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Pancreatic islets consist ofmultiple cell types that produce
hormones required for glucose homeostasis, and islet dys-
function is a major factor in type 1 and type 2 diabetes.
Numerous studies have assessed transcription across in-
dividual cell types using single-cell assays; however, there
is no canonical reference of gene expression in islet cell
types that is also easily accessible for researchers to query
and use in bioinformatics pipelines. Here we present an in-
tegrated map of islet cell type–specific gene expression
from 192,203 cells from single-cell RNA sequencing of 65
donorswithout diabetes, donors whowere type 1 diabetes
autoantibody positive, donors with type 1 diabetes, and
donors with type 2 diabetes from the Human Pancreas
Analysis Program. We identified 10 distinct cell types, an-
notated subpopulations of several cell types, and defined
cell type–specific marker genes. We tested differential ex-
pression within each cell type across disease states and
identified 1,701 genes with significant changes in expres-
sion, with most changes observed in b-cells from donors
with type 1 diabetes. To facilitate user interaction, we pro-
vide several single-cell visualization and reference map-
ping tools, as well as the open-access analytical pipelines
used to create this reference. The results will serve as a
valuable resource to investigators studying islet biology.

The islets of Langerhans in the pancreas are clusters of
endocrine cells including a-, b-, d-, and g-cell types, which
each produce hormones that regulate blood glucose levels
(1). Dysfunction of b-cells is one of the major pathologies
of both type 1 and type 2 diabetes, which collectively af-
fect >500 million individuals worldwide (2,3). Other cell
types in the microenvironment around islets also contrib-
ute to the modulation of islet function and diabetes risk

such as endothelial and immune cells (4,5). The regulation
of gene activity establishes the identity of specific cell
types as well as changes in response to environmental
stimuli and disease states, and gene activity can be mea-
sured by sequence-based expression profiling (6). Under-
standing the gene expression profiles of islet cell types
can therefore provide insight into their function and can
also reveal how cells are altered in diabetes.

Single-cell technologies enable profiling the expression
levels of genes in individual cells, which can then be used
to define the gene regulatory profiles of specific cell types
(7,8). Numerous studies have assayed gene expression in
individual islet cells using single-cell techniques (9–13).
These studies have defined gene expression profiles of en-
docrine and nonendocrine cell types in the pancreas,
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heterogeneous subpopulations of cells representing cellu-
lar states within cell types, and changes in disease states,
including type 1 and type 2 diabetes. A caveat to these
studies is that they have been performed using limited
sample numbers, and in some cases, limited cell numbers,
and there has been inconsistency in the results across
studies, particularly when describing heterogeneity and
changes in disease (14,15). In addition, the results of islet
single-cell studies are not often made easily accessible
to researchers, particularly those who are not experts in
single-cell data analysis, to visualize and query the expres-
sion of a gene in each cell type or changes in cell type ex-
pression in disease.

The Human Pancreas Analysis Program (HPAP) was devel-
oped to comprehensively collect and profile pancreatic islet
tissue from human donors to understand the pathogenesis of
type 1 and type 2 diabetes (16,17). The data generated by
HPAP for each donor include bulk and single-cell RNA se-
quencing (scRNA-seq) and Assay for Transposase-Accessible
Chromatin (ATAC)-seq data as well as histology, genotyping,
cellular phenotyping, and other data types. Data generated by
HPAP are made freely available to researchers via a web portal
PANC-DB (https://hpap.pmacs.upenn.edu/) where the raw se-
quence files from each individual donor can be directly down-
loaded (16). The rich set of raw islet donor data provided by
this resource can then be used by researchers to create inte-
grated resources that make HPAP accessible to the wider com-
munity studying islet biology and diabetes to develop testable
hypotheses.

In this study, we created a reference map of gene ex-
pression in pancreatic islet cell types using scRNA-seq data
from 65 donors available in HPAP. Using this reference
map, we created several additional resources including
1) marker gene lists for every islet cell type and subpopula-
tion, 2) normalized expression levels of genes in each islet
cell type, and 3) changes in gene expression in type 1 dia-
betes, type 1 diabetes autoantibody positive (Aab1), and
type 2 diabetes states in each islet cell type. We host these
data in several interactive applications to enable research-
ers to visualize, query, and analyze this reference. Finally,
we provide the open-source analytical pipelines used to cre-
ate the reference map and annotations. These resources
are available at www.isletgenomics.org.

RESEARCH DESIGN AND METHODS

HPAP
Organ procurement and processing was performed by the
HPAP, as previously described (16). In HPAP, isolated hu-
man islets were cultured for 4 days, on average, after isola-
tion. On the day of harvest, islets were handpicked from
culture and dissociated using 0.05% trypsin for 9 min prior
to stopping the reaction with 100% FBS. The single cell
suspension was passed through a 35-mm nylon cell strainer
and resuspended in PBS 1 10% FBS prior to scRNA-seq.
scRNA-seq data from isolated and dissociated pancreatic is-
lets were made publicly available by HPAP, and raw fastq

files for experiments from 67 donors (10 donors with type 1
diabetes, 17 donors with type 2 diabetes, 29 with no diabetes
[ND], and 9 with ND but Aab1) were downloaded from the
PANC-DB data portal. Cell Ranger 6.0.1 (10× Genomics) soft-
ware was used to perform alignment to the Genome Re-
search Consortium human build 38 (GRCh38) reference
genome and generate count matrices.

Preliminary Filtering
Barcodes were filtered for a minimum of 500 expressed
genes per cell and <15% mitochondrial reads. Two samples
(HPAP-027 and HPAP-093) were removed since the mean
number of expressed genes per cell after this filtering step
was markedly lower than for other samples (<1,000).

Ambient RNA Correction
Ambient RNA removal was performed to account for extra-
cellular RNA contamination that may get trapped in a
droplet during library generation. SoupX 1.6.1 (18) was
used on raw feature barcode matrices for ambient RNA re-
moval on the remaining 65 samples using the automated
contamination fraction estimation method. Raw count val-
ues for each sample were corrected using the SoupX con-
tamination estimates and the round-to-integer feature,
ensuring resulting counts remain integers for use in down-
stream analyses (19).

Data Processing and Clustering
The SoupX-corrected count matrices were merged and
log-normalized with a scale factor of 1,000. The variance
stabilizing transformation method was used to find the
2,000 most variable features. Data were scaled, and prin-
cipal component analysis was performed with 20 principal
components using Seurat 4.2.0 (20). Harmony 0.1.1 (21)
was used for batch correction using donor, 10× Genomics
assay chemistry (10× 30 v2 or 10× 30 v3), and tissue
source (Network for Pancreatic Organ Donors with Diabe-
tes or University of Pennsylvania) as covariates. Uniform
manifold approximation and projection and neighbors
were calculated using the reduction from Harmony. Clus-
tering was performed in Seurat 4.2.0 using the Leiden al-
gorithm at a resolution of 0.5.

Postclustering Doublet Removal
Scrublet 0.2.3 (22) was used to identify doublets with the de-
fault parameters (expected doublet rate of 6%, minimum
counts of two, minimum cells of three, minimum gene vari-
ability percentile of 85%, and 30 principal components). For
each sample, RNA count matrices were extracted, saved in
the MatrixMarket format, and input into Scrublet with de-
fault parameters. There were 4,382 barcodes flagged as dou-
blets, and we removed these barcodes from the merged
Seurat object and reperformed Harmony integration and
clustering (resolution 0.3) with the remaining barcodes, as
described above. We further curated a set of cell type–specific
marker genes, and clusters that contained marker genes for
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two or more different cell types were further subclustered us-
ing the Leiden algorithm at resolutions of 0.15–0.25. Any
subclusters expressing multiple cell type marker genes were
presumed to be residual doublets, and we manually removed
these subclusters, representing a total of 13,036 barcodes.
We then reperformed Harmony integration and clustering
using the final set of barcodes, as described above.

Cell Type Gene Expression Profiles
We aggregated reads from cells in each cell type and cre-
ated “pseudo”-bulk counts from contamination-corrected
RNA counts. We calculated transcripts per million (TPMs)
for each donor in each cell type using GENCODE v38
GRCh38.p13 (23) gene size annotations. Differential gene
expression analyses were performed using DESeq2 1.34.0
(24), comparing cell type profiles between samples from
control ND donors and Aab1 donors with type 1 diabetes,
and donors with type 1 or type 2 diabetes using a Wald
test. Sex, scaled age, scaled BMI, 10× Genomics kit chem-
istry, and tissue procurement source were included in
the model as covariates. Genes were only tested for a cell
type if half of the samples per condition had at least five
counts. Multiple test correction was performed using the
Benjamini-Hochberg false detection rate (FDR) correction
at a threshold of 0.10.

We performed preranked fast gene set enrichment anal-
yses (25,26) for up- and downregulated genes in b-cells us-
ing Gene Ontology, Kyoto Encyclopedia of Genes and
Genomes pathway, and Reactome terms. Ribosomal genes
were excluded, and the remaining genes were ranked by
the �log10 P values multiplied by the effect size. We re-
stricted our analysis to gene sets with #500 genes and
used the Monte Carlo approach in fast gene set enrichment
analyses to identify significantly up- or downregulated
pathways at FDR <0.10. For visualization, redundant path-
way terms were removed.

We assessed whether differentially expressed genes in ei-
ther type 1 or type 2 diabetes map to known risk loci by us-
ing publicly available type 1 or type 2 diabetes fine-mapped
credible sets (27,28) and creating a 1 megabase (Mb) win-
dow flanking the lead variants. All genes within 1 Mb
windows were annotated using GENCODE v38 (23) and
intersected with significant genes from differential ex-
pression analyses for that disease.

Cell Type Proportion Analysis
We compared the proportion of b-cells and a-cells as a
function of the total number of endocrine cells (a, b, d,
and g1e) between ND and each disease state using a Wil-
coxon rank sum test. We excluded HPAP-019 from this
analysis as this donor was enriched for b-cells prior to
scRNA-seq experiments. To assess whether there was an
association between b-cell proportion and age of onset and
disease duration, we used a generalized linear model of log-
scaled b-cell proportions as the response and disease dura-
tion and age of onset as predictors. For donors with a

range listed for disease duration, the mean was used. Age
of onset was calculated by subtracting disease duration
from age at death.

Cell Type–Specific Marker Genes
We identified cluster-specific marker genes by comparing
pseudo-bulk contamination-corrected RNA counts of gene ex-
pression in a given cluster with the remaining clusters across
ND donors using a Wald test in DESeq2 1.34.0 (24). P values
were corrected for multiple testing using Benjamini-Hochberg
FDR at a threshold of 0.10. Genes were considered specific to
a cluster if they had aminimum of five counts in 25% of sam-
ples from ND donors samples, logtwofold change threshold
>1, and an adjusted P value<0.05. For cell types with multi-
ple clusters, we used the same approach to compare pseudo-
bulk profiles between clusters of just the same cell type across
ND donors. Marker genes for each cell type or subtype were
ranked by multiplying the effect size by the �log10 P value.
The top 10 marker genes for cell types and subtypes are re-
ported in Supplementary Tables 4 and 5, respectively, and full
results are provided as Supplementary Data.

Data and Resource Availability
The raw sequence data are available on the PANC-DB
website. Processed files and derived annotations gener-
ated by this study are available at isletgenomics.org. Cus-
tom code is available at https://github.com/Gaulton-Lab/
HPAP-scRNA-seq.

Results

ReferenceMap of Single-Cell Expression in Islets
We downloaded scRNA-seq data from 67 donors in PANC-DB,
and donor characteristics such as sex and age are listed in
Supplementary Table 1. After prefiltering barcodes for each
sample based on >500 expressed genes, we excluded two
samples with lower average expressed genes per cell. With
the remaining 65 samples, we performed processing and
clustering using a custom pipeline. In brief, this pipeline
consists of ambient RNA background correction, dimension
reduction of log-normalized counts, batch correction, Lei-
den clustering, and postclustering doublet removal (see
Research Design and Methods). The resulting map had
192,203 cells that mapped to 14 distinct clusters (Fig. 1A).
In the final map, on average, samples had 2,957 cells with
16,908 unique molecular identifiers and 2,724 expressed
genes per cell. Clusters were broadly consistent across sam-
ples, and no clusters were preferentially represented by a
small number of samples (Supplementary Fig. 1). We also
observed little evidence for residual batch effects in the
clusters driven by donor or other variables (Fig. 1B and
Supplementary Table 2).

We next annotated the identity of clusters using a cu-
rated set of well-established cell type and marker genes
(Supplementary Table 3). This revealed 10 total cell types,
including endocrine a- (GCG), b- (INS), d- (SST), and g- (PPY)
cells, as well as nonendocrine acinar (REG1A), ductal (CFTR),
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endothelial (PLVAP), stellate (PDGFRA), macrophage (C1QA/
B/C), and mast cells (KIT, CD69) (Fig. 1C and D). We also ob-
served evidence for e-cells (GHRL) within the g-cell cluster
(Fig. 1C), so we labeled this cluster as g-1e-cells. Although is-
let cell type identity can be annotated using a small number
of marker genes, knowledge of a larger set of genes specifically
expressed in each cell type can provide potential additional

insight into what drives cell identity. We therefore identi-
fied genes in each cell type with highly specific expression
relative to other cell types in the study (Supplementary
Table 4) (see Research Design and Methods). In addition to
canonical markers INS, IAPP, and MAFA, we also identi-
fied b-cell–specific genes previously implicated in b-cell
function such as ADCYAP1 (29), WSCD1 (30), and HHATL
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Figure 1—Map of gene expression in pancreatic islet cell types. A: Uniform manifold approximation and projection (UMAP) plot showing clus-
tering of scRNA-seq profiles from 192,203 cells from HPAP donors in the PANC-DB website. Clusters are labeled based on cell type and sub-
type identity using known marker genes. B: Cells labeled based on variables such as donor, sex, disease status, and tissue source. C: Dot plot
showing normalized expression level and percentage of expressing cells for selected marker genes in each cluster.D: Cells labeled with expres-
sion level of islet cell type hormones insulin (INS), glucagon (GCG), somatostatin (SST), and pancreatic polypeptide (PPY). E: Proportion of cells
generated from each donor from each cell type, grouped by disease state. F, female; M, male; POD, Network for Pancreatic Organ Donors with
Diabetes; T1D, type 1 diabetes; T2D, type 2 diabetes; UPenn, University of Pennsylvania.
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(31), as well as those with no known b-cell function to
our knowledge, such as SAMD11 and LRRTM3, which
could be targeted in future studies.

We also identified several cell types with multiple distinct
clusters (Fig. 1A). In most cases, these clusters represent
previously described cell subtypes or states; for example, we
identified quiescent and activated states of stellate cells (32),
a MUC5B1 subpopulation of ductal cells (32), and a subpopu-
lation of “cycling” a-cells (33) (Fig. 1A and C). We identified
genes highly specific to each cell subtype when compared
with other cells of that same cell type (Supplementary
Table 5) (see Research Design and Methods). We also identi-
fied a cluster of 4,575 cells consisting of both a- and
b-cells, which did not appear to be doublets based on the
total reads per cell and expression patterns of insulin and
glucagon (Supplementary Fig. 2). These cells may represent
cellular states of a- and b-cells related to stress or signaling,
as has been observed in other studies (15,33,34), although
they more likely represent low-quality cells due to fewer to-
tal reads and expressed genes relative to other a- and b-cell
clusters. Due to the ambiguity over what cell populations
these cells exactly represent, we excluded the cluster from
downstream analyses.

Given the sparsity of cellular profiles obtained from
scRNA-seq, we next examined the expression of 16 genes
in b-cells selected by a previous study (15) to determine
the extent to which key b-cell genes are captured in
b-cells from scRNA-seq of HPAP donors (Supplementary
Fig. 3). At the individual cell level, detection of each gene
was variable where highly expressed genes, such as INS,
were observed in almost every cell (99.68% of b-cells),
while other key genes with lower expression, such as
PDX1 and GCK, were observed in only a minority of cells
(34.1% and 12.1% of b-cells, respectively). By compari-
son, at the sample level, where reads from all cells in a
sample are collapsed into pseudo-bulk profiles, we ob-
served expression of almost every gene in all samples.

We next compared the proportions of each islet cell type
across samples (Fig. 1E). As the purity of the islet prepara-
tions in PANC-DB varies dramatically, we assessed the pro-
portion of different endocrine cell types as a function of
the total number of endocrine cells per sample. Among
samples from donors without samples, there was substan-
tial variability in the proportion of different islet cell types;
for example, the proportion of b-cells in islets ranged from
0.19 to 0.71. When considering disease states, we observed
decreased proportion of b-cells in islets from donors with
type 1 diabetes compared with ND (average [avg.] ND =
0.40, avg. type 1 diabetes = 0.18; Wilcoxon P = 6.57 × 10�4),
where b-cell proportion was not associated with age of onset
or duration (P > 0.05). We observed a slight decrease in
b-cells in donors with type 2 diabetes (avg. ND = 0.40, avg.
type 2 diabetes = 0.376; Wilcoxon P = 0.36) and an increase
in type 1 diabetes Aab1 (avg. ND = 0.40, avg. type 1 diabe-
tes Aab1 = 0.45; Wilcoxon P = 0.324), although these esti-
mates were not significant. While we also observed increased

a-cell proportion in type 1 and type 2 diabetes (0.77 and
0.58, respectively; ND = 0.55), this is likely explained by the
relative decrease in b-cells.

Changes in Islet Cell Type–Specific Gene Expression in
Type 1 and Type 2 Diabetes
Identifying genes with changes in cell type activity in dis-
ease and predisease states can provide insight into disease
pathogenesis. We therefore next determined changes in cell
type gene expression in type 2 diabetes (n = 17), type 1 dia-
betes (n = 10), type 1 diabetes (Aab1) ND (n = 9) compared
with ND control samples (n = 29). We tested for differential
expression of genes in a cell type from pseudo-bulk profiles
across samples accounting for sex, age, BMI, and technical
covariates as well as ambient background RNA signal (see
Research Design and Methods). In total, across all conditions,
we identified 1,701 genes with significant changes in ex-
pression (FDR <0.10) in at least one cell type (Fig. 2A).

For type 1 diabetes, we identified 1,808 genes with sig-
nificant changes in expression compared with ND donors
(Supplementary Table 6). We observed the largest changes
in b-cells (n = 1,305), although there were also significant
changes in cycling a (n = 260), a (n = 35), acinar (n = 14),
mast (n = 22), and other cell types. In b-cells, genes with
the largest increases in expression included MHC class I
(e.g., HLA-A, HLA-B) and MHC-related genes such as B2M
and CD74 (Fig. 2B). Genes upregulated in b-cells were
broadly enriched (FDR <0.10) for antigen processing and
presentation, interferon signaling, and immune response,
among other processes, whereas downregulated genes
were enriched for metal ion response, tubulin and gap
junction activity, oxidative phosphorylation, and antioxi-
dant activity (Fig. 2C and Supplementary Table 7). In
addition to MHC class I, we observed upregulation of cy-
tokine response factors, such as IRF1/2, STAT1/4, and
NFKB1, cell survival genes, such as BCL6, and the b-cell
autoantigen GAD1 (Fig. 2D). By comparison, few genes
had significant changes in expression in individuals with
type 1 diabetes Aab (Fig. 2A). While MHC class I genes
were nominally upregulated, we observed little change in
cytokine response factors (Fig. 2D). Among genes differ-
entially expressed in type 1 diabetes, 98 map within 1 Mb
of a type 1 diabetes risk locus, including INS, DLK1, and
STAT4, highlighting candidate genes for underlying dis-
ease risk at these loci (Supplementary Table 8).

For type 2 diabetes, there were 84 genes with significant
changes in any cell type compared with ND (Supplementary
Table 9). Most of these genes were significant in b-cells
(n = 79), although we also observed several significant
genes in acinar, a-, and endothelial cells (Fig. 3A). In
b-cells, genes with the largest increase in expression in
type 2 diabetes included TSHR, which is the receptor for
thyroid stimulating hormone, SLC4A4, which is a bicar-
bonate cotransporter, and TNFRSF11B, which is a cyto-
kine receptor for tumor necrosis factor family proteins
(Fig. 3B and D). Genes with upregulated expression in
b-cells were broadly enriched (FDR <0.10) for RNA

diabetesjournals.org/diabetes Elgamal and Associates 1723

https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://doi.org/10.2337/figshare.23925765
https://diabetesjournals.org/diabetes


processing, hormone receptor activity, and cell growth
and growth factor activity among other processes (Fig. 3C
and Supplementary Table 10). By comparison, downregu-
lated genes were enriched for processes related to mito-
chondrial functions, such as oxidative phosphorylation,
amino acid metabolism, and antioxidant activity. Several

genes altered in type 2 diabetes, such as ASCL1, also map
within 1 Mb of a known risk locus, suggesting candidate
genes at these loci (Supplementary Table 8).

We next examined the overlap of genes with differen-
tial a- and b-cell expression in type 1 and type 2 diabetes
with the results of multiple previous studies (9,35–38)
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(Supplementary Figure 4 and Supplementary Table 11). In
type 1 diabetes, several studies assessed changes using a
smaller set of HPAP donors, one of which used multiple differ-
ential analysis methods, and we observed moderate overlap
with these results, including class I MHC genes and cytokine
response factors. For type 2 diabetes, there was almost no
overlap in differentially expressed genes in a- and b-cells with
the results of previous bulk and single-cell studies included in

the comparison (Supplementary Figure 4 and Supplementary
Table 11). This is likely due to a multitude of factors, including
differences in technology, analysis methods, covariates used,
and tissue preparation, as well as limited sample and cell num-
bers for single-cell studies. However, several genes, such as
ASCL1 and PPP1R1A (Fig. 3D), which affect glucagon-like pep-
tide 1 receptor–induced glucose-stimulated insulin secretion
(39), had consistent changes across studies.
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ReferenceMap and Resource Availability
The integrated map of gene expression in islet cell types
generated by this study can be used to understand gene ac-
tivity in physiological and disease states. In addition, this
map can be used as part of bioinformatics pipelines, for ex-
ample, to perform reference mapping of new scRNA-seq
data sets. We therefore provide several resources and inter-
active applications to facilitate the wide use of this inte-
grated map in a variety of downstream analyses. These
resources are all available at http://www.isletgenomics.org.

First, we provide the islet cell type expression map in
two interactive single cell browsers, CELLxGENE (40) and
ShinyCell (41), which enable visualizing patterns across
individual cells, for example, cell type identity, variables
such as donor or library, technical factors such as number
of features or percentage of mitochondrial reads, or the
expression level of selected genes (Supplementary Fig. 5).
In addition, we provide the expression map in Azimuth
(20), which can be used for rapid on-the-fly reference
mapping of new data sets (Supplementary Fig. 6).

Second, we provide annotations of activity in each islet
cell type including marker genes, normalized gene expres-
sion levels, and changes in gene expression in type 1 diabe-
tes, type 1 diabetes Aab1 and type 2 diabetes. We developed
several interactive applications that enable users to select
specific genes to view expression levels in each cell type as
well as to visualize changes in cell type expression in differ-
ent disease states (Supplementary Fig. 7).

Finally, the analytical pipelines used for data processing
and clustering, defining expressed genes in each cell type,
and defining differentially expressed genes are provided
open access.

Discussion
Maps of gene expression levels in individual cell types
within a heterogeneous tissue are valuable tools for hy-
pothesis generation to understand cell type function and
identity, gene activity, and changes in disease. In addition,
these maps can be used for reference mapping of scRNA-
seq data sets to facilitate annotation of cell identity and
perform integrated analyses (20,42,43). While repositories
such as PANC-DB provide access to a rich resource of raw
sequence data and phenotypic information on human islet do-
nors generated by HPAP (16), drawing insight from these data
is a major challenge to researchers without single-cell data
analysis expertise. Our study provides an integrated map of
gene expression profiles in islet cell types and changes in dis-
ease derived from the scRNA-seq experiments in HPAP, which
will help enable downstream analyses and hypothesis genera-
tion formany non–single-cell expert investigators.

There are several areas where the map can be further
improved in future iterations. First, we were unable to
separate a population of e-cells, likely due both to the rar-
ity of e-cells and the sparsity of scRNA-seq profiles. By
comparison, several studies profiling islets using different
single-cell technology resolved small e-cell populations
(9,44). We also did not identify other rare cell types in

the pancreas such as Schwann cells or lymphoid cell types.
The samples profiled by HPAP are purified islets, and
other cell types outside of the islet microenvironment are
therefore underrepresented. Furthermore, the repertoire
of discrete states that exist within each cell type, as well
as any subtypes, for example, with distinct spatial local-
izations, remains to be resolved. Continued profiling of
donors and cells from both purified islets and whole pan-
creas will help to define profiles for all pancreatic cell type
and subtypes. Finally, even after accounting for ambient
background RNA there is still residual expression of genes
in off-target cell types, particularly for highly expressed
genes in common cell types. As ambient RNA is a general
feature of droplet-based assays (45), improvements in
background correction for scRNA-seq are needed to esti-
mate cell type–specific expression more accurately.

Genes with significant changes in cell type–specific expres-
sion provide insight into diabetes pathogenesis. In type 1 dia-
betes, we observed marked upregulation of processes related
to MHC class I antigen presentation and cytokine signaling
response. By comparison, we did not observe significant
changes in type 1 diabetes Aab1 donors, which suggestsmod-
est effects in b-cells in these individuals in contrast to a re-
cent report (35). As expected, there was significant reduction
in b-cell numbers in type 1 diabetes; however, approximately
half of the b-cells remained in donors with type 1 diabetes,
which supports that there is persistent b-cell mass even in
long-standing type 1 diabetes (46–48). In type 2 diabetes, we
observed downregulation of mitochondrial function, which
contributes to oxidative stress, impaired insulin secretion,
and b-cell dysfunction (49–51), as well as changes in other
processes implicated in b-cell function, such as amino acid
metabolism (52), RNA processing (53), and cell growth (54).
We also observed minimal reduction of b-cell numbers in
type 2 diabetes, consistent with studies that have shown
b-cell dysfunction but limited b-cell loss in type 2 diabetes
(55).

The limited overlap with differential genes identified in
previous studies, particularly for type 2 diabetes, is likely
due to multiple factors. First, islets profiled in HPAP are
isolated from cadaveric donors and then cultured, which
will induce changes in cell type profiles and which will
lead to differences compared with approaches such as
pancreatectomy of living donors (37,38). Second, previous
studies of single cells have had limited sample sizes and
cell numbers (9). Larger sample sizes than those currently
available even in HPAP are needed to determine the ex-
tent to which gene profiles change in type 2 diabetes, es-
pecially given heterogeneity among individuals in disease
processes (56). Larger sample sizes will also enable finer
grained partitioning of samples to understand gene regu-
latory differences between phenotypic subgroupings. For
example, many type 1 diabetes Aab1 samples in HPAP
are single GAD1 (35), yet there is wide diversity in the
autoantibody profiles of individuals with different rates of
progression (57,58). Finally, expanded profiling of islets in
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predisease, for example, from impaired glucose-tolerant do-
nors, will help understand changes that occur during dis-
ease progression (59).

Another key difference across studies is the analysis
method used for differential expression. Here we used sam-
ple pseudo-bulk profiles in differential analyses considering
biological and technical properties of the samples and ambi-
ent RNA correction. Other recent studies performed differ-
ential analyses instead, using the profiles of individual cells
(35,36), which can dramatically affect the results. For exam-
ple, a previous analysis of 16 HPAP donors (35) identified
11,434 differential genes in type 1 diabetes in b-cells with
an individual cell approach but only 53 differential genes
with a pseudo-bulk approach. While pseudo-bulk approaches
may be conservative in averaging intersample variation, indi-
vidual cell approaches likely inflate results, particularly when
not properly considering the nonindependence of cells from
the same donor and variable cell numbers across donors
(60). Other approaches to control for unwanted variation
have also been applied to HPAP data, such as matching case
subjects and control subjects on donor characteristics (36).
As our integrated map contains data from all current HPAP
donors, this map can be subset for matched analyses.

In summary, our map of islet cell type–specific expres-
sion and associated resources of cell type–specific gene ac-
tivity in physiological and disease states provided by this
study will be a valuable reference to the islet and diabetes
research community.
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