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Abstract: 
 
Understanding the intricate interplay between genetic, environmental, and management factors 
shaping kernel compositional traits in pistachio (Pistacia vera L.) is pivotal for enhancing crop 
quality. This study examines variation in genetic, environmental, and management factors 
underlying fat, protein, and moisture content across 24 diverse pistachio cultivars grown in 7 
environments, and with some grown under different management conditions: a pruning trial with 
three treatment levels, and an irrigation trial with four. Development of a Near-Infrared 
Spectroscopy (NIRS) calibration tailored to pistachio could enable rapid assessment of kernel 
composition in breeding programs and in post-harvest quality control. Furthermore, when 
integrated with multi-environment field trials, the impacts of genotype, environment, and 
agronomic practices on kernel quality could be elucidated. Our findings indicate that NIRS-
based predictions were successful in accurately determining total fat, protein, and moisture 
content (with r of 0.43, 0.93, and 0.70, respectively) in ground pistachio kernels. Total mean fat 
percent was 45.94%, protein was 21.28%, and moisture was 3.23%. Significant differences were 
detected between pistachio compositional traits across cultivars and locations (within harvest 
years), but not in their interaction effects. The elite cultivars Golden Hills and Lost Hills 
recorded higher average fat content than Kerman, which recorded higher average protein than 
those two cultivars. Additionally, samples from the 2022 harvest year had higher average fat and 
moisture percent than samples from the 2023 harvest year. Through the integration of spectral 
analytical approaches with genetic and multi-environment trials, this research provides an 
understanding of the complex interactions governing pistachio kernel composition. Findings 
from this study offer valuable insights for breeding programs and agronomic strategies aimed at 
optimizing pistachio quality in diverse agricultural contexts. 
 
 

Introduction: 
 
The Pistacia genus is part of the Anacardiaceae (cashew) family and comprises at least 11 

species with a native range spanning from tropical to subtropical throughout the dry regions of 

the Mediterranean (Choulak et al. 2023, Nezami & Gallego 2023, Sheikhi et al. 2019). Native to 

Central-Western Asia, pistachio was first domesticated approximately 3000 years ago in this 

region. Cultivation of domesticated pistachios (Pistachia vera L.) spread throughout the 

Mediterranean region, and by the late 19th century would later be introduced to Australia 

(Choulak et al 2023, Nezami & Gallego 2023). In the early 20th century, P. vera L. was 

introduced by American botanist William E. Whitehouse from Iran to the United States (Sheikhi 

et al. 2019). Pistachio is currently a major economic crop export for semi-arid regions in Central 



Asia, the Middle East, along the Mediterranean Sea, and California (Nezami & Gallego 2023). 

Together, the USA and Iran are the two leading producers of pistachio, comprising 82% of the 

world market, with Turkey as a third major producer (Nezami & Gallego 2023, Sheikhi et al. 

2019). Before 2005, Iran was ranked first before droughts and subsequent water shortages 

reduced production, and an increase in U.S. production matched then overtook them in 

production rankings (Nezami & Gallego 2023, Shakerardekani et al. 2022, Sheikhi et al. 2019). 

In 2020, global pistachio production was estimated at approximately 1.1 million tonnes (Choulak 

et al. 2023) with 42% of global production being in the U.S., making it the largest producer 

(FAO. 2021)—primarily in California. In the U.S. industry, Kerman has been the primary 

cultivar. However, there has been interest in the industry to expand to more than a single cultivar 

to increase the overall diversity in U.S. orchards (Kallsen et al. 2009 & Sheikhi et al. 2019). 

Some of these cultivars of interest include Golden Hills, Lost Hills, Kahlegouchi, Aria and 

Gumdrop (Kallsen et al. 2009, Choulak et al. 2023, Nezami & Gallego. 2023). Cultivars Golden 

Hills and Lost Hills were introduced after 2002 and have since made up about 95% production in 

orchards over the last 10 years (Mandalari et al. 2021). 

 
Tree nuts are the most carbon-efficient protein source of any food (Poore & Nemecek 2018). P. 

vera L. has gained increased attention for its high nutritional value and subsequent potential 

health benefits compared to other tree nuts, such as almonds, hazelnuts, and walnuts (Dreher 

2012 & Nezami et al. 2023). In 2015, Bullo et al. conducted one of the most comprehensive 

investigations of pistachio nut compositional traits with the following findings: Protein 

comprises roughly twenty percent of pistachio weight and have been reported to have a higher 

ratio of essential amino acids compared to other conventionally consumed tree nuts; and 

pistachios possess a low to moderate carbohydrate content as with most nuts, but are rich in 

https://paperpile.com/c/q0Cu7O/m7ow


soluble and insoluble forms of fiber, rivaled only by almonds. In addition, this study also 

compared macronutrient contents of raw and roasted almonds, hazelnuts, macadamia nuts, 

peanuts, pecans, walnuts, and pistachio; and found that despite pistachios being low in fat (45.4 g 

of total fat per 100 g of raw nuts) compared to other tree nuts they are richer in unsaturated fats. 

Pistachios are also rich in vitamins (A, B1-3, B5, B9, C, D, E, & K), minerals (calcium, iron, 

magnesium, manganese, phosphorus, potassium, & zinc), chlorophylls, and other 

phytochemicals (such as phenolic and carotenoid compounds) (Bullo et al. 2015 & Nezami et al. 

2023). The suite of nutrients for which pistachio is nutritionally dense makes it an interesting 

study organism for characterizing variation in nut compositional traits and understanding the 

main and interaction effects of G, E, and M that underlie this variation. Cultivar genetic 

differences or disruption in nutrient cycling as a consequence of environmental stressors or 

management practices could be potential sources of variation in pistachio kernel compositional 

traits. Okay (2002) compared fatty acid and protein content between five domestic pistachio 

cultivars (Uzun, Kırmızı, Halebi, Siirt, and Ohadi) and found no significant difference in fatty 

acid content outside of linoleic acid, but significant difference in protein content across cultivars 

examined. Shakerardekani et al. (2022) found that fat, protein, and carbohydrate levels increased, 

and moisture levels decreased, with maturity. Another study that looked at the effect of harvest 

time on pistachio cultivars, similarly saw significantly different decreasing trends in moisture 

over increased maturity across the four cultivars they examined (Panahi & Khezri 2011). 

Another study, Tsantili et al (2010), examined protein and fat traits in eight pistachio varieties 

(Aegina, Pontikis, Bronte, Cerasola, Joley, Kerman, Mumtaz and Sirora), found fat content 

significantly varied most between cultivars Cerasola (67.86%) and Kerman (51.6%); and protein 

significantly varied most between cultivars Cersola (21.87%) and Joley (18.99%). Taken 



together, these studies suggest there is variation dependent on genetic factors. There are few 

studies looking at pistachio nutritional variation across environments, but a study from Bellomo 

and Fallico (2007) examined geographic variation in anthocyanin, chlorophyll, and carotenoid 

content; and found anthocyanin content increased over ripening time, whereas carotenoid (lutein) 

and chlorophyll levels decreased, and had a greater influence on metabolite content than both 

cultivar and origin effects. There were also significant differences across locations: where 

samples from Italy (Agrigento) had significantly more anthocyanin than samples from Italy 

(Bronte) and Turkey; samples from both Italian locations had significantly more chlorophyll (a, 

b, & a+b) and carotenoid lutein than samples from Turkey. Although not primary compositional 

traits, these findings give insight into how environmental or management factors could impact 

nutritional traits in pistachio. 

 
A genotype's performance can change across different growing environments or management 

practices (Cooper et al. 2022 & Langridge at al. 2021). Traditionally, studies have focused on 

parsing the effects of genotype and environment on priority traits, and interactions with 

management effects (GxE(xM). In the coming future, changes in climate bring with it new or 

worsening climate pressures that will challenge conventional crop growth practices forcing 

agricultural practices to modify in response (Mahmood et al. 2022, Smith et al. 2021, Hammer et 

al. 2020, & Raza et al. 2019). Examples of management effects include seedbed management, 

pruning, irrigation, nutrient treatments, crop protective measures, harvest practices, and post-

harvest storage and distribution (Mahmood et al. 2022, Madson 1995, & Messina et al. 2020). 

These GxExM studies have classically focused on productivity, and GxExM studies pertaining to 

pistachio (or nut tree crops more generally) are scarce, with much of the literature focused on 

other crops such as wheat, cassava, barley, maize, and groundnut (Roberts et al. 2022, Ibrahim et 



al. 2019, Hajjarpoor et al. 2021, Ciampitti et al. 2021, Ceballos et al. 2021, & San Martin et al. 

2013). GxExM examinations in pistachio for productivity and/or quality traits could inform 

breeding and agronomic efforts. Subsequently, developing fast and accurate methods to analyze 

these traits also becomes critical. 

 
Near-infrared spectroscopy (NIRS) has been used for high-throughput phenotyping (HTP) of 

compositional traits, particularly macronutrients, in plant (among other) materials (Alamu et al. 

2020, Jasinski et al. 2016, Font et al. 2006, & Buning-Pfaue 2003). Suitable calibrations (or 

predictive models) must be developed for the traits and crop tissue(s) being phenotyped. 

Calibrations are developed by cross-analyzing NIR spectral data with wet-chemistry reference 

data on a subset of samples, using statistical methods such as Partial Least Squares regression 

(Jasinski et al. 2016 & Buning-Pfaue 2003). The developed predictive model, once validated in 

cross-validation and on a held-out test set, can then be applied to NIR spectral data for the larger, 

remaining set of samples (from the same location-year combinations) that have not been 

phenotyped via wet chemistry. NIRS analysis has been used in some crops such as tubers, 

Brassica species, cereal crops, and legumes to name a few (Jasinski et al. 2016, Alamu et al 

2020, Font et al. 2006, Li et al. 2020, Wang et al. 2021, Tang et al. 2023). NIRS instruments 

record spectral data in the near-infrared portion (780-2500 nm) of the electromagnetic spectrum, 

the most energetic of the infrared regions (Alamu et al 2020, Agelet & Hurburgh Jr. 2010, & 

Osborne 2006); some NIRS instruments also include visible wavelengths (e.g., also reporting 

spectral data in the 400-700 nm range). Global and Neighborhood H are two performance 

metrics for NIRS calibrations, where Global H measures the spectral distance of a given sample 

to the mean of the samples in the database that was used to build the calibration, and 

Neighborhood H measures the spectral distance of a given sample to the next closest sample in 



the database (Kaur et al 2016 & Westerhaus 2014). In case helpful for contextualization, Global 

H values less than 3 and a Neighbourhood H value greater than 0.6 are usually considered 

favorable in the NIRS realm (Kaur et al 2016). Further adaptation of a pre-existing calibration 

for another nut tissue (in the case of this study, a ground peanut calibration) and/or the 

development of a custom calibration for pistachio will be needed before the predicted trait values 

are considered for use in decision-making. To date, a NIRS calibration for kernel compositional 

traits in pistachios has not yet been published or made publicly available. 

 
The first aim of this study was to test the adaptation of a pre-existing ground peanut NIRS 

calibration‒and to develop a custom NIRS calibration‒for use on pistachio kernels. The second 

aim was to deploy this calibration to assess kernel compositional traits (protein, fat, moisture, 

and ash; total mineral content) in pistachios, and dissect the effects of genotype, environment, 

and management on these traits in three contrasting sample sets: one comprising diverse cultivars 

and a half-sib family, and two focused on commercial cultivars of high relevance to pistachio 

production in California (Kerman, Golden Hills, and Lost Hills). 

 
 
Materials & Methods: 
 
Plant materials: 
 
A total of 174 ground pistachio samples from seven locations (Campus Farm Trial, Jebs 

Cousin’s Farm, Jebs Dad’s Farm, Maricopa Orchards, Wolfskill Orchards, Tucker’s Farm, and 

Wonderful Orchards) were analyzed in this study. Samples were provided as mature kernels with 

shells by three academic laboratories (one lab provided samples deshelled) and one commercial 

entity, with known genotype, environment, and (when applicable) pruning or irrigation 

treatment. These samples were collected over two harvest seasons (74 samples for harvest year 



2022 and 100 samples for harvest season 2023) and from seven farms in four counties: including 

Yolo, Fresno, King’s, and Kern County on a north-south gradient in California. Only a few of the 

samples represented the same trees sampled in both harvest years (ten samples). Therefore, 

samples were examined as three additional subsets: a 113-sample subset representing a half-

sibling population (Half-sib), a 40-sample subset representing three commercially relevant elite 

cultivars (Golden Hills, Lost Hills, and Kerman), and a 23-sample subset representing a diverse 

group of cultivars. These sample sets represented diverse cultivars and a half-sib family; two 

commercially relevant cultivars for which three clusters were sampled from each of eight trees 

from two genotypes (Golden Hills & Kerman) at one location; and pruning trial samples with 

known cultivars from three farms (Tucker’s Farm and Jebs’ Dad and Cousin’s Farms), and 

irrigation samples from a University of California-Davis on-campus trial location combining 18 

trees into one sample from four different rows (See Supplemental Table 2). Samples from the 

diverse genotypes and half-sib family were stored at 4°C, the same temperature at which they 

were stored prior to receipt for use in this study, whereas the samples from the other two labs and 

a commercial entity were stored at room temperature. 

 
Data collection & sample processing: 
 
Samples were shelled (if needed), then weighed in grams and scanned as whole kernels on a 

FOSS DS2500 NIRS instrument using the small sample cup. This instrument provides 

reflectance data at each 0.5 nm step from 400 to 2500 nm. Trait values for fat, protein, and 

moisture percentage were predicted from the resulting spectra using a ground peanut calibration 

(which was the best-performing pre-existing calibration available from the instrument 

manufacturer in a pilot study conducted on pistachio samples). Samples were placed into coin 

envelopes and freeze-dried in a HarvestRight freeze dryer. After freeze-drying, the kernels were 



re-weighed and scanned as whole kernels again before being ground using an IKA tube mill 

control with stainless steel blade and scanned for a third time. The ground samples were stored 

back into the coin envelopes and placed at -4°C for storage. Data from the NIRS instrument was 

then exported and saved in .csv or Excel format. NIRS-predicted trait values on ground samples 

are reported and analyzed herein, as a percentage of kernel composition on an as-is basis (i.e., 

not corrected for moisture content). 

 
Collection of wet-chemistry reference values and comparison with NIRS-predicted trait values: 
 
A total of 35 freeze dried and ground samples harvested in 2022 were randomly sampled using 

sample() function in R and sent for wet-lab reference analysis. Two grams of sample was 

weighed and stored in 50 mL tubes or Whirl-Pak sample bags for later in-house analysis and the 

remaining sample mass (4-12g) was stored in 50 mL tubes and sent for wet-lab reference 

analysis at the UC Davis Analytical Lab for total fat, protein, and moisture. After reference 

values were received (on an as-is basis; i.e., without correction for moisture content), a Pearson 

correlation was calculated and wet-chemistry reference vs. NIRS-predicted values were plotted 

using the ggscatter cor.method = "pearson" function to determine the accuracy of the NIRS-

predicted values. 

 
Statistical analysis: 
 
Across the 174 total samples between the two harvest seasons, multiple subsets of samples were 

examined in addition to the whole sample set. These subsets included a subset of 113 half-sib 

samples, 40 samples representing all elite cultivars from all sources (Golden Hills, Lost Hills, 

and Kerman), and a subset of 23 samples representing the diverse cultivars were compiled to 

analyze genotypic and environmental (location and harvest year) effects on pistachio 



compositional traits. Statistical analyses were conducted in RStudio using R version 4.3.2 (R 

Core Team 2023). Correlations and corresponding P-values were calculated using the corr.test() 

function from the psych R package. Plot matrices containing X-Y scatterplots and histograms 

were created with the ggpairs() function from the ggally R package. Mixed ANOVA was 

conducted using the aov() function from the stats package (which is included in base R 

installations). If a given term (genotype, treatment, or genotype-by-treatment interaction) was 

significant in mixed ANOVA (at α = 0.05) for a given trait, Tukey’s Honestly Significant 

Difference was conducted as a post-hoc comparison of means using the HSD.test() function from 

the agricolae R package. Model term harvest year was assigned to all sample subsets (half-sib, 

elite cultivars, & diverse cultivars), however only the elite cultivar sample subset had the 

location and cultivar model terms included in addition. If an interaction effect was significant, 

we only conducted Tukey’s HSD for that interaction, and did not conduct Tukey’s HSD for 

either of the main effects (so as to not interpret main effects in the presence of a significant 

interaction). Principal component analysis was conducted using the prcomp() function from the 

stats package, with scale set to TRUE. Last, box plots were made using the geom_plot() function 

from the ggplot2 package. 

 
 
Results: 
 

Evaluating NIRS (comparison between NIRS and wet chemistry): 
 
Pistachio NIRS-predicted values were determined using a pre-existing ground peanut calibration 

as peanut was closest in compositional make up to pistachio than all other existing NIRS 

calibration models. A significant positive correlation (r = 0.43, p = 0.0097) was detected 

between the NIRS-predicted and wet-chemistry (observed) values for fat percent (Figure 1a). 



Protein percent had the most significant positive correlation (r = 0.93, p = 6.6e-16 respectively) 

between NIRS-predicted traits and wet-chemistry (observed) values (Figure 1b). Last, moisture 

percent had the second highest positive correlation between NIRS- predicted and wet-chemistry 

(observed) values (r = 0.70, p = 2.9e-06) (Figure 1c).  

 

 
Figure 1: Pearson correlation between wet-chemistry reference analyses (observed values) vs. 
NIRS-predicted values for a) fat, b) protein, and c) moisture percent (n = 35). 
 
 
 

Assessing differences across environments (Location x Harvest Years):   
 



PCA results across harvest year for all 174 samples indicated PC1 explained 54.9% of the 

variance and PC2 explained 38.7% of the variance (Figure 2). Two distinct groups formed for 

harvest year with minor overlap and there was partially distinct clustering by the nine locations. 

PC1 negatively corresponded to moisture and fat percent and PC2 positively corresponded to 

protein percent (Figure 2). Location PCA results were examined first across orchard or farm 

locations, and results showed distinct clusters forming for each of the seven locations. However, 

there is overlap between all clustered except those from the Maricopa Orchards and Campus 

Trial samples (Figure 3a). A second location PCA across counties shows clusters form for all 

four of the represented counties, but only Fresno County was distinct and showed no overlap and 

are significantly associated with higher moisture percent (Figure 3b).  

 
Correlation analysis for all 174 samples indicated significant positive correlations between fat 

and moisture percent (r = 0.647) and protein and moisture percent (r = 0.269) (Figure 4a). Global 

and Neighbourhood H performance metrics were strongly positively correlated with each other 

both across (r = 0.974) and within locations (Supplemental Figure 2a). Correlation analysis for 

two harvest seasons (2022 & 2023) indicated a significant positive correlation between fat and 

moisture percent (r = 0.647) represented by samples from harvest season 2023. Protein and 

moisture percent had a weakly significant positive correlation (r = 0.268), but protein and fat 

percent were weakly negatively correlated (r = -0.241) (Figure 4b).  

 
The main effects of location and harvest year were significant for both mean fat percent 

(location: p = 1.5e-13, harvest year: p = 3.24e-14) and mean moisture percent (location & 

harvest year p = < 2e-16) (Figure 5 & Supplemental Table 2a&c). The main effect of location for 

mean protein percent was significant (p = 0.000269), and the interaction effect of location and 



harvest year for mean protein percent was also significant (p = 0.020705) (Figure 5 & 

Supplemental Table 2b). Samples from Jeb Dad’s Farm location in the 2022 harvest set had the 

highest fat percent (48.01%), samples from the Campus Farm location from the 2023 harvest 

year had the lowest mean fat percent (41.36%), and samples from these two locations are most 

significantly different from each other (Figure 5 & Supplemental Table 2a). Samples from 

Tucker’s Farm in harvest year 2022 had the highest mean protein percent (24.41%), and samples 

from Tucker’s Farm of the same year recorded the lowest mean protein percent (19.84%) (Figure 

5 & Supplemental Table 2b). Samples from the 2022 harvest year overall had significantly 

higher average fat and moisture percent than samples from the 2023 harvest year (Figure 5 & 

Supplemental Table 2a&c). Samples from Maricopa Orchards recorded the highest moisture % 

(5.76%) and were most significantly different from the Campus Farm location which recorded 

the lowest percentage (0.397%) (Figure 5 & Supplemental Table 2c). However, it should be 

noted samples from Maricopa Orchards experienced a 2.3 ± 0.2% loss (mean ± SD) in weight 

before vs. after freeze-drying (measured on the same day as the samples were taken out of the 

freeze dryer) vs. a 2.0 ± 0.2% (mean ± SD) re-increase in weight from the day they were taken 

out of the freeze dryer to the next day.   



 
Figure 2: Principal component analysis biplot (depicting PC1 vs. PC2) for NIRS-predicted traits, 
color-coded by harvest year with points labeled by locations: Campus Farm (CF), Jebs Cousin’s 
Farm (JCF), Jebs Dad’s Farm (JDF), Maricopa Orchards (MO), Wolfskill Orchards (Wolf), 
Tucker’s Farm (TF), Wonderful Orchards (WonO). N = 174. 
 
 



 
Figure 3: PCA of NIRS-predicted traits, color-coded by location (Farm/Orchard). N = 174. 
 
 
 
 
 
 
 
 
 
 
 
 



a)

 
 
b) 

 
 
Figure 4: Correlation plot matrix of histograms (on the diagonal) and X-Y scatter plots depicting 
trait relationships (in the lower triangle) with corresponding Pearson r-values (in the upper 
triangle) for a) NIRS-predicted traits by location and b) plot matrix of histograms by harvest 
year. N = 174. 
 



Figure 5: Boxplots of compositional traits by harvest year across location (from left to right: 
Campus Farm, Jebs Cousin’s Farm, Jebs Dad’s Farm, Maricopa Orchards, Wolfskill Orchards, 
Tucker’s Farm, Wonderful Orchards). Gray data points that appear horizontally adjacent to a 
given colored data point indicate that that point was an outlier (more than 1.5 * interquartile 
range beyond its nearest—25% (for outliers on low side of distribution) or 75% (for outliers on 
high side of distribution)—quartile). N = 174. 
 
 
 
 

Differences across harvest year for Half-Sib Samples: 
 
Samples for this set of analyses focus on the half-sib family and diverse cultivars, as this group 

had the greatest number of genotypes (113). PCA results for the half-sib family show that PC1 

explained 55.1% of the variance and PC2 explained 38.3% of the variance (Figure 6). Two 



distinct clusters formed by harvest year, similar in shape and size as the clusters seen in Figure 2. 

PC1 negatively corresponded to fat and moisture percent and PC2 positively corresponded to 

protein percent (Figure 6). 

 
Correlation results for the half-sib family indicated a significant positive correlation between fat 

and moisture percent between harvest seasons (r = 0.652) (Supplemental Figure 4). Protein and 

moisture percent were weakly correlated (r = 0.273) and protein and fat percent were weakly 

negatively correlated (r = -0.222) (Supplemental Figure 4). 

 
The main effect of harvest year was significantly different for fat percent (p = 5.84e-11) in 2022 

(47.45%) than 2023 (45.09%) for the half-sib samples (Figure 7 & Supplemental Table 6a). The 

main effect of harvest year was significantly different for moisture percent (p = <2e-16), with 

year 2022 having nearly twice (4.18%) the moisture percent of year 2023 (2.14%) (Figure 7 & 

Supplemental Table 6c). However, protein percent showed no significant difference between the 

two harvest years (Figure 7 & Supplemental Table 6b). 

 
 



 
Figure 6: Principal component analysis biplot (depicting PC1 vs. PC2) for NIRS-predicted traits 
in the half-sib family, color-coded by harvest year. N = 113. 
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Figure 7: Boxplot for NIRS-predicted traits in the half-sib family, color-coded by harvest year. 
N = 113. 
 
 
 
 
 
 



 
 

Elite Cultivar Subset: 
 
Results for this next subset focus on 40 samples representing elite cultivars: Golden Hills, Lost 

Hills and Kerman. PCA results showed two distinct clusters by harvest year (Figure 8). PC1 

explained 60.8% of the variance, and PC2 explained 35.5% of the variance. Fat and moisture 

percent positively corresponded to PC1, and protein percent positively corresponded to PC2 

(Figure 8). PCA results for location showed 6 distinct clusters for each location. It should be 

noted there are only two samples from Wolfskill Orchard, but they are grouped near each other. 

 
Correlation analysis revealed a significant positive correlation between fat and moisture percent 

(r = 0.774) and protein and moisture percent (r = 0.359). The correlation between fat and protein 

percent was negligible (r = -0.085) (Supplemental Figure 7a).  

 
Within this 40-sample subset of elite cultivars, the main effects of cultivar and harvest year were 

significant for fat percent (p = 0.00317 and 1.69e-09, respectively). Post hoc analysis reveals, 

samples from harvest year 2022 had significantly higher fat percent than samples from 2023, 

with each cultivar recording significantly less fat % than the year prior (Figure 9a & 

Supplemental Table 8a). Only the main effect of cultivar was significantly different for protein 

percent (p = 0.000358), but the interaction effect was also significant across cultivars and harvest 

years (p = 5.72e-06). Kerman 2022 had significantly higher protein percent than the other two 

cultivars in 2022 and Kerman in 2023. Golden Hills in 2023 was significantly higher than Lost 

Hills in 2022 (Figure 9b & Supplemental Table 8b). Main effects for harvest year were 

significantly different (p = 4.7e-09) whereas the main effect of cultivar was not, but their 

interaction effect was significant (p = 0.000394) (Figure 9c & Supplemental Table 8c). Kerman 



and Golden Hills in 2022 were both significantly higher than Kerman and Golden Hills in 2023, 

and Kerman 2023 was significantly lower than Lost Hills 2022 and 2023 (Figure 9c & 

Supplemental Table 8c). When examining variance in fat, protein, and moisture percent for the 

40-sample subset of elite cultivars across location we see the main effects of cultivar and 

location are significantly different (fat: p = 0.0012, p = 6.18e-08; protein: p = 0.000637, p = 

0.000531; moisture: p = 0.00984, p = 2.09e-13, respectively), however interaction effects for all 

three traits weren’t significant (Figure 11 & Supplemental Table 10a,b,c). Post hoc analysis 

indicates cultivar Golden Hills from Maricopa Orchards recorded the highest fat % (48.28%) out 

of all the elite cultivars, just barely beating Lost Hills from Jeb’s Dad’s farm (48.01%) as they 

were not significantly different from one another, but they are significantly greater than Golden 

Hills from Tucker’s Farm (44.31%), Kerman from Wonderful Orchards, Lost Hills from 

Wonderful Orchards, and Kerman from the Campus Trial (41.36%)-which recorded the lowest of 

all the elite cultivars (Figure 11 & Supplemental Table 10a).  

 
 
 
 
 
 



Figure 8: PCA of compositional traits for elite cultivars per harvest year and b) location. N = 40. 
 



Figure 9: PCA of compositional traits for elite cultivars per location. N = 40. 
 



 
Figure 10: Boxplots of compositional traits: a) fat %, b) protein %, and c) moisture %, for three 
elite cultivars (Golden Hills, Lost Hills, and Kerman) by harvest year. N = 40 
 



 
Figure 11:  Boxplots of compositional traits: a) fat %, b) protein %, and c) moisture %, for three 
elite cultivars (Golden Hills, Lost Hills, and Kerman) by location. N = 40 
 
 

Differences Across 2022 Harvest Year for Diverse Cultivars Sample Subset: 
 
The next set of results are for a 23 diverse cultivar subset (the second largest cultivar sample set) 

from harvest year 2022 with one sample per cultivar. Cultivar West11-15 recorded the highest 

fat percent (49.2%), and West12-16 recorded the highest protein and moisture percent (23.92% 

and 5.1%, respectively). In contrast, MVUS2-104 recorded the lowest fat percent (45.68%), B4-

41 recorded the lowest protein percent (13.11%), and West13-17 recorded the lowest moisture 

percent (3.18%) (Figure 12 & Supplemental Table 11).  



 

 
Figure 12: Boxplots of compositional traits for the diverse cultivars subset for harvest season 
2022. N = 23 
 
 
 

Discussion: 
 
The overall goal of this study was to develop the first NIRS calibrations for kernel compositional 

traits in whole and ground pistachio and assess the main and interaction effects of genotype, 

environment, and management on these traits. While increased yield remains a foremost priority 

trait (Smith et al. 2021), improvement of kernel compositional traits is important in improving 

the nutritional value of our foods in the face of problems such as low nutrient bioavailability, 



changes in rain patterns, and soil fertility, brought about by climate change and growing 

population pressures (Owino 2022). Developing the capacity to identify cultivars that can 

produce nutrient rich nuts in dry nutrient depleting soils are some important traits for adaptation 

to climate changes. However, before that comes developing the tools to differentiate nutritional 

trait variation in crops to identify which cultivars are richer than others in one or more 

compositional traits. We believe NIRS can be a useful tool for high-throughput characterization 

of pistachio traits, through the development of a spectral calibration for pistachio based on 

peanut, the closest crop in compositional make-up with a NIRS calibration. Afterwards, we 

conducted various analytical tests to determine if genetic or environmental main effects, 

interaction effects, or a combination were responsible for any significant variation in 

compositional traits detected. 

 
Total mean NIRS-predicted values and wet-chemistry reference values for fat, protein, and 

moisture percent recorded in this study (Fat%: 45.94%, Protein%: 21.28%, and 3.23%), are 

comparable to trait values reported in prior studies (Supplemental Figure 12, Nezami et al. 2023, 

Mateos et al. 2022, Mandalari et al. 2021, Bullo et al. 2015). Samples from only the Maricopa 

Orchards experienced moisture re-absorption from an error during sample processing and thus 

need to be re-examined. Examining samples from the randomly selected subset group, 

correlations between NIRS-predicted and wet-lab reference values were shown to be 

significantly correlated for all compositional traits measured. Total protein had the highest 

NIRS-prediction accuracy followed by total moisture and fat percent. Our NIRS-based 

predictions were successful in accurately determining total fat, protein, and moisture content (fat 

% r = 0.43, protein % r = 0.93, and moisture % r = 0.70) in the pistachio nut samples analyzed 



herein as determined by the significantly high correlation between our NIRS-predicted values 

and the analytical lab’s wet-chemistry reference values (Figure 1). 

 
Due to unforeseen challenges (low yield due to a combination of pests and alternate bearing), in 

addition to analyzing the complete 174-sample set, additional sample subsets were created to 

examine specific environmental effects. These include a 113-half sib subset, a 40-elite cultivar 

subset, and a 23-diverse cultivar subset. It should be noted, the sample subset number represents 

the total sample number in the set, not the number of cultivars. There weren't enough samples 

from both harvest years to analyze management effects, thus limiting us to examining genotype 

by environment effects to a few sample sets. When examining samples from the total 174 

samples set, samples from harvest year 2022 recorded significantly higher total mean fat and 

moisture percentage than harvest year 2023 (Figure 5a & Table 2a&c). We see this trend 

continue with all subsequent sample subsets examined. There were significant differences in 

composition across cultivars suggesting potential genetic factors responsible for these differences 

(Figure 10 & 11). Amongst the elite cultivars examined, Kerman recorded significantly greater 

protein and moisture content than the other two genotypes (Protein: 26.41%, Moisture: 5.78%), 

and Lost Hills recorded the least (Protein: 20.52%, Moisture: 4.67%), however cultivars Golden 

and Lost Hills recorded significantly higher fat content (47.49%, 47.40%) than Kerman 

(46.58%), though not from one another  (Figure 11, Supplemental Table 10a,b,c, Supplemental 

Table 11). If this distinction proves to be consistent, this could give us insight into knowing 

which cultivars are better for certain culinary or agro-economic purposes and could lead to 

potential experimental crosses between protein rich and fat rich cultivar. There were also 

significant differences in compositional traits due to environmental factors. For both the 174 and 

40-sample sets, distinct clustering formed for environmental effects of location and harvest year 



(Figures: 2, 3, 8, & 9). Taken together, traits controlling fat content may be more influenced by a 

combination of genetic and environmental factors, whereas protein is influenced primarily by 

genetic factors.  

 
The development of this custom pistachio calibration will be finalized using Partial Least 

Squares regression after wet-lab reference values are received for the 2023 harvest year samples. 

Then further adaptation of the existing ground pistachio calibration and inclusion of a whole nut 

calibration can proceed for use in decision-making of pistachio breeding programs. Once the 

compositional traits data is acquired, further examination of main and interaction effects of 

GxExM can be assessed. Using a peanut calibration as the base calibration framework to build 

off from, we were successful in developing an initial predictive model for pistachio. Although all 

three compositional traits measured (total fat, protein, and moisture) recorded significant 

correlations between NIRS spectral data and wet-chemistry data, total protein percent had the 

most significant correlation between the three. Despite unforeseen challenges, alternate bearing 

and pest issues, we were successful in the initial development of the NIRS pistachio calibration, 

but the final PLS regression remains to be completed. Due to these limitations, we were further 

limited in cultivar collection as we were only able to secure sufficient sample size for three of the 

four commercially relevant cultivars of initial interest. The cultivar Gumdrop was also to be 

included, but was largely left out of the analysis due to collection of only a single sample. The 

perennial nature of pistachios (and time from planting to production of nuts) meant that samples 

for this study needed to be taken from existing nut-bearing orchards, which limited which 

samples were available. Preliminary data of GxExM effects on pistachio compositional traits 

suggest some influence from all three effects, however, additional samples are needed to make a 

more thorough assessment of GxExM effects on the compositional traits of pistachio nuts. It 



should be noted that the high moisture content seen in samples from Maricopa Orchards could 

have been due to those samples having been scanned one day after they were removed from the 

freeze dryer rather than the same day (and having been stored at room temperature), which 

resulted in moisture reabsorption after freeze drying. 

 
Future directions for this work could include the incorporation of NIRS with other compositional 

trait analytical tools such as gas chromatography-mass spectral analysis (GC-MS), liquid 

chromatography-mass spectral analysis (LC-MS), and high-performance liquid chromatography 

(HPLC) techniques for more detailed characterization of compositional traits, which has already 

been successfully integrated with similar techniques such as MIR (Mid-infrared) spectroscopy 

and NMR (nuclear magnetic resonance) (Ozaki 2021, Belleon-Maurel & McBratney 2011, & 

Fang et al 2013). There is also potential application of NIRS and GxExM analysis in 

combination with machine learning genomics-assisted breeding tools such as genomic selection 

(GS) or phenomic selection (PS), to more efficiently identify ideal traits in crops. This study 

would also benefit from additional sample sizes for all the diverse cultivars, elite cultivars, and 

locations sampled to verify the initial trends and results analyzed. Lastly, two immediate next 

steps for this project would be to scale up the study to include more samples from each location, 

cultivar, and management treatment presently examined in this study; and the other next step 

would be to incorporate in-house analysis for total phenolic, carotenoid, and chlorophyll content 

in pistachio as a downstream step. A study conducted by Mandalari et al. (2021), indicated 

pistachio seed coat is richest in flavonoid content, but the seed + coat has recorded total phenolic 

content over 1600 mg GAE. Further work can corroborate to determine how phytochemicals 

vary across genotypes, environments, and management effects. 
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