoser i, �f 2 �fi

occurs if and only if enumerate(�f) 2 �mfi occurs (with �nite delay).

Diagnosability naturally follows from the de�nitions of admissibility and
correctness.

De�nition 4 (Diagnosability) Let P = (Lp � ��
p;�o;�f) be a plant. Then,

P is said to be diagnosable by a design L if and only if L is admissible and
correct. Furthermore, P is said to be:

6

1. Centrally diagnosable by L if L is designed with respect to a single diag-
noser, d,

2. Decentrally diagnosable by L if �m 6= ;.

Note that 2) 1.

3.3 Results

We will repeat here a theorem that provides a su�cient and necessary condition
on the existence of a correct design.

Theorem 1 (Existence of a correct design) Let P be a plant P = (Lp �
��
p;�o;�f). For P a correct design L exists ,

9m :[8�f 2 �f ; u; v; w 2 Lp

jvj > m ^ (P�di
(u�fv) = P�di

(w))i=1;:::;n) �f 2 w]

For a detailed discussion and proof of Theorem 1 refer to [1].
Let us concentrate on the su�ciency of the condition of Theorem 1. Note

that this is a property of the plant only and does not explicitly restrict the
diagnoser functions �i and �i, i = 1; : : : ; n.

However, in [1], the su�ciency of Theorem 1 is proven constructively and it
is shown that if there exists a correct decentralized design then the communicate
all observations design (i.e. �i : �di! �mi

is a bijection) is a correct design.

Conversely, if the communicate all observations is not a correct decentralized
design then there exists no correct decentralized design.

4 Formal description of plant and diagnosers

We will describe the plant, communication channel and diagnosers formally. For
this purpose we will use shift, a hybrid system programming language with
simulation semantics, and kronos, a timed automata veri�cation tool. The
gap between simulation and veri�cation is bridged through the meta-language
grizzly, an extension of the shift programming language. We would like to
maintain the notions adopted in Section 3, which means that we must use a
discrete event formalism with interleaved semantics to represent concurrency.
We will use the discrete event formalism of shift to model the system and we
will embellish this model with real-time constraints using grizzly.

4.1 Channel Model

Wewill maintain that the channel characteristics varies signi�cantly fromvehicle-
to-vehicle. For a detailed discussion of channel characteristics and channel pa-
rameters refer to [11]. We will categorize the communication channels to em-
phasize that these channels may implicitly have di�erent characteristics:

7

Synchronization The synchronization channel carries the control packet, sm,
transmitted by the lead vehicle, l. This is a single-node broadcast channel
where all vehicles except the leader are recipients of this message. The
synchronization message, sm, is a control packet with a synchronization
pre�x that the recipient vehicles use to synchronize their clocks with the
leaders. Vehicles with unsynchronized clocks cannot transmit or receive
messages.

Control The control message channel represents a channel between two consec-
utive vehicles. It carries the control message, cm, from the vehicle-in-front
to the vehicle-in-back.

Loopback The loopback message channel represents a channel between two
consecutive vehicles. The loopback message, lbm, is carried from the
vehicle-in-back to the vehicle-in-front.

We will implement all three types of channels using a common timed au-
tomaton. Figure 5 illustrates the channel model. We will use the shorthand
ChannelmXmitter!Receiver to denote a uni-directional channel from Xmitter to
Receiver. The superscript m denotes the channel type and m 2 fsm; cm; lbmg.
We will soon see that Xmitter; Receiver 2 fl; s; f; bg where l stands for lead
vehicle, s for second vehicle, f for follower vehicle and b for back vehicle.

Normally, the channel remains in the getMessage mode until it is inter-
rupted by some transmitter, Xmitter, requesting a message, msg, to be sent to
some receiver, Receiver. In that case, the channel moves to the putMessage

mode and thereafter determines whether that message should successfully go
through. The boolean function f should be a statistical model representing
the transmission characteristics of the channel; speci�cally, f will be di�erent
for synchronization, control and loopback channels. Finally, the channel model
returns to the getMessage mode.

The auxiliary variablemsg represents the message of the transmitter,Xmitter.
Its value is irrelevant for veri�cation since we are not concerned with the con-
tents of the control packets. The auxiliary variable rcv is used to select the
target receiver when f is true. rcv is nil if f is false.

Note that this channel is uni-directional and that the receiver, Receiver,
is expected to have a non-blocking transition that expects to synchronize on
m 2 fsm; cm; lbmg.

4.2 Plant model

In this section we will model the plant (i.e. the LAN of a platoon given in
Figure 2.) We will classify the vehicles in a platoon into 4 di�erent categories
as illustrated in Figure 6:

Lead Vehicle, l The lead vehicle di�ers from other vehicles in that it does not
receive any messages from any other vehicles. Furthermore, its control
message is pre�xed by a synchronization pattern, hence we call it the
synchronization message, sm.

8

getMessage

True

putMessage

t � 0

True
msg
! rcv :=

�
Receiver; if f
;; if :f

rcv 6= ;
rcv : m

! id

rcv = ;! id

Figure 5: The communication channel: ChannelmXmitter!Receiver

9

Leader, l Second, s Follower, f Back, b

Channelsm
l!s

Channelsm
l!f

Channelsm
l!b

Channelcm
s!f

Channelcm
f!b

Channellbm
f!sChannellbm

s!l

Channelsm
l!fs;f;bg

Channelcm
s!f

Channelcm
f!b Channellbm

f!s Channellbm
s!l

0 T 2T 3T 4T 5T

Figure 6: The platoon model.

Second Vehicle, s The second vehicle di�ers from other vehicles since it re-
ceives only one message from the leader, the sm.

Follower Vehicle, f The follower vehicle receives two messages: sm from the
leader, and cm from second vehicle. It transmits cm to the back vehicle.

Back Vehicle, b The back vehicle is di�erent from the rest of the vehicles since
it does not transmit any control messages.

Each vehicle contains a controller and a diagnoser that runs as an application
on a TDMA channel. Each cycle requires 5T time, where in a practical imple-
mentation T = 20ms (we will use T = 1 for veri�cation purposes). Messages
of type sm and cm are transmitted by control applications and are received by
both control and diagnoser applications. On the other hand, lbm messages are
transmitted and received only by the diagnoser applications. As such, the role
of lbm messages is to inate the observation sets of the diagnosers.

At the beginning of each cycle the leader, l, broadcasts the synchronization
message, sm. The order in which the message is received by the follower vehicles
is not important. Vehicles other than the leader will not transmit or receive
messages until they have successfully received sm. We will assume that the
synchronization hardware of the radio devices of each vehicle is such that once
they receive sm their clocks are synchronized for n cycles, during which they
may communicate with each other.

After sm is transmitted by the leader, l, the second vehicle, s, transmits a
control message to its follower, f . Then the follower, f , transmits its control
message to the back vehicle, b, and this marks the end of the cycle for con-
trol message transmissions. Then 2 auxiliary messages are transmitted by the

10

diagnostic applications via the radio devices used by the controllers. First, f ,
transmits a loopback message to s then s transmits a loopback message to l.

4.2.1 Fault modeling

A fault can be modeled in several ways. Formally, a fault is a permanent
breakdown of either the transmitter of a single radio device or its receiver.
We will model transmitter faults by simply disengaging the outgoing channel5

between that transmitter and its recipient. We will model a receiver fault by
using a symbol to denote whether the receiver is operational or not. In the latter
case, the receiver must not block the transmitter from transmitting a message
into the channel, albeit the message will get lost. Figure 7 illustrates this design.

The transmitter, x, will attempt to send a message of typem 2 fcm; sm; lbmg
to the receiver, r, at time cT where c 2 f0; 1; 2; 3; 4;5g. The 5 possible outgoing
transitions are:

� Non faulty transmitter
�fx Faulty transmitter
 Success
fr Faulty receiver, non faulty transmitter
fx Faulty transmitter

Note that the successful transmission/reception of a message occurs only with
transition , and also note that only successfully received messages are observ-
able by a diagnoser. The observation is indicated by the propagation of the
event di : cm where di is the diagnoser of the receiving vehicle.

The auxiliary symbol rcvFaultP (i.e. Receiver Faulty Predicate) is assigned
a $True6 value whenever there is a permanent receiver fault. The reset function
 (t) resets the timer t:

 (t) :=

�
0; if c = 5
t; otherwise

The auxiliary clock t0 is used to reset the value of t to the correct value in case
the timeout for t occurred at the end of the cycle.

We will continue with the formal description of each type of vehicle, l; s; f; b
and we will use the transmitter and receiver of Figure 7 as a black box for a
more compact representation.

4.2.2 Lead vehicle speci�cation, l

The lead vehicle is the simplest of the four types of vehicles considered. In the
�rst time slot (i.e. c = 1) it broadcasts the synchronization message to the

5communication channels are modeled as uni-directional.
6We will use $ to indicate that a value is symbolic

11

Xmitter, x

Receiver, r

sendMsg

t � cT

rcvMsg

t < (c+ 1)T

9Channelmx!r ^ t = cT
Channelmx!r : msg! (t)

6 9Channelcmx!r ^ t = cT! (t)

rcvFaultP = $False
m; di : m

! (t)

rcvFaultP = $True
m
! (t)

t > cT! t :=

�
t0; if c = 5
t; otherwise

t := (c� 1)T

t := (c� 1)T

t = 5T! t0 := 0

�

�fx

fr

fx

Figure 7: The transmitter/receiver fault model.

12

t := 0

sendToSecond sendToFollower sendToBack

c
4

= 1; r
4

= Second;m
4

= sm c
4

= 1; r
4

= Follower;m
4

= sm c
4

= 1; r
4

= Back;m
4

= sm

�

�fx

�

�fx

� �fx

wait

t � 4

t = 4! id

rcvFromSecond

c
4

= 5;m
4

= lbm; d
4

= dl

fr

fx

True
lbm
! id

True
lbm
! idTrue

lbm
! idTrue

lbm
! id

Figure 8: The lead vehicle plant model.

second, follower and back vehicle. Then it waits to receive a loopback message
from the second vehicle in the last time slot (i.e. c = 5) and continues operation
in the usual manner. Note that the broadcast is modeled as a series of uni-cast
messages all occurring at the same time. Figure 8 formally speci�es the leader
vehicle plant model.

4.2.3 Second vehicle speci�cation, s

The second vehicle initially waits for the synchronization message from the
leader. Once sm is received from the leader, the synchronized radio device is
assumed to maintain a synchronized clock for n cycles (i.e. n approximates the
crystal drift). If n > N (i.e. the clocks are not synchronized), the second vehicle
must receive sm from the leader to continue normal operation, otherwise it
remains idle until the next cycle where the leader will broadcast sm once again.
Note that this constraint on sm does not apply to cm or lbm type messages.

Figure 9 illustrates the second vehicle plant model. Note that each state
maintains a self loop to avoid blocking the plant communication system.

13

rcvFromLeader sendToFollower

idle

wait

rcvFromFollowersendToLeader

c
4

= 1;m
4

= sm;d
4

= ds
c
4

= 2; r
4

= Follower;m
4

= cm

t � 5

t � 3

c
4

= 4;m
4

= lbm;d
4

= ds
c
4

= 5; r
4

= Leader;m
4

= lbm

n > N; fx t = 5! t := 0

; n := 0

n � N; fx

��fx

t = 3! id

fx

� �fx

fr

fr

True
lbm
! id

True
smjlbm

! id

True
smjlbm

! id

True
smjlbm

! id

True
sm
! idTrue

smjlbm
! id

Figure 9: The second vehicle plant model.

14

4.2.4 Follower vehicle speci�cation, f

The follower vehicle model is similar to that of the second vehicle model given
in Section 4.2.3. It is illustrated in Figure 10.

4.2.5 Back vehicle speci�cation, b

The back vehicle model is similar to that of the second vehicle model given in
Section 4.2.3. It is illustrated in Figure 11.

4.3 Diagnoser design

We are interested in designing a diagnoser,di,i 2 fl; s; f; bg, for each type of
vehicle, l; s; f; b.

Notation 1 Recall that a channel from vehicle x to vehicle r for transmitting m
type messages is denoted with Channelm

x!r
. Furthermore, the successful trans-

mission of a message over this channel can only be observed by the receiver r
upon the event (see Figure 7). We will use the notation x : r to denote this
certain event. Note that with this notation we have discarded the message type;
i.e. the message type is immaterial for the diagnoser application.

The plant failure events are �f = fltf; lrf; stf; srf; ftf; frf; brfg where ltf
stands for lead vehicle transmitter fault, lrf stands for lead vehicle receiver
fault and so on. We will let any diagnoser identify any fault so that for all
x 2 fl; s; f; bg �mfx = �mf = �f . The observation sets, �di , for each diagnoser
di are listed in Table 2. The event t is used to denote the passage of one time
slot without any observations.

Diagnoser Observation Set

dl �dl = fs : l; tg
ds �ds = fl : s; f : s; tg
df �df = fl : f; s : f; tg
db �db = fl : b; f : b; tg

Table 2: Observation sets for the diagnosers

We will choose the estimates of each diagnoser from 2�f ; that is, for each
diagnoser �i : �

�
di
! 2�f . The decision function of the diagnosers will be chosen

to be the same; i.e. for all x 2 fl; s; f; bg �x = � where � : �ml
�: : :��mb

! �mf .

4.3.1 The Global Picture

Figure 12 illustrates our discrete event abstraction for global plant behavior.
The �gure does not account for channel faults and is merely provided to illustrate
the logic behind our design.

15

idle

rcvFromLeader rcvFromSecond

sendToBacksendToSecond

wait

t � 5

c
4

= 1;m
4

= sm;d
4

= df
c
4

= 2;m
4

= cm;d
4

= df

c
4

= 3; r
4

= Back;m
4

= cmc
4

= 4; r
4

= Second;m
4

= lbm

t � 5

n > N; fx t = 5! t := 0

fr

; n := 0

n � N; fx

 fx fr

�

�fx

�fx �

t = 5! t := 0

True
smjcm

! id

True
cm
! id

True
sm
! id

True
smjcm

! idTrue
smjcm

! id

True
smjcm

! id

Figure 10: The follower vehicle plant model.

16

idle

rcvFromLeader rcvFromFollower

wait

t � 5

c
4

= 1;m
4

= sm;d
4

= db c
4

= 3;m
4

= cm;d
4

= db

t � 5

n > N; fx t = 5! t := 0

fr

; n := 0

n � N; fx

 fx fr

t = 5! t := 0

True
smjcm

! id

True
cm
! id

True
sm
! id

True
smjcm

! id

Figure 11: The back vehicle plant model.

17

Notation 2 The modi�ed regular expression (ab : : : c)� will be understood as
(ab : : : c)�(�; a; ab; : : :; ab : : : c).

Figure 12 serves 3 purposes. First, it summarizes in a reasonable fashion the
global behavior of the plant. Second, it illustrates the logic behind our design.
That is, we base our design on the assumption that it is su�cient to consider
the occurrence of each type of fault only at certain critical points in the abstract
behavior of the plant. For example, we consider ltf and the resulting behavior of
the plant only in state 1 where the leader is interested in transmitting. Similarly,
we consider srf only when the second vehicle is interested in receiving a message.
Third, the �gure illustrates that a fault, �f 2 fltf; lrf; stf; srf; ftf; frf; brfg,
occurring at time t can be mapped to the same fault occurring at an earlier
time t0 by means of appending a pre�x in front of the resulting plant behavior
that would have occurred at time t0. This suggests that each diagnoser should
generate estimates after making observations for one plant cycle. Since each
plant cycle is 5 slots and only one observation is recorded per slot we will let

the estimate functions to be an injective mapping from �
(
di
5) into �mi

.
The following sections describe in detail the functions �i and the estimate

sets �mi
for each diagnoser and �nally the decision functions �.

4.3.2 Second vehicle diagnoser design

A simple design for the second vehicle diagnoser is to take the projection of the
discrete event system of Figure 12 onto �ds and then to design �ms

.
The simpli�ed machine of this projection is given in Figure 13. One should

readily be able to identify all possible trajectories of the abstract plant model
of Figure 12 within this simpli�ed machine. Furthermore, consider the regular
operation of the plant under no faults. This operation is modeled as (t l : s t t f :
s)�. Under any kind of fault the resulting behavior will be (t(l : s j t)tt(f : s j t))�.
This is so because the occurrence of a fault can only disable the second vehicle
from receiving a message. Thus the machine of Figure 13 captures all possible
observations of the plant projected onto �ds .

The preceding discussion suggests, from symmetry, that we can parse obser-
vation sequences to simplify our observation structure. Table 3 lists the non-
terminals (augmented events) a,b, c and d. With respect to these non-terminals
we reduce the �nite state machine in Figure 13 to a the much simpler machine
of Figure 14. It su�ces to observe the symmetry in the solid colored states to
appreciate this reduction.

Now we are ready to design the estimates of the second vehicle diagnoser, i.e.
�ms

. We will argue in an !-automata style fashion. That is, if the second vehicle
diagnoser observes repeatedly many a's then it knows that there is nothing
wrong with its receivers and the lead vehicle and follower vehicle transmitters.
Note also that if the second vehicle can receive from the follower then the follower
receiver must also be operating, otherwise it would not have been able to receive
from the leader to synchronize its clocks. Hence, in the case of repeatedly many
occurring a's the second vehicle diagnoser guesses that if there is a fault it must

18

1
2

3
4

5
l:{

s,
f,

b}
s:

f
f:

b
f:

s

s:
l

t*

L
T

F

re

=
(l

:{
f,

b}
 t

 f
:b

 t
 t

)*

SR
F

re

=
(l

:{
s,

b}
 t

 t
 t

 s
:l)

*

FR
F

re

=
(l

:{
s,

f}
 s

:f
 t

 f
:s

 s
:l)

*

B
R

F

re

 =
(

t
f:

b
 f

:s
 t

 l
:{

s,
f,

b}
)

*

ST
F

FR
F

(t
 f

:s
 s

:l)
 r

e

FT
F

B
R

F

(t
 s

:l)
 r

eSR
F

FT
F

(t
 l

:{
s,

f,
b}

 s
:f

 f
:b

 f
:s

)*

(t
 l

:{
s,

f,
b}

)
 r

e

L
R

F

ST
F

(t
 s

:l
 l:

{s
,f

,b
}

 s
:f

)
 r

e

.

ST
F

FR
F

B
R

F

SR
F

(t
 f

:b
 f

:s
 s

:l)
 r

e SR
F

B
R

F

SR
F

re

=
(t

 t
 s

:l
 l:

{s
,f

,b
}

 s
:f

)*
FT

F

FT
F

ST
F

Figure 12: Discrete event abstraction for global plant behavior.

19

l:s f:s

l:s

t

t t

t

t

t

t

t
f:s

f:s

l:s

t t

f:s

t

t

t

t

t t

tl:s

t t

t

Figure 13: Second vehicle diagnoser observation structure.

a

a

b

b

b

d

d

d
d

c

cc
a
b

c
a

Figure 14: Reduced second vehicle diagnoser.

20

Non-terminal Observation sequence

a = l : s t t f : s t

b = t t t f : s t

c = l : s t t t t

d = t t t t t

Table 3: Second vehicle parsed observations

be one of flrf; stf; brfg. In the case of repetitive observation of b's the second
vehicle assumes that

� either the lead vehicle transmitter is faulty and the follower vehicle is able
to transmit on a previously synchronized clock (note that this means once
a clock is synchronized it maintains its validity for su�ciently long)

� or there is a persistent channel fault in Channelsml!s.

In the �rst case the second vehicle diagnoser may safely assume that there
is a fault and it is ltf . In the second case there may be no real hardware fault
but the problem formulation of Section 2.1 states that a persistent channel fault
may be identi�ed as a hardware fault. Hence we will let the estimation set of
repeatedly many occurring b's be fltfg. In case of repeatedly many occurring
c's it should be clear that the follower vehicle either has a transmitter or receiver
fault. And in case of repeatedly many occurring d's it should be evident that
either the lead vehicle is not transmitting or the second vehicle is not receiving.

We may modify these arguments to account for persistent or repetitive chan-
nel faults for all cases but this is not necessary since these types of faults will
be identi�ed wrongly as a hardware fault as we illustrated in the reasoning for
the case of repeatedly many occurring b's. Table 4 summarizes the observation
sets, parsed observations and estimates of the second vehicle diagnoser.

4.3.3 Lead, Follower and Back Vehicle Diagnosers

We will not explain in any detail the design of the lead, follower and back vehicle
diagnosers. The design process is similar to that of the second vehicle. We would
like to point out the only signi�cant di�erence which occurs in the machinery
for the lead vehicle. This machine di�ers from that of the others since the lead
vehicle unlike the other vehicles receives only one message. The lead vehicle
diagnoser observation structure is illustrated in Figure 15.

The follower and back vehicles share the same diagnoser observation struc-
ture with the second vehicle except that the a; b; c; d's are parsed di�erently.
The following Tables 5,6,7 summarize the observation sets, parsed observations
and estimates of the lead, follower and back vehicles.

This formulation requires existential quanti�cation of n over the natural
numbers. The number n is called the decision time. For veri�cation purposes

21

i.
Diagnoser Observations Set

ds �ds = fl : s; f : s; tg

ii.

Non-terminal Observation sequence

a = l : s t t f : s t

b = t t t f : s t

c = l : s t t t t

d = t t t t t

iii.

Non-terminal, x Second vehicle estimate, �(x)

an flrf; stf; brfg
bn fltfg
cn fftf; frfg
dn fltf; srfg

Table 4: (i) Observation set for the second vehicle diagnoser, (ii) Second vehicle
parsed observations, (iii) Second vehicle diagnoser estimates

a

a

b

b

Figure 15: Reduced lead vehicle diagnoser.

we will initially make an attempt with n = 1 and if this does not work we will
attempt with n = 2 and so on. Such a quanti�cation implies that the veri�cation
of the diagnosers is a semi-decidable procedure.

4.3.4 Decision logic

Let the decision time be n. Then, each diagnoser will produce as estimate every
n cycles. Let �mfl , �mfs , �mff and �mfb be the estimates generated at cycle
n. Then we choose � to be the intersection of these estimates whenever the
intersection yields a single fault:

�(�ml
; �ms

; �mf
; �mb

) =

�
g = \x2fl;s;f;bg�mx

; if kgk = 1
;; otherwise

5 Modeling of diagnosers

Modeling the diagnosers requires modeling the parsers that identify the non-
terminals a,b,c,d, and modeling the functions � and �x for each x 2 fl; s; f; bg as

22

i.
Diagnoser Observation Set

dl �dl = fs : l; tg

ii.

Non-terminal Observation sequence

a = l : s t t f : s t

d = t t t t t

iii.

Non-terminal, x Lead vehicle estimate, �(x)

an fftf; frf; brfg
bn fltf; lrf; stf; srfg

Table 5: (i) Observation set for the lead vehicle diagnoser, (ii) Lead vehicle
parsed observations, (iii) Lead vehicle diagnoser estimates

timed automatons. We will not present these models here since their purpose
is understood from Tables 5,4,6 and 7.

6 Veri�cation of diagnosability

We must �rst show that our design is admissible. The design is clearly consistent
since we are taking the synchronous composition of the plant model and the
diagnoser models. The passivity of our design is veri�ed automatically. We
embellish each diagnoser design such that there is an auxiliary transition from
each state in each diagnoser to an error state. Say that S is a discrete state of
diagnoser di and that it has the outgoing transitions:

t1 = g1
e1
! a1

t2 = g2
e2
! a2

...

tn = gn
en
! an

we will introduce a new outgoing transition, tn+1, to the state S:

tn+1 = :g1 ^ :g2 ^ : : :^ :gn! id

that takes the machine into the error state. Once an auxiliary transition is
added to each of the discrete states in each of the diagnosers we check for the
safety property:

True) :93error (1)

23

i.
Diagnoser Observation Set

df �df = fl : f; s : f; tg

ii.

Non-terminal Observation sequence

a = l : s t t f : s t

b = t t t f : s t

c = l : s t t t t

d = t t t t t

iii.

Non-terminal, x Follower vehicle estimate, �(x)

an flrf; ftf; brfg
bn fltfg
cn fstf; srfg
dn fltf; frfg

Table 6: (i) Observation set for the follower vehicle diagnoser, (ii) Follower
vehicle parsed observations, (iii) Follower vehicle diagnoser estimates

That is, if the error state is not reachable then the diagnosers do not block
the plant. Furthermore, it is immediate from the observation structures for
each diagnosers that they do not force any plant events and hence the design is
passive.

Causality of the design should also be clear from De�nition 2. Our choice
of the estimate functions, �i for each diagnoser are injective, hence our design
is causal.

6.1 Correctness of the diagnoser design

To verify the correctness of the design we must verify:

1. that there are no missed detections. If a fault, �f 2 fltf; : : : ; brfg, occurs
then any possible behavior in the design L must eventually lead to state in
which �(�ml

; : : : ; �mb
) = �f , where �mx

, x 2 fl; s; f; bg, are the diagnoser
estimates.

2. that there are no false alarms. If there is no fault then it is no plant
behavior that leads to state in which �(�ml

; : : : ; �mb
) 6= ;.

We will enrich the plant model with a fault-generation unit such that a se-
lected fault, �f , may non-deterministically be generated at any time during a
cycle. Figure 16 illustrates this design. We take note of our fault model in
Section 4.2, i.e. transmission faults are modeled by disengaging the outgoing

24

i.
Diagnoser Observation Set

db �db = fl : b; f : b; tg

ii.

Non-terminal Observation sequence

a = l : s t t f : s t

b = t t t f : s t

c = l : s t t t t

d = t t t t t

iii.

Non-terminal, x Back vehicle estimate, �(x)

an flrf; stf; srfg
bn fltfg
cn fftf; frfg
dn fltf; brfg

Table 7: (i) Observation set for the back vehicle diagnoser, (ii) Back vehicle
parsed observations, (iii) Back vehicle diagnoser estimates

uni-directional channel of that transmitter and receiver faults are modeled sym-
bolically. There is no loss of generality in forcing the fault to occur during the
�rst cycle since the plant operation is periodic.

The function � is modeled by the timed automaton of Figure 17. And �nally
we can specify conditions 1 and 2 formally with tctl:

wait) 83 Good Decision (2)

wait) 82 :Bad Decision (3)

6 9�f) 82 Detect (4)

6.2 Veri�cation of diagnoser correctness with the SHIFT-
Kronos connection

We must be able to convert Equations 2,3 and 4 into reachability speci�cations.
It is clear that Equations 3 and 4 are reachability problems and they can be
re-written in a format accepted by our veri�er, kronos:

wait) :93 Bad Decision (5)

6 9�f) :93 :Detect (6)

However, it is not possible to re-write Equation 2 in any way as to make it a
reachability problem. Thus we will attempt to verify Equations 3 and 4 with
the above formulation and once this is accomplished we will replace the timed

25

wait

0 � t < 5T

t < 5T!

8>>>>>>><
>>>>>>>:

Channelsml!fs;f;bg = ;; if �f = LTF

Channelcms!f ; Channel
lbm
s!l = ;; if �f = STF

Channelcmf!b; Channel
lbm
f!s = ;; if �f = FTF

rcvFaultP (l) = $True; if �f = LRF

rcvFaultP (s) = $True; if �f = SRF

rcvFaultP (f) = $True; if �f = FRF

rcvFaultP (b) = $True; if �f = BRF

Figure 16: Fault generation unit for a given fault �f .

wait

True

GoodDecision

Bad Decision

�(�ml
; : : : ; �mb

) = �f! id

�(�ml
; : : : ; �mb

) 6= �f! id

Figure 17: Timed automaton for modeling the function �(�ml
; �ms

; �mf
; �mb

)
given a fault �f .

26

wait

t � �T

GoodDecision

Bad Decision

g = ;! g := �(�ml
; : : : ; �mb

)

g = �f ^ t = �T! id

g 6= �f ^ t = �T! id

Figure 18: Modi�ed Timed automaton for modeling the function
�(�ml

; �ms
; �mf

; �mb
) given a fault �f .

automaton of Figure 17 with that of the timed automaton of Figure 18 to verify
an equivalent expression to that given in Equation 2.

Let us investigate the new machinery we have developed for the veri�cation
of Equation 2. The machine continually computes � until it makes a decision,
which it saves in the auxiliary variable g. At some time t = �T we force the
machine to execute either one of two transitions whose guards are such that,
g = �f [g 6= �f = I (i.e. either one of both transitions are always allowed at
time t = �T). With this machine we would like to verify the following property:

9� 2 N [wait) :93Bad Decision] (7)

kronos will not quantify � hence we must manually perform the quanti�cation.
If we can �nd an �, say �0, such that the reachability property of Equation 7
is veri�ed, then, it is clear that any choice of � � �0 will imply that the same
reachability property is veri�ed. Formally, we call the minimal such � the
settling time, denoted with ��:

�� = arg min
�2N

[wait) :93Bad Decision] (8)

27

7 Conclusions

We performed two experiments for each fault �f 2 fltf; lrf; stf; srf; ftf; frf; brfg.
The �rst experiment is to test for the semi-decidable reachability property of

Equation 7. This is a semi-decidable procedure because we need to quantify the
decision time, n (see Section 4.3.3), and the settling time, � (see Section 6.2),
over the natural numbers. For purposes of veri�cation we have disabled channel
faults in the veri�cation. This suggested that the decision time, n, should be
1. As for the settling time, �, we had a trial and error process in which we
found that with � = 15 (i.e. 15 time slots equals 3 cycles) the veri�cation
terminated with BadDecision not reachable (i.e. GoodDecision is reached due
to the modi�ed machine of Figure 18). With n = 1 and � = 15 the veri�cation
required approximately 2650 symbolic states (corresponding to 350�400 MB of
RAM) with a termination time of 3+ minutes on an Ultra SPARC-2 Enterprise
system running Solaris.

The second experiment is for the veri�cation of the reachability properties
of Equations 5 and 6. These are decidable once the decision time, n, is chosen.
Since we used n = 1 in the �rst experiment we use n = 1 in the veri�cation
of Equations 5 and 6. Since the reachability property of Equaiton 5 is implied
by the modi�ed reachability property of Equation 7 (i.e. that of the �rst ex-
periment), we only executed kronos on the reachability property of Equation 6.
This safety property was veri�ed.

We will not discuss the use of kronos and the speci�c parameters needed
to duplicate these experiments in these report. The source code for our design
is readily available from [20].

References

[1] Raja Sengupta. Diagnosis and communication in distributed systems. Tech-
nical report, California PATH, University of California, Berkeley, CA, July
1998.

[2] F. Eska�. A diagnostic system design for the intra-platoon communication
system in NAHSC demo'97. Technical report, California PATH, University
of California, Berkeley, CA, December 1997. preprint.

[3] A. E. Lindsey and P. Vishwanath. Design, veri�cation and failure diag-
nosis of wireless communication protocols for AHS. In Proc. 1997 IEEE
Conference of Intelligent Transportation Systems, November 1997.

[4] R. Rajamani, J.K. Hedrick, and A. Howell. A complete fault diagnostic
system for longitudinal control of automated vehicles. In Proc. Symposium
of Advanced Automotive Technologies, 1997 ASME International Congress,
1997.

28

[5] H. T. S�im�sek. Shift Tutorial: A �rst course for SHIFT programmers.
Technical report, University of California, Berkeley, CA, February 1999.
preprint.

[6] A. Deshpande, A. G�oll�u, and L. Semenzato. The SHIFT programming
languange and run-time system for dynamic networks of hybrid automata.
IEEE Trans. Automatic Control special issue on Hybrid Systems, April
1998.

[7] A. Deshpande, A. G�oll�u, and L. Semenzato. SHIFT: Reference manual.
Technical Report 10856, California PATH, University of California, Berke-
ley, CA, 1997. PATH research report, UCB-ITS-PRR-97-8.

[8] SHIFT Team. http://www.path.berkeley.edu/shift. world wide web.
SHIFT home page.

[9] S. Yovine. Veri�cation and implementation of SHIFT models. Technical
report, California PATH, University of California, Berkeley, CA, 1998.

[10] S. Yovine. Kronos: A veri�cation tool for real-time systems. In Springer
International Journal of Software Tools for Technology Transfer, 1(1+2),
October 1997.

[11] C. Chen, M. Asaw, and B. Foreman. Outdoor measurements on Wave-
LAN radio. Technical Report 9384, 96-2, California PATH, University of
California, Berkeley, CA, December 1995.

[12] C. Chen and B. Foreman. A discussion of the WaveLAN radio as relevant to
automated vehicle control systems. Technical Report 9383, 96-1, California
PATH, University of California, Berkeley, CA, 1996.

[13] B. Foreman. A survey of wireless communication technologies for auto-
mated vehicle control. In Proc. SAE Future Transportation Technology
Conference, Costa Mesa, CA, August 1995.

[14] PATH wireless vehicle communication system: Overview and functional
speci�cations. Technical report, MPI Corp, Atlanta, GA, October 1996.

[15] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.
Proc. IEEE, pages 77(1):81{98, January 1989.

[16] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Diagnosability of discrete-event systems. IEEE Trans. Au-
tomatic Control, page 40, September 1995.

[17] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Failure diagnosis using discrete-event models. IEEE Trans.
Control Systems Technology, page 4, March 1996.

29

[18] R. Boubour, C. Jard, A. Aghasaryan, E. Fabre, and A. Benveniste. A Petri
net approach to fault detection and diagnosis in distributed systems (part
1). In Proc. 36th IEEE Conf. on Decision and Control, San Diego, CA,
December 1997.

[19] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, and C. Jard. A Petri
net approach to fault detection and diagnosis in distributed systems (part
2). In Proc. 36th IEEE Conf. on Decision and Control, San Diego, CA,
December 1997.

[20] H. T. S�im�sek. http://www.eecs.berkeley.edu/ simsek. world wide web.
SHIFT/Kronos code for intra-platoon communication diagnoser design.

30

