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ABSTRACT OF THE DISSERTATION

Speech Normalization and Data Augmentation Techniques

Based on Acoustical and Physiological Constraints and

Their Applications to Child Speech Recognition

by

Gary Joseph Yeung

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2021

Professor Abeer Alwan, Chair

Recently, adult automatic speech recognition (ASR) system performance has improved

dramatically. In contrast, the performance of child ASR systems remains inadequate in an

era where demand for child speech technology is on the rise. While adult speech data is

abundant, publicly available child speech data is sparse due, in part, to privacy concerns.

Hence, many child ASR systems are trained using adult speech data. However, child ASR

systems perform poorly when trained on adult speech due to the acoustic mismatch that

results from body size differences, especially the vocal folds and the vocal tract, as well as

the high variability of child speech.

This research analyzes the acoustical properties of child speech across various ages and

compares them to the acoustic properties of adult speech. Specifically, the subglottal reso-

nances (SGRs), fundamental frequency (fo), and formant frequencies of vowel productions

are investigated. These acoustic features are shown to be capable of predicting acoustic

structures across speakers. As such, we propose feature extraction methods utilizing these

ii



properties to normalize the acoustic structure across speakers and reduce the acoustic mis-

match between adult and child speech. This allows child ASR systems to leverage adult data

for training and suggests a framework for a universal ASR system that need not be adult

or child dependent. Furthermore, we demonstrate that when child speech data is limited,

these feature normalization methods are capable of producing significant improvements in

child ASR for both Gaussian mixture model (GMM) and deep neural network (DNN)-based

systems.
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CHAPTER 1

Introduction

1.1 Motivation

The need for child automatic speech recognition (ASR) has grown dramatically in recent

years. A major reason for this is the increased usage of electronic devices such as home and

living-room personal assistants. Often, speech is one of the only mechanisms young children

have to interact with these devices due to their limited reading, writing, and typing abilities.

Furthermore, improved child ASR performance can greatly benefit the development of teach-

ing, langauge assessment, and clinical diagnostic tools [KWE91, BYP00, TSK06, YAO17,

SZ15, RBS96, LNB14, SLR09] through interactive media [KLM17, SCA18, YBA19a]. Yet,

while adult ASR has experienced significant improvement in recent years, child ASR contin-

ues to perform quite poorly in comparison [KLM17, GGN09, YA18].

Previous analyses of child ASR systems have revealed that current child ASR performance

is inadequate for practical usage. For instance, [KLM17] examined the ASR performance for

5-year-old child speech using the Alderbaran NAO, a social robot commonly used for human

robot interaction research. In that study, the child ASR system performed inadequately on

even the most basic tasks. This included digit recognition, which had a word error rate

of over 15%, and scripted speech recognition, which had a sentence error rate of over 88%

on four commercial ASR application programming interfaces (APIs) (Google, Bing, Sphinx,

Nuance). In contrast, the word error rate for adult scripted speech recognition is generally

less than 5% [PCP15].
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Similarly, other studies have investigated the performance of child ASR systems on vari-

ous age ranges. [SPL14] examined child ASR systems using Gaussian mixture model (GMM)

hidden Markov model (HMM)-based acoustic models and found that small differences in a

child’s age can result in dramatic performance changes. Similarly, [YA18] examined child

ASR systems using both GMM-HMM-based and deep neural network (DNN)-HMM-based

acoustic models and discovered that as the age range between training and testing speakers

increases, child ASR performance degrades rapidly.

A significant impediment to the development of child ASR is the lack of publicly avail-

able child speech databases, especially for young child speech. This is further compli-

cated when considering that deep learning, which require large amounts of speech data

to train, is becoming the most prominent method of developing ASR systems. To com-

pensate for this lack of data, young child ASR systems often employ speech data from

other speech domains, such as older child speech or even adult speech, to supplement the

training data. However, there are many differences between child and adult speech acous-

tics, further complicated by the fact that children’s speech acoustics change as they grow

[LPN97, LPN99, VK07, Smi92, KLP08, KL08], in part due to the growth of the physi-

cal components used to produce speech (e.g., mouth, neck, larynx). Pertaining to speech

acoustics, these changes often include the rapid lowering of the fundamental frequency (fo)

[LPN97, LPN99, VK07], formant frequencies [LPN97, LPN99, VK07], and subglottal res-

onances (SGRs) [Lul10, LAM11, YLG18, GPY15], three defining acoustic features of the

speech space.

1.2 Acoustic Theory of Speech Production

The classical linear time-invariant model of speech production treats speech as the output

of a filter representing the vocal tract, including the tongue, teeth, mouth, and throat, and

a quasi-periodic harmonic-rich input signal representing the voice source created by the
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vibration of the vocal folds in the larynx [RS11]. A representation of the source-filter speech

model is shown in Figure 1.1 [ESW97]. Two sets of features from this model have defining

properties for speech production: fo and formants.

1.2.1 Fundamental Frequency (fo)

Fundamental frequency (fo) is the frequency of the voice source, defined by the periodicity of

the quasi-periodic voice source signal. It is also defined as the distance between harmonics

of the voice source in the frequency domain. Several past analyses have noted that the

fo values of children are markedly higher than both male and female adults, and this fo

generally decreases as children age [LPN97, LPN99, VK07]. This is shown graphically in

Figure 1.2 [BN13], which shows the fo values of several adult males, adult females, and

children uttering the vowel /i/. Additionally, in terms of the source-filter speech production

model, fo is inversely related to the sampling of the vocal tract filter in the frequency domain

[RS11]. This often results in a less sampled vocal tract filter for children as they have higher

values of fo than adult males or females.

1.2.2 Formant Frequencies

Formant frequencies (F1, F2, F3, . . . ) are the resonances of the vocal tract filter. In the

frequency domain, they are characterized by the peaks of the vocal tract filter’s transfer

function. Formants are known to have defining properties for vowel identity [PB52, RS11].

For instance, the vowel /i/ is characterized by a low F1 and high F2 while the vowel /u/

is characterized by low F1 and F2. Thus, as speech changes over time, formants change

dramatically across the utterance of a word or sentence. A plot of F1 and F2 values and

the corresponding vowels for many speakers is shown in Figure 1.3 [PB52].

Similar to fo, formants are known to be higher for children than for adults and decrease

as children age [LPN97, LPN99, VK07, Smi92, KLP08, KL08]. The means of the first three
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Figure 1.1: A representation of the source-filter model of speech production for voiced speech.
The speech production system is shown (top), modeled as an input and filter combination
(middle), and decomposed into a source signal and a transfer function (bottom). An example
of the frequency content of the voice source (left), vocal tract transfer function (middle), and
resulting speech (right), are shown in the decomposition. (Adapted from [ESW97].)
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Figure 1.2: fo vs. mean of the first three formants of utterances of the vowel /i/ using the
adult male (blue), adult female (red), and child (green) data in [PB52]. Adult males have
the lowest fo and formant values while children have the highest fo and formant values.
(Adapted from [BN13].)

formants of several adults and children uttering the vowel /i/ are shown in Figure 1.2. Once

again, this displays that child formants are markedly higher than adult formants. Notably,

Figure 1.2 also reveals a correlation between formants and fo.
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Figure 1.3: F2 vs. F1 from utterances of various vowels. Note that productions of the same
vowel have similar formant volues. The general F2 vs. F1 region for several vowels are also
marked. (Adapted from [PB52].)

1.3 Child Speech Databases

While there is a lack of large-scale child speech databases, some smaller-scale child speech

databases are available to the public. The most common style of speech in these databases
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is read speech with single-word, phrase, or sentence transcripts. While databases of spon-

taneous styles of speech also exist, mispronunciations by children often make transcription

unreliable or inconsistent, both within and across databases. Databases for English speakers

include the OGI Kids’ Speech Corpus (5-16 years old) [SHC00], CMU Kids Corpus (6-11

years old) [EMG97], TIDIGITS (6-15 years old) [LD93], and PF-STAR Children’s Speech

Corpus (4-13 years old) [BBD05]. However, unlike adult speech databases that have hun-

dreds or thousands of hours of speech data, child speech databases generally have at most

tens of hours of speech data. Additionally, due to the lack of child speech data, when training

ASR systems using child speech databases, it is usually necessary to consider specific tasks

or applications, such as using speech data from children in educational settings to train ASR

for classroom appropriate speech technology.

1.4 Subglottal System and Resonances

The subglottal system, consisting of the trachea, bronchi, lungs, and surrounding tissues,

serves as the main source of airflow that powers the larynx, and thus vocal tract, during

speech production. The subglottal resonances (SGRs) are the natural frequencies of the

subglottal system. These SGRs, also referred to as subglottal formants, are analogous to

the formant frequencies of the vocal tract [FIL72, CB87]. However, unlike formants, SGRs

generally remain stable during speech production due to the limited physical changing of

the tracheobronchial tree. Past studies have analyzed the subglottal resonances and their

impact on the speech waveform [ALL13, CS07, CB87, IMK76, KK90, Lul10, LAM11, LAA11,

LMA12, ZNB06].

During speech production, the subglottal system is acoustically coupled with the vocal

tract through the larynx [Fan60, Lul13, LZM09, Ste98, Tit08, Tit06, ZMH11]. Due to this

coupling, the SGRs often manifest themselves as zeros in the vocal tract filter’s transfer

function. Previous studies have demonstrated that the formants manifest themselves with
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respect to these acoustic zeros as boundaries for the production of different vowel phonemes

in adults [CS07, CBG09, DLM11, GLC11, Jun09, Lul10, LBM07, MLW08, Ste98]. Further-

more, SGRs are correlated with a speaker’s height and formants [GPY15, GYM16, WLA09b,

WLA09a, ALL13, LAM11, LAA11, LMA12]. As such, similar to both fo and formants, SGRs

also generally decrease as children grow [YLG18, LAM11].

As the measurement of SGRs requires considerable effort through the recording of ac-

celerometer signals or other more invasive techniques, several studies have attempted to

model SGRs using speech parameters that are easily measured. [WLA09a] used the fact

that the second SGR contributed a zero in the microphone signal within the range of the

second formant. This was used to estimate the location of the second SGR for adults by

identifying where a discontinuity occurred in the second formant’s trajectory. [ALL13] used

the differences between the first three formants (in Bark scale) to estimate the first three

SGRs for adults. Similarly, both [LAM11] and [GPY15] used the differences between the

first three formants to estimate the first three SGRs for children. However, the modeling,

analysis, and applications of SGRs have still not yet been thoroughly explored.

1.5 Automatic Speech Recognition

Automatic speech recognition (ASR) is generally composed of four modules: a front-end

feature extraction module that converts a raw speech signal into a set of low-dimensional

speech representations, an acoustic model that attempts to classify (or assign probabilities

to) the potential phonemes (or sounds) produced by using the features, a language model that

attempts to convert the series of phoneme probabilities into meaningful words, phrases, or

sentences, and a decoder that interprets the scores by the previous modules and outputs the

resulting transcript. This dissertation will mostly focus on the front-end feature extraction

techniques and acoustic models.
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1.5.1 Mel Frequency Cepstral Coefficients (MFCCs)

The Mel frequency cepstral coefficients (MFCCs) are one of the most common features used

in ASR. The main characteristic of MFCCs is the use of the Mel scale, a perceptual frequency

scale, to filter the frequency content of a speech frame, which in turn smooths the frequency

domain envelope. The relationship between Mel and Hz is shown in Figure 1.4 and given by

Eq. 1.1 as follows:

FMel = 1127 ln(1 +
FHz
700

) (1.1)

where FHz is the frequency in Hz and FMel is the pitch in Mels [OS87]. Notably, the Mel

and Hz scales are approximately linearly related at low frequencies but develop into an

exponential relationship as the frequency increases. An example of a 22 filter Mel filter

bank using triangular filters is shown in Figure 1.5 [RS11]. Note that the filters at the low

frequencies are narrower than the filters at the high frequencies due to the Mel scale.

MFCCs are frequency-based features and require the discrete Fourier transform (DFT)

to be computed. As such, variations of the DFT can be used to compute different sets of

MFCCs. These DFT variations are relevant as frequencies are often scaled to compensate

for acoustic mismatches. This dissertation will use MFCCs and their variants as the ASR

feature of choice. See [Mer76] for more details about MFCCs.

1.5.2 Acoustic Modeling

The two most common ASR acoustic models are the Gaussian mixture model (GMM) and

the deep neural network (DNN) and its variations, including feedforward networks, recurrent

neural networks (RNN), long-short term memory (LSTM) networks, and bidirectional long-

short term memory (BLSTM) networks. When using GMMs, the acoustic model uses a

linear combination of Gaussian distributions to model phoneme probabilities over some set

of features. As this combination of Guassians is modeled in the input feature space, the

GMM can be interpreted to model the distribution of phonemes over the feature space. This
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Figure 1.4: Mels vs. Hz. Note that Mels and Hz are approximately linearly related at lower
frequencies but develop an exponential relationship as frequencies increase.

dissertation will focus on feedforward DNNs and BLSTMs as acoustic models but will also

use GMMs for comparison purposes. See [YD15] for further information about GMM and

DNN acoustic modeling in ASR.
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Figure 1.5: A Mel-scaled triangular filter bank of 22 filters over a bandwidth of 4 kHz. Note
that the filters are narrow in the low frequencies but wider in the high frequencies. (Adapted
from [RS11].)

1.6 Frequency Warping Techniques for ASR

1.6.1 Frequency Normalization

Frequency normalization techniques attempt to warp the speech spectra to a normalized

speech space, reducing inter-speaker variability in the spectral domain. For instance, vocal

tract length normalization (VTLN) [LR98] uses a maximum likelihood approach to warping

the speech spectra, and various implementations have been successful in child ASR [SPL14,

SHS03, CA05, SG14, PA06, GWL14]. Alternatively, acoustically relevant speech parameters,

such as the subglottal resonances [GPY15] or third formant frequency (F3) [CA06], can be

used as a normalization factor by warping the spectra to match a default speaker.

Fundamental frequency (fo) has also been used successfully as a feature to improve adult

ASR performance, even in atonal languages [FNS01, Ljo02, MSB03]. In [FG05], the authors

found that fo could be used to predict the VTLN warping factor of an utterance with a

maximum likelihood approach, while in [SDS16], fo was used to determine lifter sizes when

extracting cepstral features. Although many studies examining the use of fo in ASR were
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performed on adult speech, fo may also be relevant to child ASR.

Research on human speech perception may provide further insight into the use of fo in

ASR. The tonotopic distances between formants, the distance between adjacent formants

in some perceptual scale, along with the tonotopic distance between the first formant and

fo, are a set of features that have been successfully used to model human vowel perception

[CL79, Chi85, SG86, Tra81]. This set of features can be interpreted as a normalization of

formant-based vowel models. The inclusion of fo in the tonotopic distance model suggests

that fo contains information that can be exploited to normalize speech spectra. This is

supported by studies that suggest that the perception of vowel quality, vowel production,

and voice naturalness are dependent on fo when formants are fixed [BN12, BN13, AN07].

Furthermore, fo and the tonotopic distances may also be useful for data augmentation.

1.6.2 Data Augmentation

Recently, ASR systems based on deep learning have used data augmentation techniques to

increase the available training data to train large neural networks such as BLSTM networks.

There are several ways to implement these deep learning techniques such as feature warping

[JH13, CGK14], adding noise [KPP17, HCC14], and masking in time or frequency [PCZ19].

An analogue to VTLN, vocal tract length perturbation (VTLP) uses VTLN warping factors

to extract features from the same utterance several times, creating additional variability in

the available training data [JH13]. Data augmentation has not yet been fully explored for

child speech, although some researchers have evaluated techniques that include adding noise

and reverberation [WGP19] and applying out-of-domain adult data to the training data

[FBL16]. Notably, while data augmentation techniques increase the amount of available

training data, many techniques simply create variability without considering whether these

additional features adhere to the acoustic properties of speech.
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1.7 Dissertation Overview

This dissertation makes several contributions to the fields of child speech and child ASR. Two

databases that were published as part of this dissertation are described. These databases

provide child speech data, as well as child subglottal signal data, for eventual use in edu-

cation, child speech science, child ASR, and biometric research. Additionally, a model of

SGRs is proposed, which provides a more effective method for estimating child SGRs. Fi-

nally, an fo-based frequency warping method is proposed for both frequency normalization

and data augmentation in child ASR. These methods are evaluated with several child ASR

experiments; the proposed techniques perform better than state-of-the-art techniques.

The remainder of the dissertation is organized as follows. Chapter 2 describes the

databases and speech software published or used throughout the dissertation. Chapter 3

discusses subglottal resonance modeling and introduces a more effective way of modeling

the third SGR. Chapter 4 examines the properties of fo and proposes a frequency warp-

ing technique using these properties. Chapter 5 describes several child ASR experiments

evaluating the performance of the SGR normalization and fo warping techniques for both

frequency normalization and data augmentation against other commonly used techniques.

Finally, Chapter 6 concludes the dissertation with a brief summary, a discussion of potential

applications of this work, and directions for future work.
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CHAPTER 2

Databases and Speech Software

Several databases and speech software tools were used throughout this dissertation and are

described in this chapter.

2.1 The Child Subglottal Resonances Database

The Child Subglottal Resonances Database [YLG18] is a corpus intended for use in speech

science and automatic speech recognition technology. This database contains the speech

utterances of 43 native speakers of American English (31 male, 12 female), aged 6-18 years

old. These children were recruited through the Washington University in St. Louis psy-

chology department subject pool, as well as through advertisements posted in public spaces

around the greater St. Louis, MO area. The parents of the recruited children were asked if

their children had any history of speech or hearing disorders, and none were reported. Each

speaker’s standing height, age, and gender were also documented.

The corpus consists of recordings that simultaneously capture the speech and subglottal

acoustics of the participants. To capture the speech acoustics, a free-standing SHURE PG27

microphone (Shure, Niles, IL, USA) was used. The microphone was placed approximately

20 cm in front of the speaker and slightly to the side to avoid distortion due to high airflow

sounds (e.g., the plosive /p/). To capture the subglottal acoustics, a K&K Sound HotSpot

accelerometer (K&K Sound Systems, Coos Bay, OR, USA) was used. The participants were

instructed to press and hold the accelerometer firmly against the skin at the cricoid cartilage
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Table 2.1: The complete list of CVCs recorded for The Child Subglottal Resonances
Database. Various vowels (including the approximant /ô/ were recorded in up to four dif-
ferent consonant contexts. Phonological feature specifications are also given for the features
[low] and [back] [Ste98].

hVd i I e E æ A 2 o U u AI AU OI ô
bVb i - - E - A - - - u AI AU OI -
dVb i - - E - A - - - u AI AU OI -
gVb i - - E - A - - - u AI AU OI -

[low] − − − + + + + − − − −
[back] − − − − − + + + + + +

just below the glottis. This placement helped prevent the formant frequencies from inter-

fering with the accelerometer signal’s frequency response, which is common when formant

frequencies and subglottal resonances (SGRs) are near each other [CS07]. The participants

sat inside a double-walled sound attenuating booth while being recorded. Simultaneous

recording was performed using a two-channel M-Audio MobilePre USB pre-amplifier (M-

Audio, Cumberland, RI, USA) connected to a computer running Windows Vista (Microsoft,

Redmond, WA, USA). All signals were recorded using MATLAB (MathWorks, Natick, MA,

USA). Both microphone and accelerometer recordings were sampled at a sampling rate of

48 kHz and quantized at 16 bits per sample.

A number of consonant-vowel-consonant (CVC) utterances were embedded in the carrier

phrase “I said a CVC again.” These phrases were displayed using a computer monitor placed

directly in front of the speaker to be read aloud. However, in the case of young children who

have not yet learned to read, a researcher sat inside the sound booth with the child and read

the sentences aloud to be repeated. The complete list of CVC utterances recorded (bVb,

dVb, gVb, hVd) is listed in Table 2.1. Each CVC utterance, along with the associated carrier

phrase, was repeated at least six times, and both microphone and accelerometer signals were

recorded simultaneously.

For illustration, spectrograms from both the speech and subglottal signal from a 13-year-
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Figure 2.1: A wideband spectrogram of the speech (top) and subglottal accelerometer (bot-
tom) signal of a 13-year-old male saying “hod again.” A 2048 length discrete Fourier trans-
form (DFT), window length of 6 ms, and frame shift of 1 ms were used. The dashed lines in
the subglottal accelerometer spectrogram show the means of the speaker’s first three SGRs.
Notably, the subglottal acoustics remain relatively stationary while the speech acoustics
change rapidly.

old male saying the phrase “hod again” are shown in Figure 2.1. Unlike the speech signal, the

frequency content of the subglottal signal remains relatively stationary across the phonation,

which is a characteristic of the subglottal system acoustics.

As the accelerometer signal quality for the various CVC words was variable, additional

subglottal accelerometer recordings of each participant sustaining the vowel /A/ were recorded

with an emphasis on high-quality recordings. The signal quality was optimized by allowing

the subject and researcher to interact while visually inspecting the spectrogram produced

by the accelerometer signal. The position of the accelerometer, loudness of the speaker, and
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fundamental frequency of the speaker were all adjusted until the highest quality signal was

achieved. This procedure of recording the vowel /A/ was repeated twice for each subject.

Of the 43 child speakers from the initial data collection, the speech data from 28 of the

speakers have been released to the public as The Child Subglottal Resonances Database.

The remaining 15 children were not released publicly due to privacy issues, parental consent

issues, or signal quality issues. The data will be available through the Linguistic Data

Consortium (LDC) website (https://www.ldc.upenn.edu). This dissertation will use both

the microphone and accelerometer signals of the hVd utterances to measure and analyze

formants and SGRs in various vowel productions. A further analysis of the database was

conducted in [YLG18].

2.2 The GFTA-JIBO Kids Corpus

The GFTA-JIBO Kids Corpus [YBA19a, YBA19b] is a database intended for use in auto-

matic speech technology, human-robot interaction (HRI), education, and clinical research.

At the time of writing, the database contains a total of 80 speakers, from pre-kindergarten

to 1st grade, including both native and non-native speakers of American English. These

children were recruited through the UCLA Laboratory School research partnership, part of

UCLA’s School of Education and Information Studies. The parents of the participants were

asked to fill out a questionnaire containing the child’s first language and reading habits.

Additionally, each speaker’s standing height, age, and gender were documented.

The corpus consists of the speech of children interacting with the social robot JIBO (Jibo

Inc., https://jibo.com). A JIBO robot is shown in Figure 2.2 for reference. All images that

were shown during the interaction were shown on JIBO’s screen. Instructions, prompts, and

friendly interactions administered by JIBO were recorded by a female researcher and were

pitch-shifted to sound like a young child’s voice.

During each recording session, a student interacted with JIBO alongside two researchers.
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One researcher sat next to the child as an instructor assisting the child, while the other

researcher operated JIBO. JIBO was placed directly in front of the child on a desk or table

approximately 1.5 feet away from where the child was sitting. A Logitech C390e webcam

(Logitech, Lausanne, Switzerland) was used as a microphone and placed at a 45-degree angle

to the direction the child was facing approximately 1-2 feet away. This placement prevented

distortion due to high airflow sounds and ensured that the webcam did not interfere with

JIBO’s movements. Audio files were sampled at 48 kHz.

The educational tasks that JIBO was programmed to administer included the 3rd Gold-

man Fristoe Test of Articulation (GFTA-3) Sounds in Sentences (SIS) and Sounds in Words

(SIW), letter and number naming, and explanatory discourse. The GFTA-3 SIS task was

suitable for children from ages 2-7 years old. JIBO narrated a story about children walking

home. Five pictures corresponding to the story were shown in chronological order, one at a

time, with each picture having 3-5 associated sentences. After the first telling of the story,

JIBO told the story again and instructed the student to repeat each sentence.

For the GFTA-3 SIW task, children were prompted to say 58 different words by showing

a picture on JIBO’s screen and asking the child various questions about the picture (e.g.,

Figure 2.2: A JIBO robot.
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“What is this?”, “What is he wearing?”). Some pictures corresponded to multiple words,

requiring JIBO to ask several questions about the picture. If the child responded incorrectly,

JIBO would tell the child the solution as well as a secondary prompt for the word.

For the letter and number naming task, a random sequence of letters or numbers was

randomly generated. JIBO would show a picture of a letter or number to the child and

prompt the child to identify the correct word, often by asking “What is this letter/number?”

Due to the simplicity of this task, there was no secondary prompt. Instead, the instructor

would help the child identify the letters or numbers.

For children in 1st grade and older, JIBO administered more complicated letter and

number naming games. For letters, the child’s ability to spell simple words was assessed by

showing a picture of an item and asking the child to spell that word (e.g., a picture of a hat

along with the question “How do you spell hat?”). For numbers, the child’s ability to apply

numbers and math was assessed. This included basic arithmetic (e.g., “What is two plus

five?”) and the use of numbers in real scenarios (e.g., a picture of a birthday cake with five

candles along with the question “How old is the boy?”).

For the explanatory discourse task, JIBO conversed with the child about open-ended

reasoning tasks or their daily routines. These conversations were accompanied by pictures

that JIBO showed on its screen. For instance, JIBO could say, “Here is a picture of a boy

brushing his teeth. Tell me how you clean your teeth.” JIBO could then follow up with,

“Why do you clean your teeth?” or “Could you explain to me how you do that?” In another

discourse conversation, JIBO would show four animals (bird, cat, elephant, fish) and ask

the child, “Which animal is the odd-one-out” and “Why do you think that?” Several of the

various prompts administered by JIBO are shown in Figure 2.3.

Additional procedures for the child-robot interaction were also considered and recorded

throughout the database collection. When JIBO greeted the child at the beginning of the

recording session, the child generally became more open to the robot interaction and less

tense. The greeting that was used for this database included questions in which JIBO showed
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Figure 2.3: Image prompts shown on JIBO’s face screen. JIBO displays the image to the
child while asking the corresponding question in a friendly child-like voice.
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interest in getting to know the child (e.g., “What is your favorite color?”). Additionally,

occasional praise or encouragement (e.g., “Nice job”, “Good try”) seemed to provide the

child with some motivation to continue playing with JIBO.

The participants of the data collection attended a university demonstration elementary

school in California. Social robots were introduced to teachers and students as part of an

early science and technology inquiry-based curriculum. During the first year of data col-

lection, approximately 40% of the students were enrolled in Spanish-English dual language

immersion classrooms. Additionally, approximately one-third of the participants were bira-

cial. Parents of the children were asked to complete a survey about their child’s languages

spoken, reading habits, and familiarity with technology. Approximately 90% of the par-

ents responded that their household primarily speaks English. Over 70% responded that

their child has had some exposure to computers, smartphones, or tablet devices. Further

information about the data collection procedure can be found in [YBA19a, YBA19b].

2.3 Publicly Available Databases Used

2.3.1 The Subglottal Resonances Database

The Subglottal Resonances Database [LMA12] is the partner corpus to The Child Subglottal

Resonances Database consisting of English-speaking adults reading various CVC utterances.

The database was developed by the Speech Processing and Auditory Perception Group at

UCLA and researchers at Washington University in St. Louis and Indiana University. A

total of 50 adults (25 male, 25 female) were recorded saying various CVC utterances in

the carrier phrase “I said a CVC again.” The list of utterances is the same as in The

Child Subglottal Resonances Database shown in Table 2.1. Each CVC utterance, along

with the associated carrier phrase, was repeated at least 10 times, and both microphone

and subglottal accelerometer signals were recorded simultaneously in the same fashion as

The Child Subglottal Resonances Database. Additionally, subglottal accelerometer signals
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of speakers sustaining the vowel /A/ were recorded with an emphasis on high quality. Both

microphone and accelerometer recordings were sampled at 48 kHz. This dissertation will use

the recordings of h-vowel-d (hVd) words with 8 monophthongs (/A/, /i/, /u/, /æ/, /2/, /I/,

/U/, /E/). This data is available through the LDC. Further information about this corpus

can be found in [LMA12].

2.3.2 The LibriSpeech ASR Corpus

The LibriSpeech ASR Corpus [PCP15] is a speech corpus consisting of English-speaking

adults reading various audio books. The main training set consists of approximately 460

hours of clean speech and 500 hours of noisy speech for a total of 960 hours of speech from

2338 speakers (1210 male, 1128 female). The development set consists of approximately 5

hours of clean speech and 5 hours of noisy speech from 66 speakers (33 male, 33 female).

Similarly, the testing set consists of approximately 5 hours of clean speech and 5 hours of

noisy speech from 80 speakers (40 male, 40 female). The audio was sampled at 16 kHz. This

dissertation will use the training set and testing set of the LibriSpeech ASR Corpus. Further

information about this corpus can be found in [PCP15].

2.3.3 The OGI Kids’ Speech Corpus

The OGI Kids’ Speech Corpus, also known as the CSLU Kids’ Speech Corpus, [SHC00] is a

speech corpus consisting of English-speaking children from kindergarten to 10th grade. Each

grade consisted of approximately 100 speakers, and each speaker participated in two speech

tasks. The first task was a scripted speech task where the speaker would read either single

words or phrases presented to them. Furthermore, for this task, the corpus also includes a

corresponding text file documenting the accuracy of the child’s reading for each audio file.

The second task was a spontaneous speech task where the speakers were prompted to talk

about certain topics such as their favorite movie. The audio was sampled at 16 kHz. This
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dissertation will use the scripted speech task of the OGI Kids’ Speech Corpus. Only the files

labeled as “1” in the verification files, which indicates that the audio file contains the speech

of a child saying the correct word with limited noise, were used. This subset was further

split into two subsets based on whether the child said a single word or a multiword phrase.

Additionally, the number of utterances of the words “push” and “spoons” was substantially

larger than that of the other words. As such, we only used a random subset of these words to

remove any potential bias. Further information about this corpus can be found in [SHC00].

2.3.4 The CMU Kids Corpus

The CMU Kids Corpus [EMG97] is a speech corpus consisting of 76 English-speaking children

from 1st to 3rd grade, as well as one child from 6th grade and one child from kindergarten for

a total of 78 speakers. Each child was asked to read a series of several phrases or sentences

for a total of 5180 read sentence utterances across all speakers. The audio was sampled at 16

kHz. In this dissertation, exactly 70% of these utterances (3626 utterances) were randomly

chosen from this corpus to be used as a training set. The rest were used as a testing set.

Further information about this corpus can be found in [EMG97].

2.4 Speech Tools and Software

2.4.1 Wavesurfer

Wavesurfer [SB00] is a publicly available speech analysis software developed by K̊are Sjölander

and Jonas Beskow of The KTH Royal University of Technology using the Snack Sound Toolkit

[Sjo97]. In this dissertation, Wavesurfer’s spectrogram, formant, and pitch visualization tools

were used. Further information about this software can be found in [SB00].
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2.4.2 Praat

Praat [BW17] is a publicly available speech analysis software and feature computation tool-

box developed by Paul Boersma and David Weenink of the University of Amsterdam. In

this dissertation, Praat’s automatic formant estimation tools were used, specifically the “To

Formant (burg)” function. Further information about this software can be found in [BW17].

2.4.3 VOICEBOX

VOICEBOX [Bro06] is a speech processing toolbox consisting of MATLAB functions de-

veloped by Mike Brookes of Imperial College London. This toolbox was used for feature

extraction in the ASR experiments. Further information about this toolbox can be found in

[Bro06].

2.4.4 Multi-Band Summary Correlogram-based Pitch Detection

The Multi-Band Summary Correlogram (MBSC)-based Pitch Detection [TA13] is a pitch de-

tection algorithm developed by Lee Ngee Tan and Abeer Alwan of UCLA, and the MATLAB

code for the algorithm is available online (http://www.seas.ucla.edu/spapl/shareware.html).

This algorithm extracts pitch by decomposing the frequency content of the signal with mul-

tiple wideband filters. This dissertation will use MBSC-based Pitch Detection as the pitch

detection algorithm of choice; the fo extraction methods from Praat and Wavesurfer were

used for comparison. Further information about this algorithm and software can be found

in [TA13].

2.4.5 Kaldi

Kaldi [PGB11] is an open-source speech recognition toolkit developed by researchers at

Microsoft Research, Saarland University, Centre de Recherche Informatique de Montreál,
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SRI International, and Technical University of Liberec. The tookit includes C++ code and

shell script recipes to train complete ASR systems including GMM and DNN-based acoustic

models, language models, phonetic decision trees, and decoding graphs. This dissertation

will use Kaldi to train and test ASR systems in Section 5. Further information about this

tookit can be found in [PGB11].

2.5 Chapter Summary

In this chapter, we introduced several databases and speech analysis software tools that

will be used throughout this dissertation. Both the Child Subglottal Resonances Database

[YLG18] and the GFTA-JIBO Kids Corpus [YBA19a, YBA19b] were developed and pub-

lished in part by the author. The publicly available databases introduced included the

Subglottal Resonances Database [LMA12], LibriSpeech ASR Corpus [PCP15], OGI Kids’

Speech Corpus [SHC00], and CMU Kids Corpus [EMG97]. The speech software tools in-

troduced included Wavesurfer [SB00], Praat [BW17], VOICEBOX [Bro06], the MBSC Pitch

Detection software [TA13], and Kaldi [PGB11]. The next chapter will discuss the modeling

and usage of the subglottal signal in speech recognition.
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CHAPTER 3

A Model of the Subglottal System for Children

The subglottal system and subglottal resonances (SGRs) play important roles in speech

production and perception for both adults and children. The ability to reliably model SGRs

is important for speech science and for utilizing the information contained in SGRs for

technologies such as automatic speech recognition (ASR). In this chapter, we analyze the

quarter-wavelength resonator model of the subglottal system using both adult and child

SGR data. Adjustments are made to improve the model for child SGRs, specifically the

third (SGR3). Additionally, we examine the speech normalization properties of SGRs in

child speech.

3.1 The Subglottal System Model

Large-scale investigations of adult SGRs have demonstrated that the adult subglottal sys-

tem and corresponding SGRs are well-modeled by a tube model [LMA12, LAA11]. This is

synonymous with a classical technique for modeling speech acoustics where the vocal tract

is modeled as a series of tubes and formants are approximated as the resonances of the

corresponding quarter-wavelength resonators for tubes with one end open, half-wavelength

resonators for tubes with either both ends open or both ends closed, and Helmholtz resonators

for large volumes with narrow openings [RS11]. However, due to the physical structure of the

larynx, bronchi, and lungs, only a single quarter-wavelength resonator is necessary to model

the SGRs of the subglottal system. An example of a vocal tract tube model for the produc-

tion of the vowel /i/ and a subglottal tube model are shown in Figure 3.1. The vocal tract
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Figure 3.1: Approximate tube models of the vocal tract during the production of the vowel
/i/ (left) and the subglottal system (right).

tube model consists of a quarter-wavelength resonator (Tube 3), half-wavelength resonators

(Tube 1, Tube 2), and a Helmholtz resonator (the combination of Tube 1 and Tube 2). How-

ever, the subglottal system can be approximated with only a single tube quarter-wavelength

resonator.

The resonances of a quarter-wavelength resonance model can be computed as follows:

RN =
(2N − 1)cRN

4l
(3.1)

where RN is the frequency of the N -th resonance in Hz, cRN
is the propagation velocity of

the wave for the N -th resonance, and l is the length of the tube. For the subglottal system,

it has been shown that for adults, l can be approximated by scaling the speaker’s height as

l = h/ka, where h is the speaker’s height and ka is the acoustic scaling factor that can be

determined using SGR and height data [LMA12, LAA11]. As such the model for computing

SGRs is given by the following:

SGRN =
(2N − 1)cSGRN

4h/ka
(3.2)

where SGRN is the N -th SGR, and cSGRN
is the speed of sound for that resonance. When

modeling SGRN where N >= 2, cSGRN
is approximated as the speed of sound at body
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temperature, c0 ≈ 35, 900 cm/s. However, it has been previously noted that cSGR1 is larger

than c0 due to the inertive properties of the subglottal system tissue walls in the lower

frequency range of SGR1 [LAA11]. This value has been previously denoted as cSGR1 = cw

for the “walls” of the subglottal system, and this notation will be retained for the rest of

this chapter. Thus, when using Eq. 3.2 to model the subglottal resonances, the values of

ka and cw must first be determined using SGR and height data by minimizing the root

mean-squared (RMS) error of the model estimates as follows:

1. Determine ka using Eq. 3.2 and SGR2 vs. height data.

2. Determine cw using Eq. 3.2, ka, and SGR1 vs. height data.

To compute ka and cw, the first three SGRs of 50 adult speakers (25 male, 25 female) from

The Subglottal Resonances Database [LMA12] were measured. The SGRs were estimated

using Praat’s “To Formant (burg)” function [BW17]. All estimates were then verified using

a spectrogram and LPC visualization of the vowel spectrum, and manual corrections were

performed as needed. These SGR data were used to estimate the modeling curves shown in

Figure 3.2 using Eq. 3.2 and the minimum RMS error criterion. For the resulting model,

ka = 8.795 and cw = 46, 532 cm/s, which is less than a 0.2% difference from the values

derived in [LMA12]. The minimum RMS errors for the SGR1, SGR2, and SGR3 models

were 45.2 Hz, 71.3 Hz, and 108.6 Hz, respectively. Measured SGR vs. height data are shown

in Figure 3.2, along with the modeling curves. The SGR and height data clearly follow the

general trend of the curves, demonstrating the validity of Eq. 3.2.

3.2 The Subglottal Resonance Model for Children

While Eq. 3.2 has been verified using adult speech, this model has yet to be evaluated using

child speech. Of particular importance to the child subglottal system is the fact that children

are shorter than adults, resulting in a shorter acoustic length and consequently higher SGRs.
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Figure 3.2: Measured SGR1 (#), SGR2 (�), and SGR3 (♦) vs. height for 50 adult speakers.
The modeling curves are estimated using Eq. 3.2 along with the minimum RMS error
criterion.

To evaluate the validity of Eq. 3.2 for children, we measured the SGRs from 43 children

(31 male, 12 female), aged 6-18 years old, from The Child Subglottal Resonances Database

[YA18]. The SGRs were estimated using Praat’s “To Formant (burg)” function [BW17].

All estimates were then verified using a spectrogram and LPC visualization of the vowel

spectrum, and manual corrections were performed as needed. Additionally, the data were
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Table 3.1: Minimum RMS estimates of ka and cw using Eq. 3.2 for SGR estimation, along
with the RMS errors (εRMS) computed using either all adult and child data or only child
data.

Child εRMS (Hz) Adult εRMS (Hz)

Data cw (cm/s) ka SGR1 SGR2 SGR3 SGR1 SGR2 SGR3

Child and Adult 45,400 8.760 88 136 190 49 75 108
Child 44,648 8.735 87 138 187 55 77 107

further supplemented by SGR and height data from 12 children (5 male, 7 female), aged 6-18

years old, reported in [LAM11], for a total of 55 children. Finally, the child SGR and height

data were combined with SGR and height data of the 50 adults from Figure 3.2. These data

were used to estimate ka and cw for the model in Eq. 3.2 using the minimum RMS error

criterion and two sets of data. The first set included all 55 children and 50 adults. The

second set only included the 55 children. The resulting model parameters and RMS errors

for each of the SGRs is shown in Table 3.1. Measured SGR vs. height data are shown in

Figure 3.3, along with the modeling curves. Notably, the curve estimated using all data and

the curve estimated using only child data are almost identical.

Unlike the case for only adults in Figure 3.2, the minimum least squares regression curves

for the combination of adults and children in Figure 3.3 systematically overestimate the val-

ues of SGR3 and underestimate the values of SGR2, especially at the higher frequencies and

shorter heights. To understand this effect further, SGR2 vs. SGR1, SGR3 vs. SGR1, and

SGR3 vs. SGR2 were plotted in Figure 3.4 using the same data from Figure 3.3. From Eq.

3.2, these plots are expected to follow the ratios 3c0/cw, 5c0/cw, and 5/3 for SGR2/SGR1,

SGR3/SGR1, and SGR3/SGR2, respectively. These ratio lines are also plotted in Figure

3.4. Note that the SGR3 vs. SGR2 values are under the modeling line at higher frequencies.

Similar to that which was observed in Figure 3.3, the SGR3 values were overestimated.

A possible explanation for this phenomenon can be found in [FM78]. That study found

that high frequencies penetrate deeper into the bronchi and lungs compared to lower fre-
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Figure 3.3: Measured SGR1 (#), SGR2 (�), and SGR3 (♦) vs. height for 50 adult speakers
(blue) and 55 child speakers (red). The modeling curves were estimated using Eq. 3.2
along with the minimum RMS error criterion with all data shown (dashed) and just the
child data (dotted). At the higher frequencies, the modeling curves overestimate SGR3 and
underestimate SGR2.

quencies. This is also consistent with similar frequency-dependent penetration depths doc-

umented in the acoustics of horns [Ben90, Pyl75]. With respect to the tube model of Eq.

3.2, this implies that l is larger than the adult approximation of l = h/ka as SGR3 increases

in frequency. Furthermore, the curving of the data in Figures 3.3 and 3.4 suggests that the
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Figure 3.4: Measured SGR2 vs. SGR1 (#), SGR3 vs. SGR1 (�), and SGR3 vs. SGR2 (♦)
for 50 adult speakers (blue) and 55 child speakers (red). The expected ratio lines derived
from Eq. 3.2 are also displayed. The SGR3 vs. SGR2 values are lower than the modeling
line, suggesting that SGR3 increases slower than the model given by Eq. 3.2.

scaling of the effective tube length l with respect to h is non-linear.

To address this problem, we propose a refined tube model for SGR3, in which the effective

acoustic length of the subglottal system is modified, thus incorporating the penetration depth

findings of [FM78]. The term la is introduced as the acoustic length of the subglottal system

for SGR1 and SGR2, previously defined as la = h/ka. To maintain consistency, the refined

tube model replaces la with la,SGR3 , which represents the acoustic length for the SGR3

model. Specifically, as height decreases, and SGR3 correspondingly increases, the effective
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acoustic length of the tube model, la,SGR3 should decrease slower than la as higher frequencies

penetrate further into the subglottal system than lower frequencies. This is implemented

by defining the acoustic length of SGR3 as a function of la. The model is implemented as

follows:

SGR3 =
5c0

4la,SGR3(la)
(3.3)

la,SGR3(la) = la + f(la) (3.4)

where the effective acoustic length for SGR3 can be derived from the acoustic length used to

model SGR1 and SGR2, la = h/ka, and some additive function representing the additional

penetration depth of the higher frequencies. Such a function must follow certain assumptions

within reasonable values of la:

• f(la) is positive

• f(la) is smaller than la

• f(la) approaches 0 as la becomes large

• ∂f(la)
∂la

is greater than −1 to ensure la,SGR3 is monotonically increasing

The proposed candidate function is as follows:

f(la) =
la

1 + e(αla−β)
(3.5)

where additional parameters α and β are determined by minimizing the RMS error over a

set of child SGR3 data.

While the original model required two parameters, ka and cw, to be determined using

SGR data, this new model requires the estimation of two additional parameters for a total

of four parameters, ka, cw, α, and β. With sufficient SGR and height data from adults and

children, the minimum RMS error criterion can be used as follows:
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Table 3.2: Minimum RMS estimates of ka, cw, α, and β using Eq. 3.2 for SGR1 and SGR2

and Eq. 3.3-3.5 for SGR3, along with the RMS errors (εRMS) computed using either all
adult and child data or only child data.

Child εRMS (Hz) Adult εRMS (Hz)

Data cw (cm/s) ka α (1/cm) β Sg1 Sg2 Sg3 Sg1 Sg2 Sg3

Child and Adult 43,849 9.070 0.235 0.805 88 122 147 49 68 107
Child 42,735 9.126 0.298 1.704 87 123 147 55 71 116

1. Determine ka using Eq. 3.2 and SGR2 vs. height data.

2. Determine cw using Eq. 3.2, ka, and SGR1 vs. height data.

3. Determine α and β using Eq. 3.3–3.5, ka, and SGR3 vs. height data.

To verify this new model, the estimation procedure above was followed using all the data

from Figure 3.3 to produce regression curves with the new model using two sets of data. The

first set included all 55 children and 50 adults. The second set only included the 55 children.

The resulting model parameters and RMS errors for each of the SGRs is shown in Table 3.2.

The new modeling curves are shown along with the SGR vs. height data in Figure 3.5.

While the RMS error did not decrease for SGR1, the RMS errors for SGR2 and SGR3

decreased by at least 9.5% and 21.4%, respectively, for children. Similarly, the RMS error for

SGR2 decreased by at least 5.3% for adults, thus further demonstrating the improvement of

the model defined by Eq. 3.2–3.5 rather than just Eq. 3.2. Similarly, the modeling ratios of

SGR2/SGR1, SGR3/SGR1, and SGR3/SGR2 are shown along with the SGR2 vs. SGR1,

SGR3 vs. SGR1, and SGR3 vs. SGR2 data in Figure 3.6. In both Figures 3.5 and 3.6, the

modeling curves clearly fit the data better than Figures 3.3 and 3.4, respectively.

3.3 The Normalization Properties of Subglottal Resonances

One of the relevant properties of SGRs in speech production is the SGRs ability to divide

the vowel space, as noted by several past studies [ALL13, CS07, MLW08, CBG09]. Due
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Figure 3.5: Measured SGR1 (#), SGR2 (�), and SGR3 (♦) vs. height for 50 adult speakers
(blue) and 55 child speakers (red). The modeling curves for SGR1 and SGR2 were estimated
using Eq. 3.2, and the modeling curve for SGR3 was measured using Eq. 3.3-3.5. All models
were derived using the minimum RMS error criterion with all data shown (dotted) and just
the child data (dashed). Compared to Figure 3.3, Eq. 3.3-3.5 are more effective at modeling
SGR3.

to the coupling of the subglottal system with the vocal tract, resonances in the subglottal

acoustic space manifest themselves as zeros in the speech acoustic space, often interfering

with formants, which act like poles in the speech acoustic space [RS11]. As such, it has been
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Figure 3.6: Measured SGR2 vs. SGR1 (#), SGR3 vs. SGR1 (�), and SGR3 vs. SGR2

(♦) for 50 adult speakers (blue) and 55 child speakers (red). The expected ratio lines with
SGR1 and SGR2 were derived from Eq. 3.2, and the expected ratio lines with SGR3 were
derived using Eq. 3.3-3.5. All models were derived using the minimum RMS error criterion
with all data shown (dotted) and just the child data (dashed). Compared to Figure 3.4, the
ratio line for SGR3 vs. SGR2 displayed in this figure better fits the data.

hypothesized that speakers actively avoid these zeros when producing vowels to prevent a

reduction in formant energy [Lul10].

Further investigations into SGRs have revealed that SGR locations have a quantal effect

[Ste98, LBM07], dividing the vowel space into regions that separate front and back vowels

as well as high and low vowels. This was demonstrated in [ALL13], which showed that a

speaker’s SGR1 and SGR2 divide the speaker’s F2 vs. F1 space into four quadrants, each
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containing the F2 vs. F1 location of one of the four corner vowels (/A/, /i/, /u/, /æ/).

Specifically, SGR1 serves as a threshold for the value of F1 when determining high and low

vowels, and SGR2 serves as a threshold for F2 when determining front and back vowels.

To examine the effectiveness of the SGRs in normalizing the vowel space of child speech,

the first and second formants (F1, F2) of the vowels /A/, /i/, /u/, and /æ/ were measured

from each of the corresponding utterances from the 43 children in The Child Subglottal

Resonances Database. The formants were normalized by dividing F1 by SGR1 and F2 by

SGR2 such that all speakers have the same vowel space threshold locations. The scatterplot

of F2/SGR2 vs. F1/SGR1 is shown in Figure 3.7. The dividing lines in the figure are located

at F1/SGR1 = 1 and F2/SGR2 = 1.

Observing Figure 3.7, the formants of child vowel utterances have a similar relationship

with SGRs as that of adults. For the child formant data in Figure 3.7, when considering

typical F1 and F2 placements with respect to the SGR boundaries, the vowels followed

the quantal patterns for /A/, /i/, /u/, /æ/ 81.7%, 100.0%, 84.4%, and 86.8% of the time,

respectively. The utterances that were atypical can be explained by mispronunciations or

variability due to the acoustic instability of child speech. However, the quantal trend still

remains, suggesting the effectiveness of SGRs for speech normalization.

3.4 Chapter Summary

In this chapter, we proposed a modification to the existing quarter-wavelength resonator

model for SGRs to better accommodate child SGRs without sacrificing the modeling of

adult SGRs. Furthermore, this modification demonstrates the importance of considering the

penetration depth of higher frequencies when modeling child SGRs. Additionally, normal-

ization using SGR1 and SGR2 was shown to be reasonably effective at dividing the vowel

space of children, justifying the use of SGRs as normalization factors in feature normaliza-

tion procedures [GPY15]. The next chapter will propose the use of fundamental frequency
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Figure 3.7: F2/SGR2 vs. F1/SGR1 for the vowels /u/ (�), /A/ (�), /i/ ( ), and /æ/ (#)
from utterances by 43 children. The vowel boundaries as defined by SGR1 and SGR2 are
normalized to be 1. In general, each vowel is mainly located in a single quadrant.

(fo), another physical parameter of speech, as an alternative normalization factor.
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CHAPTER 4

Tonotopic Distances and fo-based Warping

In this chapter, we will review the relationship between the fundamental frequency (fo)

and formants using the tonotopic distances, a metric developed to model human speech

perception [SG86, Tra81, FDT96, CL79, Chi85]. These tonotopic distances are reformulated

such that a warping method for child speech can be derived using only a speaker’s median

fo. This warping method can be used for both feature normalization and data augmentation

when applied to child ASR systems.

4.1 The Tonotopic Distances Between Formants and fo

4.1.1 Modeling

The tonotopic distances are a set of features given by the distance between adjacent formant

frequencies (Fn+1−Fn for n ∈ {1, 2, 3, . . .}), along with the distance between the first formant

and fundamental frequency (F1− fo), in some perceptual frequency scale such as the Mel or

Bark scale. For consistency, the rest of this dissertation will use the Mel scale. A number of

previous studies have found success in modeling human vowel perception using the tonotopic

distances [SG86, Tra81, FDT96, CL79, Chi85]. That is, vowel utterances are more likely to

be perceived as the same vowel if the vowel utterances’ tonotopic distances are similar.

An equivalent feature representation of this set of tonotopic distances can be formulated

as the differences between each formant and fo (Fn − fo for n ∈ {1, 2, 3, . . .}). This can

be shown by noting that the tonotpic distance Fn+1 − Fn can be obtained using Fn+1 −
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fo and Fn − fo by taking the difference (Fn+1 − fo) − (Fn − fo). This reformulation has

several implications for vowel space modeling. Notably, this implies that fo, which is often

relegated to the voice source and separated from the vocal tract analysis of speech production

[RS11], plays a fundamental role in vowel perception. That is, a linear relationship (with

a slope of 1) exists between a vowel’s formants and fo in the perceptual frequency scale.

It is known that children have much higher formant and fo values than adults [LPN97,

LPN99]. As such, the relationship between formant and fo values in child or adult speech

may be perceptually causal rather than simply correlated. Furthermore, this reformulation

removes the dependence of formant frequencies on adjacent formant frequencies, instead

being dependent on fo. This property will be used in Section 4.2 to formulate a normalization

technique dependent solely on fo.

4.1.2 Analysis

To examine this linear relationship in the perceptual space, the vowel productions of hVd

utterances from all 43 speakers in The Child Subglottal Resonances Database were analyzed.

Of the 14 vowels, four tense vowels, /A/, /i/, /u/, and /æ/, and four lax vowels, /2/, /I/,

/U/, and /E/, were chosen for analysis. The values of fo, F1, F2, and F3 were measured.

All measurements were done with Praat [BW17] with manual corrections as needed. Least-

squares linear regression lines relating F1, F2, and F3, to fo for each vowel were computed.

Of all the regressions, the slopes of 19 of the 24 regression lines were between 0.70 and

1.30, reasonably close to the expected value of 1. Furthermore, these slopes contributed

significantly to the regression (p < 0.001) with Pearson’s correlation coefficients greater than

r > 0.5.

The formant and fo data of the 8 vowels are displayed in Figure 4.1, along with least-

squares regression lines fixed to have a slope of 1 to compare the data against the expected

modeling line. Clearly, the data follow the regression lines with an upward trend in formant

values as fo increases, demonstrating the validity of the reformulation. It should be noted
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that as fo increases, the variability in formants for some of the vowels also increases such as

for F1 of the vowel /i/. This is likely due to mispronunciation or the speech variability of

children. Regardless, even with such variability, the linear trend is still apparent.

4.2 fo Normalization

Based on the reformulation of the tonotopic distances, we can derive a frequency normaliza-

tion technique in the spectral domain that relies solely on the value of a speaker’s fo. First,

we note that according to the tonotopic distance model of speech perception, when fo and

the formants (F1, F2, F3, . . . ) are measured on some perceptual scale, the difference between

the formants and fo (F1 − fo, F2 − fo, . . . ) should be constant across different utterances

of the same vowel. Thus, by measuring a speaker’s fo, we can normalize the formants of a

vowel to a default value as follows:

Fn,norm = Fn,orig − (fo,utt − fo,def ) (4.1)

for n ∈ {1, 2, 3, . . .} where fo,utt is the fo of the utterance, fo,def is a predetermined value

of fo to represent a default speaker, Fn,orig is the n-th formant in the original utterance,

Fn,norm is the n-th formant after normalizing to fo,def , and all frequencies are measured in

the perceptual Mel scale.

Although Eq. 4.1 has been formulated specifically for formant normalization, this comes

with the complication of formant estimation, which is unreliable for children or speakers

with high fo and formant values. Instead, we can avoid direct manipulation of formants by

further generalizing Eq. 4.1 to normalize the entire spectrum as follows:

fnorm = forig − (fo,utt − fo,def ) (4.2)

where forig is some frequency in the original spectrum and fnorm is the corresponding fre-
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Figure 4.1: F1 vs. fo (blue), F2 vs. fo (red), and F3 vs. fo (purple) for the vowels /i/,
/æ/, /A/,/u/, /I/, /E/, /2/, and /U/ from corresponding hVd words of children in The Child
Subglottal Resonances Database. Also shown are the least-squares linear regression lines,
fixed to have a slope of 1. The data follow the linear relationship implied by the reformulation
of the tonotopic distances.
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Figure 4.2: Mel filter bank outputs of the vowel /i/ spoken by an 18-year-old male (solid)
and a 7-year-old male (dashed) computed with 15 filter banks using a frequency range of 20
Hz to 6 kHz. The filter bank outputs are computed both without (left) and with (right) fo
normalization. When normalization is applied, default fo is chosen to be fo,def = 100 Hz.
The 18 year old male had fo,utt = 106 Hz, and the 7 year old male had fo,utt = 270 Hz.
The filter bank outputs computed with fo normalization are better aligned than the outputs
without fo normalization. Note that this normalization technique warps every speaker to
the same default space (fo = 100 Hz) rather than warping one speaker to another speaker’s
speech space.

quency in the normalized spectrum. That is, the frequency content in forig is shifted to fnorm.

In the case of a discrete spectrum, fnorm can be reinterpreted as the normalized frequency

corresponding to some discrete Fourier transform (DFT) index and forig as the frequency

from the original spectrum mapped to the index of fnorm. Note that the value of fo,def need

not be speaker nor vowel dependent and can be empirically chosen; hence fo,def acts as a

correction factor. We have named this method fo normalization.

An example of fo normalization is shown in Figure 4.2. The Mel filter bank outputs of

an 18-year-old male and 7-year-old male saying the vowel /i/ are displayed both with and

without fo normalization. When fo normalization is applied, the filter bank outputs for the

two speakers become more similar.
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4.3 fo Perturbation

While fo normalization uses Eq. 4.2 to reduce variability between speakers by fixing fo,def

to some default value and adjusting fo,utt based on the speaker, an alternative procedure is

to use Eq. 4.2 as a data augmentation method to create variability in the data. To perform

data augmentation, features are extracted several times from a single speech utterance while

changing fo,def . The resulting set of features is consistent with the structure of speech

as defined by the tonotopic distances and can be used to augment training data. This is

particularly useful for training large neural-network-based systems, which often requires large

amounts of training data. We refer to this method as fo perturbation.

Furthermore, fo normalization and fo perturbation can be used simultaneously. This is

done by setting fo,utt to be the fo of the utterance and choosing multiple values for fo,def . This

procedure allows us to remove large inter-speaker variabilities while generating speech-like

features to further augment the training data.

4.4 fo Warping Parameter Considerations

For fo warping to be effective, several parameter considerations must be taken into account.

For fo normalization, the default value of fo,def must be chosen beforehand so features can

be normalized to the same default speech space. After initial experimentation, we found

that fo,def = 100 Hz or 150 Mels is a reasonable choice for optimizing ASR word error rate.

A further consideration is the approximation of fo when performing fo normalization.

It is desirable to use the median fo over the speech utterance as the value of fo,utt. Using

a median can normalize outliers from the fo estimation process and compensate for intra-

speaker variability. Additionally, storage of a single number to be applied to a speaker’s

speech is an efficient way to quickly adapt an ASR system as opposed to requiring multiple

values of fo during feature extraction for every individual speaker. DFT computation over
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an utterance can also be implemented much more efficiently when only one value of fo,utt is

used, resulting in faster computation times during feature extraction.

For fo perturbation, additional values for fo,def must be chosen. This can be done by

perturbing the initial choice of fo,def . In our experiments, we chose to increase the amount of

data by 7-fold. After preliminary experimentation, we found that adding ±20, ±40, and ±60

Mels to the initial value of fo,def is effective. For example, when choosing an initial fo,def =

100 Hz, the fo perturbation method would use fo,def ∈ {58.52, 72.10, 85.93, 100.00, 114.32,

128.90, 143.74} Hz, using all values for every utterance when extracting features.

4.5 Chapter Summary

In this chapter, we examined the tonotopic distances between formants and fo, and refor-

mulated these distances as linear relationships between formants and fo in the perceptual

frequency scale. This reformulation motivated the fo warping technique, which is capable of

warping the frequency spectrum of an utterance while maintaining the speech-like structure.

The warping technique can be used for normalization, data augmentation, or both simul-

taneously. Additional parameter considerations were also discussed. The next chapter will

analyze the performance of ASR systems for young children, examine the effectiveness of fo

warping, and compare the warping to SGR-based normalization and other state-of-the-art

normalization and data augmentation techniques.
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CHAPTER 5

ASR Experiments and Results

In this chapter, we report on ASR experiments to assess their performance on child speech

in several scenarios. The fo-based warping techniques are applied to child ASR training

and testing and compared with SGR-based normalization and other state-of-the-art normal-

ization and data augmentation techniques. Both single word and continuous speech ASR

systems are analyzed. We focus on kindergarten-aged children as many of these children

are pre-literate, and educational applications and child human-robot interactions (HRI) can

benefit greatly from an improved child ASR system for accessibility [KLM17].

5.1 The Effect of Age on ASR Performance

5.1.1 Database

The first set of experiments analyzed the effect of age on ASR performance using the OGI

Kids’ Speech Corpus. To eliminate the confounding factor of a child language model, only

single words from the scripted speech task were used to perform single word recognition.

Utterances contained a total of 208 possible words. These words ranged from short, easy

words (e.g., “chair”) to longer, more difficult words (e.g., “organization”). The data were

separated into 11 subsets by grade (kindergarten to 10th grade), and 1,654 word utterances

were randomly chosen from each grade to ensure a fair comparison between grades.
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5.1.2 Matched-Grade Experimental Setup

For the matched-grade experiments, a ten-fold cross-validation ASR experiment was per-

formed for each grade where 90% of the data was used for training a triphone-based ASR

system and the remaining 10% was used as testing data. The language model was based on

single words with all words being equally probable.

For each system, 13-dimensional Mel-frequency cepstral coefficients (MFCCs) were ex-

tracted with a window size of 25 ms, frame shift of 10 ms, 23 filters, a lifter coefficient of

22, and bandwidth of 4 kHz. Cepstral mean normalization (CMN) was used. An additional

7-frame linear discriminant analysis (LDA) was also used for a final 40-dimensional feature

input. While we also tested the MFCC features with first derivatives (delta) and second

derivatives (delta-delta), these features did not perform as well as the the system with a

7-frame concatenation and will not be reported.

Due to the small size of the training data and scale of the word recognition task, ASR

systems were trained on 250, 500, or 1000 triphones to examine the effect of increasing the

number of triphones on ASR performance. Both Gaussian mixture model Hidden Markov

model-based (GMM-HMM) and deep neural network Hidden Markov model-based (DNN-

HMM) ASR systems were evaluated. DNNs were trained on an additional 9-frame LDA

with 2 hidden layers and 2-norm non-linearities with input dimension of 500 and output

dimension of 100. Feature space maximum likelihood linear regression (fMLLR) speaker

adaptive training was also used. However, we did not use vocal tract length normalization

(VTLN) as it was found not to be helpful. All systems were trained using the Kaldi ASR

toolkit [PGB11].

5.1.3 Kindergarten Mismatched-Grade Experimental Setup

For the mismatched-grade experiments, the same systems that were trained using the DNN-

HMM 250 triphone systems for 1st to 10th grade from the matched-grade experiments were
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Table 5.1: Word error rates (WERs) (%) of ASR systems for the single word matched-
grade experiments. Features were extracted with a 4 kHz bandwidth. Systems were trained
with fMLLR speaker adaptive training. Both GMM and DNN-based acoustic models are
shown with the number of triphones used in parentheses. The kindergarten ASR performed
dramatically worse than older grades and was more affected by the number of triphones.

System Grade
K 1 2 3 4 5 6 7 8 9 10

GMM(250) 28.32 15.39 11.76 11.12 5.98 6.30 4.88 6.24 3.75 4.25 3.85
GMM(500) 30.08 17.28 12.99 11.18 5.61 7.34 5.42 5.89 6.16 4.57 4.23
GMM(1000) 35.93 19.55 14.57 12.86 6.34 7.10 5.85 6.54 6.90 5.28 4.88

DNN(250) 26.91 14.64 10.50 10.39 4.65 4.64 4.78 5.39 3.34 3.58 3.56
DNN(500) 26.34 16.18 9.51 9.54 4.50 5.46 4.15 5.42 3.57 3.39 3.80
DNN(1000) 30.30 16.06 10.69 10.06 5.22 5.09 5.20 5.14 3.65 3.57 4.05

used. These ASR system were chosen as they performed the best in the experiment explained

in Section 5.1.2. The systems were tested with kindergarten speech. Additionally, VTLN

was used to reduce the mismatch between age groups.

5.1.4 Results and Discussion

The results of the matched-grade experiment for both the GMM-HMM and DNN-HMM

systems are shown in Table 5.1. Notice three major performance jumps between neighboring

grades. Between kindergarten and 1st grade, the word error rate (WER) had an absolute

decrease of 10%, resulting in a relative decrease of over 38%. Between 1st and 2nd grade,

the WER had an absolute decrease of between 3-7%, resulting in a relative decrease of

over 23%. Finally, between 3rd and 4th grade, the WER had an absolute decrease of 5%,

resulting in a relative decrease of almost 50%. After 4th grade, the WER levels stabilized

to approximately 5%, which is similar to the performance on adult speech. This indicates

four major age groups in terms of ASR performance: kindergarten, 1st grade, 2nd and 3rd

grade, and 4th grade and above.

Observing the GMM-HMM ASR performance in Table 5.1, varying the number of tri-

phones in the acoustic model seems to have different effects depending on grade. For the
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kindergarten ASR system, WER decreased significantly when the number of triphones was

decreased from 1000 to 500 (p < 0.001). The 1st grade ASR system also showed a similar

performance improvement when the number of triphones was decreased from 1000 to 500,

albeit at a lesser significance level (p < 0.05). For the 2nd grade and older ASR systems,

changing the number of triphones did not have a significant effect except for the 8th grade

system, which is likely an outlier.

All DNN-HMM models seemed to perform comparably or better than the GMM-HMM

models. However, the significant effect of changing the number of triphones for 1st grade and

8th grade systems disappeared. The kindergarten ASR system still improved significantly

when the number of triphones decreased from 1000 to 500 (p < 0.01).

Past studies on child speech suggest that young children do not have the ability to

articulate speech in a consistent manner [GGN09, SBM87, ZHG15]. Thus, the inclusion

of additional triphones does not provide additional benefit when training ASR systems for

young children. In fact, as the number of triphones increases, the amount of data available to

train each triphone decreases. As the dataset was small and young children are inconsistent

in pronunciation, increasing the number of triphones results in poor training conditions for

young child ASR.

It is important to note that a single age difference can cause a dramatic degradation in

performance, such as the difference between the kindergarten and 1st grade systems. This is

particularly important as this implies that age groups may need to be specifically targeted

and evaluated when training ASR systems, rather than the conventional method of grouping

a large age range together as “child” speech data.

The results of the mismatched-grade experiments are shown in Table 5.2. The testing

data used were always kindergarten speech. Unsurprisingly, the systems trained on older

child speech (6th-10th grade) performed poorly on kindergarten speech. While VTLN was

effective at improving the performance of these systems, the performance still failed to reach

the level of the systems trained on younger child speech (1st-5th grade).
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Table 5.2: Word error rates (WERs) (%) of ASR systems for the single word mismatched-
grade experiments. Features were extracted with a 4 kHz bandwidth. Each ASR was trained
on a single grade level and tested on kindergarten speech. The systems tested were equiva-
lent to the DNN-based ASR systems with 250 triphones and fMLLR in the matched-grade
experiments. Additionally, VTLN and SGR feature normalization were used and found to
be effective on systems trained on older children. The best performing system (in boldface)
was trained on 1st grade speech with no feature normalization.

Feature Training Grade
Normalization K 1 2 3 4 5 6 7 8 9 10

None 26.91 23.11 24.80 25.38 26.45 24.83 28.64 31.64 36.58 39.00 43.62
VTLN 28.49 24.04 26.75 25.40 26.00 24.17 26.11 29.63 31.65 32.25 34.85
SGR 28.07 26.53 26.96 25.79 26.85 25.82 28.02 29.54 32.33 33.36 35.02

Notably, systems trained on younger child speech did not show any benefit from VTLN.

This is likely due to the fact that these younger children are more physiologically similar to

kindergarten children than the older children. Thus, the normalization seems to only have

an effect when the difference in age is large.

Interestingly, the ASR system trained on 1st grade speech performed significantly better

than the system trained on kindergarten speech when tested on kindergarten speech. This

may suggest that 1st grade speech is more suitable for training a kindergarten ASR than

even kindergarten speech. This is likely due to the large reductions in speech variability the

children experience as they age [LPN97, LPN99]. Furthermore, some educators hypothesize

that child speech becomes less variable as the children learn to read (which typically occurs

in 1st grade), further justifying the results.
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5.2 The Effect of SGR and fo Normalization on Single-Word Child

ASR

5.2.1 Database

This experiment examined the effects of fo normalization using the OGI Kids’ Speech Corpus.

The data subsets were setup in the same way as described in Section 5.1. That is, the data

were separated by grade, and 1,654 single-word utterances were randomly chosen from each

grade.

5.2.2 Experimental Setup

The features used were 13-dimensional MFCCs extracted with a window size of 25 ms,

frame shift of 10 ms, and a lifter coefficient of 22. When extracting MFCCs, a bandwidth

of 5.2 kHz was chosen such that F3 was contained in the signal for all children. During

feature extraction, several spectral warping normalization strategies were used including

no normalization (baseline), VTLN, F3-based normalization, SGR normalization, and the

proposed fo normalization with fo,def = 100 Hz. The number of filters used for extraction

varied, with features normalized with fo normalization using 15 filters and all other features

using 19 filters. The number of filters used was empirically chosen. Additionally, CMN was

also applied to all features.

For the mismatched-grade experiments, the data from the 1st to 10th grade children

were used as training data, separated by grade. For each grade, all 1,654 word utterances

were used to train a DNN-HMM ASR system with 250 triphones. After feature extraction,

a 7-frame LDA and fMLLR were applied for a final 40-dimensional feature input. DNNs

were trained on a 9-frame LDA, 2 hidden layers, and 2-norm non-linearities with an input

dimension of 500 and output dimension of 100. All ASR systems were trained using the Kaldi

ASR Toolkit. Each system was tested using all 1,654 word utterances from the kindergarten
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Table 5.3: Word error rates (WERs) (%) of DNN-HMM ASR systems for the single word
mismatched-grade experiments. Features were extracted with a bandwidth of 5.2 kHz. Each
ASR system was trained on a single grade level (1st-10th grade) and tested on kindergarten
speech. MFCCs were extracted with no normalization, fo normalization, VTLN, F3-based
normalization, and SGR normalization. All WERs that are not significantly different (p >
0.05) from fo normalization are in bold.

Feature Training Grade
Normalization 1 2 3 4 5 6 7 8 9 10

None 23.58 22.49 25.03 25.03 26.42 30.17 33.43 37.91 41.05 47.28
fo 25.70 24.55 25.76 26.96 26.06 29.63 32.59 34.28 34.76 37.76

VTLN 24.43 26.60 27.45 25.94 25.09 29.32 31.38 36.15 38.27 41.72
F3 26.90 27.45 28.90 26.48 26.48 30.53 30.59 31.80 34.95 37.36
SGR 25.63 23.10 28.05 26.48 25.70 28.05 29.99 32.41 34.82 38.75

speech data.

5.2.3 Results and Discussion

The results of the mismatched-grade experiment are shown in Table 5.3. The first row shows

the WERs of the baseline system with no normalization, followed by the WERs of the systems

trained with fo normalization, VTLN, F3-based normalization, and SGR normalization.

VTLN showed significant improvement over the baseline when training on 9th and 10th

grade speech. However, fo normalization provided a further significant improvement over

VTLN for these grades. Additionally, fo normalization provided a significant improvement

over F3-based normalization when training on 2nd and 3rd grade speech. The fo normaliza-

tion did not significantly improve over SGR normalization and did not perform significantly

worse either.

Notably, besides performance improvement, the fo normalization method also has addi-

tional computational benefits over some of the other normalization techniques. When using

VTLN in an ASR system, speech data must be passed through the system multiple times to

compute the maximum likelihood (ML) warping factor. As fo normalization also performed

significantly better than VTLN in heavily mismatched systems, fo normalization should be
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used in favor of VTLN for young child ASR.

While the fo and SGR normalization methods had similar performance, fo normaliza-

tion may provide additional computational benefits over SGR normalization as well. The

SGR computation requires a reliable estimation of the subglottal resonances using only a

microphone signal. The SGR computation used in SGR normalization requires the compu-

tation of formants [GPY15, ALL13] which are unreliable to estimate, especially for children

with high fo values. Furthermore, the SGR normalization algorithm also requires a rough

approximation of age, further complicating the technique. However, fo normalization only

requires fo, which is a commonly computed parameter.

5.3 The Effect of fo Normalization and Perturbation on Continu-

ous Child ASR

5.3.1 Databases

This set of experiments examined the effects of fo normalization and fo perturbation on

child ASR using several databases containing both adult and child speech. For adult speech

data, the LibriSpeech ASR Corpus was used. All 960 hours of clean and noisy speech were

used for training data.

The first child speech database used was the OGI Kids’ Speech Corpus. All multi-word

read speech utterances (both full sentences and phrases) were used, which consists of a total

of 10,072 utterances from children in kindergarten to 5th grade. Approximately 70% of the

utterances from each grade were used as adaptation data for a total of 7,051 utterances. The

remaining utterances were used for testing.

The second child speech database used was the CMU Kids Corpus. Of the 5,180 utter-

ances, 70% of the utterances were used for adaptation data for a total of 3,626 utterances.

The remaining utterances were used for testing.
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5.3.2 Experimental Setup

The features used were 13-dimensional MFCCs with a window size of 25 ms, shift of 10 ms,

23 filters, and a lifter coefficient of 22. The full bandwidth of 8 kHz was used for feature ex-

traction. The features were extracted both with and without fo normalization. Additionally,

when extracting features for child speech adaptation data, features were extracted both with

and without fo perturbation. The fo normalization and perturbation procedures are similar

to those reported earlier. That is, when applying fo normalization, fo,def = 100 Hz and fo,utt

was chosen to be the median fo of the utterance. Otherwise, without fo normalization, we

simply set fo,utt = fo,def . Similarly, when applying fo perturbation, we replace fo,def = 100

Hz with fo,def ∈ {58.52, 72.10, 85.93, 100.00, 114.32, 128.90, 143.74} Hz and extract features

for each fo,def value in the set, effectively multiplying the adaptation data by 7. Finally, we

also extracted the child speech adaptation data features with vocal tract length perturbation

(VTLP) for comparison with fo perturbation. For a fair comparison, the VTLP was also

set to multiply the adaptation data by 7 by setting the warping factors for the VTLP to be

from the set of {0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06}.

The acoustic model for the ASR system was a bidirectional long-short term memory

Hidden Markov model (BLSTM-HMM)-based acoustic model. Compared to the previous

experiments, the BLSTM-HMM acoustic model was chosen due to its larger size and ability

to model time information. The system was first trained using the LibriSpeech data, either

with or without fo normalization and with or without fo perturbation. Triphone alignments

were first extracted by training GMM-HMM ASR systems using the LibriSpeech tri6b recipe

from the Kaldi ASR Toolkit. These alignments were used to train the BLSTM-HMM system

using the PyKaldi2 toolbox [LXC19]. The input to the BLSTM was a 7-frame concatenation

(3 frames left, 3 frames right) for a 91-dimensional feature input. The BLSTM had 3 layers

with 512 cells in each direction followed by a feed-forward softmax layer that mapped the

output to approximately 5,700 triphone probabilities.
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Table 5.4: Word error rates (WERs) (%) of the continuous speech child ASR experiment
using a BLSTM-based acoustic model adapted from adult speech. Features were extracted
with an 8 kHz bandwidth. ASR systems either used no data augmentation, VTLP, or fo
perturbation. WERs for both the CMU Kids Corpus and OGI Kids’ Speech Corpus are
reported. The system using fo perturbation performed the best on both datasets. The best
performing system that performed significantly better than the baseline (p < 0.05) is in
bold.

Augmentation CMU Kids OGI Sent.

None 16.88 6.84
VTLP 17.05 6.22
fo Per. 16.63 5.85

After training the BLSTM-HMM system on adult speech, the ASR systems were adapted

to child speech. Two separate systems were trained, one adapted using the OGI Kids’ Speech

Corpus while the other was adapted using the CMU Kids Corpus. All the parameters of

the acoustic model trained on adult speech were used as an initialization for training the

child model, and the same procedure for training was applied using the child speech data

for parameter fine-tuning.

The OGI Kids’ Speech Corpus was used to test the ASR system adapted using the OGI

Kids’ Speech Corpus, and the testing data from the CMU Kids Corpus was used to test the

ASR system adapted using the CMU Kids Corpus. A 4-gram language model (LM) trained

on approximately 14,500 Project Gutenburg books was used for decoding. This LM is one

of the LMs included in Kaldi’s LibriSpeech recipe [PCP15].

5.3.3 Results and Discussion

The results of the system trained using fo perturbation for data augmentation, along with

the system using VTLP for comparison to another standard data augmentation technique,

are shown in Table 5.4. When using the OGI Kids’ Speech Corpus as adaptation data, the

use of fo perturbation results in a significant improvement from 6.84% to 5.85% (p < 0.001).

However, the system using the CMU Kids Corpus as adaptation data shows a much smaller
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Table 5.5: Word error rates (WERs) (%) of the continuous speech child ASR experiment
using a BLSTM-based acoustic model adapted from adult speech. Features were extracted
with an 8 kHz bandwidth. The left two columns indicate whether fo normalization (“fo
Norm?”) and data augmentation using fo perturbation (“fo Per?”) were used. WERs
for both the CMU Kids Corpus and OGI Kids’ Speech Corpus are reported in the latter
columns. The system using both fo normalization and fo perturbation performed the best
on both datasets. The best performing system that performed significantly better than the
baseline (p < 0.05) is in bold.

fo Norm? fo Per? CMU Kids OGI Sent.

No No 16.88 6.84
Yes No 16.93 6.50
No Yes 16.63 5.85
Yes Yes 16.47 5.52

improvement. When applying VTLP, the OGI Kids’ Speech Corpus system also shows

an improvement over the baseline, but the improvement is smaller than when using fo

perturbation. Furthermore, the use of VTLP results in worse performance than the baseline

for the CMU Kids Corpus system. These results suggest that fo perturbation is superior

to VTLP as a data augmentation technique. This is likely due to the fact that VTLP uses

a simple linear warping function while fo perturbation uses a non-linear warping function

based on speech perception.

The results of the systems trained both with and without fo normalization and fo per-

turbation are shown in Table 5.5. The left two columns indicate whether fo normalization or

fo perturbation was used. The right two columns display the WERs of the systems trained

and tested on either the OGI Kids’ Speech Corpus or the CMU Kids Corpus.

Applying fo normalization to the child ASR system results in a slight improvement for the

OGI Kids’ Speech Corpus system. Replacing fo normalization with fo perturbation results in

a more substantial improvement as examined previously. Applying both fo normalization and

fo perturbation together provides a further improvement to 5.52%, a relative improvement of

19.3% over the baseline. Applying both fo normalization and fo perturbation on the CMU

Kids Speech system results in a relative improvement of 2.4% over the baseline with the
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Table 5.6: Word error rates (WERs) (%) of the continuous speech child ASR experiment
using a BLSTM-based acoustic model adapted from adult speech. Features were extracted
with an 8 kHz bandwidth. The left two columns indicate whether fo normalization (“fo
Norm?”) and data augmentation using fo perturbation (“fo Per?”) were used. WERs
on the OGI Kids’ Speech Corpus, separated by testing grade, are reported in the latter
columns. The system using both fo normalization and fo perturbation performed the best
for all grades. The best performing systems that performed significantly better than the
baseline (p < 0.05) are in bold.

Testing Grade
fo Norm? fo Per? K 1 2 3 4 5

No No 16.97 9.17 6.73 5.71 4.15 4.99
Yes No 17.44 9.17 6.19 4.80 3.47 4.93
No Yes 13.97 7.89 5.27 5.11 3.72 4.35
Yes Yes 12.87 7.38 4.88 4.78 3.35 4.24

WER decreasing to 16.47%. Both systems result in improvements over recently reported

child ASR systems such as [WGP19], which reported WERs of 10.8% when using the OGI

Kids’ Speech Corpus and 17.3% when using the CMU Kids Corpus.

The difference in improvement between the two systems is likely due to the differences in

age range between the two child speech databases. The OGI Kids’ dataset contained children

from kindergarten to 5th grade, while the CMU Kids Corpus only contained children from

1st to 3rd grade. As shown in the previous section, fo normalization is more effective when

the age range between training and testing speakers is large. This may also be true of fo

perturbation. That is, since there is less variability in the CMU Kids Corpus, additional

variability in the training data through fo perturbation is unnecessary and unhelpful when

training the ASR system. On the other hand, the OGI Kids’ Speech Corpus has a larger age

range and includes kindergarten speech, which is more difficult to recognize, thus resulting in

ASR performance improvements when applying both fo normalization and fo perturbation.

To further examine the effectiveness of these techniques on the OGI Kids’ Speech Corpus

ASR system, the testing data were separated by grade, as shown in Table 5.6. Similar to the

results in Table 5.5, the use of both fo normalization and fo perturbation resulted in the best
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performance for all grades. These systems performed significantly better than the baseline

for 2nd grade and younger at p < 0.05. Additionally, these systems performed significantly

better for 3rd and 4th grade at p < 0.1. Thus, both fo normalization and fo perturbation

provide improvements over the full age range of the OGI Kids’ Speech Corpus.

5.4 Chapter Summary

In this chapter, we performed several child ASR experiments using various frequency nor-

malization and data augmentation techniques. The first several experiments examined the

effect of educational grade level (K-10th grade) on single word ASR performance. When

the training and testing data were matched, WER was dramatically higher for the younger

grades. When testing on kindergarten speech, WER increased significantly when the training

data were from older children. Additionally, when applying normalization, fo normalization

performed equal to or better than all other normalization techniques.

The next experiments examined the use of fo normalization and fo perturbation on

continuous speech child ASR. When the age range of the system was large, fo normalization

and fo perturbation were more effective than VTLN and VTLP, respectively. Additionally,

the system that used both fo normalization and fo perturbation performed best in all cases

and grades. The next chapter will summarize the dissertation and discuss the applications

of this research for educational technology and future work.
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CHAPTER 6

Conclusion

6.1 Summary

This dissertation examines aspects of child speech, specifically child subglottal resonances

(SGRs) and fundamental frequency, and their use in novel frequency normalization and

data augmentation methods for child ASR. In Chapter 2, several databases and software

that were used as part of this dissertation were introduced and explained. In particular, The

Child Subglottal Resonances Database, containing approximately 15.5 hours of simultaneous

microphone and subglottal accelerometer recordings of children, was published as part of this

work. Additionally, The GFTA-JIBO Kids Corpus, a database consisting of microphone

recordings of children from pre-kindergarten through 2nd grade playing educational games

with the social robot JIBO, was introduced. Other publicly available databases used in this

dissertation include the LibriSpeech ASR Corpus, The OGI Kids’ Speech Corpus, and the

CMU Kids Corpus. Speech software tools used in this dissertation include Praat, WaveSurfer,

VOICEBOX, the MBSC pitch detection algorithm, and the Kaldi ASR Toolkit.

In Chapter 3, the existing quarter-wavelength resonator SGR model was examined using

child speech. This examination revealed that this model, which was developed using adult

data, did not model child SGRs accurately due to the variable penetration depth of higher

frequencies in the subglottal system. An additional logistic function was used to more

accurately model the increasing penetration depth of the higher frequency SGRs, which

is particularly relevant for young children. Additionally, SGRs were demonstrated to be
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effective at normalizing the vowel space, with vowels effectively separated by SGR1 and

SGR2 at least 81.7% of the time.

In Chapter 4, the tonotopic distance model of vowel perception was introduced. This

model was reformulated and used as the basis for fo normalization, a frequency normalization

technique for ASR feature extraction that only requires the median fo of a speaker or utter-

ance as a parameter. The fo normalization function was reformulated into fo perturbation,

a data augmentation technique for ASR feature extraction capable of generating additional

speech-like features for training data.

In Chapter 5, several experiments were performed evaluating child ASR, as well as the

proposed normalization and augmentation techniques. When evaluating the state-of-the-art

ASR systems in a single-word child ASR experiment, the ASR systems using young child

speech performed significantly worse than the systems using older child speech, with kinder-

garten speech achieving a WER of only 26.91%, while 10th grade speech achieved a WER

of less than 4%. Furthermore, when ASR systems were mismatched by age, kindergarten

speech performed even worse, with a 34.95% WER using systems trained on older child

speech.

To improve the performance of these systems, SGR normalization and fo normalization

were evaluated against VTLN and F3-based normalization in a single-word child speech

ASR experiment. Both SGR normalization and fo normalization performed equal to or

significantly better than VTLN and the baseline regardless of the grade of the training

data speakers. The fo normalization and fo perturbation techniques were also evaluated

on a continuous speech child ASR experiment. fo perturbation was also compared against

VTLP and performed significantly better, with the combination of fo normalization and fo

perturbation performing the best out of all systems tested.
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6.2 Educational Applications

This work makes several contributions to the fields of speech science, early childhood educa-

tion, and educational technology. These contributions include the data collection, method-

ology of the data collection, and the experimental results.

Both The Child Subglottal Resonances Database and The GFTA-JIBO Kids Corpus

that were collected and published as part of this work (see Chapter 2), provide new child

speech data from children, as young as 4 years old and as old as 16 years old, speaking

in various contexts. The data in both databases were collected using specific educational

and clinical tasks. The Child Subglottal Resonances Database contains pronunciations of

consonant-vowel-consonant (CVC) words, which are useful for evaluating child pronuncia-

tions and common errors across various ages. It also provides the subglottal signals of these

pronunciations, which will allow future research on the subglottal system. Similarly, The

GFTA-JIBO Kids Corpus contains recordings of children taking the 3rd Goldman Fristoe

Test of Articulation (GFTA-3), a common clinical assessment for speech disorder diagnosis.

Furthermore, the nature of these databases can be used to target improvements in educa-

tional speech technology and specific age groups rather than using more general child speech

databases.

Additionally, for the GFTA-JIBO Kids Corpus, data collection methods, best practices,

and setups were documented in Chapter 2. As this database recorded children interacting

with a robotic learning companion, an interaction not very common in speech databases,

these insights may prove to be valuable for future data collection of child-robot interactions.

For instance, the positioning of the robot and microphone, effective methods to maintain

child engagement, and effective question-and-answer procedures using the robot were noted,

which can help future researchers recreate our setup and produce similar high-quality data.

Finally, the results of the experiments in Chapter 5 outline effective methods to train

child ASR systems that take advantage of the acoustic properties of child speech. While child
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ASR systems still require a number of improvements to be effective for general usage, the

use of normalization and data augmentation methods can likely provide further performance

improvement for task specific ASR systems such as pronunciation assessments and learning

exercises. This is a logical direction for the applied usage of child ASR systems while further

research is done to understand child speech in a more general setting.

6.3 Future Work

While the proposed normalization and data augmentation techniques provide significant

improvements to child ASR systems, the resulting ASR systems still do not come close to

the ASR performance of adult speech. In fact, it is doubtful that without significant training

data, child ASR will ever reach the performance level of adult ASR. As such, there are still

many additional research directions to explore.

Of particular importance is a universal ASR system for both adults and children. This

study only adapts an adult ASR system to children, but this is known to degrade performance

on adult speech. It is important to acknowledge many applications of ASR are used by both

children and adults. Whether warping can effectively reduce feature variability in ASR

systems designed for simultaneous use by children and adults remains to be investigated.

It is worth noting that child ASR systems are often used in adverse and noisy environ-

ments such as grade-school classrooms or playgrounds. To ensure the effectiveness of child

ASR in multiple applications, it is essential to consider how these techniques and others are

affected by the acoustic environment. This may require new robust ASR techniques.
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