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A QUADRILATERAL MIXED FINITE ELEMENT
WITH TWO ENHANCED STRAIN MODES

R. PILTNER and R.L. TAYLOR

Department of Civil Engineering, SEMM, University of California at Berkeley,
Berkeley, CA 94720, U.S.A.

An improved plane strain/stress element is derived using a Hu-Washizu variational for-
mulation with bilinear displacement interpolation, seven strain and stress terms, and
two enhanced strain modes. The number of unknowns of the four-node element is
increased from eight to ten degrees of freedom. For linear and nonlinear applications,
the two unknowns associated with the enhanced strain terms can be eliminated by static
condensation so that eight displacement degrees of freedom remain for the proposed ele-
ment, which is denoted by QE2. The excellent performance of the proposed element is

demonstrated using several linear and non-linear examples.

1. Introduction

The standard four node compatible displacement element shows poor performance for
problems with bending and for plane strain problems in the nearly incompressible limit.

Several methods have been developed to overcome these problems.

For the improvement of the performance of the four node element, Wilson et al. [1] pro-
posed to use four incompatible displacement modes with quadratic variation. However,

the resulting element did not pass the constant strain patch test.

In order to be able to pass the patch test, Taylor et al. [2] proposed a modification which
resulted in a well performing element. Recently Simo and Rifai [3] introduced the
method of "enhanced strains" and they found that the aforementioned Tay-
lor/Beresford/Wilson element (denoted by QM6) can be viewed as an enhanced strain ele-
ment with four enhanced strain terms. A discussion about the construction of suitable
incompatible displacements which lead to convergent elements was given by Wu, Huang
and Pian [4].
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Hughes [5] used selected reduced integration to improve the performance of the four

node element and introduced the so called B-bar method [6].

Using incompatible displacements, Pian and Sumihara [7] introduced a method to con-
struct an assumed stress field in natural coordinates with a minimum number of terms.
Their assumed hybrid stress element has only five parameters and is an excellent per-
former especially in tests for evaluating the element behavior under mesh distortion in

bending applications.

The original five parameter hybrid stress element of Pian [8] was formulated in carte-
sian coordinates. Since the five parameter stress field is an incomplete linear stress field,
the original Pian element is not frame invariant. Spilker et al. [9] used a seven parame-
ter stress field which is a complete linear stress field in cartesian coordinates. However,

the seven parameter element turned out to be too stiff.

The Pian/Sumihara element with five stress terms in natural coordinates is flexible
because it has the minimum number of terms possible. Using ND as the number of
unknowns of the element and NS as the number of stress terms we have the require-

ment
NS>ND -3 (1)

which means that the minimum number of stress terms is the number of element
unknowns minus the number of rigid body terms. Using more terms than the minimum
number makes an element too stiff. For the case of the Pian/Sumihara element, we
achieve an optimal situation since ND =8 and NS =5. The Pian/Sumihara stress terms

satisfy equilibrium in a weak sense.

If we use incompatible displacements in addition to the eight compatible displacements
we can increase the number of stress terms. In this paper we will choose a complete lin-
ear set of seven stress and strain terms in cartesian coordinates. For the case of linear
elastic materials the stress-strain relations and the equilibrium equations will be satis-
fied pointwise. Two additional strain terms are used in order to get a flexible element.
After condensation of the additional two degrees of freedom, the element has eight

degrees of freedom.

In several numerical examples, the proposed element is compared to the standard com-
patible displacement element (Q4) and to two of the best performing four-node elements,
which are the Pian/Sumihara and the Taylor/Beresford/Wilson elements. The different
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underlying concepts of the compared elements can be seen from the following brief char-

acterization.

(1)

(ii)

(iii)

(iv)

The standard four-node displacement element (Q4) uses compatible shape func-

tions in natural element coordinates. The element has eight degrees of freedom.

The Pian/Sumihara element is a hybrid stress element. Stresses are assumed
in natural coordinates. The stresses satisfy the equilibrium equations in a weak
(integral) sense. Five stress terms are used. The stress terms do not include the
bilinear term £77. The element has eight degrees of freedom. No condensation of
extra degrees of freedom is needed. The element is well suited for linear appli-

cations.

The Taylor/Beresford/Wilson element is an enhanced strain element with four
enhanced terms. The enhanced strains are assumed in natural coordinates. For
a general quadrilateral element shape (non rectangular shape and not a paral-
lelogram) the strain modes are not polynomials in natural coordinates, they are
rational functions in general and do not satisfy the equilibrium equations. The
12x12 stiffness matrix is condensed to a 8x8 element matrix. The element is

suited for linear and nonlinear applications.

For the proposed element, the stresses and strains are constructed by using
local cartesian coordinates. Seven terms are used for the stress and strain
fields. For the linear elastic case the resulting stresses form a complete set of
linear functions which satisfy the equilibrium equations pointwise. Written in
natural coordinates stresses and strains are also polynomials in these coordi-
nates. The strains/stresses include the bilinear term £7. A 10x10 element stiff-
ness matrix is computed. Only two extra degrees of freedom have to be con-
densed to obtain the final 8x8 stiffness matrix. The element can be used for lin-

ear and nonlinear applications.

2. Variational formulation

For hybrid elements Pian and Tong [10] introduced the concept of using incompatible

displacements in the variational formulation. The concept was further discussed in refer-

ence [11].
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For our finite element approximation, we consider the following modified Hu-Washizu

variational formulation:

M, £ ¢, a):jW(g>dvmjﬁT%dV~jﬁTTdsmjo-T (6 -Dii- ) dV. (2)
v Vv s A\

In the used notation f is the vector of given body forces and T are prescribed tractions on
the boundary S. In our finite element approximation, we will use a strain field £ which

can be obtained from a displacement field through the relation
e=Du (3)

where D is a linear differential operator matrix. The variation of (2) with respect to the

stresses gives us the equation

Jdo’T[g—Dﬁ~—£i}dV=O @)

The strains &' can be viewed as an enhanced strain field which is added to the compati-
ble strains (D4). Equation (4) enables us to make an assumed strain field ¢ close to the
strains (D@ + £'). One possibility of constructing the enhanced strain field £' is to use an

incompatible displacement field u' and to get £ from
e =Du (5)
in this case we can rewrite (4) as

[so [5 -—D(ﬁ+ui)] dv =0 (6)
\%

If we use stresses o which satisfy the homogeneous equilibrium equations
D' =0 (7)
we can rewrite equation (6) as a boundary integral. Using the relationship

j o (Du) dV = - j D o)u dV + j TT 4 dS (8)
Y A\ S

equation (6) becomes

| 5TT[u @+ ui)] dS=0 @)
S

where the tractions T are obtained from
T=no (10)

and n is the matrix of direction cosines on the boundary. Equation (6) can be used to

make a chosen field ¢ close to the strains D(ii + u') in an integral sense. Equivalently,
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equation (9) provides a way of making the displacements u close to (G + u®). In the nota-
tion used, G is a compatible displacement field containing shape functions and nodal dis-
placements q. In addition to the compatible displacements @1 we use incompatible dis-
placements u! = U'1 on which we will impose some restrictions in order to get an admis-
sible strain field &' = B'4. The field &' can also be constructed directly. A simple method
for the construction of £' was proposed by Taylor/Beresford/Wilson [2] in 1976. Examples

for the choice of £ will be considered in section 6.

If we choose &' =0 for the functional I1, we get the standard form of the Hu-Washizu

variational formulation for compatible displacements 1.

Carrying out the variation in (1) we obtain

ST =, J 5eT |:8W(£) - 0} dv
v

o€

56T [g - Dii- gi} av

e

5ﬁT[DaT + %} dv + j 5ﬁT[ T- T] ds
S

+ | (5eHYTo dV =0 (11)

G oy

The purpose of using enhanced strains &' is to make an element more flexible and thus
improve the overall performance of the element. In the choice for the enhanced strains
&' we are not completely free: In order to satisfy the patch test we have to impose the
restriction on &' that constant stresses o, do no work on the enhanced strains. This

requirement can be expressed in the form

j so6Tet dV =0 (12)
v

or equivalently as

J. £dvV=0 (13)
v
If we would require that the enhanced strains are orthogonal to all stress terms by satis-

fying

j s Tel dV =0 (14)
\%
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a priori, we would not be able to calculate any parameters A for the field &'. The orthogo-
nality requirement (14) is too strong for the kind of approximation we have in mind.
Instead of requiring equation (14) to be satisfied we construct an admissible strain field
¢! by enforcing orthogonality to reference stresses o, which, for the four node element,
consist of constant and linear terms in &, 7. In this case we have to satisfy a priori the

following equation:

J SG*Tsi dv = J SgiTor* dv=0 (15)
Vv Vv

A comparison of the version of the enhanced strain formulation considered in this paper

to the version proposed by Simo and Rifai is made in the appendix.

3. Finite element approximations for the linear elastic
case

In the case of linear elasticity the strain energy density function can be written in the

form
1 T
W(e):§.€ Ee (16)

so that for dW(&)/de we get

dW(e)
g = =

o Ee, (17)

where

1-v v 0
v 1-v 0 (18)
0 0 (1-2v)/2

E
E=-aroaay

for plane strain, and

E 1 v 0
E=—>5v1 0 (19)
1o 0o (1-vy2

for plane stress. The displacement, strain, and stress fields are chosen in the following

form:

a=Ngq



e=Ap
(20)
oc=Ee=EAp=Pp
e =B
From the compatible displacement field i@ involving the matrix of shape functions N and
the nodal displacement g we obtain the strains as

£=D0=DNq=Bq (21)

where B is the standard strain matrix for isoparametric finite elements. Using equation

(3) the strain field ¢ is obtained from a displacement field
u=Ug (22)
so that the strain matrix A and the stress matrix P are obtained from
A=DU (23)
P=EA=EDU. (24)

For the displacement field u we will construct linearly independent functions which a

priori satisfy the Navier-equations
DTEDu =0. (25)

Since the chosen functions for ¢ and o are related to u as indicated above we also satisfy

the equations

D'Ee=0 (26)
and

Do =0. (27)

After substituting relationships (16) and (17) and the assumed fields (20) into (2) we

obtain IT in the following form:
M=- % BTHB + B Lq + BTLIA — qTf.y (28)
where

H-= j ATEA dV = j PTEP 4V
v \'

L:jATEBdV=jPTBdV
A\ v

(29)
Li= j ATEB! dV = f PTB! gV
v v



£ = j NTFdV + j NTT ds
\% S

The variation of I1 with respect to g, q and A gives us the following system of equations:

-H L L (B 0
L“; 0 0 ||q|=|fu (30)
L0 0 ||2 0

The strain and stress parameters B can be expressed in terms of the nodal displace-

ments ¢ and the enhanced strain parameters 4 in the form

p=H'Lq+H'LiA (31)

Using this relation we can reduce the system of equations (30) and get

EAHER

where
K=LTH'L
r-L'mHL (33)
Q-L"H'L!

Since the vector A contains only internal element parameters which are not associated to
any nodes we can apply a static condensation procedure to the system of equations (32)

and obtain the reduced system

kq =f.. (34)
where the element stiffness matrix is given by

k=K-1r'Q'r (35)
Once the nodal displacements g are known for every element we get the vector of inter-
nal parameters from the equation

1=-Qrq. (36)

For the linear elastic case, the stresses and strains in the element can be written in the

form

£(x) = Ax) {H‘qu +H! Liz]
(37)
o(x) = P(x) [H‘qu ; H‘lLi;L]



where 1 is calculated from (36).

4. Finite element approximations for the case of non-
linear materials

For a non-linear, hyperelastic material the stresses are obtained from a strain energy

density function, W(£°), through

5 dW(e°(x)) (38)
de

The stresses in this relationship are denoted by & in order to distinguish them from the
assumed finite element stresses o. If plastic deformations are present in the material

the total strain £ will be decomposed into an elastic and a plastic part according to
e=¢e°+£>. (39)

The strain energy density W in this case is expressed as a function of the elastic strain

£° so that we assume W in the form
W =Wi(e - £P). (40)

The non-linear constitutive equations lead to a non-linear boundary value problem in
which the load will be increased in increments from time t, to time t,,;. For time t, we
assume the physical quantities @,, £, and o, as given. For an increment in the load we

seek the increments of displacements, strains and stresses. At t =t,,; we have
U, =0, + Al
Eni1 = &y + As
el =6 +Ag (41)

Ope = 0q + Ao
.Q_W = ?E + QW_ — + A"
oe ™ | de A oe | 7n ¢

Tpi =T, + AT

and
- _ _ (42)
fn+1 =f, + Af

Our unknowns are the increments Afi, Ae Agl, Ao, A&, whereas the load increments AT

and Af are given (chosen) quantities.
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Since our problem is non-linear, it is in general not possible to obtain, for an increment of
the external load, the increments A, Ae, Ag', Ao in one step. In order to solve the set of
non-linear equations it becomes necessary to iterate. Denoting the final vector of global
unknowns (displacements) with g, the nonlinear system of equations can be written in

the form
Flg-f=0. (43)

Knowing the solution q, at time t =t,, we want to get the change in the solution Aq due

to the change in the load function from £, to

fo1=1£, +Af (44)
The change in the solution according

41 = dn + AQ. (45)

will be achieved by using a sequence of successive approximations to q,,; which are

denoted by qgﬁﬂl). Here k is the iteration counter starting from

qi) =q, (46)

The successive approximations can be written as

qgr-ll) =q, + Aq(k+1) - qgi)l + dq(k+1), (47)
where
koo
Aq(k+1) - E dq(]+1)‘ (48)
j=1
Using the Newton-Raphson method we calculate the successive approximations dg®*V
from
oF(q = q®
(qaqq ) dq(k+1) —f_ F(q(k)) (49)

where for the k-th iteration we define the global tangent stiffness matrix as

oF( q= q(k))

3 (50)

k) _
Ky’ =

For notational simplification, in equation (49) the time step indicator (n+1) has been

omitted as an additional index for F, dq, q and £.

At the element level the successive approximations for achieving convergence to the
state at t =t,,; due to a change in the external load from t, to t,.; can be characterized

as
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~£11i+11) - u( O+ Au(kﬂ)
(k+1) __ (k) (k+1)
e = + Aeg
i (k+1) 1 (k) (k+1)
€11 £h41 + Agl (51)
(k+1) __ (k) (k+1)
On41 = Opn + Ao
(k+1)
IW o 4 AglD
de Tl
n+1

The initial values in the iteration process are

~(1) ~

un-irl = Uy
(1)
£h0 T En
(52)
L _
E;wl - En
(1)
Oht1 = On

As a result of the linearization process of the non-linear constitutive model we get for

every iteration k an incremental stress-strain relationship of the form
AGF V(%) = Ex(x, P (x) Ae* V(%) (53)

which can be used in equation (515). The algorithmic tangent moduli Ey are computed

at every Gauss-point for each finite element.

Here we restrict ourselves to show the structure of the tangent stiffness matrix of an ele-
ment and the element residual vector. For the derivation of the algorithmic tangent mod-

uli Ex we refer to the literature [12-18].

For the finite element approximation of the increments at time step (n+1) and iteration
(k+1) we choose the following discrete fields:
Au = Ndg
= Ada
(54)
Ao =EAdg =Pdp
Ae' =Bida
where dq is the increment of nodal displacements of the finite element under considera-

tion. Note the iteration counter (k+1) and the load step indicator (n+1) are omitted in
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the definition of the incremental fields (54). Again we choose A=DU and
P =EA =EDU. The strain field A¢ is derived from a displacement field Au which is given
by

Au = Udea (55)
The incremental strains A(D1) are given by

A(Du) = DNdq = Bdg (56)

The displacement field Au is constructed such that it satisfies the Navier-equations (25)
which are the governing differential equations for the linear elastic case. This choice for
Au is motivated by the aim to recover the equations of section 3 for the special case that

our material becomes linear elastic.

From the modified Hu-Washizu functional (2) we get the following four equations:

- [ 0" [s—Dﬁmsi}dV:() (57)
v

J‘(ST{——-———O}dV 0 (58)

[ o dv = j SATFAV + j sa™T ds (59)

\ A%

[@e)eav=0 (60)

v

Now the equations (57)-(60) are used for the evaluation of the physical quantities at t,.;.

Using equations (51), (53), (54), and (56) we substitute the expressions for &1 = ufll‘ﬂl),

n+l n+l Onsl o de de
n+1

(k+1)
‘ , \'
e=gktD i i) o (et1) CA {8 } into (57)-(60) and make use of the rela-

tions

§G(k+1) 5(Ao_(k+l))

n+1

5£(k+1) 5(A£(k+l))

n+1
(61)
5 ;9\?1) 5(Ae i (k+1))
5(Dﬁgi+11)) — 5(DAﬁ(k+1))

Omitting the indices (n+1) and (k+1) this gives us the following set of equations:

—sdpT j [ PTAx - PTBdq - PTBidA] dv=0
Vv
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sda” | [ ATEgAq - ATPB|dV =0
v ]
. (62)
5dq" [ BTP dV df = 5dq" | fue. - fmt}
v L
5dAT [ BP AV dp = sdaTo - f}'m}
v L
where the residual vectors are
fine = [ BTl dV
(63)

n+li

v

. T

b= | B ol av.
A%

We recall that the matrices A and P, containing the assumed strain and stress terms,
are constructed from a displacement matrix U according equations (55), (23) and (24).

Utilizing that P = EA and A = E7'P we get from (62) the following system of equations

0 -H L Li () dﬂ (k+1) 0 (k+1) 0 (k)

“H H; 0 O de ) 0
LTF 0 00 dg T £ ERE 64)
LI 0 00 da 0 fi
where
Hy = j ATELA dV (65)
v

The matrices H, L, L! and the vector f.,; are the same as in the linear elastic case and

they are given with equations (29).

From the first two equations of (64) we obtain the strain and stress parameters as
da =H'Ldg + H'LidA (66)
df =H 'Hypo = H'HpH 'Ldq + H'TH;HLid 4. (67)

Substitution of (66) and (67) into the last two equations of (64) gives us the following sys-

tem of equations:

LTH'HHL  LTH'HH'L! } ’:dq J ~ {fexﬂ B [fmJ

. . . ; (68)
LTHEE L L HHHOL 0

di f;

int

Using the submatrices
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Ky =LTH'H;H 'L
Ty =L HHE'L (69)
Q=L H'HH'L
we get from the condensation process the element tangent stiffness matrix in the form
ky =Ky - T7Q7 I't (70)
In the case that the material is linear elastic we have
Hr=H (71)

so that the equations (33) - (35) will be recovered.

The element equations for the k-th iteration are now written in the form

k,%)dq(kﬂ) - r(k+1) (72)
where
(k+1) f<k+1) T y—1gd (k)
r =lext {fint - 1“T(QT filnt] . (73)

After assembling all element equations we can solve the linear system of equations for
the incremental nodal displacements and update the nodal displacements as indicated in
equation (47). Once the incremental nodal displacements are calculated we can compute
for every element the vector of incremental enhanced strain parameters dA%*?, which is

obtained from

da® - _| @:l (k)d k1) _ | @rlg ) 4
A - QT I—‘T q QT int (74)

The update of the enhanced strain parameters for each finite element follows with the
aid of

205D = 300 L g 4G+ (75)

In order to avoid computing matrices and vectors from the k-th iteration again after the

(k+1)

computation of the nodal displacements dgq is already finished, we save the arrays

(k) . k)
[QE‘IFT} and [Qi}f{m] along with other history data during the process of assem-

&+1)  This way the enhanced strain parameters

bling the equations for the unknowns dq
da%*D from equation (74) can be obtained without computing arrays which have already

been used before.
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5. Systematic construction of the displacement, stress and
strain fields

For the fields u, £ and o we want to choose linearly independent functions which satisfy
the governing differential equations for the linear elastic case. A systematic way of
deriving complete polynomials of a given order is to use complex function representa-
tions which are available for two- and three-dimensional elasticity problems [19-24]. For

plane strain and plane stress we can use the Kolosov-Muskhelishvili representation [24]

given by
2pu = Re[x®(z) — z0(z) - ¥(2)]
2uv = Im[xD(z) - 20'(z) — ¥(2)]
Oxx = Re[20'(z) — z®"(z) — ¥ (2)] (76)
oyy = Re[20'(z) + Z20"(z) + ¥/(z)]
Tyy = Im[z®"(z) + ¥'(2)]
where
Z =X+ 1y,
2u=FE/(1+v) (77)
B =v)1+v) for plane stress
(3 -4w) for plane strain

The complex functions are chosen in the form

N .
O(z) = Z (a; + ibj)zJ
- (78)

N .
¥(z) = Z (¢ +1id;)Z’

=0

The advantage of using a complex representation are

(i) We get functions which are complete up to the chosen order N and they are

invariant with respect to coordinate translations and rotations.

(i) We obtain stresses which satisfy not only the equilibrium equations but also
the compatibility equations.
For the four node element we will use quadratic displacements u=Upg. Choosing N=2,

we get ten terms for our fields. The matrix UT in this case is given by
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1 0
0 1
(k—1)x (k -1y
—(x+ 1)y (r+1)x
24U" = S ’ (79)
k(x% - y%) - 2(x% +¥%) 2xxy
~ZKXRY w(x2—y2) + 2x2 +y?)
y2 ~x2 2xy
i 2xy yz -2 |

The according stresses are

o=lon|={ 0020 1 0 6x -2y 2x -2y
Txy 0000 0 1 -2y 2x 2y 2x

Oyx 0020-10 2x -6y -2x 2y

M 0
For the computation of the element stiffness matrix we have to omit the terms which are
associated to rigid body modes. Therefore seven linearly independent stress and strain

vectors will be left in our example of a four node element.

(x4.74)

X

Figure 1: Coordinates for a four-node element

Instead of choosing the stresses and strains in global cartesian coordinates x,y we can
choose them in local cartesian coordinates %,y (Figure 1). The relationship between the

cartesian coordinates and the natural coordinates &, n are given by

X =ag+aid +agn +agdn

y =bg +b1& +bon +bsén

(81)
X=X-3ayp
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y=y-hg
where

1 1
ao'-“Z(X1+X2+X3+X4), bOZZ(Y1+y,‘2+YS+Y4)»

1 1
a;= (X1 +X+X3-X4), b1=-Cy1+y2+y3-y4),

4 4
(82)
1 1
ag= 7 (X1~ X + X3+ %),  bp=2(y1-y2+y3+ya),

1 1
aszz(x1“X2+X3“X4), b3$z<)’1“)’2+3’3“}’4),

Substitution of (81) into the assumed stresses o (X, §) gives us the stresses in terms of the

natural coordinates &, 7.

Denoting the column vectors of the matrix P by P; the stresses can be written in the

form
O-ZI:P1P2P3P4P5P6P7:}I:/9} (83)

By forming linear combinations of the linearly independent vectors P; it is possible to
find other vectors f)j which are also linearly independent. Such a process would result

into another form for our stress assumption:

O'=|:1A)1 lszf)3 l’\)4l’\)5f)6f)7jli:ﬁj| (84:)
The optimal form of arranging the stress terms in the matrix P would be the one which
leads to a diagonal matrix H, since H has to be inverted. Starting with a given system of

stress vectors P; we can construct a system of vectors f’j which are orthogonal to each

other in the following sense

0 fori=#j

0 fori=j (85)

[ PrEP av { J

J #
This can be achieved by a Gram-Schmidt-orthogonalization process which in our case
would be performed as follows:

Tr-11
A JﬂlejE Pidv
P=P;- ¥ ~— - Py (86)
T B [ BB dv

v

All integrals in the above process are scalar quantities and can be calculated analytically
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after transforming the integrands to natural coordinates. For the evaluation of the inte-
grals in equation (86) we need the Jacobian J of the transformations (81), which is given
by

J=detJ=Jy+d1&+ g (87)

where

-
i

*e Ve (88)
X, Yy

and
Jo = a1bg — agby
J; =a;bs —bjas (89)
Jo = agbs — aghy

The values of Jy and Jy are defined as Jy =J(0,0), and J, =J(0,0). The coefficients a;
and b; are given with equations (82). Symbolic manipulation programs such as MAC-
SYMA or MATHEMATICA can be used for a convenient evaluation of the integrals in
(86).

A partial orthogonalization was used to keep the expressions for the matrix entries of P

simple. Choosing the stresses

Oy 2 -1 0 x-% -3F-3y -&-%) V-3
o=|ow|=| 2 1 0 3&-%) —(F-3J9) X-% —(F-9p B (90)

Ty 0 0 1 -(F-5J9) X-Xo -0 X-%g

where
20 = asz + alJl
0 3J,
(91)
__bady+bydy
o= "55,
0
we obtain the following structure for the matrix H:
Hyy 0
H= 92
A o
where the diagonal matrix Hy; is given by
32(1-v) 0 0
Jo t
H11 = _E— 0 8(1+v) 0 (93)

0 0 81+v)
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for plane stress, and

32(1-2v) 0 0
Hy, = iﬁ(}ﬁ"fv_)t 0 80 (94)
0 08

for plane strain. The values for Jg, J; and J5 are given with relation (89). The thickness

of the plate is denoted by t. The symmetric 4x4 matrix Hy, is integrated numerically.

For the strains we obtain according the explanations in section 3

Exx (k=1 -1 0 (x-2)X-%) ~xF-F9) —~X-%) F-Jo
e=ley|=5o| (k-D 10 k&-%) -(c-205-F) %-%% ~7-%0) M (95)
wel L0 02 —25-3 AR-%g)  2F—Fo) 2AX—%o)

It should be noted that after substituting (%, §) and (%g, ¥;) into (90) and (95) the assumed

strains and stresses, in addition to the constant terms, involve the terms &, n, &n.

For the four-node element the compatible displacement field @1 is interpolated with stan-

dard shape functions according

3

where u;, v; are the nodal displacements and ¢&;, ; denote the location of the element

<y &

i

4 .
}: 2 A+ &EA + mym) [ﬂ =Ngq (96)
i=1

nodes in natural coordinates.

6. Selection of enhanced strain modes

In order to avoid the derivation of an overly stiff element one should choose a minimum
number of stress and strain terms. For the four-node element the number of nodal dis-

placements is ny = 8. From
ng2ng — T, 97)

where r is the number of rigid body modes, we obtain the optimal number of stress terms
as ng = 5. However, if we choose five stress terms in cartesian coordinates, the assumed
stress field will be an incomplete linear field and the resulting element will not be invari-

ant with respect to the choice of the coordinates’ frame.

The use of a complete linear stress field in cartesian coordinates, consisting of seven

terms, leads to an element which tends to be stiffer than the five parameter hybrid
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stress element of Pian/Sumihara, which is formulated in natural coordinates. In order to
be able to use the seven parameter stress field (90) formulated in cartesian coordinates,
we have to add additional degrees of freedom n; to the element. Using enhanced strain
modes or incompatible displacements as additional unknowns, the requirement for the

number of stress terms becomes
ng=my+n;)-r (98)
If we want to use the seven parameter stress field (90) for the four-node element (for

which we have n, =8 and r = 3) we have to choose the additional number of element

unknowns as n; = 2 in order to achieve optimal performance of the element.

In a recent paper by Simo and Rifai [3] different forms of enhanced strain fields are dis-
cussed. Here we want to consider two types of enhanced strain functions which have

been proposed in the literature and try to utilize them for the present four-node element.

6.1 First set of enhanced strain functions

The first set of enhanced strain functions was given by Taylor/Beresford/Wilson [2] in
1976. The proposed enhanced strain terms were constructed from the incompatible

shape functions
1=1-¢ (99)
and
Ny=1-7" (100)
Instead of calculating the strains from the gradient
) 3 2
VNI = ax Nio L [ y(&,m) =yelé, n)} P Ni= ¢, ) %N (1o

O I IE ) xEm)
dy on on

the approximated gradient

J d
i1 100,00 -y:0,00 || 3¢ | i Jo 4|3 |
VONj—J(f,mLx,,(O,O) 0,0 || & [N=TE 0| 5 [N (102)
on on

was used. The Jacobian matrix J and its determinant J are given in equations (87) - (89).
The values of Jy and Jj are defined as Jy =J(0,0), and Jy =J(0,0). Using the shape
functions (99) and (100) for the incompatible displacement field
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21
. NI N, 0 0|2
i 1 2 2
= S (103)
0 0 Ny N‘J A3
Ay
and the approximated gradient operator (102) we get the following strain field
; A
o] 5 [heg bm 0 0 )7
g=leyl=—"—| 0 0 ay -am|’ (104)
Yay apd —ain —bed bin P

The above constructed strain field (104) is orthogonal to the chosen reference stresses

and satisfies therefore equation (15). The reference stresses ¢~ are chosen as

5" =Fy3 (105)
where
T100¢&0
P={0100g (106)
100100
[ Ih Ih 211912
Fo=| J3 J% 2d 9991
| J1do1 Jiadoe Tiidag +d12d2) [(E=0,7=0)
and

Ju Jiz | _| X Ve (107)
dg1 Jag X, Yp
The matrix Fy in equation (105) maps the local stresses, X, from the isoparametric space

*T ES * ES . .
to the physical stresses, 0 = [040yy 7y, ], in the global frame. The mapping (105) can be

derived from the tensor transformation
O’S = JLAZABJjB (108)

if we evaluate the coefficients J g at the center of the element.

6.2 Second set of enhanced strain functions

The second set of enhanced strains can be obtained by choosing for u' in equation (103)

the following incompatible displacement functions [25,26]:
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i Jo 2, , J1 2
Y=(1- = - — &1 -
1 =(1 Ty ol —E&°)+ 7, E( )
(109)
: J1 2., J2 2
i1 _ - n(l —
2 =(1 7, EHA-n7)+ Ty nl-¢&%)
The above incompatible shape functions vanish at the nodal points of the element. The

use of the incompatible displacement functions (103) and the exact gradient operator
(101) leads to the enhanced strain field

] [N N, 0 077
e=|ey|=| 0 0 Niy Ny )" (110)
7;y 11,3’ 12,}’ 1l,x 12,x /14
where
Ni, = _.1_[ (by + b3&Ni , — (by + by ,,J
N (C/) ’ ’
(111)
. 1 . .
},y - —(f’ 77) l: ——-(8.2 + a3§)Nj,§ + (81 + agﬂ)N;,n]

Performing the differentiation of the functions (109) with respect to the natural coordi-
nates we obtain expressions for the strains &' which are more lengthy than the enhanced

strains in equation (104).

6.3 Enhanced strains used for the numerical examples

Both enhanced strain fields described above contain four parameters. For the proposed
element with seven stress terms we need an enhanced strain field with only two parame-
ters. In order to find two enhanced strain modes which are suitable for our case, linear
combinations of incompatible shape functions are used and the incompatible displace-

ment field is redefined in the following form

1 i 1 1 i i /11
diolzg®™M-N) 0 SN+ Ny O | (112)

0 —2“(Nﬁ - N3) 0 §(N11 +N5) || 43

Ag

For both types of enhanced strain fields (i.e. using i) shape functions (99),(100) in connec-
tion with the approximated gradient operator (102) and ii) shape functions (109) in con-
nection with the gradient operator (101) ), we find that the terms associated with 13 and

A4 cannot be used since the according strain terms are orthogonal to all stresses defined



-93 -

in (90) and lead to a vanishing matrix L'. The terms associated with A; and 1, will give

us a matrix L! with the following structure:

0 } (113)

Li=
- i
21

In L! the 3x2 null matrix appears as a submatrix since the two enhanced strains are

orthogonal to the three constant stress terms.

In the numerical calculations it was found that both types of enhanced strains lead to
the same element stiffness matrices. Since the first type of enhanced strain functions is
simpler than the second one we should use the first type. An explicit expression for the

first type of enhanced strains is given by

- [exe [ haE b 0 ”
t=legy = agé + arn l: } (114)

Y JE ) A

Tay S apf +ayn  —byf —byn |17

7. Numerical examples

Several linear and nonlinear problems have been chosen in order to test the performance
of the proposed four-node element with two enhanced strain modes. The results are com-
pared with analytical solutions and with results obtained from three other elements. Two
of these other elements (QMS6, P-S) belong to the top performers among the four-node
elements. The reference elements are listed in Table 1. All elements we compare are
implemented in the nonlinear finite element program FEAP (e.g. see Chap. 16 of [18]
and Chap. 15 of [27]).

For the patch test a rectangular domain with five quadrilateral elements was used as
suggested by MacNeal/Harder [31]. The proposed element (QE2) passes the test.
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Table 1: Elements used for the test examples. (Four node elements with eight degrees of

freedom)
element element characteristics reference
Q4 bilinear isoparametric [28] (see e.g. [29,30])
displacement element
QM6 enhanced strain, Taylor/Beresford/Wilson [2]
4 enhanced strain terms
P-S hybrid stress, Pian/Sumihara [7]
5 stress terms in natural coordinates
QE2 mixed element, 7 strain/stress terms present paper
2 enhanced strain terms
7.1 Beam bending

A beam modeled with five elements is subjected to two load cases (Figure 2). Plane stress
conditions are assumed in the model. The results of four different elements for the maxi-
mum displacement at point A and the normal stress o, at point B are given in Table 2.
The stress at point B was calculated as the mean value of the two neighboring nodal
stress values. Nodal stresses are obtained in this example by evaluating functions at the
nodal coordinates and averaging values from adjacent elements. The proposed element

(QE2) shows a very good behavior in this test.

Table 2: Comparison of plane stress solutions obtained with four node elements for can-

tilever beam problems.

Case 1 Case 2
element | v, OxxB va OxxB
Q4 4549 | -1604 50.80 | -2146
QM6 96.07 | -2497 97.98 | -3235
P-S 96.18 | -3001 98.05 | -3899
QE2 96.5 -3004 98.26 | -3906
exact 100 -3000 | 102.6 -4050
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Figure 2: Finite element mesh for cantilever beam problem

7.2 Mesh distortion test for beam bending

In this test a beam under bending is analyzed with only two plane stress elements (Fig-

ure 3). The degree of distortion of the element is measured with the distortion parameter

A. The material parameters are E = 1500 and v = 0.25. From Table 3 we can see that

the element QE2 shows the least sensitivity to mesh distortion even for very severe dis-

tortions.

{3

1000

1000

5

Figure 3: Cantilever beam for the mesh distortion test

Table 3: Displacement v, of cantilever beam (Figure 3) for different values of the mesh

distortion parameter A

displacement vy
A Q4 QM6 | P-S QE2 Exact
0 28.0 | 100.0 | 100.0 | 100.0 100
0.5 | 21.0 80.9 81.0 84.1 100
1 14.1 62.7 62.9 63.4 100
2 9.7 54.4 55.0 56.5 100
3 8.3 53.6 54.7 57.5 100
4 7.2 51.2 53.1 57.9 100
4.9 6.2 46.8 49.8 56.9 100
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7.3 Cook’s membrane problem

The plane stress structure shown in Figure 4 was suggested by Cook [32] as a test for
membrane elements in skewed meshes. The material parameters are E =1 and v = 1/3.
The shear load is distributed uniformly along the right edge. The convergence of the pro-
posed element (QE2) in the energy norm is slightly better than the convergence of the
elements QM6 and P-S.

44.0 44.0

Figure 4: Cook’s membrane problem: plane stress structure with unit load uniformly dis-

tributed along right edge (E =1, v = 1/3).



Table 4: Results for the problem shown in Figure 4.

displacement v at C
element | N=2 N=4 N=16
Q4 11.85 | 18.30 | 23.43
QM6 21.05 | 23.02 | 23.88
P-S 21.13 | 23.02 | 23.88
QE2 21.35 | 23.04 | 23.88

maximum stress at A
element | N=2 N=4 N=16
Q4 0.1078 | 0.1814 | 0.2353
QM6 0.1773 | 0.2225 | 0.2364
P-S 0.1854 | 0.2241 | 0.2364
QE2 0.1956 | 0.2261 | 0.2364

minimum stress at B

element | N=2 N=4 N=16
Q4 -0.0763 | -0.1429 | -0.1995
QM6 -0.1666 | -0.1854 | -0.2025
P-S -0.1550 | -0.1856 | -0.2025
QE2 -0.1448 | -0.1859 | -0.2025
energy
element | N=2 N=4 N=16
Q4 11.80 | 18.27 | 23.46
QM6 20.92 | 23.02 | 23.93
P-S 21.00 | 23.02 | 23.93
QE2 21.22 | 23.04 | 23.93
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7.4 Thick-walled cylinder

In order to test the performance of the proposed element for the nearly incompressible
case, the thick-walled cylinder problem suggested by MacNeal/Harder [31] was used.
The mesh for the plane strain model is given in Figure 5. The material properties are
E=1and v=0.49/0.499/0. 4999/0. 49999.

o ymmeﬂ'y
free

symmetry

Figure 5: Finite element mesh for thick-walled cylinder. Inner radius = 3.0, outer radius

= 9.0, thickness = 1.0, loading: unit pressure at inner radius.

Table 6: Radial displacement at r = 3

v Q4 QMs6, P-S, QE2 | exact
(x107%) (x107%) (x107%)
0.49 4.2788 4.9959 5.0399
0.499 1.8246 5.0146 5.0602
0.4999 | 0.2703 5.0165 5.0623
0.49999 | 0.0284 5.0167 5.0625

In this test, the isoparametric element Q4 locks for the nearly incompressible case while

the other elements give the same satisfactory results (Table 6).
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7.5 Elasto-plastic analysis of a tension strip

One quarter of a tension strip with a circular hole is analyzed using the finite element

mesh shown in Figure 6. The material properties are specified as

E =7000

v=20.2

oy =24.3

Hiso = Hkin =0
and the J; - flow assumption is used. The loading of the tension strip is applied by pre-
scribing the displacements at the top of the meshes in Figure 6. For cyclic loading the
load-displacement curve obtained with element QE2 for mesh 2 is shown in Figure 7. In
Table 7 the energy convergence rate of the elements QM6 and QE2 are compared. It was

observed in the example that the proposed element is able to provide convergence in the

Newton algorithm with less or equal iterations the QM6 element requires to converge.

|
[

[ ] ] ]

Hrreeeesy /T ]

mesh 2

Figure 6: Finite element meshes for tension strip
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Table 7: Global Newton iteration energy convergence for elements QM6 and QE2 (mesh

1)
load step
2
(@ =0.04) (i =0.05) (@ =0.07)
iteration QM6 QE2 QMe QE2 QM6 QE2
1 4.703e+00 | 4.702e+00 | 4.734e+00 | 4.734e+00 | 4.928e+00 | 4.923e+00
2 4.208¢-03 4.400e-03 6.547¢-03 6.038e-03 5.075e-03 3.248e-03
3 9.757e-05 5.242e-05 1.225e-04 4.312e-05 6.439%¢e-04 1.923e-05
4 6.304e-08 1.224e-08 6.384e-07 4.143e-09 1.307e-04 8.676e-11
5 1.858e-14 2.495e-16 5.072e-13 3.069e-17 2.309e-07 1.158e-19
6 5.595e-27 8.283e-24 4.600e-12
7 2.613e-21
10.500
8.400
6.300
4.200 ¢
2.100
1
% 0.000 - d
a
d
-2.100
-4.200
-6.300
~8.400
-10.500 #—e—tb—e—b . ! .
~0.100  -0.060  -0.020 0.020 0.060 0.100
displacement

Figure 7: Load displacement curve for the top edge of a tension strip with a circular hole

under cyclic loading (element QE2, mesh 2 ).
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7.6 Elasto-plastic analysis of a thick-walled cylinder

The elasto-plastic response of a thick-walled cylinder with inner radius r; =100 and
outer radius r, =200 is analyzed using the finite element mesh shown in Figure 8. The

material parameters in the Jy-model are chosen as
E =21000
v=0.3
oy =24.0
Higo = Hyin =0

The displacement in radial direction at the inner surface r=r; is increased and the
associated pressure is computed from the resulting finite element nodal reactions. The
load-displacement curve obtained with element QE2 is shown in Figure 9. The limit load
obtained with element QEZ2 is 19.18 whereas element QM6 gives the value 19.17.

Figure 8: Finite element mesh for thick-walled cylinder

19.180

17.262

15.344

13.426

11.508 |

o0 e

"7 0,000 0.146 0.292 0.439 0.585 0.732

disgplacement
Figure 9: Load-displacement curve for the inner surface of a thick cylinder (element

QE2).

The stress distribution for o, in radial direction is shown in Figure 10 for the loading

pressures p=8, p=14 and p = 18.
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for the thick-walled cylinder problem.



-33-

For the elasto-plastic analysis the nodal stresses are obtained from the computed values
at the Gauss-points of each element by using a bilinear extrapolation to the nodes (see

equation (A.1) in the appendix).

8. Concluding remarks

Using a modified Hu-Washizu variational formulation which includes an enhanced
strain field, a well performing quadrilateral finite element was derived. It is shown that
the modified Hu-Washizu formulation offers an alternative form to derive enhanced
strain elements. The main differences between the version of enhanced strains discussed
in this paper to the version presented by Simo and Rifai are the following: i) The type of
approximation functions for the strain field is different (polynomials in &, 57 versus ratio-
nal functions of £, 7). ii) The number of enhanced strain terms is different. (For the pro-
posed quadrilateral element we need only two enhanced strain modes). iii) Unlike in the
formulation of Simo and Rifai the stress fields do not drop out from the modified Hu-

Washizu variational formulation considered in this paper.

The strain field used satisfies the compatibility equations whereas the chosen stresses
satisfy both the equilibrium equations and the compatibility equations for the linear
elastic case. The satisfaction of the differential equations for compatibility and equilib-
rium leads us automatically to a minimum number of stress and strain terms, which is
important in order to avoid the problem that an element behaves too stiff. The derived

element shows a very good behavior in the linear and non-linear analysis.

Finally it should be mentioned that the considered modified Hu-Washizu variational for-
mulation in connection with properly chosen enhanced strain terms offers new possibili-
ties for reducing nodal degrees of freedom for the group of so called Hybrid-Trefftz ele-
ments [27,33,34].
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APPENDIX:

Comparison of two versions of enhanced strain methods

In the following the version of enhanced strains used for the element QE2 (denoted by
"Version A" in Table 8) is compared to the version of enhanced strains used for the ele-
ment QM6. The latter version is denoted by "Version B" in Table 8. Simo and Rifai have
shown in [3] that the QM6-element by Taylor/Beresford/Wilson is an enhanced strain ele-

ment with four enhanced strain modes.

In Box 1 and Box 2 the variational equations of the two enhanced strain versions are
summarized. Since we want to point out the common features and the differences of the
two versions, it suffices here to look at the equations for the linear elastic case. For a
comparison of the two versions the main features (ingredients) of the methods are listed
in Table 8.

Box 1: Summary of the basic equations for Version A

Version A: present paper

I]sz—sTEsmﬁTf}dV—JﬁTTdS~faT (e - Dii— &) dV
2

Y ] v

ja(Dﬁ)Ta av = j ST dV + j saTT ds

v A% S

J'JsT[Ee—wr]dV:O

J

~J50T[e——Dﬁ—sinV=0
Y

f (56T e dV = 0
J
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Box 2: Summary of the basic equations for Version B

Version B: Simo/Rifai [3]

|

where £ =Du + &'

%gTEe—ﬁTf dV-JﬁTTdS-J‘aT £ av
S A

| 5(Dﬁ)T[E(Dﬁ N gi)} av= [ 5a"EdV + [ 56T ds
\% v 5

GeHT | EDi+ ) -0 |dV=0
Jioe'| |

I STl dV =0
v

The common feature of both versions is that the enhanced strains are constructed such
that they are orthogonal to a set of linearly independent stress functions. Since there are
different types of stresses in the two formulations we want to distinguish them through
the following notation:

assumed stresses: o

reference stresses: o

output stresses: &

output stresses projected from Gauss-points: &,
The output stresses for the nodes can be obtained by
a) evaluating the assumed strains at the element nodes and using the constitutive
equations

b) evaluating assumed stresses at the element nodes

¢) projecting the discrete stress values at the Gauss-points to the nodes with the

aid of a bilinear extrapolation function.

In the case of stress projection we denote the stress values at the four Gauss-points with
&i* (i=1,4) and obtain the stresses at the nodes by substituting the nodal coordinates

(& =¢i, n=mny)into
6= 4| (1~ BA o + (1 + B B

£ (1 + V3O + V36l + (1 - V3aX1 + @7)&;} (A1)



- 36 -

Table 8: Comparison of two versions for enhanced strain methods

Version A

Version B

assumed stresses

o=Pg

equilibrium equations
are satisfied a priori;
stress parameters g
can be computed from

variational formulation

g = O'*

equilibrium equations
are not satisfied a priori;
stress parameters /3*
cannot be computed from

variational formulation

reference stresses

o’ = FoP (¢, mB

o =FoP(&,np"

enhanced strain e =B'1 e =B

number of enhanced 2 4

strain terms

assumed strains e=Ap e=F+¢

=Bq+B'1
polynomials in &, 7 rational functions in &, 5

assumed displacements u=Ngq 1 =Ngqg

assumed displacements u=Ug not needed

to get strains £ = Du

output stresses =0 6 =E(Bq+Bi1)
=Ee =EKe

output stresses projected

from Gauss-points

~

6,=6 =0 at nodes

and at Gauss-points

4, # 6 at nodes

&, = & at Gauss-points

‘[ 50"Tsi dV = JﬁsiTG* dv=0
v v

satisfied a priori

J 50*T£i dVv = JﬁsiTa* dV =0
\' v

satisfied a priori

J. S TeldV 20
\

j 56Tl dV =0
J

J’ é'siTO' dvV=20
\%

gives constraint

equations for g

;T
foeaav=o
v
gives constraint

equations for q and 4

In version B, the parameters of the assumed stresses can not be computed from the vari-

ational formulation because the associated coefficient matrix is a null matrix due to the

orthogonality requirement that enhanced strains do not work on the assumed stresses.
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In version B the assumed stresses are not the same as the output stresses, and we can
consider (identify) the assumed stresses o in this case as reference stresses o which are
used to construct enhanced strain terms such that the condition (15) is satisfied. The
output stresses ¢ in version B are obtained from the assumed strains £ by using the con-

stitutive equations.

For version A we can obtain admissible enhanced strain functions by using the same ref-
erence stresses o for the orthogonality condition as in version B. The number of
enhanced strain terms used in the two versions is different. The reference stresses ¢ in
version A are different from the assumed stresses o. In version A we are able to compute
the stress parameters of the assumed stresses from the variational formulation so that
for the linear elastic case the output stresses will be equal to the assumed stresses. The
common feature of both versions is that the enhanced strains are orthogonal to the refer-

ence stresses o but they are not orthogonal to the output stresses.

In both methods the requirement

[sc'6 av=0 (A.2)
v
leads to constraint equations (i.e. for g in version A, and for ¢, 4 in version B).

The strains in version A are polynomials in &, 7 whereas the strain field ¢ for version B

contains rational functions in &, n for a general quadrilateral element domain.

A particular feature of the assumed stresses ¢ in version A is that they satisfy the equi-

librium equations a priori.

For the considered element the reference stresses ¢~ are given in equation (105) whereas

the assumed stresses o are given with equation (90).
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