
UCLA
UCLA Electronic Theses and Dissertations

Title
Biomechanical Modeling Applications for Function-Preserving Lung Interventions

Permalink
https://escholarship.org/uc/item/3fq7238d

Author
Stiehl, Brad

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fq7238d
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

Biomechanical Modeling Applications for Function-Preserving Lung Interventions 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy in 

Physics and Biology in Medicine 

by  

Bradley Joseph Stiehl 

2022 



 ii 

 

© Copyright by 

Bradley Joseph Stiehl 

2022 



 ii 

ABSTRACT OF THE DISSERTATION 

Biomechanical Modeling Applications for Function-Preserving Lung Interventions 

by 

Bradley Joseph Stiehl 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2022 

Professor Anand Prasad Santhanam, Co-Chair 

Professor Daniel Abraham Low, Co-Chair 

 

 The measurement of the elastic properties of human tissue, or elastography, allows for the 

quantitative assessment of tissue functionality. Patients undergoing radiation therapy often present 

with lung disease, such as COPD, which is known to cause degradation of tissue elasticity. The 

reliance of normal lung function on these elastic properties is well established, underscoring the 

importance of function-preserving efforts in radiotherapy. Regional elasticity distributions may be 

used to identify regions of parenchymal tissue that contribute significantly to lung function. This 

knowledge can, in turn, aid in functional lung sparing efforts during the treatment planning 

process. Previous elastography efforts have been performed using a well-validated biomechanical 

model in combination with model-based CT images. Recent studies also suggest that 

biomechanical modeling and elasticity estimation may prove to have useful applications outside 

of the radiotherapy domain. These tools could potentially help improve the evaluation of patient 

candidacy and outcome prediction for various lung interventions, such as lung volume reduction 

surgery (LVRS) or bronchoscopic lung volume reduction (BLVR) procedures.  



 iii 

The first aim of the dissertation was to develop and improve current CT-based elastography 

algorithms and tools. This aim was addressed by carrying out a consistency study where 

elastography was performed using separate image datasets generated from scans acquired at 

different points in the breathing trace for each patient. As part of a feasibility study to test the 

hypothesis that additional elasticity information could be obtained using large deformation image 

pairs, an elastography method was developed for use with breath-hold CT images acquired at the 

forced breathing stages of residual volume (RV) and total lung capacity (TLC). The second aim 

was to investigate the applications of biomechanical modeling and elastography for other function-

preserving treatment interventions. This work involved the development of a quorum-based 

machine learning approach to perform lobar segmentation for lobe identification in lung 

intervention simulations and lobe-wise analyses. A framework for simulating a lobectomy 

procedure by incorporating elasticity information and biomechanical modeling was also 

constructed. Using this framework, the feasibility of using the resulting predicted post-intervention 

lung geometry for approximating pulmonary function test (PFT) values was investigated. The third 

aim of this proposal was to develop and employ a machine learning application for elasticity 

estimation from single end-exhalation breath-hold CT scans. A conditional generative adversarial 

(cGAN) neural network was built and validated for elasticity estimation. We further investigated 

the effects of the imaging dose used during the acquisition of CT image data on the accuracy of 

the proposed machine learning implementation.  

The expanded use of biomechanical modeling and elastography within the radiotherapy 

context has the potential to improve functional avoidance efforts for patients presenting with co-

morbidities affecting lung function prior to treatment. Additionally, there is an opportunity to 

extend these tools toward improving and informing other lung intervention efforts. Finally, the 
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ability to take advantage of CT-based elastography methods through machine learning in scenarios 

where model-based CT is not typically available could expand the scope of CT-based elastography 

in both the radiotherapy domain and for the expanded use in other lung intervention workflows. 

The tools and applications presented in this dissertation aim to highlight and expand the benefits 

of CT-based biomechanical modeling and elastography within the radiotherapy domain and for 

use with other lung intervention procedures.  
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CHAPTER 1: INTRODUCTION TO THE DISSERTATION 

1.1 Motivation 

 Radiation therapy is a key step in an often multi-faceted course of treatment for patients 

diagnosed with lung cancer.1 However, patients undergoing radiotherapy can experience severe 

radiation-induced lung injuries to healthy tissue when exposed to excess dose.2 The risk of 

treatment-related injury is further increased in patients with pre-existing lung diseases such as 

interstitial lung disease and chronic obstructive pulmonary disorder (COPD), which is found in 

40-70% of patients.3,4 Furthermore, greater rates of post-treatment side-effects and mortality have 

been observed in lung cancer patients with co-morbidities.5,6 Therefore, a better understanding of 

patient-specific underlying regional lung function is necessary to identify and minimize risk for 

these patients. Recent advancements in treatment planning techniques and treatment delivery 

technologies have allowed for the sparing of identified functional lung regions.7,8 To more 

accurately inform functional avoidance efforts in treatment planning for lung radiotherapy, we 

propose a biomechanical model-based CT elastography approach that considers the dynamic 

component of lung motion.  

 Outside of the radiotherapy domain, lung cancer patients with tumors localized to a single 

lobe of the lung are often considered for a lung lobectomy procedure, the surgical removal of one 

or more identified lung lobes.9 Additionally, patients with severe lung disease may also be 

considered for surgical or interventional volume reduction procedures targeting low- or non-

functioning lobe(s) of the lung.10 These volume reduction procedures have been shown to increase 

overall lung function through the removal of non-functioning lung tissue and/or air trapped within 

non-functional regions of the lung.11 While these methods have proven successful for some 
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patients, patient candidacy and outcome evaluation are limited to the review of quantitative CT 

measurements, such as RA950, standard pulmonary function tests (PFTs), and exercise tests.12,13 

These methods of patient evaluation and follow-up provide only overall patient lung function 

information but do not provide the regional lung function information necessary to fully 

understand complex patient-specific lung function before and following a procedure. We propose 

a biomechanical modeling approach, in combination with elasticity estimation, to predict post-

interventional lung geometries and PFT results. 

1.2 Background 

1.2.1 Radiation Therapy and Radiation-Induced Lung Injuries 
 
 Lung cancer is the leading cause of cancer death in both men and women in the U.S., as 

reported by the Centers For Disease Control and Prevention (CDC) as recently as 2020, accounting 

for over 23% of all cancer deaths.14 With over 218,000 new cases of lung cancer recorded in 2018 

alone, radiation therapy is often prescribed as either a main treatment, following surgical tumor 

removal, or in coordination with systemic therapies, such as chemotherapy.15,16 In fact, a recent 

study suggests that an increasing number of lung cancer patients, 77% of the cases reviewed, 

presented with an evidence-based indication for radiotherapy across all stages of disease.17 

 For some patients, thoracic radiotherapy can lead to the occurrence of a severe 

complication called radiation-induced lung injury (RILI). RILI may present acutely as radiation 

pneumonitis (RP) or chronically in the form of pulmonary fibrosis (PF) for up to 25% of lung 

cancer patients treated with radiation.18 A recent review article by Arroyo-Hernández et al. stated 

that predisposing factors for RILI could be either treatment-related (lung dose, fractionation, 

chemotherapy, other concurrent treatments) or patient-related (smoking history, comorbidities, 

demographics, and genetics). Studies investigating the relationship between RILI and pre-existing 
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conditions, such as COPD, interstitial lung disease (ILD), and pulmonary emphysema, have 

reported higher incidence rates of radiation pneumonitis in patients with these comorbidities.6,19-22  

1.2.2 Functional Lung Avoidance 

Previous approaches for identifying functional lung regions for use in normal tissue sparing 

efforts during radiotherapy treatment planning include the use of magnetic resonance (MR), 

ultrasound (US), and single-photon emission computed tomography (SPECT) imaging.23-25 

However, these methods are limited due to their requirement of image modalities not currently 

present in a conventional radiotherapy setup. The use of CT is ideal for ventilation imaging and 

functional lung identification because it is already acquired, due to the reliance of dose calculation 

on electron density information. For this reason, CT ventilation and perfusion imaging have been 

proposed and investigated in multiple clinical trials.24-27 In addition, more recently developed dose 

delivery methods like stereotactic body radiation therapy (SBRT) have been shown to be effective 

in the reduction of delivered dose to identified functional lung tissue.26-28 The delivery of 

hypofractionated treatments, relatively large doses in fewer fractions compared to conventional 

methods, with a rapid isotropic dose fall-off from the tumor volume to surrounding normal tissue 

can be achieved with these approaches.7,8 We envision the development of a CT-based 

characterization of patient lung function for function-preserving efforts during lung radiotherapy 

due to the availability of the imaging modality throughout the course of treatment. 

1.2.3 Lobectomy and Lung Volume Reduction Strategies 

Lobectomy procedures are one of the most common surgical approaches to treating early-

stage non-small cell lung cancer (NSCLC).29,30,31 The surgical removal of a lobe of the lung may 

reduce pulmonary function or capacity, patients undergo screening to predict the occurrence of 

postoperative pulmonary complications (PPC).32 Advances in surgical techniques, such as 

minimally invasive approaches and sub-lobar resections, in combination with enhanced 
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perioperative care, have led to improved outcomes. This new paradigm is causing some to 

reevaluate the criteria by which patients are evaluated for operative candidacy.33 For all lobectomy 

strategies, patient selection remains critical to ensuring clinically acceptable PPC and mortality 

rates.34 

Many surgical approaches to treating dyspnea, emphysema, and other conditions and 

symptoms associated with severe lung disease have been investigated. However, some of the 

proposed procedures including costochondrectomy, phrenic crush, pneumoperitoneum, pleural 

abrasion, lung denervation, and thoracoplasty, did not produce the desired outcomes while also 

subjecting patients to the inherent risks associated with an invasive surgical procedure.35  

One surgical procedure that initially proved beneficial to patients with acceptable mortality 

and morbidity rates was lung volume reduction surgery (LVRS).36,37 As an alternative to lung 

transplantation, LVRS exhibits lower associated mortality and removes the need for a donor organ 

to become available, which typically consists of strict patient selection criteria and placing the 

patient on a lengthy waiting list.38 Despite the stated benefits to patients who prove to be good 

candidates through presenting with necessary indications and a series of pre-operative workups, 

LVRS is considered an underutilized therapy in the US due to the assumed risk and high cost 

associated with the surgical procedure.12 

An alternative, less invasive procedure currently being investigated is bronchoscopic lung 

volume reduction (BLVR), the placement of endobronchial valves inserted bronchoscopically to 

occlude an emphysematous lobe of the lung.39 This approach aims to achieve partial or full lobar 

atelectasis and results in a similar reduction of hyperinflation as the previously described LVRS 

approach. The first randomized clinical trial of Zephyr Endobronchial Valves (Zephyr EBV, 

Pulmonx Corporation) was the  VENT (Endobronchial Valve for Emphysema Palliation Trial), in 
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which the assessed endpoints of FEV1 and 6-minute-walk distance (6MWD) showed statistically 

significant but not clinically meaningful improvements.40,41 There is a need for developing 

additional measures of patient candidacy and outcome prediction for these procedures to aid 

pulmonologists and surgeons. Tools to assist experts in these decision-making processes could be 

developed through a combination of applications such as biomechanical modeling, tissue property 

estimations, and machine learning applications. 

1.2.4 Biomechanical Modeling 

 Biomechanical models of human anatomy are critical in understanding physiology and 

have been developed for applications ranging from deformable image registration (DIR) to image-

guided treatment planning.42,43 Such approaches have been used by peers to model complex 

motions of the face, neck, jaw, torso, hand, normal lungs, and the leg for purposes of surgical 

intervention, surgical guidance, forensics, and biomechanical impact studies.44-47 In the context of 

radiotherapy, biomechanical models have been shown to be applicable for computing 

biomechanical changes caused by patient posture, physiological regression, and co-morbidities. 

For instance, biomechanical models of the lungs have been demonstrated to be useful for 

identifying regions with co-morbidities such as COPD, a progressive lung disease characterized 

by a reduction of airflow and hindrance of normal breathing efforts in patients due to narrowed 

airways.48-51 

 In a previous work by Neylon et al., GPU-accelerated patient-specific finite element 

biomechanical models were developed and validated to improve head and neck image 

registration.52 This biomechanical modeling effort has since been extended to other anatomical 

sites including the liver, breast, and lung.53-55 This has also allowed for the ability to perform 

physics-based deformations of patient anatomy and measure specific biomechanical properties. 
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1.2.5 Elastography 

Several methods, using various imaging modalities, have been identified for measuring the 

elastic properties of human tissues, such as the breast, liver, and lungs.56-58 Specifically, magnetic 

resonance elastography (MRE) has been proposed for estimating lung tissue elasticity.59-61 

Ultrasound (US) elastography has also been used to measure the elasticity of tumor characteristics 

and lung disease assessment.62,63 However, the use of these elastography methods within the 

radiotherapy setup has yet to be systematically investigated due to the need for an additional 

imaging step in the radiotherapy treatment planning workflow. There is a need to employ 

elastography methods for the lung anatomy using imaging modalities that are already in use within 

the clinical radiotherapy workflow, such as CT imaging.64  

 A quantitative measure of lung function has been identified in the measurement of the 

elastic properties of the parenchymal lung tissue. Normal lung function depends on the production 

of elastin and the presence of elastic fibers throughout the lung parenchyma and the inhibition of 

production or degradation of existing fibers can result in lung dysfunction and diseases, such as 

COPD.50,65,66 An established elastography method using motion-model generated images has been 

previously developed and validated for the accurate estimation of patient lung elasticity.51,67 The 

approach allows for elasticity distributions to be estimated by a biomechanical model, which is 

informed by deformably registered pairs of breath-hold CT images that are generated according to 

a motion model assembled from a series of FHFBCT scans.68 There is ample opportunity to 

advance and improve upon the current implementation of CT-based elastography, as well as 

expand potential uses throughout the radiotherapy treatment workflow. Furthermore, additional 

uses of elastography may be investigated for other lung interventions where an understanding and 

assessment of regional lung function assessment is important. 
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1.3 Specific Aims 

 One goal of this dissertation is to continue investigating and expanding the uses of CT-

based biomechanical modeling and elastography for improving functional lung avoidance efforts 

in radiation therapy. The second goal is to extend these tools for use in other function-preserving 

lung interventions. The first aim, to further develop and improve current lung elastography 

methods, was addressed by conducting a consistency study evaluating results obtained using 

images acquired during different points in the patient breathing trace. Additionally, an 

elastography approach was developed using large deformation datasets acquired during a forced 

breathing maneuver that may provide additional elasticity information when compared to free-

breathing datasets. The second aim of this work was to develop biomechanical modeling 

applications for function-preserving lung interventions outside of the radiotherapy domain. The 

first step taken to address this aim was the development of a quorum-based machine learning 

approach for lobar segmentation, for accurate lobe identification. Feasibility studies were also 

carried out in which post-operative lung geometries and PFT results were predicted through 

biomechanical simulation. The third aim was to develop a framework for performing elasticity 

estimation from a single breath-hold CT scan. A machine learning approach to CT-based lung 

elasticity estimation was investigated to address this aim. In addition, the effect of simulated 

reduced dose images on the accuracy of the machine learning-based elastography method was 

studied.  

Specific Aim 1 (SA1): Develop and improve upon current elastography algorithms and tools. 

1. Conduct a consistency study evaluating the results of a CT-based elastography method with 

two separate sets of 5DCT pseudo-breath-hold images acquired at different points in a patient 

breathing trace. 
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2. Investigate the feasibility of elastography with breath-hold CT images acquired during the 

forced breathing stages of residual volume (RV) and total lung capacity (TLC) for obtaining 

additional elasticity information.  

Specific Aim 2 (SA2): Demonstrate biomechanically modeled function-preserving treatment 

interventions. 

1. Develop a quorum-based machine learning approach to lung lobe segmentation for acquiring 

lobe-wise boundary constraints and performing lobe-wise analyses. 

2. Estimate lobectomy and lung lobe volume reduction post-procedure lung geometries. 

3. Predict post-operative pulmonary function test (PFT) results using generated post-procedure 

lung geometries. 

Specific Aim 3 (SA3): Develop methods for performing elasticity estimation from single end-

exhalation breath-hold CT scans. 

1. Formulate a machine learning algorithm for generating elasticity from a single end-expiration 

breath-hold CT scan. 

2. Evaluate the effects of imaging dose on a machine learning algorithm’s ability to produce 

accurate elasticity results. 

1.4  Overview 

 In this dissertation, Chapters 2-6 are versions of manuscripts that have been published or 

are under review in peer-reviewed academic journals and conference proceedings. The following 

is a breakdown of chapters and the stated Specific Aims that they address. Chapter 2 addresses 

SA1.1 through a study of the consistency of an elastography method when using image data 

acquired at different points in a patient breathing phase. SA1.2 Is addressed in Chapter 3 through 

a feasibility study in which the elastography approach is applied to large deformation breath-hold 

images acquired at forced breathing. Chapter 4 addresses SA3.1 and 3.2 through the development 
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and evaluation of a machine learning-based approach to performing elasticity estimation with a 

single breath-hold CT scan. SA2.1 is addressed in Chapter 5, in which a quorum-based machine 

learning application is proposed for the task of lung lobe segmentation. Chapter 6 addresses SA2.1 

and 2.2 through a proposed method of post-lung intervention lung geometry estimation and 

pulmonary function prediction.   
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CHAPTER 2: A quantitative analysis of biomechanical lung model 
consistency using 5DCT datasets 

Biomechanical lung model consistency analysis 

A version of this chapter has been published as a manuscript: Med Phys, Vol. 47, No. 11, 2020. doi: 10.1002/mp.14323 

2.1 Introduction 

Normal lung function is dependent on the elasticity (Young’s Modulus) of the lung tissue 

and diseases such as COPD cause a loss in tissue elasticity.49 This results in air-trapping in the 

lungs upon exhalation and an increase in difficulty breathing as documented by studies of excised 

tissue of lung disease patients who exhibited variations in biomechanical properties of lung 

parenchyma.69,70 The current gold-standard spirometry-based measures of disease onset and 

staging are unable to characterize regional lung tissue mechanics.71 Recent efforts made to identify 

voxel-specific COPD phenotypes (emphysema, gas-trapping, and small airways disease) include 

post-processing and deformable registration techniques of inspiratory and expiratory CT lung 

scans.72-74 However, these methods are limited by their inability to sufficiently represent the 

underlying tissue physiology.75 The overall goal of this area of research is to achieve a quantitative 

understanding of lung physiology by measuring the regional lung elasticity using a 

biomechanically-guided procedure. In our previous research effort, a novel biomechanically-

guided elastography method, performed via an in-house GPU-driven physics-based biomechanical 

model, has been proposed and validated.50 The accuracies of the measurements were 

systematically validated using soft phantoms that can deform for a given known distribution of 

boundary constraints and elasticity distribution. Furthermore, lung tissue elasticity measured using 

the biomechanical model has been established as a biomarker in determining disease staging, 
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designating new endpoints in clinical trials, and developing new targeted treatments for COPD 

patients.51   

A critical analysis that needs to be performed and documented is the consistency of the 

estimated elasticity. The consistency, in this case, refers to the repeatability with which the 

elasticity can be measured for a given patient when a new set of images are employed and when 

no physiologic change in elasticity is expected. For example, if the images are formed from data 

acquired at the same imaging session but at different times. We employed a well-validated 5DCT 

breathing motion model with two sets of CT scans to generate pseudo-breath-hold images at 

inhalation and exhalation and used those images to estimate elasticity, comparing the two elasticity 

datasets. The purpose of this paper is to evaluate the robustness and consistency of the 

biomechanical model’s lung tissue elasticity estimation. 

2.2 Materials and Methods 

In this study, 5DCT datasets for 10 lung cancer patients were acquired under IRB approval 

and with patient consent (IRB# 11‐000620‐CR‐00004). Patient characteristics and history are 

detailed in Table 2-1. Imaging occurred before treatment on Siemens Definition Flash, Biograph 

64, and Definition AS scanners for 5, 3, and 2 patients, respectively. Images were reconstructed 

with 1 mm slice thickness and a 500 x 500 mm2 field of view, with subsequent interpolation to 1 

x 1 x 1 mm3 voxels.  

2.2.1 5DCT Protocol 

A detailed description of the 5DCT protocol is described by Low et al.76 Figure 2-1 

describes the 5DCT image acquisition and motion model generation workflow.77 The protocol 

used 25 low-mA repeated free-breathing fast-helical CT (FBFHCT) scan acquisition with a 

simultaneous abdominal bellows-based breathing surrogate proportional to tidal volume. The 
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resulting prediction motion model provides motion-sorting-artifact-free images and allows for the 

generation of images at user-selected breathing phases, like end-inhalation and end-exhalation, 

while also maintaining accurate Hounsfield units and noise characteristics similar to non-4D CT 

techniques. These advantages over traditional 4DCT allow for an accurate biomechanical model 

to be constructed and, as a result, a reliable elasticity estimation. For this work, the scans were 

subdivided into the first 12 and the last 12 scans with each batch analyzed separately. Between 

these two sets of image acquisitions, patients remained on the table and there was a brief time 

pause. 5DCT motion models built from 12 scans were deemed sufficient since Thomas et al. 

concluded that 10 scans, regardless of breathing trajectories scanned, were required to produce an 

accurate prediction model.78 

Patient Age Gender Staging Smoking 
History Pre-Existing Conditions 

Prior 
Thoracic 
Radiation 

Has 
COPD? 

1 85 M T2a Former 
Smoker 

Hypertension, coronary 
artery disease, anemia, 
BPH, and lung cancer 

No prior No 

2 59 F T2b Nx 
M1a Non-Smoker N/A No prior No 

3 61 F N/A Smoker, 45 
pack years Diverticulitis, kidney stones No prior No 

4 68 M T1b N0 M0 
Former 

Smoker, 50 
pack years 

Intrathoracic 
lymphadenopathy, diabetes 
mellitus, hypertension, and 

coronary artery disease 

No prior No 

6 26 F 

Stage IV 
metastatic 
synovial 
sarcoma 

6 years of 
tobacco; 
medical 

marijuana use 

N/A No prior No 

10 82 F T1b N0 M0 
Former 

Smoker, 20 
pack years 

N/A No prior No 

11 74 M T1b N0 
MX 

Former 
Smoker, 7 
pack years 

Diabetes mellitus, COPD, 
bilateral lung nodules, and 

pulmonary TB 
No prior Yes 
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15 78 F 
Stage IIIA 
NSCLC 
(TX N2) 

N/A N/A 
IMRT: 

LUL, 66 
Gy 

Yes 

26 70 M T1a N0 
MX 

Current Some 
Day Smoker, 

12.5 pack 
years 

Hypertension, COPD, 
pulmonary hypertension, 
pancreatitis, colon cancer, 

colostomy, depression, 
congestive heart failure, 

anemia, high output 
ileostomy, chronic kidney 

disease, gouty arthritis, and 
sleep apnea 

No prior Yes 

28 75 M T1a N0 M0 Never Smoker 

Hypertension, GERD 
(gastroesophageal reflux 

disease), Parkinson's 
disease, coronary artery 

disease, diabetes mellitus, 
congestive heart failure, 

incontinence, and 
hemorrhoids 

No prior No 

Table 2-1: Patient characteristics for 10 lung cancer patients included in this study (N/A denotes 

that the information was not available in patient chart) 

 

Next, for each of the two batches, the 5D motion model was used to characterize tissue 

motion as a function of breathing amplitude (v) and rate (f). The position X of a piece of lung tissue 

that was at position 𝑋!""""⃗  at 𝜈 = 0  and 𝑓 = 0 was calculated using Equation 2-1:  

𝑋 = 𝑋!""""⃗ + 	 𝛼⃗𝜈 +	𝛽𝑓       (2-1)  

where 𝛼 and 𝛽 were vector fields that described that tissue’s motion. For this work, 𝜈 = 0 was 

defined as the 5th percentile breathing amplitude and correspondingly labeled exhalation. The 

equation was used to compute the deformation vector field between exhalation and inhalation, 

defined here as the 85th percentile of v. 

 An analysis of patient-specific breathing traces was performed to quantify differences in 

breathing patterns during the period of image acquisitions used to build the two motion models, 
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the first 12 and last 12 scans. As these images are the input for the biomechanical modeling and 

elasticity estimation process, the differences measured in breathing trace at the time of imaging 

and their influence on the images obtained could influence the ability to gain consistent elasticity 

estimation. 

 

Figure 2-1: 5DCT acquisition and motion model generation workflow77 

2.2.2 Elastography 

A well-validated forward biomechanical model along with the 5DCT-defined exhalation 

geometry, boundary conditions, and deformation vector fields (DVFs) were used to determine the 

elasticity by solving the inverse elasticity problem.79 In an effort to include only parenchymal lung 

tissue in the elasticity estimation, input CT lung datasets underwent thresholding to remove voxels 

greater than -350 HU, including large blood vessels and major bronchi.80 Figure 2-2 details the 

workflow of the biomechanical model and generation of elasticity and displacement distributions. 
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The model operated by way of an iterative process of biomechanical property estimation and 

inverse deformation methods aimed at replicating the provided ground-truth displacements and 

achieving voxel-level convergence. Each voxel is represented as a finite element with an assigned 

density-based initial elasticity value and ground-truth displacement value defined by the 5DCT 

model-derived deformation vectors pointing from end-inhalation to end-exhalation. The 

deformation vectors of the voxels at the lung boundary (i.e., rib cage and diaphragm) act as 

boundary conditions for the biomechanical model while the voxels within the lung geometry are 

free to deform according to linear elastic forces felt due to defined boundary displacements. 

Elasticity estimations are posed as a parameter optimization problem with the solution being the 

elasticity distribution that minimizes the difference between model-computed and ground-truth 

displacements. The optimization process iteratively adjusted elasticity values until pϵ ≥ 0.95, 

where the maximum iteration limit was set to be 100. The second convergence criteria evaluated 

the percentage of voxels converged within 10% of the minimum deformation, or ϵ2 = 0.1*maxa(| 

da | ). Once these constraints were satisfied, the resultant elasticity was recorded along with the 

model-achieved displacement vector for each voxel. The convergence and percent accuracy were 

computed as follows: 

																																								𝑐" 										= 	 -
	1 ∶ 	 0|𝑑"| − 4𝑑#40 < 	𝜖
0 ∶ 			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒														

																																																			(2 − 2) 

																																																						𝑝$ =	
∑ 𝑐"%
&

𝑛 																																																																																						(2 − 3) 

In Equation 2-2, ca represents the model error and is calculated for each voxel through the 

comparison of L2-norm (𝜖) and the difference between resultant model-achieved displacement 

(da) and ground-truth DVF (dg). In Equation 2-3, the percent accuracy (𝑝$) is defined as the sum 

of the error (𝑐") divided by the total number of voxels n. 
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Figure 2-2: Elastography workflow 

2.2.3 Consistency Analysis 

The elasticity estimations were performed for each of the 5DCT models generated as 

previously explained in Section 2.2. The inverse DVFs, which pointed from end-exhalation to 

reference geometry, defined as the geometry of the first 5D scan used as a reference for both 5DCT 

models, were used to warp the resulting distributions to a common geometry for voxel-level 

evaluations. This was performed by the following equations: 

																																																					(𝑥', 𝑦', 𝑧') = 	 (𝑥 + 𝑈, 𝑦 + 𝑉, 𝑧 +𝑊)																																			(2 − 4)         

Equation 2-4 describes the voxel-specific application of 3D-deformation vectors (i.e., U, V, 

and W) to the end-exhalation voxel position (x,y,z) to establish the voxel’s new location (x’,y’,z’) 

in the reference geometry after warping.  
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The metrics used in the quantitative analysis of differences in resultant elasticity and 

displacement values among 5DCT models were: Let 𝐸(& and 𝐸() represent the elasticities of a given 

reference voxel position 𝑖. Let 𝑐(* represent a given reference voxel’s criteria passing decision. Let 

𝑑(& and 𝑑() represent the displacements computed from the biomechanical model using the 

elasticities 𝐸(& and 𝐸(), respectively. Let 𝑐(+ represent a given reference voxel’s criteria passing 

decision.  

∆𝐸PPPP = 	
∑ 4𝐸(& − 𝐸()4%
(,&

𝑛 																																																											(2 − 5) 

			𝑝* =	
∑ 𝑐(*%
(,&

𝑛 				𝑤ℎ𝑒𝑟𝑒					𝑐(* =	 -
	1 ∶ 	 0𝐸(& − 𝐸()0 < 	2	𝑘𝑃𝑎
0 ∶ 			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒														

																																(2 − 6) 

∆𝑑PPPP = 	
∑ 4𝑑(& − 𝑑()4%
(,&

𝑛 																																																												(2 − 7) 

							𝑝+ =	
∑ 𝑐(+%
(,&

𝑛 			𝑤ℎ𝑒𝑟𝑒					𝑐(+ =	-
	1 ∶ 	 0𝑑(& − 𝑑()0 < 	2	𝑚𝑚
0 ∶ 			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒														

																																			(2 − 8) 

 The average difference in lung elasticity, ∆𝐸PPPP, was calculated in Equation 2-5 as the sum of 

voxel elasticity differences between models over the total number of voxels. In Equation 2-6, 𝑝* 

describes the percentage of total lung voxels with an elasticity value difference less than 2 kPa 

between models. Similarly, average voxel displacement, ∆𝑑PPPP, was calculated in Equation 2-7, as 

the sum of all voxel displacement differences between models over total voxels. In Equation 2-8, 

𝑝+, describes the percentage of total lung voxels with a displacement value difference of less than 

2 mm between models. In addition to quantitative analysis, colormaps were generated for a 

qualitative comparison and are further discussed in the results section. 
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Figure 2-3: Study methodology 

2.3 Results 

 Figure 2-4 provides an example of the distinct time intervals, identified by dashed and 

bolded portions of the breathing trace, over which two sets of 12 free-breathing CT scans were 

acquired to construct the two independent 5DCT motion models.  For all patients, a comparison 
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of breathing traces associated with the two 5DCT datasets showed a mean percent difference of 

8.9% and a correlation analysis resulted in an average correlation coefficient of 0.22. Figure 2-5 

compares breathing trajectories for the 5DCT acquisitions of Patient 3 (Figure 2-5a) and Patient 6 

(Figure 2-5b). From a qualitative standpoint, the breathing traces are noticeably different in 

frequency, amplitude, and homogeneity over time as noted for patient 3 (Figure 2-5a) during the 

initial time interval of 0 to 3000 ms. For quantitative measurement, a comparison of breathing 

traces showed mean percent differences in breathing traces of 20.7% and 18.7% for patients 3 and 

6, respectively. Correlation analysis of each patient’s two model-associated breathing traces found 

the lowest recorded correlation coefficients were 0.02 and 0.05. The results of these analyses 

showed the level of significant breathing variations observed, both qualitatively and quantitatively, 

over the time in which the scans were acquired. 

 

Figure 2-4: Breathing trace with differentiated scan acquisition time intervals for 5DCT models 
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Figure 2-5: Comparison of breathing traces during 5DCT acquisition for each model for (a) 

patient 3 and (b) patient 6 

 The biomechanical model estimated elasticity distributions for both 5DCT datasets 

associated with each patient. Figure 2-6 shows a 2D slice of elasticity estimation results for coronal 

a) 

b) 
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slices of the right and left lungs for a single patient using the biomechanical model and the 5DCT 

datasets. Figures 2-6a and 2-6b and Figures 2-6c and 2-6d present the elasticity associated with a 

left and right lung slice, respectively, for the initial and repeat 5DCT. It can be seen from these 

images that the heterogeneous elasticity distributions for each of the cases appear to be regionally 

similar to their associated repeat 5DCT. A consistent trend, observed amongst the entire cohort of 

patients, was the upper medial side of both the right and left lungs had a distribution of elasticity 

values ranging from 0-5 kPa. Similarly, the lower lateral region of each lung displayed consistent 

distributions in the elasticity range from 5-10 kPa. Specific elasticity values of voxels belonging 

to structures such as small blood vessels (5 to 7.5 KPa) and regions of air trapping (0 to 2.5 KPa) 

also matched well. Certain voxels at the boundary of the lung, where motion was dictated by 

ground-truth DVF, and of rigid vessels took on elasticity values greater than those of the 

surrounding parenchymal tissue, in the range of 10-20+ kPa due to their immobility, as dictated 

by the boundary conditions.81 Qualitative colormaps showed a high level of consistency in regional 

elasticity distribution trends among the 5DCT datasets. 

Figure 2-7 shows the voxel elasticity value differences between datasets for each patient. 

The largest measured median value, denoted by the midline of the boxes, was a 0.11 kPa difference 

with the average of these medians being 0.02 kPa. The 25th and 75th percentile values are marked 

by the top and bottom boundaries of the boxes, respectively. The 25th and 75th percentile had mean 

values of -0.76 kPa and 0.71 kPa, respectively, and were greater than +/- 1 kPa only for patients 

3, 6, and 9. Finally, the whiskers represent the minimum and maximum values, within +/- 2.7s, 

with mean values of 2.91 kPa and -2.97 kPa, respectively. A boxplot representation and 

quantitative analysis of voxel elasticity value differences display the agreement of distributions at 

the voxel level. 
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Measures of elasticity differences between the two estimations for the 10 patient datasets 

are tabulated in Table 2-2. The mean elasticity value difference between models for voxels of less 

than 5 kPa, an elasticity range used as a biomarker for COPD staging, was 0.60 kPa and the 

percentage of voxels differing by less than 2 kPa was 92.0%.75 For all lung voxels, the mean 

difference was found to be 1.69 kPa, with 74.1% of voxels differing by less than 2 kPa between 

datasets. When considering all voxels classified as parenchymal tissue, defined by voxels with CT 

numbers between -600 and -900 HU, the average difference was 0.82 kPa and the percentage of 

voxels differing by less than 2 kPa was 86.7%. The mean correlation coefficient for all patient 

elasticity distribution model pairs was 0.81. Clinically agreeable elasticity value differences for 

voxels within the elasticity range of interest point to collectively consistent distributions across all 

patients.  

 The differences in biomechanical model-achieved versus ground truth displacements were 

analyzed at the voxel level, as described in Table 2-3. The average displacement difference for all 

lung voxels was 0.82 mm with 90.4% of voxels differing by less than 2 mm. Similarly, for 

parenchymal lung voxels with elasticity less than 8 kPa, the average difference in displacement 

was 0.62 mm and the percentage of voxels that differed by less than 2 mm was 94.6%. For voxels 

with elasticity less than 5 kPa, the average difference in voxel displacement was 0.49 mm and the 

percentage of voxels that differed by less than 2 mm was 96.6%. The mean correlation coefficient 

between model-achieved displacement distributions for all patients was 0.845. This supports the 

idea that the biomechanical models exhibit a consistent behavior across patients when comparing 

data acquired at different time points in a single session. Quantitative measures of differences in 

biomechanical model-achieved displacement values between 5DCT datasets show a strong 

agreement in model performance.  
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Figure 2-8 shows the elasticity distribution for a single patient within the elasticity range 

of lung parenchyma (1-8 kPa). The differences are small and the elasticity accuracy between the 

two estimations is consistent for the parenchymal elasticity range. The average percent difference 

in voxel count across bins 1-8 kPa was 3.8% for this patient. For all 10 patients, the average percent 

difference across bins was 7.1%, indicating a high consistency of elasticity distribution outputs. 

Figure 2-9 shows displacement map differences of lung slices generated using the 

biomechanical model. Figures 2-9a and 2-9b show a comparison of displacement maps of the left 

lung, while Figure 2-9c and 2-9d show an example of the right. With only minor variations 

observed between displacement maps and boundary conditions, the qualitative evaluation shows 

high correlation between displacement distributions. The range of voxel displacement in the 

superior half of the lung 0-7.5 mm is consistent across both lungs for both models. Similarly, a 

consistent range of 7.5-16 mm was measured in the inferior half of the lung. Qualitative 

representations of the displacement distributions show largely consistent regional trends between 

the displacement outputs of 5DCT datasets. 

Figure 2-10 shows the model-achieved voxel displacement value differences between 

5DCT datasets for each patient. Calculated median differences for each patient, denoted by the 

box midline, were smaller than 0.60 mm and the average median was found to be 0.14 mm. The 

top and bottom boundaries of the boxes represent the 25th and 75th percentile values, respectively. 

These percentile values were greater than +/- 1 mm only for patients 6 and 9 with mean values of 

-0.35 mm and 0.63 mm for the 25th and 75th percentiles, respectively. The whisker extensions show 

the minimum and maximum values within +/- 2.7s, with mean values across all patients of -1.82 

mm and 2.10 mm, respectively. A box plot and reported quantitative measurements of voxel 

displacement values show clinically agreeable differences. Consistency in model performance is 
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established through relatively small voxel-to-voxel differences between model-achieved 

displacement values for each 5DCT dataset. 

Bland-Altman plots describing the elasticity and model-achieved displacement difference 

distributions results are shown in Figure 2-11. Elasticity difference distributions for left and right 

lungs are described in Figures 2-11a and 2-11b. The plots include a line denoting the mean of the 

differences in elasticity (in kPa), as well as lines above and below marking +/- 1.96s from the 

mean. For left and right lungs, the mean differences were 0.17 kPa and -0.15 kPa, respectively. It 

can be seen from the displayed value density that all regions comprising > 3% of the voxels were 

within a 1 kPa difference for both lungs. Similarly, Figures 2-11c and 2-11d show Bland-Altman 

plots for displacement difference distributions with means of 0.08 mm and 0.16 mm for left and 

right lungs, respectively. The analysis of value density showed that regions comprising > 5% of 

the voxels were within a 1 mm difference. These results give further evidence that both the 

elasticity and displacement results were consistent across 5DCT datasets. 

a) 

 

b) 

 

c) 

  

d) e) f) 

kPa 

kPa 

kPa 
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Figure 2-6: Elasticity estimated from the two 5DCT datasets for Patient 1 where (a) and (d) 

show elasticity distribution for a right lung slice, (b) and (e) show elasticity distribution for a left 

lung slice, and (c) and (f) show the difference between model distributions 

 

Figure 2-7: Distribution of voxel elasticity differences between models for each patient 
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Table 2-2: Percentage of voxels < 1 kPa difference, < 2 kPa difference between 5DCT models, 

average voxel elasticity difference for voxels of < 5 kPa, and correlation coefficients 

 

Elasticity Difference for lung parenchymal voxels 

Patient ID Percent voxels < 1 
kPa Difference 

Percent voxels < 2 
kPa Difference 

Average Difference 
(kPa) 

Correlation 
Coefficient 

1 86.05% 99.5% 0.454 0.898 

2 84.06% 94.80% 0.480 0.799 

3 60.51% 80.86% 0.990 0.732 

4 77.03% 92.32% 0.608 0.846 

5 95.37% 98.4% 0.207 0.811 

6 66.01% 86.72% 0.882 0.750 

7 78.55% 93.56% 0.619 0.774 

8 80.53% 94.35% 0.558 0.885 

9 68.51% 86.82% 0.842 0.759 

10 87.90% 96.87% 0.390 0.841 

Mean: 78.48% 92.03% 0.603 0.810 
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Table 2-3: Percent voxels < 1 mm difference, < 2 mm difference between 5DCT models, 

average voxel displacement difference for voxels of < 5 kPa, and correlation coefficients 

Displacement Difference for lung parenchymal voxels 

Patient ID Percent voxels < 1 
mm Difference 

Percent voxels < 2 
mm Difference 

Average Difference 
(mm) 

Correlation 
Coefficients 

1 96.13% 99.93% 0.311 0.912 

2 78.40% 94.49% 0.679 0.781 

3 76.81% 96.98% 0.68 0.824 

4 98.94% 99.45% 0.122 0.942 

5 90.08% 98.88% 0.504 0.727 

6 61.0% 83.52% 1.028 0.822 

7 95.43% 99.41% 0.358 0.885 

8 74.36% 96.43% 0.707 0.958 

9 56.72% 79.19% 1.213 0.864 

10 91.60% 98.19% 0.399 0.739 

Mean: 81.94% 94.65% 0.60 0.845 
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Figure 2-8: Histogram of the elasticity distribution obtained from the two 5DCTs for Patient 1 
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c) 

 

d) 

 

e)  

 

Figure 2-9: Displacement estimated from the two 5DCT datasets for Patient 1 where (a) and (c) 

show the displacement map for a right lung slice, (b) and (d) show the displacement map for a 

left lung slice, and (c) and (e) shows the difference between model distributions 

 

Figure 2-10: Distribution of voxel displacement differences between models for each patient 
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a) 

 

b) 

 

c) 

 

d)  

 

Figure 2-11: Bland-Altman plots of elasticity and displacement distributions for (a and c) left 

lung (b and d) right lung, respectively 

2.4 Discussion 
 

In this study, only the displacement of lung tissue was considered and variations in motion 

of static boundaries such as ribcage and diaphragm were not accounted for directly. Taking this 

additional source of motion into account in future work could further quantify the consistency of 

biomechanical model performance for scenarios when the 5DCT images are collected over 
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significant time intervals. This further test of consistency in circumstances of more physiologically 

extreme breathing motion differences could be conducted given there is adequate accessible 

clinical data.  

 In a related work, Du et al. investigated the reproducibility of lung expansion 

measurements by performing two repeat 4DCTs of free-breathing humans and calculating the 

associated Jacobian.82 This study found the reproducibility of the Jacobian to be largely reliant on 

the reproducibility of patient respiration and breathing pattern. In comparison, our study found a 

similar trend in which reported that consistency measures were lower for those patients showing 

the largest differences in breathing pattern sections. However, all patients included in our study 

had less than a 1 kPa and 1 mm mean difference in elasticity distribution and model-achieved 

displacement distribution, respectively. 

 Future work would also focus on making hyper-elastic measurements that can take deep 

inhalation and exhalation patterns into account for elasticity estimation. Recent studies have shown 

that modeling the lungs as an inhomogeneous material with hyperelastic behavior led to an 

improved prediction of the lung tissue motion.83 This consideration could lead to a more 

physiologically accurate characterization of elasticity distribution in the presence of hyperelastic 

behavior in lung tissue.  

 The current biomechanical modeling approach does not consider airflow dynamics. An 

investigation is underway to further improve the accuracy of the biomechanical model through an 

accurate representation of airflow and pressure distributions within the lungs. Due to obstructed 

airflow and narrowed airways observed in patients with lung diseases such as COPD, airflow 

dynamics can play a significant role in informing a biomechanical modeling approach. The 

incorporation of such dynamics will serve to supplement and validate elasticity estimations as an 
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indicator of lung function. This approach also does not incorporate motion due to blood flow 

dynamics and cardiac motion. While previous studies by White et al show the impact of blood 

flow on lung deformations using 4DMR-based imaging, we don’t expect significant blood flow 

changes between the two imaging sessions.84  

2.5 Conclusions 

 This research has demonstrated the feasibility of using finite element biomechanical lung 

models to estimate lung elasticity with consistency in patient lung dynamics. This was 

accomplished through the integration of the 5DCT imaging protocol and subsequent creation of 

two 5D motion models to obtain images at any point in a patient’s breathing trajectory. Taking the 

resultant DVFs and boundary conditions as ground truth, elastography was performed by an 

iterative forward model to obtain model-achieved elasticity and displacement distributions for each 

5DCT dataset. We show that when patient breathing variations are taken into consideration, the 

consistency of a previously well-validated elastography method is observed in both the qualitative 

results and quantitative measures. The results of this study further validate the ability to estimate 

lung elasticity consistently and accurately with a biomechanical model for COPD disease staging. 
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CHAPTER 3: An adversarial machine learning framework and 
biomechanical model-guided approach for computing 3D lung tissue 
elasticity from end-expiration 3DCT 
 
A version of this chapter has been published as a manuscript: Med Phys, Vol. 48, No. 2, 2021. doi: 10.1002/mp.14252 

3.1 Introduction 

Radiation therapy is a clinical procedure that is commonly used to treat lung cancer.85,86 

With an increasing focus on hypo-fractionated radiotherapy and improved patient quality of life 

following treatment, there is a greater need to spare the normal lung regions while precisely 

targeting the lung tumor.87,88 This requires an ability to precisely differentiate regions of the lung 

tissue as either functional or diseased. Lung tissue elasticity is a biomechanical metric associated 

with each lung voxel that can characterize tissue functionality.89 Spatial variation in the lung tissue 

elasticity is illustrative of differences in the local tissue compliance.  In-vivo measurement of these 

parameters will enable a clearer understanding of patient-specific lung pathophysiology and lead 

to the development of treatment plans that optimally spare normal tissue while also delivering 

greater tumor doses.90,91 

The ability to estimate lung tissue elasticity has been demonstrated using magnetic 

resonance elastography (MRE).59-61 This approach is limited within a conventional radiotherapy 

setup due to the availability of this imaging modality. Therefore, there is a need to establish 

elastography methods using imaging modalities already acquired as part of the clinical 

radiotherapy workflow, such as computed tomography (CT) imaging.64 Recently, the possibility 

of estimating the lung tissue elasticity from four-dimensional CT (4DCT) datasets was 

documented in Hasse et al.54 This work proposed a methodology to estimate lung tissue elasticity, 

as Young’s modulus (YM), using three-dimensional (3D) deformation vector field (DVF) 

information computed from DIR of 4DCT lung images. However, the approach is highly 
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computationally expensive, which limits the feasibility of clinical implementation and use on a 

large number of datasets. 

In this paper, we formulate a machine learning (ML) mechanism to learn elasticity 

distribution using the subject-specific lung end-expiration CT geometry. The learning process 

consisted of a supervised approach, in which a deep neural network (DNN) was trained on known 

lung geometry (lung boundary and internal substructures) and elasticity information. The elasticity 

for the training process was estimated using a biomechanically guided inverse estimation 

procedure using 4DCT as the image data.50 Once trained, the neural network model can infer 

patient lung tissue elasticity distribution given a single end-exhalation CT lung image dataset. 

From a clinical perspective, the proposed approach is applicable for radiotherapy as no additional 

imaging modality is required for the lung elastography process. The expanded availability of lung 

tissue elasticity opens new avenues of research in the assessment of lung function and may also be 

extended in applications such as interventional lung treatment. Finally, the computational time 

reduction provided by the proposed deep learning approach enables near real-time estimation of 

patient lung dynamics. 

3.2 Materials and Methods 

In this section, we first present the biomechanical model used for the lung tissue elasticity 

estimation. We then discuss the inverse optimization process during the elasticity estimation 

process, used to generate training data. Then, we describe the cGAN used for the machine learning 

process. Finally, we detail the steps involved in the machine learning of the lung tissue elasticity 

for a given end-exhalation CT. 

3.2.1 Biomechanical model  
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The biomechanical model presented here is tasked with computing the lung tissue 

deformation for a given lung boundary displacement and associated elasticity distribution.54,92-

94 The deformation space was defined as a virtual three-dimensional space, where the model 

geometry was initialized and deformed. The lung model geometry, which consisted of the lung 

boundary conditions and substructures inside the lung, was represented by finite mass element 

nodes corresponding to the center of each voxel of anatomy in the CT image. The high-resolution 

biomechanical lung model was assembled from a segmented lung CT end-expiration geometry 

using the steps previously discussed in Neylon et al., with the resulting mesh density being 

representative of the input CT. In this work, each finite element was considered a mass element. 

Mass elements were connected to neighboring elements by linear elastic connections in the 

deformation space to form a regular polygonal volumetric mesh with the same resolution as that 

of the CT image (~1 mm3) to ensure a physically realistic deformation. The distance between two 

connected element centers, termed the rest length, and orientation of each connection were then 

recorded and assigned an elasticity value and a Poisson’s ratio as the final step in model 

initialization. As patients are expected to breathe normally during a 4D imaging session, a locally 

heterogeneous distribution of linear elastic material properties (Poisson’s ratio = 0.43) was used 

for this study.95-97  

For deforming the modeled lung geometry, we employed a biomechanical constitutive 

equation (Hooke's law), with the tissue elasticity represented by the YM. From a biomechanical 

standpoint, the lung deformation occurs due to the internal corrective forces compensating for the 

lung boundary displacement obtained from the five-dimensional CT (5DCT) data. As previously 

discussed in Hasse et al., no external forces were applied for this purpose.50,66 The biomechanical 

lung model was actuated using the lung surface element displacements as pointwise and fixed 
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boundary constraints. For the given boundary displacements, the corrective forces on each mass 

element were calculated as the summation of tensile, shear, and dashpot damping forces. Initially, 

the elastic internal corrective forces were set to zero at rest. During induced model deformation, 

the mass elements were relocated to new positions inside the deformation space, causing the 

internal corrective forces to take on non-zero values. For each finite element, a, the elastic 

force, , shear force, , and the dashpot damping force, , were calculated for each 

connected element, b, and summed to find the total internal corrective force, , according to 

Equation 3-1: 

     (3-1) 

where the elastic force acting between two mass elements is described by: 

     (3-2) 

in which the term Eab refers to the elasticity between node elements a and b, lab is the rest length 

orientation, and Pab is the projection vector. The shear force was computed as the force along the 

rejection vector, computed as a difference between the deformed vector between the elements and 

the projection vector. Finally, the dashpot damping force was computed from the velocities of the 

neighboring mass elements and the Poisson ratio.52 

As the material elasticity is assumed to be linear, Equation 3-2 is derived from the 

relationship between elasticity and the magnitude and directions of displacement vectors.98 The 

new locations and velocities of mass elements were then updated from their previous values, using 
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implicit (or backward) Euler integration and total internal corrective force. The calculation was 

performed using a graphics processing unit (GPU) setup to allow for fast computations.92 

3.2.2 Inverse elasticity estimation 

An approach to estimating lung tissue elasticity from 4DCT datasets was documented in 

Hasse et al.54 For clarity, we will briefly describe this technique. The work proposed a 

methodology to estimate lung tissue elasticity (YM) using dynamic lung information extracted 

from 4DCT lung images. The problem was formulated as a parameter optimization, where the aim 

was to determine the distribution of elasticity values that would minimize the difference between 

the ground-truth DVFs and those computed by the biomechanical model. The stated parameter 

optimization problem was solved in two steps. First, we estimated the DVF for every voxel with 

an HU-based initial guess elasticity distribution and changes in lung surface boundary constraints. 

Each lung phantom voxel was assigned an initial ground-truth YM based upon the HU value, with 

elasticity values ranging from 1 and 20 kPa — an extended approximation of the range of elastic 

moduli values for normal and fibrotic lung tissues.89,99 We then iteratively optimized the elasticity 

distribution to best reproduce the registration-defined DVF. For our studies, we employed 4D lung 

datasets generated using the 5DCT imaging protocol. The DVFs were computed as part of the 5D 

model generation process, accounting for motion artifacts, large displacements, and potential 

sliding motion. 

In the first step, lung boundary conditions were applied according to the calculated DVF 

and the interior elements were allowed to deform according to the generated elastic constitutive 

forces, as described in Section 3.2.1. The iterative scheme for estimating the elastic distribution 

was based on the inverse relationship between elasticity and displacement. Given an initial 

elasticity distribution, the constitutive model computed the volumetric displacements.100 These 
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displacements were then compared with the ground-truth DVFs obtained from DIR and the 

effective elasticity was iteratively updated until a defined convergence threshold, or quantitative 

measure of agreement, between registration-defined and model-generated displacements, was met. 

New displacement values were then generated for each iteration by updating the effective elasticity 

distribution according to a modified Gauss-Newton optimization scheme.101 Since the pleural 

cavity between the lung and the inner chest wall forms a hydrostatic seal, we translate the lung 

surface’s displacement as a boundary constraint for the lung tissue’s elasticity estimation. The lung 

surface displacement was calculated by an in-house optical flow registration framework, which 

has been previously validated for lungs and the head and neck.102,103 

3.2.3 Deep neural network 
 

The individual lung CT voxel geometry was used in conjunction with a machine learning 

approach to obtain corresponding elasticity distributions. During inferencing, we took as input the 

breath-hold CT. The DNN employed in this work was a cGAN.104 This network consisted of two 

neural networks, namely Generator and Discriminator networks. The generator network enabled 

the generation of pseudo label images intended to match true label images in the training data. The 

matching and evaluation process was performed by the discriminator network. The adversarial 

nature of this approach enabled both networks to be developed simultaneously and continuously. 

Voxel-specific Hounsfield Units (HU) were evaluated as input to the cGAN, resulting in a 

corresponding elasticity value output from the generator network. 

Generator DNN: The generator network consisted of a five-layer neural network, of which the 

first three layers were convolutional neural networks and the last two layers were regular fully 

connected neural networks.105 During the optimization process, a series of weights and biases 

associated with the generator network were optimized. 
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Discriminator DNN: The discriminator network consisted of a four-layer neural network of 

which the first two layers were convolutional neural networks, and the last two layers were 

regular fully connected neural networks. Network accuracy was continually monitored by 

inferencing an output from the discriminator during the learning process. The input values to the 

discriminator were the pseudo label images from the generator neural network and the ground-

truth labels. 

To compute accuracy, the input data were processed by the hidden layers of the model, 

with the results passed to an additional hidden layer, and then to a final output layer. The loss 

function and accuracy function of the training algorithm evaluate the output layer result against 

the ground-truth result. The loss function, in the form of a quadratic cost,  quantitatively measured 

the error between the output layer result and the ground-truth elasticity values.105,106 

3.2.4 Training and validation 

Fifteen lung datasets were employed for the training process while 13 lung datasets were 

used for validation purposes. For each training dataset, the elasticity distribution obtained through 

the elastography method described in Section 3.2.2 and the source geometry were considered the 

label and the source during the learning process. Each dataset was first separated into left and right 

lungs and resampled to 2D axial slices at 1-mm resolution. The training process was allowed to 

iterate for a fixed number of generator and discriminator updates until the reported discriminator 

network accuracy became stagnant. 

For a quantitative study of the accuracy, we compared the ground-truth elasticity, derived 

using the inverse elasticity estimation procedure, with the cGAN-generated elasticity using an L2-

Norm difference. It is formulated as 
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     (3-3) 

Where  and  refer to the ground-truth and model-generated elasticity of voxel , 

respectively. In Equation 3-3, 𝜖! represents the threshold elasticity value for the L2-norm for each 

voxel  within the lung volume  and was set to 1 kPa, consistent with previous lung elastography 

studies.50,54 As a second validation approach, we reintroduced the estimated elasticity distribution 

and the source geometry into the biomechanical model.52,93 The biomechanical model attempted 

the registration-defined lung deformations for given boundary conditions and recorded the model-

generated displacements. We then compared the deformations obtained from the integrated model 

with the DVFs of the ground-truth 4DCT datasets. The number of voxels that converged within a 

defined epsilon value, 𝜖", of ground truth was characterized as the error quantification for the 

cGAN-estimated lung elasticity distribution. An L2-norm difference was then applied to quantitate 

the voxel-by-voxel displacement differences. Letting  and  be the ground-truth and model-

generated displacements of voxel , respectively:  

     (3-4) 

      (3-5) 

In Equation 3-4 above, 𝜖" represents the threshold for the L2-norm of the deformation vector for 

each voxel  within the lung volume , and  represents the error for each voxel. Two different 

epsilon values were investigated. First, we looked at  mm, or the voxel percentage that 

converged within 1 mm of the ground-truth deformation matching the CT image resolution. 

Secondly, since lung deformation can vary widely between patients and breathing phases, we 
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measured the percentage of voxels that converged within 10% of the maximum deformation, or 

. The percent accuracy  was then tabulated by summing the voxel 

error, , over all voxels, , in lung volume  according to Equation 3-5. 

Finally, using the model-generated displacement described above, an attempt was made to 

warp the initial end-exhalation CT to end-inhalation geometry. The resulting warped image was 

then compared with the ground-truth end-inhalation CT. We investigated three image similarity 

metrics (ISMs), namely (a) mutual Information (MI), (b) structured similarity index (SSIM), and 

(c) normalized cross-correlation (NCC). MI was employed as it provided a symmetric and 

nonnegative similarity measure. SSIM is sensitive to structural changes of the underlying anatomy. 

NCC was considered as a metric that is invariant to contrast within the elasticity distribution. 

3.2.5 Evaluation of Reduced Dose Images 

 To test the accuracy of the trained cGAN elastography model when inferenced with test 

images acquired at reduced dose levels, low-dose images were simulated using a noise injection 

algorithm.107 Due to the fact that reducing tube current is considered the simplest and most direct 

method of lowering the delivered dose, the simulated images aimed to reflect the additional noise 

profiles present at lowered tube current-time product levels, measured as mAs.108 Characteristic 

noise was injected on each 2D slice by forward projecting to estimate the attenuation of each ray. 

It was assumed that the scanner used a fan-to-parallel re-binning reconstruction scheme that 

preserved noise uniformity and sampled rays in a parallel beam fashion. The number of photons 

incident on the detector was calculated according to the estimation that 1.8 × 106 photons/mm2-

mAs arrive at the detector in the absence of attenuation for a typical spectrum at 120 kVp.109 The 

number of photons was then multiplied by an efficiency factor E that incorporated geometric 

efficiency and noise from scatter (Swank factor). The noise-adding sinogram was filtered by a 
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smoothing function, reconstructed, and added to the original CT image, simulating a reduced dose 

CT scan. In a previous study by Hasse et al., efficiency factor and smoothing function were 

determined by reconstruction of water cylinder phantom scans using the same protocol as the 

clinical acquisition.110 

 FHFBCT image datasets acquired for seven patients as part of the 5DCT imaging protocol 

were used for reduced dose image generation and network inferencing. For each patient, an 

FHFBCT acquired with a current-time product of 140 mAs is used as a reference scan. Patient-

specific noise profiles were characterized for each patient through the calculation of HU standard 

deviation in a 50 x 50 x 20 mm3 region of interest (ROI) of the liver, due to its homogenous nature 

in CT. Image datasets with tube current–time products of 30, 25, and 20 effective mAs were then 

simulated using the noise injection method. The lowest test value of 20 mAs has been identified 

as a lower limit for applications such as lung cancer screenings and the evaluation of asbestosis, 

emphysema, bronchiectasis, and pulmonary embolism.111 

 The trained cGAN model was then inferenced using the noise injected images, at each 

simulated mAs value, and the resulting estimated elasticity distributions were compared to ground-

truth elasticity values. The percentage of voxels differing by less than 1 kPa and 2 kPa were 

calculated. 

 

3.3 Results 
 

First, we present the cGAN elasticity results generated from the lung end-exhalation CT. 

Figures 3-1a, b, and c show the lung CT geometry, the underlying displacement magnitude, and 

the Jacobian distribution, respectively. Figure 3-1d shows the elasticity estimation associated with 

the lung CT. 
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Figure 3-1: (a) The lung computed tomography (CT) geometry, (b) the underlying displacement 

magnitude (in mm), and (c) the Jacobian distribution are shown. (d) Shows the elasticity 

estimation associated with the lung CT (in kPa) 

We now present the elasticity accuracy generated from the machine learning process. 

Figure 3-2 shows a comparison of the ground-truth elasticity (3-2a and 3-2d) and cGAN-generated 

elasticity (3-2b and 3-2e). It can be seen that the distributions show good agreement with each 

other as shown by the difference maps between the two distributions (3-2c and 3-2f). Specific lung 

substructures that have a higher elasticity in the ground truth also have a higher elasticity in the 

cGAN-generated elasticity distribution. This supports the fact that the lung elasticity distribution 

can be predicted using a machine learning approach. 
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Figure 3-2: Lung tissue elasticity estimated from the biomechanical model-guided estimation for 

lung cancer (a and d) and COPD patients (g). Lung tissue elasticity distribution estimated from 

the cGAN for lung cancer (b and e) and COPD patients (h). The resulting differences in the 

elasticity are shown in figures c, f, and i, respectively. The units are Pascals for all images. 

The elasticity distributions are known to vary from one subject to another as well as with 

the disease complexity. To demonstrate the ability of our learning process to account for such 

variations, we present the elasticity distribution for a lung cancer patient with severe COPD. 
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Figures 3-2g and 3-2h show a comparison between the elasticity generated as ground truth and the 

work presented in this paper for a subject with both lung tumor and severe COPD prevalence, 

respectively. Figure 3-2i shows the difference between the two estimations. As seen from the 

ground-truth images, the elasticity range was lower than that of the case when the patient only has 

a lung tumor (Figures 3-2a and 3-2d). The elasticity distributions generated by the cGAN match 

the ground-truth elasticity well. This supports the fact that variations in the patient geometry as 

well as the disease pathophysiology can be represented by the machine learning approach 

presented in this paper. 

Figure 3-3 shows an elasticity distribution of a lung cancer subjects with (Figure 3-3a) and 

without COPD (Figure 3-3b). The elasticity distribution difference can be vividly seen. The purple 

region corresponds to (2–4 KPa) representing the COPD-affected region. The blue, green, yellow, 

and red regions represent ranges of (4–6 KPa), (6–8 KPa), (8–10 KPa), and (>10 KPa), 

respectively. The voxels in the elasticity range (2–4 KPa) represent COPD-affected regions and 

they can be seen to be largely present for the COPD patient. This demonstrates that the cGAN-

based elasticity estimation can be effective in estimating the image-biomarker (elasticity 

distribution). 
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 Figure 3-3: Three-dimensional conditional generative adversarial neural network generated 

elasticity distribution of a (a) normal cancer patient and a (b) COPD patient lung. The purple 

region corresponds to (2–4 KPa) representing the COPD-affected region. Blue, green, yellow, 

and red colors are coded as (4–6 KPa), (6–8 KPa), (8–10 KPa), and (>10 KPa), respectively 

 Table 3-1 documents the accuracy in learning the elasticity distributions for the 15 lung 

datasets. Since the current paper focuses on the DNN-based lung elasticity generation, the ground-

truth results associated with the Tables 3-1 and 3-2 stem from the inverse elasticity estimation. 

Results show that for the training data set, we obtained a learning accuracy of 0.44 ± 0.2 KPa. For 

the validation dataset, consisting of 13 4D datasets, we were able to obtain an accuracy of 

0.87 ± 0.4 KPa as tabulated in Table 3-2. Our previous studies for elastography showed that a 

difference of <1 kPa interval yields clinically agreeable deformation accuracy.54,66 Since elasticity 
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is known to have a range of 0–12 kPa as documented in two of our previous papers, the current 

error is < 8% of the expected tissue elasticity range. These results show that the cGAN-generated 

elasticity correlates well with that of the ground-truth elasticity. 

 

Patient Accuracy (KPa) 

1 0.3 ± 0.2 
2 0.2 ± 0.1 
3 0.4 ± 0.1 
4 0.6 ± 0.2 
5 0.3 ± 0.2 
6 0.2 ± 0.1 
7 0.2 ± 0.1 
8 0.2 ± 0.1 
9 0.4 ± 0.3 
10 0.3 ± 0.3 
11 0.2 ± 0.1 
12 0.2 ± 0.1 
13 0.3 ± 0.2 
14 0.4 ± 0.4 
15 0.2 ± 0.2 

Average 0.4 ± 0.3 
Table 3-1: Quantitative analysis of the lung elasticity estimation accuracy enabled by the deep 

learning framework 
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Patient Elasticity Accuracy 
(KPa) 

Deformation Accuracy 
(mm) 

1 0.9 ± 0.7 0.8 ± 0.3 
2 0.6 ± 0.5 0.6 ± 0.4 
3 0.5 ± 0.3 0.4 ± 0.2 
4 0.4 ± 0.2 0.3 ± 0.2 
5 0.8 ± 0.4 0.6 ± 0.4 
6 0.9 ± 0.3 0.6 ± 0.2 
7 0.6 ± 0.4 0.5 ± 0.3 
8 0.7 ± 0.5 0.5 ± 0.5 
9 0.7 ± 0.6 0.5 ± 0.3 
10 0.4 ± 0.3 0.3 ± 0.1 
11 0.6 ± 0.5 0.4 ± 0.3 
12 0.7 ± 0.3 0.6 ± 0.2 
13 0.6 ± 0.4 0.4 ± 0.2 

Average 0.8 ± 0.4 0.5 ± 0.3 
Table 3-2: Quantitative analysis of the elasticity and displacement accuracy on testing datasets 

To further quantitate the accuracy, we integrated the cGAN-generated elasticity with a lung 

biomechanical dynamic model for simulating the lung deformation for given boundary constraints. 

The displacement vectors generated from this setup were then compared with the displacement 

vectors generated using 4DCT DIR results. Specifically, the deformation vectors that represent a 

tidal breathing range were compared. Table 3-2 summarizes the results for the two accuracy 

measures discussed in Section 2.D. The ground-truth elasticity for the accuracy column stems from 

the inverse elasticity estimation process.50 For each of the measures, the cGAN-generated 

elasticity facilitated an accuracy of ~89%. In addition, the average displacement accuracy was 
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observed to be 0.5 mm supporting the fact that the cGAN estimation elasticity closely represented 

the inverse elasticity estimation results. 

The resulting deformed model was then transformed into lung 4DCT images and the Image 

Similarity Metrics (ISMs) were applied. Our results as documented in Table 3-3 show that the 

cGAN-generated images were very similar to that of the original 4DCT. The warped images had 

an average  and  accuracy of 89.5 and 88.7, respectively thereby demonstrating a close match. 

Patient  accuracy 
(%) 

 accuracy 
(%) MI SSIM NCC 

1 87.6 87.89 1.81 0.88 0.96 
2 86.08 82.9 1.99 0.83 0.94 
3 94.08 84.37 2 0.95 0.99 
4 87.36 89.14 1.87 0.87 0.97 
5 80.63 87.72 1.77 0.87 0.96 
6 85.46 87.57 1.76 0.87 0.97 
7 85.83 84.14 1.62 0.86 0.95 
8 99.24 75.7 1.78 0.89 0.98 
9 95.55 73.79 1.5 0.92 0.98 
10 82.37 75.85 1.79 0.87 0.96 
11 95.41 74.64 1.8 0.91 0.98 
12 88.16 78.98 1.72 0.88 0.97 
13 96.48 86.46 1.57 0.91 0.97 

Average 89.56 88.76 1.77 0.89 0.97 
Table 3-3: Quantitative analysis of the 4DCT generated from the cGAN-generated lung 

elasticity distribution 
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The average value of the MI was 1.77 indicating the high local symmetricity between the 

ground truth and the cGAN elasticity-generated 4DCT data. The average value of the structural 

similarity for the 13 patients was observed to be 0.89 indicating the high structural integrity of the 

cGAN elasticity-generated 4DCT. In addition, the average NCC value of 0.97 indicated that 

potential variations in the contrast and brightness of the cGAN elasticity-generated 4DCT did not 

lead to any differences from the ground-truth 4DCT. In summary, the differences, as evaluated by 

the ISMs, were quite small. This bolsters the fact the cGAN-generated lung tissue elasticity can be 

employed within acceptable numerical boundaries. 

Figure 3-4 shows example CT images at original 140 mAs and simulated 30, 25 and 20 

mAs images, in a-d, respectively. Resulting elasticity distributions from inferencing the cGAN 

model with simulated reduced dose CT images were found to have poor agreement with ground-

truth elasticity values, as reported in Table 3-4. The percentage of voxels in left and right lung 

differing by less than 1 kPa were consistent across the simulated mAs levels at less than 38% and 

31%, respectively. Similarly, the percentage of voxels in left and right lung differing by less than 

2 kPa were calculated to be less than 62% and 53%, respectively. Mean difference between the 

two elasticity distributions were measured to be 1.77 kPa and 2.13 kPa for right and left lungs, 

respectively. These results suggest that the cGAN model did not accurately predict elasticity 

distributions when inferenced with simulated reduced dose images. 
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a) 

 
140 mAs 

b) 

 
30 mAs 

c) 

 
25 mAs 

d) 

 
20 mAs 

Figure 3-4: Example CT images at a) acquired 140 mAs and simulated b) 30 mAs c) 25 mAs 

and d) 20 mAs 

Left Lung 

 % Voxels with < 1 kPa 
Difference 

% Voxels with < 2 kPa 
Difference Mean Difference (kPa)  

Patient 30 mAs 25 mAs 20mAs 30 mAs 25 mAs 20mAs 30 mAs 25 mAs 20mAs  

3 35.55 35.48 35.38 57.02 57.08 57.06 1.88 1.88 1.89  

4 35.66 35.74 35.68 63.63 63.65 63.48 1.77 1.77 1.77  

6 46.75 46.59 46.53 71.18 71.15 71.10 1.48 1.48 1.48  

8 42.80 42.88 42.92 68.79 68.83 68.76 1.54 1.53 1.54  

14 26.51 26.42 26.54 47.97 47.93 48.09 2.15 2.15 2.15  

18 32.25 32.21 31.94 59.12 59.04 58.65 1.88 1.89 1.90  

20 40.21 40.05 39.66 64.30 64.14 63.84 1.65 1.66 1.67  

Average 37.11 37.05 36.95 61.72 61.69 61.57 1.77 1.77 1.77  

Right Lung  

3 39.27 39.20 39.13 62.86 62.84 62.81 1.70 1.70 1.71  

4 39.50 39.50 39.47 66.26 66.23 66.22 1.69 1.69 1.69  

6 26.89 26.86 26.81 44.26 44.26 44.15 2.38 2.38 2.38  

8 22.41 22.28 22.38 43.97 43.96 43.88 2.40 2.41 2.41  

14 21.77 21.73 21.74 39.62 39.53 39.53 2.66 2.66 2.66  

18 23.53 23.53 23.64 46.82 46.78 46.81 2.29 2.30 2.30  

20 37.77 37.53 37.16 60.66 60.49 60.19 1.76 1.77 1.78  

Average 30.16 30.09 30.05 52.06 52.01 51.94 2.13 2.13 2.13  

Table 3-4: Comparison of simulated reduced dose elasticity images 
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3.4 Discussion 

In this paper, a machine learning-based lung tissue elastography method is proposed using 

the lung elasticity estimated from 4DCT datasets and a linear elastic biomechanical model as the 

training data. From a biomechanics perspective, our current work focused on using a linear elastic 

approach, which was applicable for most of the scenarios within the domain of lung radiotherapy. 

However, we envision that for more complex diffuse lung diseases, a hyper-elastic approach would 

be required. In the future, we would also focus on characterizing the hyper-elastic nature of the 

lung tissue elasticity, which will provide more information on the hyper-compliance of the 

diseased tissue. 

The need for elasticity distributions is seen in diagnostic and therapeutic CT imaging, 

where elasticity distributions can potentially be used as image-based biomarkers. The ability to 

perform inverse elasticity estimation has been previously investigated and validated.50 

67Specifically, the estimated elasticity was shown as a biomarker for characterizing the degree of 

COPD.51 Our ultimate vision is to develop a ML process that can compute the elasticity using a 

non-4D imaging modality. This was because only radiotherapy commonly uses the 4D/5D lung 

imaging modalities. 

An additional usage of CT based lung tissue elastography is in the study of chronic 

diseases, such as COPD, where imaging protocols with high dosage (e.g., 4DCT protocols) are not 

conventionally prescribed.51 Enabling the ability to extract lung tissue elasticity information from 

a single CT (e.g., end-exhalation CT) will lead to critical advancements in the treatment and 

management of such diseases, which forms the focus of this paper. While the current paper shows 

feasibility of using the machine learning approach for COPD patients, the training data cohort was 

small and included only four COPD lung cancer datasets. Future work would focus on using a 
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larger cohort of both cancer and COPD patients with known GOLD staging and phenotype 

information. Such a cohort will further improve the accuracy and investigating such a machine 

learning setup would provide great help in characterizing the lung tissue elasticity for COPD 

patients using only diagnostic CT images. 

The ability to predict accurate elasticity distributions using low dose CT imaging 

techniques could allow for the extension of lung elastography to applications such as lung disease 

diagnosis and treatment. When our trained cGAN elastography model was tested with simulated 

low dose images in this study, we observed poor agreement between predicted and ground-truth 

elasticity values. In future work, we will investigate a transfer learning approach to take advantage 

of the pre-trained cGAN model in this study and due to the limited amount of available reduced 

dose training data. It has also been proposed that the acquisition of additional reduced dose images 

be added to the imaging protocol in the future as a secondary validation of the noise injection 

algorithm and bolstering of training data. 

In this paper, we employed an end-expiration CT for generating the elasticity distribution. 

While it may be physically stressful for the patient to hold his/her breath during the end-expiration 

phase CT imaging, two specific reasons exist for using a breath-hold CT as our input data. First, 

our current framework is based on generating training data from 5DCT datasets and biomechanical 

models, which inherently generates lung anatomy at specific breathing phases that does not have 

motion artifacts. Secondly, the elastography also requires the lung voxels to be at any given 

reference phase in order to maintain the voxel’s local neighborhood. While both end-inhalation 

and end exhalation maintain the lung anatomy in a reference phase, we chose end exhalation as 

our lung CT since it is considered as the resting phase during normal breathing. Future work would 

focus on developing a machine learning algorithm that will translate the phase specific elasticity 
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distribution to a given free breathing CT scan that includes motion artifacts. The results of this 

work will be submitted as a separate work. 

In our studies, we have employed accuracy estimates (in Tables 3-1 and 3-2) that represent 

the absolute error in the elasticity distribution, considering the inverse elasticity estimated results 

as the ground truth. Table 3-2 also includes two columns of the cost function that was designed to 

calculate the number of voxels that does not satisfy a specific limit in the difference between the 

inverse estimated elasticity and the CGAN estimated elasticity. Such an accuracy study was 

important to quantify the percentage of voxels where clinically acceptable results were observed. 

Finally, using the 4DCT generated from the cGAN-generated elasticity and inverse elasticity 

estimation processes, we verified the proposed method’s accuracy. 

The cGAN training process was observed to reach convergence within the specified 

number of iterations. Since the training was performed only once and in a GPU environment, the 

computational time, although high, was not considered a limiting factor. So, the total number of 

iterations was set to be a high fixed value. Also, since we have two neural networks competing in 

an adversarial manner and constantly updating each other, an adaptive approach for stopping 

criteria needs to be carefully designed. Future work would focus on designing such a novel cost 

function for the generator DNN that will stop the learning process based on its learning gradient. 

In addition, a comparison to probabilistic elasticity models would be performed.75 

Finally, the computational time for this training process approach was approximately 

24 hours on a Nvidia GTX titan card. However, once trained, the network predicted the lung 

elasticity in near-real time. Future work would focus on developing a multi-GPU approach for the 

learning process, where the learning time can be significantly reduced. 
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3.5 Conclusions 

The methods and results of a machine learning-based lung tissue elastography method 

presented in this paper shows the feasibility of estimating the lung tissue elasticity in real time. 

The input data employed for the learning process stem from a biomechanically based inverse 

elasticity estimation process, which was considered as a ground truth for a direct estimation of the 

elasticity distribution for each patient is not practical. Future work would focus on using image 

data from elastography imaging techniques such as the MRE, where the lung elasticity can be 

measured directly and will lead to more data generation for the learning process. Since the machine 

learning process is agnostic to the underlying imaging modality, future work would employ and 

integrate such imaging innovations into the learning process. In addition, for scenarios where 

elasticity needs to be estimated from 5DCT, the cGAN-estimated lung tissue elasticity can be used 

as a very close a priori value thereby leading to a smaller number of iterations. 
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CHAPTER 4: A quantitative analysis of lung elastography using large 
deformation breath-hold CT scans acquired during forced breathing 

Lung elastography for forced breathing 

A version of this chapter has been submitted for publication as a manuscript to Medical Physics 

4.1 Introduction 

Radiotherapy is a key step in an often multi-faceted intervention for patients with lung 

cancer.1 In recent years, it has been established that an increasing number of lung cancer patients 

present an evidence-based indication for radiotherapy.17 However, patients undergoing 

radiotherapy can experience severe radiation-induced lung injuries to healthy tissue when exposed 

to excess dose. The risk of treatment-related injury is further increased in patients with pre-existing 

lung diseases such as interstitial lung disease and COPD, which is found in 40-70% of patients.3,4 

In addition, greater rates of post-treatment side-effects and mortality are observed in lung cancer 

patients with co-morbidities.5,6 For this reason, a greater understanding of patient-specific 

underlying regional lung function is necessary and several functional lung avoidance imaging and 

dose delivery methods have been introduced for this purpose. 

 Approaches to identifying functional lung tissue have previously been investigated using 

MRI, SPECT, and PET for ventilation and perfusion imaging.23 However, these approaches are 

limited in a radiotherapy setup due to the availability of additional imaging modalities. 

Alternatively, nearly all lung cancer patients receiving radiotherapy undergo 4DCT simulation for 

treatment planning purposes due to the high geometric accuracy and electron density information 

important for dose calculation. For this reason, the use of already acquired CT imaging for 

ventilation imaging and subsequent functional lung identification has been proposed and evaluated 

in multiple clinical trials.24-27 Additionally, the increased use of hypofractionated dose delivery 



 57 

methods such as stereotactic body radiotherapy (SBRT) has been shown to be effective in sparing 

identified functional lung tissue.28 These methods allow for the delivery of relatively large doses 

in fewer fractions compared to conventional methods and a rapid isotropic fall-off of dose from 

the tumor volume to surrounding normal tissue can be achieved.7,8 

We envision that a CT-based characterization of patient lung function based on the 

measurement of specific biomechanical properties is ideal for function preserving lung 

radiotherapy. A quantitative measure of lung function has been identified in the measurement of 

elastic properties of the parenchymal lung tissue. Normal lung function depends on the production 

of elastin and the presence of elastic fibers throughout the lung parenchyma and the inhibition of 

production or degradation of existing fibers can result in lung dysfunction and diseases, such as 

COPD.65 A previously proposed method for employing a well-validated biomechanical model for 

estimating regional elasticity distributions of lung parenchyma from free-breathing 4DCT images 

has been systematically studied and validated using virtual physics-based lung phantoms.66,79 The 

methodology has also shown to be an effective biomarker for COPD and a good overall indicator 

of regional lung function.51 Finally, a consistency study was performed evaluating the elastography 

method when employed for images acquired at different points in patient breathing trace.67 

 Lung deformation information obtained from DIR serves as input to lung elasticity 

estimation methods, in which parameter optimization is driven by the ability for a biomechanical 

model to accurately reproduce registration-defined deformation vectors. Previous model-based 

elastography studies were demonstrated using normal free-breathing scans. In these studies, 

regions of lung tissue, specifically in the superior lobes, did not undergo significant displacement 

during free breathing. The elastography model depends on DVFs obtained from DIR to accurately 

simulate voxel-specific displacement for biomechanical property estimation. Therefore, no motion 
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or minimal deformations observed for a significant number of lung voxels could hinder the ability 

of the model to properly characterize elasticity values for these voxels. This was quantitatively 

observed in a recent study, where a lobe-wise analysis of elasticity distributions derived from free-

breathing datasets showed that up to 30% of voxels in a given lung lobe and 10% of total lung 

voxels undergo < 2 % expansion.112 We envision that the use of scans acquired during a forced 

breathing maneuver will enable a more accurate characterization of the lung tissue. 

 A previously proposed novel convergence magnification method by Hasse et al. showed 

that artificially increasing the magnitude of deformation for lung voxels, which undergo relatively 

little displacement in the image registration-defined deformation, resulted in greater overall model 

convergence.66 A newly introduced force was applied to a subset of voxels identified as minimally 

displaced to enforce local heterogeneity. This force is applied unidirectionally over each axis of 

motion to encourage convergence amongst a different subset of voxels and maximize the number 

of voxels reaching convergence during the elasticity estimation process. 

 In this study, we propose to perform elastography using CT images obtained during a 

forced breathing maneuver. Images acquired at residual volume (RV) and total lung capacity 

(TLC) and registered by DIR display substantially larger displacement values than those measured 

during free breathing. We hypothesize that the noted increase in the magnitude of observed lung 

motion will allow for a more accurate estimation of elasticity distributions, specifically in regions 

of the lung that experienced minimal deformation during normal breathing. Improved lung 

elasticity distributions obtained from the method proposed in this study could provide important 

additional information for characterizing regional lung function for functional lung sparing in 

radiotherapy treatment planning and delivery. 
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4.2 Materials and Methods 

 The purpose of this study was to evaluate the feasibility of using a well-validated 

biomechanical model and an elastography algorithm for processing CT images acquired during a 

forced breathing maneuver. Such an analysis of lung tissue elasticity estimation using CT lung 

images acquired during forced breathing is novel and forms the key contribution of this paper. 

 The outline of the methodology, described in Figure 4-1, is as follows: CT lung images 

acquired during RV and TLC breathing phases are taken as input. The RV image is taken as the 

reference image. The deformation vector field that associates each voxel in RV to the voxels in 

the TLC scans is first estimated (Section 4.2.2). The blood vessels are segmented from the RV 

scans and masked since the tissue elasticity estimation process involves only the parenchyma, as 

explained in Section 4.2.3. A biomechanical model of the lung parenchyma is then assembled in 

the RV geometry with the lung boundary and the blood vessels forming the boundary conditions 

(Section 4.2.4). The DVFs associated with the voxels making up the lung boundary are then 

employed as boundary constraints to estimate the parenchymal lung tissue elasticity, as detailed in 

Section 4.2.5. 
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Figure 4-1: Flowchart of elastography workflow67,79 

4.2.1 Data Acquisition 

This work utilized 10 retrospective patient datasets originally acquired as part of the 

Endobronchial Valve for Emphysema Palliation Trial (VENT) clinical trial (ID: NCT00129584).40 

CT acquisition was performed by the imaging core at the David Geffen School of Medicine at 

UCLA. Images were acquired during a breath hold at both TLC and RV and reconstructed with 

slice thickness ranging from 1.25 to 3 mm with subsequent interpolation to 1 x 1 x 1 mm3 voxels. 

A Siemens Sensation 16 scanner with the following parameters was employed for this purpose: 

120 kVp, 80 effective mAs, 0.5 sec. rotation time, 16 × 0.75 mm collimation, and 18 mm/rotation 

table feed with pitch 1.5.113 Images acquired for the VENT clinical trial have previously been used 

in several studies evaluating endobronchial valves for emphysema patients and investigating the 

use of CT lung volume measurements.41,114-116 
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4.2.2 Deformable Image Registration 

A published DIR algorithm, as described in Vishnevsky et al., was employed to obtain 

DVFs between RV and TLC images.117 In this method, isotropic total-variation regularization, and 

linear grid interpolation were used to perform parametric image registration. The registration 

algorithm has been shown to accurately approximate anatomical sliding motion, which is 

necessary to properly model sliding interfaces in the thoracic region. Estimation of the 

displacement field mapping a moving image to a fixed image was defined as the following 

optimization problem:  

d∗ = 𝑎𝑟𝑔𝑚𝑖𝑛	ℱ(d) = 𝑎𝑟𝑔𝑚𝑖𝑛	𝐸.(d;	f/, f0) + 	𝜆𝐸1(d)   (4-1) 

Where d∗ represents the optimal displacement field, d is the current displacement field,  𝐸. 

represents a dissimilarity metric calculated between the fixed (f/) and moving (f0) images, 𝐸1 is 

a regularization term, and 𝜆 is a parameter that controls the regularization strength and is tuned for 

each type of application.  

Isotropic total variation (TV), which considers all components of the displacement 

gradients collectively, was found to better describe motion that is not aligned with Cartesian axes 

than a previously proposed anisotropic TV method.118 The TV spatial displacement regularization 

(𝐸123) of the displacement field was calculated as: 

𝐸123(d) 	= 	𝑣	 ∑ `∑ (∇(d4(,467 [𝑙]))8	6: = 𝑣‖𝒟(d)‖),&	   (4-2) 

Where 𝑣 represents the voxel volume, L is the number of voxels in the image, 𝑙 is the voxel index, 

N is the number voxel dimensions, i and j are voxel position coordinates, and 𝒟(d) are the 

directional displacement gradient vectors.  

A common limitation with DIR has been the poor performance of gradient descent methods 

in solving non-differentiable convex terms. To address this limitation, a variant of the dual descent 
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method termed alternative direction method of multipliers (ADMM) was employed. 

Parametrization of the displacement field was performed by interpolating displacements on a 

control point grid, followed by a 1st-order B-spline to bound interpolated values between adjacent 

control points and enable sharper transitions. Registration quality was dependent on three tunable 

parameters. First, a regularization parameter, 𝜆, that considered modality, noise, and approximate 

amount of motion. Second, a weighting kernel bandwidth, 𝜔, which depends on the image 

modality and pixel resolution. Lastly, control point grid spacing, K, for which small values of K 

give finer grid resolution and greater degrees of freedom in the transformation but come with an 

increased computational cost. For this study, these values were identified, according to the 

parameter sensitivity analysis described in Vishnevskiy et al., to be 0.15, 2.5 pixels, and 4 x 4 x 4 

voxels for λ, w, K, respectively.  

4.2.3 Image Segmentation for Elastography 

 Due to the non-expanding behavior of blood vessels and other rigid substructures within 

the lung, we segmented the parenchymal tissue for analysis in this study. In order to remove vessels 

and other non-parenchymal structures, CT images were segmented with a designated threshold of 

-700 HU in our elastography estimation workflow.119 Karimi et al. found that a threshold value of  

-700 HU may be used to separate high-density lung tissue and ensure the exclusion of voxels 

containing vessels and borders of dense structures.80  

4.2.4 Biomechanical Model 

 A forward biomechanical model proposed and validated in previous publications by Hasse 

et al. and Neylon et al. was utilized in our elasticity estimation framework.52,66 For clarity, we now 

present an overview of the biomechanical model. Lung geometry was represented as finite mass 

elements positioned at the center of each voxel in the CT image. The total simulated lung geometry 
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was deformed by applying changes to the boundary constraint voxels, as defined by the associated 

DVF values obtained from DIR. The deformation process is an iterative one, defined by a set 

number of incremental displacement changes and followed by another set number of timesteps 

during which the displaced voxels may settle at their newly defined locations in the deformation 

space. During the deformation process, resulting corrective forces are enacted on each inner mass 

element at pre-defined simulation timesteps (𝛿) and recorded. The total force 𝑓" on each element, 

a, was calculated by summing the elastic (𝑓;,"<), shear (𝑓=,"<), and dashpot damping (𝑓>,"<) forces, 

exerted by each connected element, b.79  

𝑓"	= 	∑ i𝑓;,"< +	𝑓=,"< +	𝑓>,"<j<      (4-3) 

The elastic force between each connection was calculated by: 

𝑓;,"<	= 	∑ k𝐸"< ∗ 	
∆:!"
:!"

m< ,     (4-4) 

where 𝐸"< represents the effective Young’s modulus, 𝐿"< is the rest length distance, and ∆𝐿"< is 

the incremental change in rest length distance between connected elements.  

 New element position (𝑥⃗"%@&)	and velocity (𝑣"%@&) are updated after each timestep, 𝛿,	via 

implicit Euler integration and the total internal corrective force imposed by incremental changes 

in rest length distance between connected elements:   

𝑣"%@& =	 𝑣⃗"% +	k
A⃗!
C!
+ 𝑔⃗m 𝛿,      (4-5) 

𝑥⃗"%@& =	 𝑥⃗"% +	𝑣"%@&𝛿,      (4-6) 

where 𝑚" is the mass of element a and 𝑔⃗ is the gravitational force. Finally, the measured 

displacement for each element was calculated as the Euclidean distance between the initial and 

final positions at the conclusion of each iteration. 
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4.2.5 Elastography 

The inverse elasticity problem was formulated as a parameter optimization problem, in 

which we aimed to determine an elasticity value that minimized the difference between the ground-

truth DVFs and those computed by the biomechanical model during elastography. Finite mass 

elements were connected with neighboring elements by linear elastic connections. Each 

connection was assigned a randomly generated elasticity value from a defined HU-based range 

which was applied as a Young's modulus and Poisson's ratio during model initialization. The 

following elasticity estimation approach consisted of an iterative process of biomechanical 

property estimation and inverse deformation methods.  

 An HU-based elasticity search space was defined for each element with defined minimum 

(𝐸C(%,") and maximum (𝐸C"D,") elasticities. A gradient descent optimization was then employed 

to iteratively update voxel-specific elasticity values. Beginning with randomly assigned elasticity 

values during model initialization, elements were incrementally displaced according to DIR-

generated DVFs, as allowed by their assigned biomechanical properties. After each iteration of the 

model, displacement differentials and subsequent elasticity limit updates were calculated for 

evaluation:  

∆𝑑" =	𝑑E," −	𝑑"	 	

⎩
⎪
⎨

⎪
⎧∆𝑑" < 0 ∶ 		 𝐸C(%," =	𝐸"																										

			𝐸C"D," = 𝐸C"D,"
∆𝑑" > 0 ∶ 	𝐸C(%," =	𝐸C(%,"	 										,									

			𝐸C"D," = 𝐸"									

  (4-7) 

where ∆𝑑"is the difference between registration and model-generaed displacement magnitudes, 

𝑑E," is the registration defined displacement magnitude and 𝑑"	is the model-generated 

displacement magnitude for a given iteration. New voxel-specific elasticity values 𝐸"	 were then 

calculated and applied in the next iteration of the model.  
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𝐸"	 =
F;#$%,!@	;#!',,!	G

)
	      (4-8) 

 This iterative elasticity update for each parenchymal voxel continued until the convergence 

criteria were met.  

4.2.6 Convergence Metrics 

 The optimization process iteratively updated voxel-specific elasticity values until a defined 

percent accuracy within 0.5 mm (𝑝$) for ≥ 95% of voxels was accomplished or the maximum 

iteration limit of 100 was reached. A second convergence criterion evaluated the percentage of 

voxels converged within 10% of the maximum deformation, or ϵ2 = 0.1 * maxa(|da|). Upon criteria 

satisfaction, the resultant elasticity and the model-achieved displacement vector were recorded for 

each voxel. Convergence status and percent accuracy 𝑝$ were calculated as follows: 

																	𝑐" 	= 	 -
	1 ∶ 	 0𝑑" − 𝑑#0 < 	𝜖
0 ∶ 			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒						

							    (4-9) 

																																																												𝑝$ =	
∑ I!%
)
%
	 ∗ 100					     (4-10) 

where ca represents the convergence status with a value of 1 if the L2-norm of the difference 

between model-achieved displacement (da) and registration DVF value (dg) is less than the defined 

threshold value 𝜖 = 0.5 mm. In Equation 10, the percent accuracy is then defined as the sum of 

the error (𝑐") divided by the total number of voxels (n) in the geometry and multiplied by 100.  

4.2.7 Quantitative Validation 

For quantitative evaluation of model performance during the elastography process, final 

model-generated displacements were evaluated against registration defined DVFs. First, we 

computed the percentage of voxels differing by less than 1 mm, which was the spatial resolution 

limit of our datasets. Similarly, the percentage of voxels converging within 2 mm of the registration 
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defined displacement values were measured. This value was chosen as it was found to be 

approximately 5% of the mean maximum observed displacements across the deformably registered 

datasets. In addition, Jacobian determinant values representing the expansion of each voxel in the 

anatomy were calculated using both registration and model-achieved DVFs.  

 A landmark validation tool was utilized to evaluate the accuracy of registration and model-

generated DVFs.120 This involved the manual selection of 100 landmarks per patient located at the 

boundaries of identifiable structures (e.g. bifurcations, sharp transitions, and other structures) on 

the source CT images. An example distribution of landmarks for a single patient is provided in 

Figure 4-2a.  Additionally, Figure 4-2b shows the result of a k-means clustering performed with a 

k-value of 6, determined by locating the inflection point on the plot of the sum squared distance 

between each point and the centroid of its defined cluster. Displacement vectors were then applied 

to manually selected landmark voxels and the user was prompted to choose manually identified 

ground-truth locations in the corresponding target images. Target registration errors (TRE) were 

then calculated as the Euclidean distance between the model-generated voxel displacements and 

the ground-truth locations.  
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 a) 

 

 b) 

 

Figure 4-2: a) Distribution of landmarks displayed on rendered lung anatomy and b) the k-means 

clustering results with centroid locations 
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 In addition, the landmark validation tool calculated several regional image similarity 

metrics (ISMs) between target and warp images, which were created by applying the DVF vectors 

to source images to generate pseudo-target images. For each manually selected landmark point, a 

20 mm3 volume centered at the corresponding target image point (t) was compared to the same 

volume at the same location in the warp image (w). One ISM calculated between these regional 

volumes included structural similarity index (SSIM), which considered patterns of pixel intensities 

and the loss of structural information between images:121  

𝑆𝑆𝐼𝑀	(𝑡, 𝑤) = 	 ()K*K+@	L))()N*+@	L,)
FK*,@	K+, @	L)GFN*,@	N+,@	L,G

	    (4-11) 

where t and w represent the target and warp volumes being compared, 𝜇 is average pixel value, 

𝜎OP is the covariance of t and w, 𝜎 is standard deviation, and 𝐶& and 𝐶) are constants introduced 

to avoid instability in the case of denominator terms approaching 0. 

 The second ISM calculated was the Normalized Cross-Correlation Coefficient (NCC), 

which calculated correlation for multiple basis functions present in one volume matrix and 

produced a weighted-sum correlation value to a separate volume matrix. NCC is calculated 

according to Equation 12:  

𝑁𝐶𝐶(𝑡, 𝑤) = 	
∑ (O((,4)QO̅)∗(P((,4)Q	PS$,- )

T∑ (O((,4)Q$,- O̅),	 ∑ (P((,4)QPS$,- ),
     (4-12) 

where t and w represent target and warp volumes, i and j are voxel position coordinates, and  𝑡̅ and 

𝑤}  are mean target and warp values. These ISMs have also been used in previous works to evaluate 

elasticity distributions and DVFs.67,79 

4.3 Results 

Example patient lung geometries at RV and TLC, and an overlay of the two, are shown in 

Figure 4-3, displaying the large deformations that typically occur during forced breathing 
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maneuvers as can be seen in the inferior lung. These images also represent the antero-posterior 

motion that causes some blood vessels to be visible in only one of the images. 

Figure 4-3: Example CT slices for a patient 5 showing a) RV (5.11 Liters), b) TLC (7.80 Liters) 

geometry, and c) an overlaid image where red and green represent RV and TLC, respectively 

As shown in Table 4-1, the mean and maximum distances measured between identified 

landmark points in RV and TLC geometry, prior to image registration, were 19.45 ± 5.78 mm and 

32.60 ± 11.28 mm, respectively. TRE and ISM values calculated for each patient using the 

landmark validation tool, described in Section 2.6, are displayed in Table 4-2. The average TRE 

across 10 patients was 1.09 ± 0.57 mm. Average ISM values computed between corresponding 

regions in the target and warp images were 0.71 ± 0.05 and 0.88 ± 0.03 for SSIM and NCC, 

respectively. These values demonstrate high registration accuracy between the RV and TLC 

datasets. 

 

 

 

 

 

 

 

 

a) b) c) 
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Euclidean Distance between identified landmarks in RV and TLC 

Patient Mean Distance (mm) Max Distance (mm) 

1 27.52 ± 12.44 47.43 

2 26.54 ± 11.15 43.09 

3 24.12 ± 12.32 43.19 

4 11.57 ± 4.37 19.26 

5 23.62 ± 12.26 44.59 

6 16.15 ± 8.20 26.57 

7 17.62 ± 7.56 32.14 

8 11.68 ± 4.04 16.03 

9 19.39 ± 7.19 28.23 

10 16.32 ± 6.32 25.50 

Average 19.45 ± 5.78 32.60 ± 11.28 

Table 4-1: Pre-registration distances between RV and TLC for landmark points 

Landmark Validation Results for Registration 

Patient Mean TRE (mm) Max TRE (mm) SSIM NCC 

1 1.42 ± 0.55 15.25 0.74 ± 0.11 0.92 ± 0.05 

2 0.62 ± 0.78 7.23 0.67 ± 0.08 0.87 ± 0.06 

3 1.34 ± 1.72 3.83 0.74 ± 0.08 0.92 ± 0.04 

4 0.55 ± 0.35 1.53 0.71 ± 0.09 0.90 ± 0.05 

5 2.52 ± 0.66 16.41 0.63 ± 0.15 0.81 ± 0.15 

6 1.06 ± 1.29 6.22 0.65 ± 0.07 0.85 ± 0.05 

7 0.94 ± 0.87 4.26 0.70 ± 0.07 0.88 ± 0.05 

8 0.82 ± 0.33 1.69 0.72 ± 0.07 0.87 ± 0.06 

9 0.84 ± 0.42 1.98 0.70 ± 0.06 0.90 ± 0.03 

10 0.80 ± 0.38 1.48 0.81 ± 0.03 0.92 ± 0.04 

Average 1.09 ± 0.57 5.98 ± 5.56 0.71 ± 0.05 0.88 ± 0.03 

Table 4-2: Landmark validation analysis of registration-produced DVFs including TRE and 

local ISMs 
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The average percentages of voxels with model-generated and DIR-defined displacement 

magnitudes converging within 1 mm were found to be 93.5 ± 0.05% and 94 ± 0.04% for the left 

and right lungs, respectively. Similarly, the average percentages of voxels converging within 2 

mm were found to be 98.8 ± 0.01% for both the left and right lungs, as reported in Table 4-3. This 

high rate of convergence reflects the accuracy of the estimated elasticity values through the DIR-

generated deformations reproduced by the biomechanical model with the assigned optimized 

biomechanical properties. 

In addition, the average maximum displacements were observed to be 40.2 ± 11.1 mm and 

34.9 ± 9.15 mm for the left and right lungs, respectively. Mean displacement values were 15.9 ± 

5.57 mm and 14.7 ± 4.09 mm for the left and right lungs, respectively. These displacement 

magnitudes are also presented for each patient in Table 4-3 and show significantly larger 

deformations than those observed in images acquired during free breathing. For comparison, in a 

study by Hasse et al., for which elastography was performed for 15 free-breathing CT datasets, 

average mean and maximum displacements were reported to be 6.24 ± 0.790 mm and 16.57 ± 5.03 

mm, respectively.79 These values are shown in Table 4-4. Given the significant difference between 

mean and maximum displacement values recorded for free- and forced-breathing lung 

deformations and the convergence magnification method proposed in Hasse et al., a more accurate 

elasticity estimation could be obtained for voxels that underwent minimal displacement during 

free breathing. 

Patient 
1 mm Convergence 

(%) 
2 mm Convergence 

(%) 
Max Displacement 

(mm) 
Mean Displacement 

(mm) 
Left Right Left Right Left Right Left Right 

1 87.7 92.7 97.6 97.6 55.6 43.3 20.2 17.6 

2 93.5 94.9 99.2 98.9 48.6 35.5 27.2 14.7 

3 87.0 87.6 96.8 97.0 50.6 53.7 20.4 17.4 
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4 94.7 92.1 99.3 99.3 27.1 27.7 10.0 9.10 

5 87.5 91.7 96.4 98.3 49.9 40.2 18.5 18.6 

6 94.0 98.4 99.6 100.0 35.7 34.2 13.9 20.8 

7 97.3 97.8 99.8 99.9 40.7 29.4 12.8 10.4 

8 99.2 98.7 100.0 100.0 21.1 20.7 9.2 9.5 

9 96.1 87.0 99.4 97.0 36.8 31.8 14.2 16.0 

10 98.4 98.9 100.0 100.0 35.7 32.2 12.7 12.6 

Mean 93.5 ± 
0.05 

94.0 ± 
0.04 

98.8 ± 
0.01 

98.8 ± 
0.01 

40.2 ± 
11.1 

34.9 ± 
9.15 

15.9 ± 
5.57 

14.7 ± 
4.09 

Table 4-3: Convergence of model-generated with registration defined displacement vectors and 

maximum and mean displacement values 

Patient Mean Displacement 
(mm) Max Displacement (mm) 

1 7.66 20.30 
2 5.87 6.31 
3 6.23 8.58 
4 4.91 12.12 
5 7.07 26.31 
6 6.37 14.85 
7 6.72 15.68 
8 6.79 19.97 
9 6.45 17.32 
10 5.17 16.99 
11 5.37 18.58 
12 6.14 20.32 
13 7.25 15.53 
14 6.20 21.11 
15 5.46 15.59 

Average 6.24 ± 0.790 16.57 ± 5.03 

Table 4-4: Mean and maximum displacements observed in free-breathing patient datasets as 

reported by Hasse et al. 
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For elastography performed with images acquired during forced breathing, the mean 

elasticity values for the left and right lungs were recorded to be 3.54 ± 1.04 kPa and 3.27 ± 0.38 

kPa, respectively. Elasticity distribution analysis results are tabulated in Table 4-5. The mean left 

and right lung elasticity values of 3.56 kPa and 3.57 kPa were consistent with a similar 

elastography study performed with free-breathing images of COPD patients.112 In a previous 

publication from Hasse at al., an increased percentage of voxels with elasticity values in the 1-3 

kPa range (%Elast1-3) was proposed as a biomarker for COPD. For the patients in this study, the 

average %Elast1-3 for the left and right lungs were 40.69 ± 10.64% and 43.35 ± 11.82%. These 

values are indicative of significant regions of disease-affected lung and suggest that these patient 

datasets have global elasticity measures consistent with COPD patients as identified in previous 

studies. 

Patient 
Mean Elasticity (kPa) %YM1-3 

Left Right Left Right 

1 3.58 ± 1.65 3.12 ± 1.45 34.49 47.70 

2 3.19± 1.41 3.24 ± 1.47 40.16 41.31 

3 6.38 ± 1.12 2.70 ± 1.12 0.02 62.96 

4 3.42 ± 1.61 3.62 ± 1.50 39.82 34.62 

5 3.51 ± 1.58 3.73 ± 1.46 36.92 29.59 

6 3.46 ± 1.36 3.78 ± 1.45 38.37 24.87 

7 3.00 ± 1.61 2.89 ± 1.49 51.08 53.30 

8 2.93 ± 1.50 3.13 ± 1.42 57.01 50.32 

9 3.32 ± 1.64 3.56 ± 1.27 42.55 30.65 

10 2.62 ± 1.40 2.96 ± 1.36 66.47 58.24 

Mean 3.54 ± 1.04 3.27 ± 0.38 40.69 ± 10.64 43.35 ± 11.82 

Table 4-5: Mean elasticity values and percent voxels in 1-3 kPa range 
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 Figure 4-4 shows example registration- and model-generated displacement magnitude 

colormaps along with a difference colormap and associated CT RV geometry. In accordance with 

reported convergence levels above, it was observed that differences between registration and 

model displacement outputs were minimal. Examples of resulting elasticity distributions and 

associated geometry are shown in RV geometry in Figure 4-5. As mentioned previously, resulting 

elasticity distributions were consistent with those of COPD patients in previous elastography 

studies.  

 

Figure 4-4: CT source image and displacement magnitude distributions for (a) registration and 

(b) model-generated outputs; (c) Difference map (in mm) in RV geometry 

c) d) 

m
m

 

a) b) 

m
m
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Figure 4-5: Elasticity distributions for (a) left and (b) right lung, shown in RV geometry 

4.4 Discussion 

In this paper, we present a feasibility study applying an elasticity estimation framework for 

images acquired during forced breathing maneuvers. The high level of convergence observed 

between registration- and model-generated displacement magnitude demonstrates the feasibility 

of performing elastography using breath-hold images representing relatively large deformations 

when compared to those recorded during free-breathing. 

Images acquired during RV and TLC demonstrate a large deformation for each patient. 

Due to the mechanisms and corrective force calculations involved, elasticity values can be more 

accurately measured in regions where significant expansion occurs. Using images with such large 

deformations in the elastography process greatly reduces the percentage of lung voxels that do not 

expand significantly relative to free-breathing images. This was shown by a comparison of the 

a) 

b) 
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percentage of non-expanding voxels, as defined by Jacobian value, present in elasticity 

distributions obtained using forced vs. free-breathing images. For this reason, the additional 

acquisition of breath-hold CT scans at RV and TLC would be beneficial to the assessment of lung 

function through elastography for patients undergoing radiotherapy treatment.  

 Convergence levels between model- and registration-generated displacement vectors were 

used in this study to evaluate the elasticity distribution estimations. We envision that future work 

will include the acquisition of images at both free-breathing and forced-breathing for the same 

patient. Performing elastography on both datasets and analyzing differences in regional 

distributions could reveal additional functional information useful to the sparing of healthy tissue 

in radiotherapy treatment planning and other lung interventions. 

 In a related work by Hasse et al., elasticity distributions obtained from elastography with 

free-breathing images were used in retrospective functional avoidance treatment planning and they 

were able to reduce dose to functional lung regions.55 Future work will also include a similar study 

with elasticity distributions generated from forced breathing images. This could result in improved 

functional lung sparing during radiation therapy. 

 The current approach to lung vessel and rigid structure segmentation in CT images is 

performed by applying a simple threshold that ensured the exclusion of non-parenchymal tissue. 

More sophisticated vessel identification methods are currently being investigated and will be 

employed in future work. 

 One limitation of the current approach is the lack of consideration of airflow dynamics in 

the biomechanical model. Achieving an accurate representation of airflow and pressure 

distributions within the lung geometry is current being investigated.122 Our initial results have 

demonstrated that such airflows can be simulated with 5D imaging datasets.68 Airflow dynamics 
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can be a determining factor in informing a biomechanical modeling approach, particularly for 

patients with lung diseases that cause obstructed airflow and narrowed airways. Our future work 

will focus on adding the airflow dynamics to develop a multi-physics-based elasticity estimation 

process. 

 A potential limitation of this study was the linear elastic nature of the connections between 

finite elements in the modeled lung geometry. While this approach is capable of accurately 

modeling elastic properties and deformations within a certain range of breathing amplitudes, 

several studies have suggested that a hyperelastic lung model may be more accurate when 

modeling forced breathing maneuvers. Our future work will focus on an imaging protocol that 

acquires both free and forced breathing CT scans, which will facilitate the modeling of hyper-

elastic behavior. 

4.5 Conclusion 

In this study, a biomechanical modeling framework was employed to solve an inverse 

elasticity optimization problem posed by the deformation of patient lungs from RV to TLC 

geometry. Measured convergence rates between DIR- and model-generated displacement 

magnitude showed good agreement was achieved when applying the calculated optimal elasticity 

distributions. Thus, we established the feasibility of performing elastography using images 

acquired during a forced breathing maneuver. In combination with recent efforts toward functional 

lung sparing for radiotherapy, elastography performed using forced maneuver images could 

provide additional information about the underlying tissue physiology that could not previously 

be obtained through elastography using only free-breathing images or other methods. 
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CHAPTER 5: Scalable Quorum-based Deep Neural Networks with 
Adversarial Learning for Automated Lung Lobe Segmentation in Fast 
Helical Free Breathing CTs 
 
Quorum-based Automated Lung Lobe Segmentation 

A version of this chapter has been published as a manuscript: Int J Comput Assist Radiol Surg, Vol. 16, 2021. doi: 

10.1007/s11548-021-02454-6 

5.1 Introduction 
 
Radiotherapy planning for lung and liver tumors has benefitted from 5D acquisition of the thoracic 

deformations.123,124 In addition, novel applications of the 5D protocol have been investigated for 

surgical applications such as lobectomy and LVRS. Advances in these surgical techniques 

(minimally invasive approaches and sub-lobar resections) as well as perioperative care with 

improved outcomes are challenging historical criteria on how patients are evaluated for operative 

candidacy.33 For the current surgical applications, tasks such as patient selection are critical to 

ensure clinically acceptable post-operative pulmonary complications (PPC) and mortality rates.34 

Current strategies for patient selection involve PFTs which are approximate and do not consider 

lung physiology and function heterogeneities. As an example, Baldi et al 125 showed that patients 

with FEV1/FVC > 70% of predicted values had reduced post-lobectomy FEV1/FVC, while 

patients with FEV1/FVC < 55% of predicted values had an increased post-lobectomy FEV1/FVC, 

indicating that the removed lobes of patients with poor preoperative lung function might have had 

worse function than their remaining lung. 

Recent advancements in CT imaging have led to improved characterization of lung 

heterogeneity and pulmonary lung function.126 In addition, lung biomechanics and airflow 

dynamics modeling have been developed by peers and our team of investigators to the extent that 
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they can provide patient-specific models. However, such strategies have not been integrated into 

the patient selection process for lung interventions such as lobectomy and LVRS. 

 Commercial 4DCT imaging protocols were inspired by 4D cardiac imaging and assumed 

breathing cycle regularity. Many COPD patients cannot breath regularly 127, causing breathing-

sorting artifacts, which significantly degrade biomechanical property estimation efforts. Since 

biomechanical model instantiation of diseased lung anatomy largely depends on artifact-free image 

data, we avoid the historical challenges of commercial 4DCT by utilizing a Fast Helical Free 

Breathing CT (FHFBCT) protocol for lung model development efforts.123,128 FHFBCT has several 

advantages including that it is free breathing, has no sorting artifacts, is acquired over a number of 

breathing cycles, and delivers relatively low dose. 

 Lobe segmentation is one of the tasks required to simulate the underlying planning process 

for surgical lung procedures, a process that is impractical to perform even semi-automatically for 

the number of images we propose to use. An accurate segmentation of the lung lobes from the 

FHFBCT scans is critical to our proposed workflow. Current state-of-the-art approaches in lobe 

segmentation use breath-hold CT as data and use algorithms that identify vessels and lobe fissures 

and couple them with lobe shape models to identify the lobes of the lung.129,130 While these 

algorithms are automatic, they are known to produce inaccurate results because of patient anatomy 

variations. Furthermore, applying a semi-automatic segmentation requiring manual correction for 

25 CT scans (number of scans in FHFBCT) would be impractical in a clinical setup. 

 In this paper, we present a machine learning approach for automatic lung lobe segmentation 

in CT datasets that has been observed to be more precise than the current state-of-the-art algorithm 

in our preliminary studies.131 The method discussed in this paper addresses the following three 

limitations: 
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Image quality: We present a novel machine-learning based approach for automated lobe 

segmentation that takes advantage of the unique characteristics of the FHFBCT image datasets, 

namely the large number of images and lack of sorting artifacts common with traditional 4DCT 

approaches.76 

Learning the fuzzy boundaries: Peers have employed deep neural network (DNN) for segmentation 

of anatomical structures. A conventional DNN learning using convolutional neural networks has 

been investigated for lung segmentation. Such approaches have been observed to inaccurately 

identify lobe boundaries since the lobes are only separated by a fissure that can be as thin as 1 

mm3. We identify the problem to be that the learning process does not account for the fuzziness in 

the boundary. In this paper, we investigate a quorum-based cGAN approach for learning the lobe 

boundaries, which is detailed in the methods section below. 

Learning Complexity: Conventional machine learning strategies involve a single convolutional 

DNN learning the segmentation process.129 In addition, the learning process is not scalable because 

adding more datasets requires a learning process that guarantees optimal transfer learning. To 

address this, we present a novel quorum-based inferencing process. During the training process, 

we divided the FHFBCT 3D datasets into a set of 12 batches and instantiated CGAN learning for 

each of the batches independently. Inferencing was performed by a quorum of CGAN members 

given equal weighting factors. For computational purposes, we dedicated a multi-GPU computing 

setup. The final segmentation results for each lobe were the weighted averages of the results from 

the inferenced CGAN quorum member networks. This inferencing strategy also allows for a 

scalable training process, in which new CGAN generator networks can be trained and added to the 

quorum as new data is acquired. 
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5.2 Methods 

In this paper, we present a machine learning-based approach for segmenting the lung lobes. 

While airways and vessels help indicate lobe boundaries, they are insufficient to segment lobes. 

Airways and vessels do not cross lobe boundaries but lobe boundaries are typically adjacent to 

parenchymal tissue where airways and vessels are too small to identify and segment. In our 

approach, a machine learning framework was employed that learned the lung lobe segmentations 

from semi-automatically segmented datasets to automatically segment lobes. To generate lobe 

segmentation training data, we used a semi-automated segmentation process using ridge surface 

image features and published shape models.130 The voxel-by-voxel lobe association was 

designated as a label and the associated FHFBCT scan was used as source data for the learning 

process. The steps in the learning process are now described. 

5.2.1 FHFBCT Acquisition Protocol 

CT data was collected using a Siemens AS 64 scanner located in the UCLA Radiology 

Department. The scans were/ acquired using a conventional helical protocol, with a pitch of 1.5, 

rotation speed of 0.25s, for an effective 40 mAs. We scanned in alternating directions with an 

approximately 2s delay between successive scans and acquired 25 free breathing scan datasets. 

The free-breathing component of the scan protocol is based on the standard imaging protocol we 

use when acquiring and studying free-breathing patients and corresponds to a total effective lung 

dose of 14.4 mSv per imaging session 132 While such a protocol delivers more dose than a typical 

diagnostic CT, the proposed dose is consistent with other interventional imaging protocols. 

Rintoul, et al 133 recently showed that the effective dose (typically from CT and PET) for lung 

cancer diagnostic workups averages 15.1 mSv, 25.8 mSv, and 28.6 mSv for best supportive care, 

chemoradiotherapy, and surgical interventions, respectively. 
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5.2.2 Pre-processing for Lobe Segmentation Training 

 The proposed approach for machine learning based lobe segmentation relies on pre-

learning data generation and image processing steps taken to prepare the image datasets. This 

process is schematically illustrated in Figure 5-1. A set of 12 patient datasets was used for training 

purposes in which each dataset consisted of 25 FHFBCT scans (totaling 300 3DCT scans). For 

each patient, an arbitrarily-selected reference scan was semi-automatically segmented using the 

Pulmonary Toolkit (PTK) software for Matlab.130 The automated segmentation of the lung lobes 

by PTK utilized fissure identification and ridge selection, however the resulting segmentations 

were observed to be largely inaccurate. Figure 5-2a shows an example of a PTK automatic 

segmentation result. Therefore, we employed a semi-automatic approach, where we first generated 

an initial estimate of the segmentation using PTK’s automatic segmentation tool and then manually 

corrected for errors on a slice-by-slice basis with segmentation editing tools. These corrections 

were reviewed by pulmonary experts and the segmentations were modified accordingly until 

clinically acceptable results were obtained. Figure 5-2b shows a manually corrected image.  

 The reference FHFBCT was registered to each of the 24 additional scans using the DEEDs 

registration algorithm.134,135 The registration process was observed to be accurate within clinically 

acceptable levels for FHFBCT scans, with an average mean error of 1.15 ± 0.37 mm and 95th 

percentile error estimated at 2.47 ± 0.78 mm, as previously reported in Dou et al..128 The resulting 

DVFs were applied to the reference lobe segmentation to acquire segmentations for each of the 

additional 24 geometries for each patient. The registration performance and deformed 

segmentation results were verified by experts. The acquisition of 25 lobe segmentations per patient 

enabled a supervised learning process. For each set of patient data, images from 25 FHFBCT scans 

and 25 lobe segmentations were resized to 256x256 and combined into individual large datasets 
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for training. The FHFBCT images were then concatenated with the corresponding lobe 

segmentation images and normalized to create 512x256 training images. 

 

 
Figure 5-1: A schematic representation of the data generation and pre-processing steps involved 

in the lobe segmentation process 

a) 

 

b) 

 

Figure 5-2: Segmentation results obtained from the state-of-the-art automatic lobe segmentation 

approach and after manual correction are shown in (a) and (b), respectively. Lobes are identified 

by different colors and errors are marked by red circles. 
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5.2.3 CGAN Network-based Lobe Segmentation 

Figure 5-3 schematically represents the adversarial learning process. We implemented a 

CGAN network-based lobe segmentation, which we have shown to be effective in estimating lung 

elasticity using single CT scans.136 The widely-cited Python implementation of the CGAN-based 

pix2pix algorithm was the basis for network construction.137 The network consisted of two deep 

neural networks (each being a combination of convolutional and fully connected network layers) 

namely, generator and discriminator neural networks. A supervised learning process was used, 

where the generator network was trained to generate lobe segmentation results and was optimized 

using ground-truth lobe segmentations. 

5.2.3.1 Generator Deep Neural Network 

The generator network consisted of a five-layer neural network, in which the first three 

layers were convolutional neural networks and the final two layers were fully connected neural 

networks. The generator network training was initiated with random weights and biases, 

subsequently optimized using the training data. The accuracy of the generator network was 

iteratively monitored and optimized by inferring a sample output image from the discriminator. 

5.2.3.2 Discriminator Deep Neural Network 

The discriminator network consisted of a 4-layer neural network, in which the first two 

layers were convolutional neural networks and the last 2 layers were fully connected neural 

networks. To train the discriminator, the input values came from the generator neural network and 

ground-truth segmentation results. The discriminator network was refined by updating assigned 

weights and biases of the hidden and output layers.138 The loss function calculated the error 
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between the output of the output layer results and the ground-truth lobe segmentations. A quadratic 

cost was implemented as the loss function in this study. 

 

 

Figure 5-3: Schematic representation of steps involved in the lobe segmentation training process 

5.2.4 Quorum-based DNN Inferencing 

 Figure 5-4 schematically illustrates the quorum-based inferencing process. The quorum 

consisted of a scalable number of generator DNNs each trained using a set of 25 FHFBCT scans 

and corresponding lobe segmentations. In our implementation, a set of 12 generator DNNs served 

as quorum members. During inferencing, the input FHFBCT image was segmented for the 

individual lobes by each of the 12 generator DNNs associated with that lobe, totaling 60 DNN-

based segmentations. 

 The results were then compiled for quorum analysis and segmentation generation and an 

accumulator array representing the empty segmentation voxel map was generated. For each voxel 

in the array and corresponding voxel in DNN segmentation results, we iteratively identified lobe 

voxels assigned by generator DNNs. If more than 50% of the DNN results agreed that a specific 

voxel in the image volume belongs to the lobe then the accumulator array value was set to 1 for 

that voxel, indicating that the segmentation for that voxel was approved. If not, the accumulator 
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was set to 0 indicating that the segmentation for that voxel was not approved. Voxel lobe 

assignments were therefore determined according to Equation 1 where each voxel x in binary 

image array T is assigned value 1 if a 50% agreement threshold of quorum-member outputs, Ui , 

is met and 0 if not met for the voxel. 

𝑇(𝑥) = 𝑥 = 	∑ U$(D)),
$.)
&)

=	-1, 𝑥 ≥ 0.5
0, 𝑥 < 0.5    (5-1) 

 The process was repeated for all image voxels and lobe segmentations to produce a 

weighted average lobe segmentation based on quorum member segmentation results. For real-time 

purposes, a GPU-based quorum framework allowed voxels to be processed in a parallelized 

manner. 

 

Figure 5-4: Schematic representation of quorum-based inferencing process 
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5.2.5 Association for Unselected Voxels 

 We anticipated a subset of lung voxels, identified during pre-processing via thresholding, 

to be unassigned to any of the lobes during the DNN inferencing. Additionally, voxels assigned to 

two or more lobes during quorum inferencing were also considered unassigned. Unassigned lung 

voxels were subsequently associated with a lobe using a nearest-neighbor algorithm which located 

the lung voxel at the smallest distance and determined that voxel’s quorum-based lobe assignment. 

The lobe assignment of the identified nearest neighbor was then given to the unassigned voxel. Let 

I represent one such unassigned voxel at location (i,j,k). Let A be a n-by-n binary matrix 

representing a given lung volume. Euclidean distances from the unassigned voxel to each lung-

containing voxel in A were then calculated and the location of the voxel found at the smallest 

distance, and its associated lobe assignment, were recorded by indexing the lobe-assignment 

matrix. Specifically, we computed the distance d between voxel X with coordinates (i1,j1,k1) and 

each voxel Y in A with coordinates (i2,j2,k2), according to the following equation. 

𝑑(𝑋, 𝑌) = 	`(𝑖) − 𝑖&)) +	(𝑗) − 𝑗&)) +	(𝑘) − 𝑘&))   (5-2) 

The unassigned voxel X was then attributed to the lobe containing point Y in A with the smallest 

distance to X. At this stage, all lung voxels were assigned to a lobe and the segmentations were 

considered complete. 

5.2.6 Image Similarity Metrics 

 To evaluate the accuracy of the generated lobe segmentation datasets, several image 

similarity metrics were utilized. Structural Similarity Index (SSIM), unlike the standard mean 

square error, considers local patterns of pixel intensities to provide a similarity assessment that 

considers the loss of structural information between images.121 The equation for SSIM is as 
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follows, where x and y are the images being compared, 𝜇D and 𝜇V are average pixel values of x 

and y, 𝜎DV is the covariance of x and y, σW and σX are the variance of x and y, and 𝐶& and 𝐶) are 

constants introduced to avoid instability:  

𝑆𝑆𝐼𝑀	(𝑥, 𝑦) = 	 F)K'K/@	L)GF)N'/@	L,G
FK',@	K/,@	L)GFN',@	N/,@	L,G

    (5-3) 

 The second similarity metric used to compare segmentation images was a fast-calculation 

Normalized Cross-Correlation Coefficient (NCC) intended for template matching. This method 

calculates correlation for multiple basis functions occurring in an image and produces a single 

weighted-sum correlation value to another. The formulation of this equation is described in 

Equation 4, where s is the sum table of the image function, x and y are image voxel position, u and 

v are the template voxel position, 𝑓 is the intensity of the image, 𝑓 ̅is the mean intensity, and 𝑡̅ is 

the template function: 

𝛾�(𝑢, 𝑣) = 	
∑ Y$	Z[FD0$ @\,V0$ @>GQ[]D0$ @\,V1

$@>Q&^Q[]D1
$@\Q&,V0$ @>^@[]D1

$@\Q&,V1
$@>Q&^_2

$.)

T∑ (A(D,V)QA0̅,3',/ ),	∑ (O(DQ\,VQ>)QO̅',/ ),
   (5-4) 

 Dice Similarity Coefficient (DICE) was used to measure geometric correlation between 

segmentations 139. The equation used in computing DICE between two images is shown in 

Equation 5, where 𝑉& and 𝑉) represent the images being compared:  

𝐷𝐼𝐶𝐸	 = 	 )(3)	∩	3,)|3)|@	|3,|
      (5-5) 

5.2.7 Implementation and Computing Setup 

 The learning process was both computationally and time expensive with each patient- and 

lobe-specific DNN requiring a single GPU and 24 hours of runtime to complete a single instance 

of adversarial learning, thereby requiring 5 GPUs to run in parallel (120 hours of computation 
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time). With 12 patients for learning and 5 lobe-specific learning processes, 60 networks were 

trained on a server consisting of 6 machine setups holding a total of 42 GPUs (1440 hours of 

computing time). During inferencing, we enabled all 42 GPUs to load DNN models 

simultaneously, generate lobe segmentations, and perform necessary post-processing in < 1 minute 

per validation dataset. 

5.3 Results 

 Results from a quantitative analysis of quorum-based DNN generated lobe segmentations 

showed an improvement in accuracy from the current state-of-the-art segmentation method. The 

average percentage of voxels unassigned or attributed to more than one lobe after quorum-

inferencing, with a per voxel requirement of 50% agreement amongst quorum members, was 

2.74% and 14.1% for the left and right lungs, respectively. In each of the ten test patient datasets, 

a performance comparison of PTK’s automatic lobe segmentation and our quorum-based DNN 

inferencing lobe segmentation results displayed similar or improved values in all three of the 

evaluated similarity metrics. Table 5-1 shows these calculated values for each patient. The average 

SSIM across test patient datasets for PTK- and the quorum-generated lobe segmentations were 

0.911 and 0.929, respectively. This signifies that the internal structures were optimally accurate 

during the segmentation process. Similarly, the average NCC was calculated to be 0.698 and 0.806 

for PTK- and our quorum-generated segmentations, respectively. The average DICE coefficients 

for PTK- and quorum-generated segmentations were 0.696 and 0.814, respectively. These results 

demonstrate that an optimal automated lobe segmentation can be performed using a quorum-based 

DNN inferencing method. 
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 SSIM NCC DICE 

Patient PTK Quorum PTK Quorum PTK Quorum 

1 0.820 0.903 0.628 0.789 0.674 0.806 

2 0.900 0.935 0.707 0.836 0.713 0.848 

3 0.894 0.957 0.561 0.873 0.537 0.875 

4 0.920 0.935 0.747 0.850 0.745 0.856 

5 0.904 0.952 0.668 0.837 0.662 0.836 

6 0.941 0.942 0.835 0.816 0.838 0.824 

7 0.915 0.847 0.465 0.547 0.468 0.559 

8 0.932 0.951 0.679 0.785 0.675 0.782 

9 0.963 0.931 0.916 0.877 0.926 0.884 

10 0.916 0.933 0.769 0.849 0.725 0.874 

Average 0.911 0.929 0.698 0.806 0.696 0.814 

Table 5-1: Image similarity metric results comparing PTK-generated and quorum-based 

segmentation results to ground-truth segmentations for 10 test patients; Structural Similarity 

Index (SSIM), Normalized Cross-correlation coefficient (NCC) and DICE coefficient shown 

Table 5-2 presents image similarity metrics calculated for each lung lobe of a single test 

patient. The average SSIM over the 5 lobes for PTK- and quorum-generated lobe segmentations 

were 0.894 and 0.957, respectively. These values show near perfect agreement in structural 

information between generated and ground-truth segmentations. Average NCC values for the 5 

lobe segmentations were calculated to be 0.561 and 0.873 for PTK- and our quorum-generated 

segmentations, respectively. Finally, the average DICE coefficients calculated for PTK- and 

quorum-generated segmentations were 0.537 and 0.875, respectively. Specifically, DICE showed 

that for the middle right lobe (MRL), the accuracy of PTK was considerably low (0.322), but 
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greatly improved for our algorithm (0.827). Similar results were obtained for other lobes and in 

nearly all test patients, suggesting the fact that the individual lobes were accurately segmented. 

 SSIM NCC DICE 

Lobes PTK Quorum PTK Quorum PTK Quorum 

URL 0.919 0.960 0.645 0.948 0.620 0.958 

MRL 0.886 0.955 0.320 0.822 0.322 0.827 

LRL 0.933 0.957 0.787 0.892 0.776 0.890 

ULL 0.860 0.953 0.550 0.952 0.508 0.961 

LLL 0.872 0.960 0.504 0.749 0.457 0.740 

Average 0.894 0.957 0.561 0.873 0.537 0.875 

 
Table 5-2: Image similarity metric results comparing PTK-generated and quorum-based 

segmentation results to ground-truth segmentations for each lung lobe of a single test patient; 

SSIM, NCC, and DICE for upper right (URL), middle right (MRL), lower right (LRL), upper left 

(ULL), and lower left (LLL) lobes 

 DICE Coefficients 

Quorum 
Member URL MRL LRL ULL LLL 

1 0.912 0.517 0.841 0.934 0.871 

2 0.880 0.495 0.800 0.922 0.611 

3 0.889 0.416 0.814 0.908 0.709 

4 0.904 0.405 0.535 0.886 0.731 

5 0.366 0.339 0.760 0.913 0.865 

6 0.728 0.294 0.659 0.948 0.667 
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7 0.938 0.224 0.610 0.917 0.776 

8 0.885 0.400 0.769 0.854 0.681 

9 0.913 0.418 0.522 0.869 0.499 

10 0.628 0.358 0.747 0.862 0.797 

11 0.838 0.348 0.816 0.926 0.813 

12 0.758 0.482 0.756 0.915 0.720 

Average 0.793 0.380 0.708 0.902 0.715 
Quorum 
Result 0.946 0.562 0.881 0.965 0.830 

 

Table 5-3 DICE coefficients calculated between each of the 12 quorum member DNN results 

compared and the ground-truth lobe segmentations for a single test patient dataset; upper right 

(URL), middle right (MRL), lower right (LRL), upper left (ULL), and lower left (LLL) lobes 

 Table 5-3 shows the performance, measured by DICE similarity coefficient, of each of the 

12 quorum-member networks for the 5 lung lobes of a single test patient prior to the quorum-

inferencing process. As displayed in the bottom two rows of the table, the average DICE scores 

for the quorum member DNNs were 0.793, 0.380, 0.708, 0.902, and 0.715, while the quorum-

inferenced results were 0.946, 0.562, 0.881, 0.965, and 0.830 for URL, MRL, LRL, ULL, and 

LLL, respectively. On average for the 5 lobes, the quorum-inferenced result showed an 

improvement over the average quorum member DICE score of 0.137. 
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Figure 5-5: Representative slices for a single patient with rows specifying lung lobe and 

columns representing ground truth, quorum-based, and PTK-generated segmentations, from left 

to right, respectively 

 Figure 5-5 shows representative lobe-specific binary segmentation slices for ground-truth, 

quorum-based, and PTK-generated segmentation datasets. In this comparison, the quorum-based 

DNN-generated lobe segmentations more closely matched ground-truth segmentations than their 

PTK-generated counterparts. This was the trend amongst all test patients. The segmentations 

generated by our quorum method also produced more accurate fissure and lobe boundary 

identifications. 
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 Figure 5-6 shows the overlay of ground-truth, quorum-generated, and PTK lobe 

segmentations with the associated FHBCT scans. It can be observed that the quorum-based DNN-

generated segmentations demonstrated greater accuracy than the corresponding PTK 

automatically generated lobe segmentations when compared to the ground truth. Lobe boundaries 

and fissures can also be seen to be more accurately defined in the quorum-based DNN result. The 

improved accuracy in differentiation of lung lobes along boundaries and fissure identification is 

crucial to several clinical applications as discussed in previous sections. 

 
Figure 5-6: Lobe segmentation overlay with associated FHBCT right (top row) and left (bottom 

row) lungs for ground-truth, quorum-based, and PTK methods 

5.5 Discussion and Conclusions 

In this paper, we presented a novel approach for automatically segmenting the lung lobes 

using a machine learning-based process. An adversarial learning process was employed to obtain 

optimal learning accuracy. The key contribution of this work is the development and utilization of 

a quorum of adversarial learned generator DNNs, which allows for the segmentation of lung lobes 

in real time. Using an in-house GPU cluster, we observed the run-time to be near-real-time thereby 
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bolstering the potential for the algorithm to be implemented in a clinical setup. The proposed 

algorithm is also scalable as the quorum can be increased in size as more FHFBCT and lung 

segmentation ground-truth datasets are made available. We envision that this algorithm will be 

used for enabling improvements in lung DIR, lung biomechanics estimation, and the clinical use 

of novel protocols such as 5DCT protocol. In addition, for surgical intervention scenarios (e.g., 

lobectomy), the algorithm will produce a precise and automated characterization of the lobe 

boundaries and fissures.  

The proposed algorithm uses FHFBCT scans for lobe segmentation as they are devoid of 

motion and sorting artifacts and any other source of potential motion blur. To enable conventional 

3D/4D CT protocols to use the process, there is a need to re-run the learning process and re-build 

the quorum. Our future work would focus on investigating a transfer learning-based approach 

where the learned generator DNNs can be used to train on data from conventional 3D and 4DCT 

protocols. 

The proposed algorithm implements a static weighted quorum for predicting the lobe 

segmentation results. We envision that a dynamic quorum where the weights automatically change 

based on image properties may be needed to further increase segmentation accuracy. Such a 

dynamic quorum would require a larger cohort of patients and their ground-truth segmentations. 

Future work would focus on the development of such a novel segmentation framework as well as 

an investigation into the performance of different sized quorums for optimal segmentation 

accuracy. 

Our current algorithm performs with an accuracy at a clinically satisfactory level. 

Quantitative results, including the similarity metrics SSIM, NCC, and DICE, showed agreement 

between the quorum-based and the ground-truth manual lobe segmentations. Similarly, the 
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qualitative analysis showed the ability of the quorum-based segmentation results to accurately 

depict lung boundaries and fissures. However, it was observed that for slices along the lung 

anterior and posterior ends, the error was more dominant. This is because even with 12 quorum 

members there is far less data available that can represent the end slices. In our future work, we 

will utilize a biomechanical lung model to generate synthetic outer slices at different breathing 

phases and utilize them to bolster the training data and improve learning accuracy. We envision 

that this strategy will ultimately improve overall segmentation accuracy.  

The setup in this study employs a set of 60 generator DNNs (12 for each lobe) for 

segmenting the lung lobes. Running such a large cohort of DNNs is a complex task. Our current 

implementation utilizes an in-house GPU cluster to enable near real-time segmentation. Our future 

work would investigate the task of designing generator DNNs that can be efficiently loaded and 

executed on single GPUs to achieve lower computational requirements. 
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CHAPTER 6: A quantitative prediction of the post-operative lobectomy 
lung physiology using a GPU-based linear elastic lung biomechanics 
model and a conditional generative adversarial learning approach 
 
A version of this chapter has been published as a conference proceeding: SPIE Medical Imaging, Vol. 11598, 2021. 

doi: 10.1117/12.2582271 

6.1 Introduction 

Lobectomy is a common surgical approach for treating early stage non-small cell lung 

cancer (NSCLC).29,30 Recent studies have confirmed that lobectomy  remains the standard of care 

and consistently resulted in better outcomes than proposed alternatives.31,140 Removal of a lung 

lobe may result in the reduction of pulmonary function and capacity for the patient, so lung 

surgeons routinely screen patients to evaluate the risk of postoperative pulmonary complications 

(PPC).32 Advances in surgical techniques (minimally invasive procedures and sub-lobar 

resections) and perioperative care with improved outcomes are challenging historical criteria on 

how patients are evaluated for operative candidacy.33 For current lobectomy strategies, patient 

selection is critical to ensure clinically acceptable PPC and mortality rates.34  

Pre-operative pulmonary function is used to assess surgical candidacy and is 

conventionally quantified using spirometry measurements. While multiple factors are measured 

during these tests, specific measurements that correlate with patient eligibility for surgery include 

Forced Vital Capacity (FVC) and Forced Expiratory Volume at 1 second (FEV1).141 These two 

measurements are also utilized in another key metric defined as the ratio FEV1/FVC. Although 

spirometry-based predictions alone may have limitations when determining patient eligibility, 

current state-of-the-art clinical decision guidelines (CDG) are based on these measurements.142   

The presence of lung comorbidities leads to compromised pre-operative lung function and 

poor, unreliable, post-operative predictions. For example, 80% of lung cancer patients may have 
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some form of COPD, which negatively impacts their pulmonary function.143 Even with this high 

COPD rate, approximately 60% of patients remain eligible for lobectomy surgery based on PFT 

measurements and PPC estimates. Improved postoperative pulmonary function predictions might 

identify the high-risk patients in advance, thus improving the lobectomy mortality rate. At the 

other end of the spectrum, approximately 10% of patients have sufficiently poor pulmonary 

function to be considered unsuitable for lobectomy. Most relevant to this application, 30% of early-

stage NSCLC patients have marginal lung function and are referred to as high-risk patients.144 

Little guidance is available to clinicians to determine if these high-risk patients are suitable 

lobectomy candidates. A quantitative technique is needed to pre-operatively predict post-surgical 

pulmonary function, which could ultimately result in (a) a subset of currently deemed high-risk 

patients being eligible for lobectomy and (b) an overall reduction in mortality rates due to 

improved patient selection.  

Biomechanical models of human anatomy have been developed for applications ranging 

from computer animation to CT image registration. Such approaches have been used by peers to 

model complex motion of the face, neck, torso, hand, leg, and lungs.93,145-150 Previous efforts 

toward developing high-resolution biomechanical models has focused on the anatomical sites of 

head/neck and the lungs.92,93 Relevant to this work, we have developed physics-based lung models 

in a clinical context to simulate the onset of open and closed pneumothorax and predict 

radiotherapy treatment efficacy.93,151  

4DCT and 5DCT imaging protocols provide the necessary imaging data for lung 

biomechanical model development and assembly.93 Although commercial 4DCT systems have 

been employed by others to study lung motion for radiotherapy treatment planning, little work has 

been done to investigate the use of data acquired from model-based CT approaches for lobectomy 
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simulation. This could be due to irregular patient breathing and airway obstructions that cause 

dynamic changes in the regional ventilation.  

 Early lung elasticity measurements were based on the measurement of biomechanical 

properties of excised tissue, which were found to be patient, location, and disease specific. 

Therefore, an accurate characterization of these properties may be acquired through non-invasive 

in-vivo methods at voxel level. Biomechanical property estimations are obtained using an iterative 

inverse deformation method and physics-based biomechanical models with 3D in vivo images as 

input. Estimated elasticity distributions are updated until a set of convergence criteria with the 

DIR-defined deformations are met.152 Successful elasticity measurements were performed using 

4DCT image datasets acquired for lung and breast cancer patients.93,153-155 Based on this extensive 

research, we envision that the implementation of biomechanical elastic models could serve as a 

tool for the quantitative prediction of PPC in the areas of both lung cancer and COPD. In this 

paper, we propose and evaluate the feasibility of a framework that considers conventional breath-

hold CT images and pre-operative PFTs to predict post-operative lung function. 

 The rest of the chapter is organized as follows: Section 6.2 presents the materials and 

methods for the biomechanical model development and the underlying machine learning 

algorithms. Section 6.3 presents the results for the lobectomy simulation and the post-operative 

prediction. Section 6.4 and 6.5 conclude the chapter with a discussion on the direction of future 

work and a brief conclusion, respectively. 

6.2 Materials and Methods 

6.2.1 Workflow 

In this paper, we present a novel framework for a biomechanically guided prediction of 

post-operative pulmonary lung function. Figure 6-1 schematically represents the proposed 
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framework. The approach takes breath-hold CT images and spirometry results acquired pre-

operatively as input. Conventionally, the model building process requires 4D imaging, which are 

not typically acquired in the lobectomy imaging protocol. To this end, we developed a machine 

learning framework for enabling the model assembly (Section 6.2.2). Specifically, we developed 

a cGAN learning process to perform lobar segmentation of the lungs (Section 6.2.3), estimate 

underlying lung tissue elasticity (Section 6.2.4), and predict the boundary condition changes 

between pre- and post-operative lung anatomies (Section 6.2.5). These machine learning 

components provide the required parameters for the model assembly process. A high-resolution 

finite element biomechanical model is then assembled (Section 6.2.6). The removal of the 

identified lobe is then biomechanically simulated and the remaining lung anatomy is allowed to 

deform. Finally, the predicted post-operative lung boundaries are applied to estimate the post-

operative patient lung anatomy. This estimated anatomy was then taken as input to biomechanical 

simulations of PFTs used clinically to measure lung function. Specifically, FEV1 and FEV1/FVC 

maneuvers were simulated and resulting values measured using the post-operative lung model. 

 

Figure 6-1: A schematic diagram of the proposed workflow for quantitative model guided post-

lobectomy predictions of lung function. 
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6.2.2 Conditional Generative Adversarial Networks 

To assemble a physiologically accurate biomechanical model, we first needed lung lobe 

segmentation, elasticity estimation, and estimated post-operative boundary conditions. These were 

obtained using a cGAN based learning process due to its demonstrated accuracy when previously 

applied to image-translation problems.136 The cGAN consisted of generator and discriminator 

neural networks. The generator network was tasked with producing lobe segmentations from CT 

scans and consisted of a 12-layer neural network, of which the first 9 layers were convolutional 

neural networks and the last 3 layers were regular fully connected neural networks. Generator 

network training was initiated with random weights and biases, which were subsequently 

optimized during model training. Each layer of the neural network functions as follows: The 

neurons of the hidden layer take the data from each neuron of the input layer, apply a linear matrix 

multiplication with weighting factors, add a bias, and then apply a non-linear activation function. 

Using a non-linear activation function is important because a composition of linear functions 

remains a linear function, so the network abstraction would be otherwise limited no matter its 

depth. We employed a sigmoid function because it is essentially a smoothed step function and 

there is no loss of data for negative values, which is typical of other activation functions.156,157  

The discriminator network consisted of a 5-layer neural network of which the first 2 layers 

were convolutional neural networks and the last 2 layers were regular fully connected neural 

networks. The accuracy of the generator network was iteratively monitored and optimized by 

inferring an output from the discriminator. The inputs to the discriminator include pseudo-label 

images from the generator and the ground truth labels. To compute generator accuracy, the inputs 

were sent through hidden and output layers. The result of the output layer was then evaluated 

according to a loss function, an accuracy function, and the training algorithm. The loss function 

was applied during training to calculate the error between the output of the feed-forward neural 
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network segmentation and the ground truth segmentation.138 The discriminator network was 

continuously refined during model updating the weights and biases of hidden and output layers. 

6.2.3 Lung lobe segmentation 

In this section, we present a machine learning-based approach for segmenting the lobes of 

the lung. While airways and vessels help to identify lobe boundaries, they are insufficient to 

accurately segment the lobes on their own. Lobe boundaries are typically adjacent to parenchymal 

tissue, where minor airways and vessels can be difficult to visualize and segment due to their small 

size and resolution of the CT images. In our approach, a cGAN machine learning framework was 

employed to learn lung lobe segmentation from semi-automatically generated binary lobe masks. 

The semi-automated process used to perform lobe segmentation and obtain ground-truth lobe 

masks utilized ridge surface image features and published shape models to perform 

segmentation.130 Voxel-by-voxel lobe associations were considered label images and associated 

breath-hold CT scans served as the source data for the learning process.  

The steps in automatic lobe segmentation process are as follows. To prepare training data 

for the supervised training process, lung lobes were manually segmented. The training process 

was performed with a GPU cluster computing setup. During model inferencing, the generator 

network predicted lobe masks from breath-hold CT images of lobectomy patients in near real-

time. 

6.2.4 Lung elasticity estimation 

In this section, we present a machine learning‐based method that predicted the three‐

dimensional (3D) lung tissue elasticity distribution for a given end‐expiration 3DCT. Current 

approaches for characterizing lung tissue elasticity require four‐dimensional (4D) lung motion as 

an input. Since 4DCT imaging is only widely used in a radiotherapy treatment setup, there is a 
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need to predict elasticity distributions in the absence of 4D imaging for feasibility in lobectomy 

and other interventional lung procedures. 

To predict the lung tissue elasticity from an end‐expiration 3DCT a deep neural network 

was implemented. This approach to image-to-image translation is previously discussed in 

Santhanam et al. and for brevity, we now present the method. For training and validation purposes, 

five‐dimensional CT (5DCT) datasets and a finite element biomechanical lung model were used 

in a CT-based elastography approach to generate training data.136 The 5DCT model was first used 

to obtain end‐expiration lung geometry, which was taken as source geometry to the biomechanical 

model, as well as end-inspiration geometry. The deformation vector field (DVF) pointing from 

end-expiration to end-inhalation was computed by deformably registering the two 5DCT-

generated datasets and taken as an additional input to solve for the lung tissue elasticity. An inverse 

elasticity estimation process was then performed, in which we iteratively solved for the lung 

elasticity distribution until convergence criteria assessing model reproduction of ground‐truth 

deformation vector field were met. The machine learning process used a similar cGAN architecture 

that learned the lung tissue elasticity in a supervised manner. The biomechanically estimated tissue 

elasticity paired with the end‐exhalation CT was taken as input for the model training step. The 

trained cGAN generated the elasticity from a given breath‐hold CT image. 

6.2.5 Post-operative boundary conditions 

For biomechanical modeling of lung deformations, it is necessary to characterize the lung 

boundary conditions, which are defined by rib cage and diaphragm positions. It is also important 

to know the change in boundary conditions resulting from the lobe removal itself. The diaphragm 

is compressed superiorly by the lung volume and inferiorly by the liver. Since the lung has lesser 

volume, post-lobectomy, an imbalance in the internal pressures occurs, which may be measured 
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as a function of the air volume in the removed lobe. To model the change in boundary conditions, 

we used a cGAN approach. A set of 10 lobectomy patient datasets were retrospectively studied for 

this purpose. The ipsilateral lung was segmented in both pre- and post-operative images and 

deformably registered to one another. This process resulted in a deformation vector field that 

characterized the change in ribcage and diaphragm position at the start of the inhalation from pre- 

to post-operative anatomy. This cGAN model was trained to predict the DVF associated with the 

boundary of the ipsilateral lung of each lobectomy patient.  Along with the resulting lobe masks 

from lobe segmentation and elasticity distribution prediction, the predicted lung boundary DVF 

describing the deformation from pre- to post-operative anatomy are integrated with the 

biomechanical model.  

6.2.6 Biomechanical model assembly 

We formulated the elasticity parameter using a generalized Ogden material model, which 

defines a strain energy, W, in terms of principal stretches, λi, and a shear modulus, 𝜇:  

𝑊 = ∑ K5
a5

7
b,& i𝜆&

a5 + 𝜆)
a5 + 𝜆c

a5 − 3j;𝑤ℎ𝑒𝑟𝑒	2𝜇 = 	∑ 𝜇b𝛼b7
b,&   (6-1) 

where 𝛼b is the hyperelastic model power term for parameter p of N parameters.158 The principal 

stretches were determined by solving for the image deformation tensor field eigenvectors. The 

principal Cauchy stresses, 𝜎(, were determined from the 2nd Piola-Kirchoff stress tensor, which 

itself was derived from the partial derivative of the strain energy W with respect to the principal 

stretches.  

𝜎( = 𝜆(𝜏( = 2𝜆(
de
df$

= ∑ 𝜇b𝜆(
a57

b,&      (6-2) 

The internal force vectors were computed from the principal Cauchy stress at each element, 

enabling updates to individual velocity, assuming near-linearity for small incremental position 

changes. In order to maintain performance at interactive speeds, we implemented a multi-GPU 
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framework using an in-house compute cluster we have previously employed for real-time 

calculations.158,159 160 

Equations 6-1 and 6-2 represent traditional approaches to biomechanical modeling, using 

image data acquired at two different timepoints or physiologic states. Therefore, we modified the 

approach to solving these equations by applying tidal volume as an additional boundary condition 

by equating the sum of deformation-field Jacobians to the measured tidal volume change (∆𝑉) as 

∑(𝐽 − 1) = ∆𝑉/𝑉 (6-3) 

 

Lobe Removal: The physiological changes associated with the removal of a lung lobe were 

simulated with the flow-structure interaction model using a two-step iterative approach. In the first 

step, the lobe resection was computed as a finite volume reduction process with its surrounding 

lobes and boundary conditions (e.g. ribcage and diaphragm) providing a rigid-body constraint.92 

In the volume reduction process, we represented the lobe resection by reducing the resected lobe 

volume to zero through a defined number of infinitesimal changes to the length of element 

connections. For a given change in the resected lobe volume, we decreased the rest length of each 

connection between the lobes’ finite elements. Once target volume is achieved, the reduced lobe 

is treated as a rigid body constraint and the remaining residual lung anatomy surrounding the 

resected lobe was allowed to deform according to resulting internal corrective forces. The two-

step iterative process was continued until the entire residual lobe and the resected lobe 

deformations converged with predicted boundary condition changes. 

The finite element internal corrective forces were calculated as a summation of tensile 

spring force, shear spring force, and a dashpot damping force. At rest state, elastic internal 

corrective forces were set to 0. Deforming the model’s finite elements led to non-zero internal 
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corrective forces. The calculation of the internal corrective forces began by computing the tensile 

spring force, shear spring force, and dashpot damping force as discussed by Neylon et al.92 The 

internal corrective force on each voxel was then computed by summing these forces over each 

neighboring voxel connection. Finally, the new positions and velocities for each finite element 

were updated using implicit backward Euler integration. The new positions were then used to 

compute the positions of the resected and residual lobes. 

6.3 Results 

We first demonstrate our approach to segment the lung lobes from breath hold CT scans 

using a machine learning framework. Figure 6-2a presents the initial results obtained from our 

approach. For comparison purposes, we employed a semi-automatic approach, Pulmonary 

Toolkit.130,131 The neural network was trained using 7 breath-hold CT-derived lobe 

segmentations and evaluated using 3 test breath-hold CTs. Figure 6-2b shows that segmentation 

errors in the lower lobe that occurred during the semi-automatic segmentation were avoided by 

the deep neural network. A direct comparison with the ground truth data showed that the deep 

learning approach estimated the lobe segmentation with a mean prediction error of 0.8±0.4 mm, 

as compared against the shape models that had a mean prediction error of 1.3±0.7 mm. In 

addition, the lobe segmentations matched the ground-truth segmentations with MI, SSI, and 

NCC values of 1.77, 0.89, and 0.94, respectively. These results demonstrate that for lobectomy 

patients, a machine learning lobe segmentation can be a useful and time-saving tool for the 

biomechanical model building process. 
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Figure 6-2: Segmentation results obtained from the state-of-the-art automatic lobe segmentation 

approach Doel et al 130 approach and our approach is shown in (a) and (b), respectively. The 

lobes are identified by different colors. Errors in the current segmentation are shown in circles 

Figure 6-3 presents the simulation results using the biomechanical framework. Figure 6-3a 

shows the 3 right lung lobes, with color-coded elements reflecting lobe assignment. In this 

simulation the middle lobe was removed. Figure 6-3b, c, and d show stress maps associated with 

the lobe removal process. As the middle lobe volume decreases, the stress associated with the lobe 

contraction is shown in a color-coded manner from yellow (low) to red (high). The role of the 

biomechanical model is in properly simulating the forces exerted by the reduced lobe on the 

residual lobes. The stress associated with the elongation process is shown in light blue (low) to 

dark blue (high). The regions of the lung that are unaffected are color-coded in green. Figure 6-4 

presents the simulation results using the biomechanical framework for a lower lobe removal. 

Figure 6-4a shows the lung anatomy before the lobe removal and Figure 6-4b shows the lung 

anatomy after the lower lobe removal. These simulations demonstrate that the lobe removal or 

reduction procedure may be biomechanically modeled. 

 a)  b) 
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We employed retrospective pre-operative and post-operative clinical breath-hold CT scans 

for validating the lobe removal process. Figure 6-5 shows an example of lower lobe removal 

simulation from the perspective of the biomechanical model. The model elements are again color 

coded to represent their assigned anatomy. Figure 6-5a shows the pre-operative anatomy and 

Figure 6-5b shows the post-operative anatomy. Figure 6-5c shows our post-lobectomy simulation 

results. Arrows identify two corresponding vessel bifurcations, indicating that the post-surgical 

scan and lobe removal simulations reliably estimated their relative geometry. To provide a view 

from within the lung volume, the pre- and postoperative CT anatomy are shown in Figure 6-6. 

Figure 6-6a and 6-6b show the pre-operative and post-operative CT images, respectively. Figure 

6-6c shows our simulated post-lobe removal anatomy. The three images are aligned at an identified 

bifurcation landmark as identified by the red arrows. Our postsurgical simulation was sufficiently 

accurate to model the deformation of the lung tissue that caused the vessel to rotate into the image 

plane.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6-3: A novel lobe-wise lung biomechanical model is shown in (a). The biomechanical 

changes for lobe volume changes to 80%, 60% and 40% are as shown in (b), (c) and (d), 

respectively. The elements are color coded as yellow to red representing local contraction stress, 

green to blue representing elongation stress. The elements represented in green had no stress 

activity. 

To demonstrate biomechanically guided predictions of post-operative lung function, we 

evaluated the impact of lobe removal on the proposed deep inhalation and forced expiration 

process. We assembled a biomechanical model, incorporating results from machine learning 

approaches for elasticity estimation, lobe segmentation and boundary conditions for each 

patient.161 We simulated an end exhalation post-lobectomy CT scan using the lobe removal 

simulated process and compared against the actual end exhalation scan.   

We generated two CT scans for pre- and post-lobectomy geometries: at deep inhalation 

and residual volume.  The deep inhalation volume was approximated as 170% of the end-inhalation 

volume, which was itself approximated as 116% of the end exhalation volume (the volume at 

which the CT scans were acquired), and the residual volume was approximated as 50% of the 
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exhalation volume as per West and Luke.162  The phase-specific rib cage and diaphragm 

geometries (boundary conditions) were approximated by differentially expanding or contracting 

the rib cage and diaphragm to the requisite volumes.163 This technique was used to generate the 

deep inhalation and residual volume boundary conditions and we applied our biomechanical 

simulation to expand the lungs into the deep inhalation geometry.  We then simulated the forced 

expiration maneuver, which we determined would require 4s on average, by stopping the 

simulation after 1s.163 We used the resulting simulated CT to represent the FEV1 lung geometry 

to measure its corresponding FEV1 value. We were then able to calculate the simulated FEV1/FVC 

and repeated this process with the simulated post-lobectomy end-exhalation CT scan, providing 

us with an estimated post-operative FEV1/FVC. 

 

Figure 6-4: Simulation of a lower-lobe removal. These images reflect the biomechanical 

elements, and are color coded to reflect their anatomical assignments. 
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(a) 

 
(b) 

 
(c) 

Figure 6-5: Volume rendering of the pre-lobectomy and the post-lobectomy CT anatomy is 

shown in (a) and (b), respectively. The simulated post-lobectomy anatomy is shown in (c). 

Arrows point to corresponding airway bifurcations. 

Figure 6-7a and 6-7b show coronal slice overlays of the simulated pre-lobectomy and post-

lobectomy lung anatomy, respectively, at deep inhalation and FEV1 shown in red and green, 

respectively. The patient’s actual pre-lobectomy FEV1/FVC value was 70% and the estimated 

ratio of the pre-lobectomy to post-lobectomy FEV1/FVC values was 1.1, so the estimated post-

lobectomy FEV1/FVC was determined to be 77%. The patient’s actual post-lobectomy FEV1/FVC 

was 65%. 
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Figure 6-6: Comparison between simulated and actual lung geometry of a lobectomy patient 

(right lower lobe removed). a) CT of the pre-lobectomy patient. b) Actual post-lobectomy CT. c) 

CT after lobectomy simulation, including lobe removal and postoperative lung geometry 

changes. Red arrows identify common bifurcation. Yellow arrows indicate a vessel that lies in-

plane in the postoperative images but is out of plane in the preoperative image. 

 

Figure 6-7: Results of simulating a forced expiration maneuver for pre-lobectomy and post-

lobectomy CT scans (the text describes the reasons we analyzed lobectomy patients). (a) Pre-

lobectomy deep inspiration (FVC) simulated CT (red) and FEV1 simulated CT (green). These 

scans are generated from a clinical breath-hold pre-lobectomy CT scan.  (b) Post-lobectomy deep 

 
(a)                                    (b)                                            (c) 
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inspiration (FVC) simulated CT (red) and FEV1 simulated CT (green).  These scans are 

generated from a clinical breath-hold post-lobectomy CT scan for the same patient as (a).   

6.4 Discussion 
 

Lobe segmentation, elasticity distributions and boundary constraints were needed to 

assemble the biomechanical model. To this end, we employed a machine learning framework that 

facilitated learning these parameters from 5DCT datasets. Once assembled, the model was used to 

simulate lobe volume reductions and the associated changes in the pulmonary lung function. Post-

operative predictions were then made to compute the lung FEV1 and FEV1/FVC results.  

Many COPD patients cannot breath regularly, causing breathing-sorting artifacts in CT 

images, which significantly degrade biomechanical property estimation.127 Since biomechanical 

model instantiation of diseased lung anatomy largely depends on artifact-free image data, in future 

work we may be able to avoid the typical challenges of commercial CT by employing our Fast-

Helical Free-Breathing CT (FHFBCT) protocol for lung model development efforts.123,128 

FHFBCT has several advantages including that it is acquired during free breathing over a number 

of breathing cycles, has no sorting artifacts, and delivers relatively low dose.  Using FHFBCT 

imaging and a 5DCT motion model for lobectomy patients could improve the biomechanical 

modeling process and the associated predictions. The multiple FHFBCT imaging protocol may 

also better quantify patient lung motion and ventilation. Future work will also focus on developing 

an alternative to conventional PFT measurements with more quantitative regional or lobe-wise 

functional measurements facilitated by the lung biomechanical model. 

Diseased lungs are characterized not only by their pathologic biomechanical properties but 

also by airway narrowing and obstructions that restrict airflow into the lungs.164 Xenon (Xe) gas 

diffusion imaging is one method used for measuring steady-state volumetric ventilation, but the 
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dynamic nature of airflow through the airways can only be crudely modeled with the technique. 

The limitations of Xe gas diffusion imaging for airflow modeling may be avoided by taking 

advantage of the high spatial resolution capabilities of the FHFBCT images. Efforts have been 

made to employ Computational Fluid Dynamics (CFD) coupled with patient-specific lung 

geometry and elasticity to quantitatively estimate lung airflow dynamics. 

Accurate segmentation of the lung lobes from the FHFBCT scans is a critical task for our 

proposed workflow. Current state-of-the-art approaches use breath-hold CT as data and employ 

algorithms that identify vessels and lobe fissures and couple them with lobe shape models to 

identify the lobes of the lung. While these algorithms are automatic, they are known to produce 

inaccurate results because of variations in patient anatomy. Also, applying a semi-automatic 

segmentation for 12 CT scans (the number of scans we propose) would be impractical. A quorum-

based machine learning approach was developed for this purpose. The method yielded an 

automatic segmentation approach that was observed to be more precise than a comparable state-

of-art algorithm in preliminary studies.131 

 Although outside the scope of this paper, predicting postoperative pulmonary function 

beyond FEV1 and FEV1/FVC is an exciting aspect of developing a personalized postoperative 

flow-structure interaction predictive model. We believe that, as we further validate and optimize 

our approach, other quantitative descriptors of breathing function may prove to be more effective 

postoperative clinical respiratory status predictors than traditionally used PFTs. 

We believe the proposed free breathing CT acquisition and PFT-prediction approach, 

integrated with a flow structure interaction model, has the potential to significantly improve 

pulmonary function testing for intervention planning. To our knowledge, this is the first proposed 

practical application of this technology for the purpose of aiding lobectomy surgeons in predicting 
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postoperative pulmonary function, requiring only non-invasive, patient-specific, imaging, and 

surrogate measurements. We hypothesize that by applying our free-breathing CT imaging 

protocol, preoperative PFT measurements, biomechanical modeling, and airflow dynamics models 

of lung tissue, we can quantitatively predict postoperative FEV1 and FEV1/FVC for each patient. 

We envision that such a PFT prediction could significantly improve the patient selection process. 

Future work will focus on a clinical study that includes a large cohort of lobectomy candidates to 

study prediction accuracy of post-operative lung function. A larger goal of these efforts is the 

development of a treatment planning system for lobectomy candidates that uses the 

biomechanically guided post-operative predictions to better select lobectomy candidates suitable 

for the procedure. 

6.5 Conclusions 

In this paper, a novel framework was proposed for assembling and employing a lobe-wise 

biomechanical lung model for the prediction of post-interventional lung function. 
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CHAPTER 7: Conclusion and Summary 
 
7.1 Summary of Work 

 The research presented in this dissertation was performed with the goal of further 

investigating the role of biomechanical modeling and biomechanical property estimation in 

obtaining functional lung information for use within the radiotherapy domain. In addition, this 

work explored the possibilities of extending the developed biomechanical modeling techniques 

and machine learning applications to outcome prediction and patient evaluation undergoing lung 

intervention procedures. The works described and reported in this thesis utilized previously 

developed and newly improved techniques in biomechanical modeling and elastography, in 

combination with machine learning and unique datasets, to accomplish these goals. 

We began in Chapter 2 with a systematic study of CT-based elastography model 

consistency using image datasets acquired over different ranges of each patient’s breathing pattern. 

The results of this work showed that when we considered variations in patient breathing, both 

qualitative and quantitative measures reflected the high level of agreement in inter-patient 

elasticity estimation and overall consistency of the elastography method. 

Next, a machine learning approach to elastography was developed and evaluated in Chapter 

3 for the purpose of expediting the lengthy elastography process and allowing elasticity estimation 

from a single breath-hold CT scan. The trained cGAN model was shown to generate elasticity 

distributions with good agreement to their elastography model-generated counterparts. These 

results suggest that elastography could have potential utility at other points in the radiotherapy 

domain and for other applications in which model-based CT is not typically acquired. 

We then investigated the feasibility of using large deformation images, acquired during 

forced breathing maneuvers, in the elastography process in Chapter 4. This work was motivated 
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by the observation that relatively small deformations occur in certain lung regions during free 

breathing, limiting the ability for accurate elasticity estimation in these voxels. Displacement 

convergence results showed a high level of agreement between DIR-generated and model-

generated displacement values and confirmed the feasibility of performing elastography using 

breath-hold CT scans at RV and TLC. The work in Chapters 2-4 constituted the effort to further 

investigate and expand the uses of elastography within the radiotherapy context toward the larger 

goal of informing functional avoidance throughout treatment. However, each of these elastography 

applications have the potential to be extended to other research and clinical areas in future works. 

 The lobe-wise analysis of patient lung anatomy and biomechanical modeling of lobe-

specific deformations requires an accurate lobar segmentation. Due to this typically being a 

lengthy manual process carried out by a physician, even in semi-automated workflows, we 

developed and tested a fully-automated quorum-based machine learning approach in Chapter 5. 

Our results showed that this approach performed lobar segmentation with improved accuracy 

while also providing significant time savings.130  

In Chapter 6, the final work of this dissertation proposed a framework that took 

conventional imaging for lobectomy, predicted post-operative outcome, and calculated a 

quantitative measure of predicted post-operative lung function. The preliminary results established 

the feasibility of combining biomechanical modeling and property estimation methods for the 

purpose of post-procedural outcome and lung function prediction for various lung intervention 

candidates. This work served as an important proof-of-concept for what we envision may be a 

useful tool for experts in the field of function-preserving lung interventions. In addition, ongoing   

challenges that we face in the development and validation of such a tool were highlighted and 

future work will focus on addressing them. 
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7.2 Future Directions 

7.2.1 Functional Avoidance Treatment Planning 

 There is currently a need for a CT-based lung functional biomarker for use in function-

preserving treatment planning to reduce lung toxicity and the occurrence of RILI after radiation 

therapy. Elastography has been shown to provide regional functional information and may serve 

as a biomarker for indicating the presence of disease in COPD patients.50,51 In this dissertation, we 

further validated and expanded the use of CT-based elastography methods and investigated 

machine learning approaches to reduce computation time to a clinically feasible timeframe. 

Therefore, we envision that the estimation of elasticity distributions could be useful in the 

identification of functional lung regions and informing of functional avoidance treatment planning 

efforts. 

 In future work, we intend to further investigate the incorporation of functional information 

obtained through elastography into a radiotherapy treatment planning workflow. Preliminary 

results of a proof-of-concept study by Hasse et al. found that for a small number of cases analyzed 

retrospectively, dosage to identified regions of functional lung could be reduced while maintaining 

acceptable target dose.165 However, a larger validation study is needed to conclude the impact of 

elastography-derived functional lung information on the treatment planning workflow. 

7.2.2 Free vs. Forced Breathing Elastography Comparison 

A feasibility study investigating an elastography approach using large deformation datasets 

acquired at forced breathing, as opposed to free breathing, was presented in Chapter 4 of this 

dissertation. We hypothesize that elasticity values could be more accurately estimated for voxels 

that would otherwise have little or no displacement during free breathing. However, to fully test 

and validate this overarching hypothesis, a study comparing the elasticity estimation results 
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generated from free-breathing and forced-breathing images for the same patient cohort is needed. 

For this purpose, we propose the addition of RV and TLC breath-hold scan acquisition to the 

imaging protocol for thoracic radiotherapy patients. This would enable direct regional comparisons 

of elasticity values obtained from each method and their associated displacement convergence 

metrics, as described in Section 4.2.6. 

7.2.3 Lobectomy Framework Validation and FSI Model 

A proof-of-concept study was presented in Chapter 6 which investigated the ability to 

predict post-interventional lung geometry and PFT results using an approach that combined 

biomechanical modeling and machine learning applications. While initial results showed the 

feasibility of such an approach for a small number of datasets, a larger validation study is needed. 

The availability of additional lung intervention image datasets and associated functional outcome 

measurements is currently a limitation of this effort. Furthermore, the proposed framework in the 

Discussion section of Chapter 6 (Section 6.4) described a larger goal of incorporating a flow 

structure interaction model with the current approach for the development of biomechanically 

measured alternatives to traditional PFTs. In a separate work by Lauria et al., an automatic method 

for the mesh generation of airways for use in a computational fluid dynamics (CFD) model was 

developed.166 We envision that the eventual integration of these two approaches could serve as an 

important treatment planning tool for pulmonologists and lobectomy surgeons. 

7.2.4 Post-BLVR Elastography 

Another related ongoing work involves the biomechanical modeling and property 

estimation for patients undergoing BLVR through placement of EBVs. As described in Section 

4.2.1, the large deformation datasets consisted of RV and TLC images acquired pre-procedurally 

as part of the VENT clinical trial, in which patients underwent EBV treatment.40,167 We have since 
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acquired corresponding post-interventional images for the same patient cohort. Figure 7-1a and 7-

1c show examples of patient anatomy prior to undergoing BLVR and Figure 7-1b and 7-1d show 

the post-procedural anatomy, in which the endobronchial valves are circled in red. A current work 

in progress is performing elastography on post-BLVR datasets for comparison with the pre-

interventional values documented in Chapter 4. Table 7-1 reports measured mean and maximum 

DIR displacement magnitudes, DIR and model-generated displacement differences, and estimated 

elasticity values for both pre- and post-BLVR datasets for a single patient. This analysis could 

provide quantitative regional information about patient lung function changes or improvements 

following a procedure. The results may also then be compared with post-procedural PFTs for 

validation.  

 

a)  

 

b) 

 

c) d)  
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Figure 7-1: (a, c) Pre-BLVR and (b, d) post-BLVR CT images for two with identified 

endobronchial valves circled in red 

 Displacement (mm) DIR vs. Model 
Difference (mm) Elasticity (kPa) 

 Pre Post Pre Post Pre Post 

 Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max 

Lobe 1 9.89 ± 
3.47 27.83 14.91 ± 

4.00 25.99 0.29 ± 
0.44 4.97 0.14 ± 

0.12 3.16 2.49 ± 
1.44  8.00 2.87 ± 

1.47 7.98 

Lobe 2 13.44 ± 
2.75 23.45 17.1 ± 

3.22 31.28 0.6 ± 
0.72 6.72 0.31 ± 

0.44 4.46 3.56 ± 
1.36 8.00 3.4 ± 

1.44 7.99 

Lobe 3 25.41 ± 
6.49 53.70 29.67 ± 

6.64 44.34 0.5 ± 
0.6 6.00 0.3 ± 

0.48 5.58 3.79 ± 
1.23 8.00 4.06 ± 

1.49 8.00 

Lobe 4 11.43 ± 
4.36 37.05 17.03 ± 

5.64 37.20 0.34 ± 
0.47 6.92 0.17 ± 

0.25 3.43 2.58 ± 
1.37 7.99 2.89 ± 

1.57 8.00 

Lobe 5 30.71 ± 
7.46 50.59 32.57 ± 

6.49 50.95 0.59 ± 
0.75 8.45 0.16 ± 

0.24 2.84 3.89 ± 
1.1 8.00 4.47 ± 

1.67 8.00 

Table 7-1: Lobe-wise mean and max DIR displacement, DIR/Model displacement disagreement, 

and elasticity values calculated for pre- and post-interventional datasets 
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7.2.5 Post-BLVR Anatomy and Outcome Prediction 

 In addition to these post-BLVR image datasets, we have also obtained corresponding 

radiographically determined RV and TLC target lobe and whole lung volume measurements 

calculated for baseline and 6-month follow-up,  collected as part of the VENT trial.40,167 We are 

interested in using this new data to validate the ability to predict post-interventional geometry and 

PFT values. This data has been instrumental in identifying the challenges we face in further 

developing our approach to achieving this goal.  

One initially observed challenge is in the ability to predict the post-procedural lung 

boundary conditions correctly and consistently. Other challenges include properly accounting for 

diaphragmatic changes and the presence and effect of collateral ventilation, which has been 

identified as an important indicator for outcome prediction.168 The reshaping of anatomy in the 

thoracic region can be unpredictable due to mediastinal shifts, the appearance of scar tissue, or 

large changes in the contralateral lung volume.  

Current Challenges Potential Approaches 

1. Boundary condition predictions 

• Machine learning (with sufficient training data) 
• Physiologically informed model 
• Incorporate patient-specific characteristics, 

treatment plan information, and intended 
outcome169 

2. Modeling of diaphragm and 
muscle group influence 

• Investigate muscle group participation in 
breathing efforts 

• Measure respiratory muscle blood flow using 
near-infrared spectroscopy (NIRS)170 

• Monitor phrenic nerve stimulation driving 
diaphragm function with a diaphragm 
electromyogram (EMG)171 

3. Collateral Ventilation172 

• Explore currently available tools173 
• Investigate the directionality of deformation 

vectors at lobe boundaries generated in DIR 
• Region growth algorithms for identification of 

lobe fissure completeness 
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Table 7-2: Current challenges and potential solutions to integrated post-procedural outcome and 

PFT prediction tool 

a) 

 

b) 

 

c) 

 

d)  

 

Figure 7-2: (a, c) Pre-BLVR and (b, d) post-BLVR CT images with boundary condition changes 

circled in red 

Examples of boundary condition changes are displayed in Figure 7-2. Pre-interventional 

anatomies are shown in 7-2a and 7-2c and their corresponding post-treatment anatomies including 

the appearance of scar tissue and mediastinal anatomy shift in 7-2b and 7-2d, respectively. While 

the number of datasets available to us is currently too limited, we believe a machine learning 

approach could eventually provide accurate predictions of post-operative lung anatomy and 
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physiology. Table 7-2 presents an organized list of current challenges and potential areas of 

investigation to be explored in future works. This knowledge may further inform our approach to 

modeling lung intervention procedures. 
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