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Robust Indexing for Automatic Data Collection 
 
Nicholas K. Sauter, Ralf W. Grosse-Kunstleve & Paul D. Adams 
 
Lawrence Berkeley National Laboratory, One Cyclotron Road, Bldg. 4R0230, Berkeley, 
CA 94720, USA 
E-mail: nksauter@lbl.gov 
 
 

Abstract 
 
We present improved methods for indexing diffraction patterns from macromolecular 
crystals.  The novel procedures include a more robust way to verify the position of the 
incident X-ray beam on the detector, an algorithm to verify that the deduced lattice basis 
is consistent with the observations, and an alternative approach to identify the metric 
symmetry of the lattice.  These methods help to correct failures commonly experienced 
during indexing, and increase the overall success rate of the process.  Rapid indexing, 
without the need for visual inspection, will play an important role as beamlines at 
synchrotron sources prepare for high-throughput automation. 
 
1. Introduction 
 
Large-scale macromolecular crystallography projects, including structural genomics 
efforts (Stevens et al., 2001), are placing increasing demands on synchrotron beamline 
facilities worldwide.  In response, new methods are being developed to increase 
efficiency and throughput.  Many beamlines are now being equipped with sample 
handling robots (Cohen et al., 2002; Snell et al., 2004), and new graphical user interfaces 
provide the experimentalist with flexible control over the data acquisition process 
(McPhillips et al., 2002).  Additional efforts are under way to provide a measure of 
automation to the subsequent stages of data reduction (Leslie et al., 2002) and structure 
solution (Adams et al., 2002; Brunzelle, et al., 2003). 
 
Availability of convenient crystal handling at the beamline has enabled users to perform 
rapid screening experiments, wherein large numbers of similar crystals are briefly 
examined, with the best ones being identified for later collection of full data sets.  
Reasons to screen multiple samples include optimization of the cloning, expression, and 
purification techniques involved in protein production; determination the most favorable 
crystallization and cryocooling conditions, and investigation of large numbers of 
macromolecule-ligand complexes.  Furthermore, even crystals prepared under identical 
conditions can be heterogeneous.  For each sample, the typical protocol involves 
acquiring a narrow (0.25-1.0° rotation) oscillation image at a standard distance, or if time 
permits, acquiring two images at rotation settings separated by 90°, to reject crystals with 
unacceptably high anisotropic diffraction.  If control is fully automated, the data can be 
acquired in 1-2 minutes per sample.   
 



Once acquired, images must be analyzed to determine if the diffraction pattern can be 
indexed.  Indexing the crystal lattice & determining the likely Bravais symmetry permits 
the user to predict whether a given crystal can potentially yield a complete dataset.  This 
step must be completed in real time so the user can select samples for further study.  
Presently there are several software packages available to assist with this (Pflugrath, 
1997; Otwinowski & Minor, 1997; Pflugrath, 1999; Leslie, 2001; Kabsch, 2001).  Most 
include graphical user interfaces, which serve the important function of allowing the 
experimenter to visually confirm whether the diffraction pattern predicted by indexing 
matches the observations.  If indexing is to be eliminated as the rate limiting step, it must 
be very reliable even in the absence of this visual inspection.  Indeed, it would be ideal if 
the indexing program ran in the background concurrently with data collection, so that 
results appear in close to real time as the images are acquired.  Naïve attempts to 
automate this process with shell scripts, however, revealed systematic problems with 
determining the beam center, lattice basis, and symmetry.  As we will show, these 
common problems can be detected algorithmically and corrected automatically.  We have 
developed LABELIT (Lawrence Berkeley Lab Indexing Toolbox), a Python/C++ package 
capable of handling difficult indexing cases. 
 
 
2.  Computational Methods 
 
The overall approach to indexing is summarized in the flow chart in Fig. 1.  After the 
brightest Bragg spots are selected, spot positions are converted to reciprocal space, and 
the spot distribution is analyzed to detect periodicities corresponding to lattice spacings.  
The analysis of lattice spacings also gives sufficient information to improve the initial 
estimate for the direct beam position.  Three basis vectors showing significant periodicity 
in the spot distribution are chosen as the three basis vectors of the unit cell.  A 
computational check is made to assure that the basis forms a primitive lattice rather than 
one in which some predicted spots are systematically absent.  Once the model parameters 
are refined in a triclinic setting, tests are performed on the unit cell dimensions to detect 
possible symmetry elements, which are then combined to produce a list of Bravais types 
consistent with the data.  Cell refinement with symmetry-based restraints produces a final 
set of indexing solutions suitable for other procedures such as determining the data 
collection strategy, or integrating the dataset.  Although Fig. 1 depicts data analysis 
running continuously through from start to finish, LABELIT will terminate and provide a 
report of difficulties if the input data are unsuitable for processing at any step. 
 
2.1 Choice of candidate Bragg reflections for indexing 
 
In order to facilitate indexing, an effort is made to select candidate spots that are most 
likely to be Bragg reflections.  The algorithm, DISTL, is described in detail elsewhere 
(Zhang et al., 2004).  Of all local maxima on the image, only those with a peak height 
higher than a cutoff multiple of the local background noise are considered.  This 
eliminates weak reflections, which is desirable for indexing.  The image is then divided 
into very thin concentric shells centered around the direct beam position, and the pixel 
intensity distribution is examined to eliminate ice or powder rings.  Filters are then 



applied based on spot size, intensity, and shape.  Candidate Bragg reflections are 
expected to have a unimodal distribution of pixel intensities; that is, a single peak rather 
than a group of closely associated local maxima.  Therefore, spots with more than two 
local maxima are rejected; those with two are permitted because some medium-intensity 
spots have bimodal distributions due to statistical noise.  Also, pairs of spots are rejected 
when they are are separated by less than 1.2 diameters, assuring that artifacts of crystal 
splitting do not degrade the indexing process.  A conservative high-resolution limit is 
applied (Method 2 in Zhang et al.) because reflections at very high resolutions can often 
cause indexing to fail (this is presumably because high resolution spots can overlap, 
making it difficult to assign accurate Miller indices).  If fewer than 40 good spots on any 
image remain, no attempt is made to index the lattice.  Ideally, 300 spots with the highest 
signal-to-noise ratios are chosen on each image.   
 
2.2 Detection by Fourier analysis of likely basis vectors 
 
The crystal lattice is deduced starting with the set of N candidate Bragg spots determined 
according to section 2.1.  At the outset the position of each spot on the detector is 
measured.  The rotational setting φ at which the spot satisfies the reflection conditions is 
not known accurately, but is taken here to be the mid-value of the oscillation range.  
These positional and angular data are then used to derive the reciprocal space position x 
for each spot, following the conventions of Rossmann (1979).  In cases using images at 
two different rotation settings (usually 90˚ apart in φ, where φ is the goniometer rotation), 
the respective lists of reciprocal space vectors are merged.  It should be noted that 
reciprocal space vectors from images close in φ cannot be used for this indexing method.  
Spots at the same detector coordinates on adjacent images may either have the same or 
very close Miller indices, and no analysis is performed to distinguish the two cases at 
present. 
 
The procedure of Steller et al. (1997) is then used to determine which unit directions t are 
likely to form basis vectors for the periodic crystal lattice.  Although we use the 
published method exactly, it is summarized here to provide a foundation for the following 
section.  For every direction t chosen from a large set evenly spaced within the 
hemisphere, the projections p are calculated for all observed reciprocal space points x 
onto t, 
 
 tx ⋅=p . (1) 

 
The range of p values is divided into m bins, each having an appropriately granular width 
∆p.   This allows us to construct a reciprocal space frequency series f(j), giving the 
number of observed projections in the jth interval.  Peaks in this series (Fig. 2a) suggest 
the locations of possible reciprocal lattice planes perpendicular to t.  To find out how well 
the observed reciprocal space points are described by periodic planes, one can take the 
discrete Fourier transform 
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Peaks in the power spectrum |F(k)| correspond to strong periodicities along t (Fig. 2c).  In 
particular, the first and largest peak at k=l (not counting the peak at k=0) is used to 
quantify the periodicity.  After compiling a short list of t directions having the largest 
values of  |F(l)|, each of these directions is refined with a fine grid search to maximize the 
|F(l)| value.  Finally, directions that are collinear duplicates are rejected and the list is 
resorted, giving a set of ~20 candidate directions {t}.  Each candidate represents a 
possible unit cell basis vector with real space length  
 
 d=l/(m∆p). (3) 
 
Only three directions are eventually chosen as true basis vectors (section 2.4). The other 
directions in the set represent either linear combinations of the true basis vectors, lattice 
vectors due to the presence of a second crystal, or false periodicites. 
 
2.3 A fast grid search to improve the direct beam position 
 
Since the direct X-ray beam often cannot be directly observed on the diffraction image, 
its position must be determined independently.  This raises the possibility of systematic 
error in one’s prior belief about the beam position.  If the prior belief is inaccurate this 
will be reflected in the calculated reciprocal space coordinates x of each observed Bragg 
reflection (Rossmann, 1979) and this will in turn compromise the autoindexing 
procedure.  However, it is possible to use the Fourier coefficients F(k) derived from the 
given X-ray beam position to infer a better estimate of the true beam position.  As will be 
described in detail in Section 3.1, a better estimate can be derived even if the input beam 
position differs from the true beam position by more than a millimeter. 
 
Recall that in general the frequency series f(j) may be recovered by the backwards 
Fourier transform 
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where the complex coefficients F(k) exhibit Hermitian symmetry, .  
Assume now that a particular direction is a basis vector for the unit cell, and 
therefore exhibits strong periodic groupings when the reciprocal space points are 
considered in projection (Fig. 2a).  The essential information regarding this periodicity 
can be effectively modelled with the single Fourier coefficient F(l).  By replacing the 
Fourier sum in Eq. 4 with a single term where k=l,  f(j) can be approximated with the 
simplified expression 
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where lθ is the polar angle in the conventional representation   li
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As expected, crests in the sinusoidal plot of Eq. 5 (Fig. 2b) closely correlate with the 
projections of observed reciprocal lattice points in Fig. 2a.  Since the true beam position 
coincides with a reciprocal lattice plane at x=0, it will fall on one of the crests.   This 
implies that P(j) in Eq. 5 can be viewed as giving the unnormalized conditional 
probability (in the Bayesian sense) that the true beam center projects onto direction  at 
interval j, given the prior belief about the beam center position.   

0t

 
The true beam center cannot be deduced from Eq. 5 alone.  As depicted in Fig 2b, each of 
several crests is could potentially correspond to the true beam.  Moreover, even if a 
particular crest at interval j is singled out, an infinite number of possible beam positions 
in the laboratory frame would be associated with this interval.  This situation is 
summarized in Fig. 3a, a contour map showing the probability that a given pair of 
laboratory coordinates is the true beam center.  However, if three or more linearly 
independent directions t are considered simultaneously, the possible 
laboratory coordinates of the true beam center can be constrained to a small set of points, 
as shown in Fig 3b.  This contour plot has been computed as the sum of panel 3a and 
probability maps from two additional directions.  For this example, the three directions 

 were selected to be the primitive axes of the unit cell.   
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In practice, one does not know which directions t  will ultimately be chosen as 
basis vectors.  Instead probability fringes from all directions in the set {t} can be 
combined to help assure that the beam position is sufficiently overdetermined.  An 
example of the resulting probability map is shown in Fig 3c.  As will be discussed in 
section 3.1, the search for the true beam position is confined to an area (indicated by a 
black circle in Fig 3c) within a radius S centered on the prior belief beam center.  Within 
this search radius, the true beam position is taken to be the peak position of the largest 
cluster, where clusters are ranked by integrated area.  In the example illustrated, the true 
beam position is at the center of the panel.   

210 ,, tt

 
Note in Fig 3c that if the search radius S is made too large, there is the potential of 
misidentifying one of the other red peaks (not the one in the center) as the true beam 
position.  This ambiguity disappears if data are available from two images collected at 
rotational settings 90° apart.  If probability fringes from two images are combined, an 
unambiguous true beam position may be obtained over a much larger search radius (Fig 
3d).   
 
For use in the next section, the directions {t} must be improved based on the new 
estimated beam position.  When two images are used, it is sufficient to simply re-refine 
each existing t using the fine grid search mentioned in section 2.2.  However, if only one 
image is used for indexing, the t directions are poorly determined at this point, and are 
unreliable when used for subsequent indexing steps.  In this case, a completely new 
search for t directions is performed, with the new beam position as input. 
 
2.4 Indexing the diffraction pattern 
 



From the set {t} three unit directions and associated real space lengths (Eq. 3) can now 
be chosen to form basis vectors for the unit cell: 
 
 ;   b ;    c  (6) 00ta d= 11td= 22td=
 
It is convenient to express this basis as the matrix of cell axis components taken with 
respect to the orthogonal camera axes (Rossmann, 1979), calculated when φ = 0.  Also, 
the inverse of this matrix gives the reciprocal space components: 
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With these component matrices in hand, it is now possible to take the reciprocal space 
coordinates of each observed Bragg spot, which were previously expressed in the 
reciprocal orthonormal basis (x in section 2.2), and re-express them in terms of the 
reciprocal unit cell basis vectors: 
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where [Φ] is a rotation matrix around the camera’s spindle corresponding to the φ setting 
of the particular image.  Integer-valued Miller indices h are computed by rounding the 
real-valued components of f.  It is important to realize that this simplistic method for 
calculating h does not account for the finite oscillation range ∆φ of each diffraction 
image, which tends to produce overlapping spots whose Miller index assignments are 
ambiguous.  To guard against this, f is recalculated at each limit of the oscillation range 
(φ+∆φ/2 and φ−∆φ/2).  If the same value of h is not produced in each case, the particular 
Bragg spot under consideration is disregarded for all subsequent calculations.  Similarly, 
Bragg spots are ignored when they are too close to the rotation spindle for accurate 
evaluation.   
 
2.5 Detection and correction of a non-primitive basis 
 
As noted in section 2.3, the set {t} is most likely to contain vectors that can form a 
primitive basis of the crystal lattice.  However, it is also possible for {t} to contain 
directions that are linear combinations of primitive basis vectors, which should not be 
used to index the lattice.  Fig. 4a illustrates a case where choosing a group of three 
highly-ranked directions (i.e., directions with large |F(l)| values) leads to misindexing.  
The apparent reciprocal cell basis (Fig 4a, inset) predicts too many Bragg spots; further 
inspection reveals that reflections are only observed when h + l = 2n, where n is an 
integer.  In general, the data must be scrutinized to find reflection conditions of the form 
 
  (9) ,210 nlgkghg M=++=⋅hg
 



where , , and  are small integer coefficients and the modulus M is a small prime 
number, usually 2, 3, or 5.  A transformation must then be applied to the incorrect basis 

 to produce the primitive one,  
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The matrix [T] must have integer coefficients and determinant M, but is otherwise not 
uniquely determined.  We propose the following algorithm to enumerate the reflection 
conditions [g, M] and the associated transformations [T]. 
 

1. Construct the list G of all possible integer 3-tuples, with each tuple element 
having a magnitude up to the maximum expected modulus M; typically 

.  Sort the list in order of increasing |g|, 
and omit g = (0,0,0). 

0

5 ≤− )55,5,55( 210 ≤≤−≤≤≤−= gggg

2. Construct G , a copy ofG .  Remove all items in  having 1 0 1G gg ⋅

5

larger than a 
cutoff value, usually 6.  Also delete tuples collinear to items higher on the list, 
i.e., and g are collinear if g .  The remaining elements of G  are 
possible values for g in Eq. 9.  Note that the cutoff values M and are 
chosen empirically to permit the indexing of a large test set of diffraction images 
using the fewest computational cycles.  These cutoffs give 37 g values in 
combination with three prime modulii (2,3,5) to give 111 formulae for reflection 
conditions. 

αg β 0=× βα g 1

≤g≤ 6⋅g

3. For each reflection condition [g, M] construct the matrix [T].  Begin by 
considering that every point on the reciprocal lattice obeys Eq. 9.  In particular, 
the correct basis vectors will also follow this rule.  Therefore, for the first row of 
[T] (the coefficients giving the correct basis vector a ) pick the first item 

 that satisfies .  Tuple  becomes the first row of [T].  For 
the second row of [T], select the first item g  not collinear with and 
satisfying the equation .  Finally, the third row of [T] becomes the first 
item g  not coplanar with and , and satisfying the equation 

.  If the determinant of [T] is negative, the first and second rows are 
switched. 
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In order to decide whether a basis set is primitive, each of the 111 reflection conditions 
enumerated in Step 2 is separately considered.  Since the sample size of candidate Bragg 
spots is at most 600, the computational loop through all conditions is quite rapid, ~7 ms 
on a 2.8 GHz Intel Xeon processor.  Allowing for a generous percentage of outliers 
(typically 20%), if the remaining spot candidates fulfill Eq. 9 a match is declared and the 



basis set is transformed with [T].  In Fig. 4b, the correct basis set is immediately obtained 
from the matrix 

 [T] =  10 .   (11) 
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The loop is then repeated to search for any further systematic absences.  Repetition of the 
loop allows us to limit the procedure to prime number modulii.   
  
 
2.6 Selecting the best basis combination 
 
The choice of basis vectors noted in Eq. 6 is not unique, since there are ~20 directions in 
the set {t} to choose from.  Certain combinations of directions may be immediately ruled 
out since they lead to unit cells with nearly zero volume.  Specifically, if V is the cell 
volume and a,b, and c are the cell axis lengths, a cutoff requirement that V > abc/100 
does not lead to a significant loss of generality.  For the remaining candidate bases, 
primitiveness is imposed (section 2.5) and the basis choice is scored using a number of 
measures:  (a) the root-mean-squared difference between f and h, where f and h are as 
defined in section 2.4; (b) the number of candidate Bragg spots entering in to the 
calculation of (a) after overlaps and axial spots are removed; (c) the root-mean-squared 
difference between observed and predicted laboratory coordinates of the candidate Bragg 
spots (rmsd); and (d) the fraction of candidate Bragg spots correctly predicted by the 
basis choice.  Measures (a)-(d) provide the raw comparisons needed to pick a single high-
scoring basis for all further work, with measures (c) and (d) being most useful.  
 
The heuristic for choosing the basis was formulated empirically with the goal of 
producing a correct indexing solution in the least amount of computational time.  With a 
well-indexing crystal, many combinations of directions from {t} lead to similarly high 
scores, and give nearly identical unit cell parameters.  In such cases it is sufficient to try 
only a few combinations before making the final basis selection.  With poor crystals it is 
often necessary to do an exhaustive search of possible basis vectors from {t} before 
choosing the best basis, or deciding that the diffraction pattern cannot be indexed.  The 
actual method in the package represents an attempt to accommodate these two extremes, 
with the realization that further fine-tuning may be beneficial.  The implementation is 
presented as a high-level script in order to allow future changes or adaptations by the end 
user.   
 
2.7 Cell reduction and refinement 
 
For subsequent symmetry determination, it is necessary to calculate the transformation to 
a reduced basis as discussed in Section 9.3 of the International Tables for 
Crystallography Volume A (Burzlaff et al., 1996).  The essential requirement for the 
subsequent steps is that the reduced basis has vectors of minimum length.  The reduced 
basis defined in the International Tables fulfills this requirement, but conventional 
iterative cell reduction algorithms leading to Buerger-reduced cells (Buerger, 1957, 
Gruber, 1973) or Niggli-reduced cells (Křivý & Gruber, 1976) are numerically unstable.  



A comprehensive treatment of this problem is given by Grosse-Kunstleve et al. (2004).  
Except where otherwise specified below, we adopted the minimum reduction presented in 
that work because it is fast and combines numerical stability with maximum portability.   
 
After reduction, 12 model parameters are refined using conjugate-gradient minimization, 
with the minimization target being the root-mean-squared difference (rmsd) between the 
observed and predicted Bragg spot positions introduced in section 2.6.  It should be 
emphasized that the target function includes only abstracted information about the 
positions of the ~600 spots chosen for autoindexing; no information is present about pixel 
intensities on the original image.  The first round of minimization adjusts the x and y 
coordinates of the direct beam,  the next adds the crystal-to-detector distance, and the 
final round adds the nine components of the [A] matrix.   First derivatives of the target 
function with respect to each parameter are calculated for the LBFGS minimization 
algorithm (Liu & Nocedal, 1989) implemented in our package CCTBX (Grosse-
Kunstleve et al., 2002).  After minimization, the minimum reduction is applied again. 
  
An estimate of the effective mosaic spread of the crystal is obtained separately.  
Diffraction patterns are calculated (Rossmann, 1979) using many trial values of mosaic 
spread ranging from 0 to 1.5°.  The effective mosaic spread is taken to be the minimum 
value which correctly predicts the observed positions of 80% of the ~600 Bragg spot 
candidates used for indexing.  The 80% requirement is chosen to allow a small fraction of 
outliers due to non-Bragg scattering or other pathologies.  If the image is so poor that no 
value of mosaicity less than 1.5° will cover 80% of the spots, no further estimate is made. 
 
2.8 Determination of the metric symmetry 
 
With the diffraction pattern indexed, the final issue addressed is the crystal symmetry.  
Knowing the reduced basis, it is possible to find the highest possible Bravais symmetry 
consistent with its metric properties.  Lower symmetry lattices cannot be ruled out until 
the Bragg spot intensity data are scaled.   
 
A fundamental concern here is that all data derived from experimental observations have 
some degree of uncertainty, leading to an imperfect knowledge of the reduced basis.  
Since lattice symmetry is by definition exact, any algorithm to deduce the Bravais type 
must necessarily use tolerances when testing symmetry conditions.  We evaluated two 
distinct procedures against this criterion, ultimately adopting one of them.   
 
In method A, the Niggli-reduced basis (Křivý & Gruber, 1976) is classified in terms of 
the 44 lattice characters listed in Table 9.3.1 of the International Tables for 
Crystallography (Burzlaff et al., 1996).  This approach tests elements of the metric tensor 
 

 . (12) 







⋅⋅⋅
⋅⋅⋅

=







baaccb
ccbbaa

FED
CBA

 
For example, one of the primitive tetragonal characters requires that (i) A=B, (ii) 
D=E=F=0, and (iii) .  Equality tests such as (i) are evaluated within a tolerance 0≤DEF



parameter, set to 4% to accommodate normal levels of experimental uncertainty.  For 
testing orthogonality conditions such as (ii) D=0, similar reasoning implies that this 
expression should be considered true if the magnitude of the direction cosine between b 
and c is <0.04.  It is more difficult to accommodate experimental uncertainty in 
evaluating condition (iii).  If D=0 or E=0 or F=0 (within 4% tolerance) then expression 
(iii) must be forced to be true even if DEF is numerically >0.   When necessary, it is 
possible to impose this condition by pre-multiplying two of the three basis vectors (a,b,c) 
by –1.  While these procedures are adequate for most cells, we were able to identify cases 
where infinitesimal uncertainties in the basis vectors caused the Bravais type to be 
misidentified (section 3.3).   
 
We therefore adopted method B, in which the full Bravais symmetry is generated from a 
list of two-fold rotational axes calculated from either the minimum-reduced or Niggli-
reduced basis.  Given the cell dimensions, the procedure of Le Page (1982) can identify a 
two-fold axis by asking whether normal vectors to sets of real- and reciprocal-space 
planes coincide within a given angular tolerance δ.  The tolerance is normally set to 1.4˚, 
the minimum value needed to accommodate a wide number of test data sets.  It is only 
necessary to consider a predefined list of 1379 pairs of normals to exhaustively find all 
candidate two-folds, and the code to implement this is fast and compact.  Each discovered 
two-fold is then converted to a matrix operator representation (Grosse-Kunstleve et al., 
2004b).  These symmetry operators are used as generators in a group-multipication 
procedure to produce the complete symmetry group, which in turn is identified as one of 
the 14 Bravais types.  An auxiliary procedure lists all possible subgroups.  These are 
ranked by the maximum tolerance δ needed to accommodate all the two-fold rotational 
axes of the subgroup.  Transformations to standard settings are determined automatically 
according to Grosse-Kunstleve (1999). 
 
2.9 Final restrained minimization 
 
With the list of candidate Bravais settings, final parameter minimizations are performed 
(one for each candidate setting) to impose the metric conditions implied by the symmetry.  
Conjugate-gradient minimization is performed on the 12 parameters described above 
(section 2.7), plus up to five additional restraints derived from symmetry.   The derivation 
of these restraints is discussed in a separate paper (Grosse-Kunstleve et al., 2004b).  At 
this point, it is sometimes possible to rule out the highest symmetry candidate settings; 
for example, if the highest symmetry setting produces a refined residual twice as high as 
that for the triclinic setting.   
 
Indexing is now complete, with the final result being a set of parameters for each of the 
remaining candidate Bravais types.  Optionally, these parameters may be converted into 
files suitable for MOSFLM (Leslie, 2001) input, so that Bragg reflections can be 
integrated and further analysis performed.   
 
 
3. Validation of Methods 
 



3.1 Estimation of the direct beam position is robust 
 
It is well known that indexing relies critically on knowing the true position m at which 
the incident X-ray beam intersects the imaging detector.  Although the beam coordinates 
can be refined to some degree after the indexing solution is found, the initial error ∆m in 
the position must be small enough to converge to the correct solution.  The zone of 
convergence may be estimated by considering the unit cell dimensions of the crystal.  If 
the reduced basis vectors have lengths a,b,c then the smallest spot-to-spot separation in 
the low-angle portion of the image will be of order L ~ λD/max(a,b,c), where λ is the X-
ray wavelength and D is the crystal-to-detector distance.  Clearly if ∆m is of order L or 
higher, it will not be possible to index the diffraction pattern correctly. 
 
To determine if the zone of convergence could be extended using the Fourier coefficient 
method, we considered a much larger region on the diffraction image, within a radius of 
2.5L of the true beam center.  In this experiment, a rectangular grid was superimposed 
onto this region, and each point r was separately treated as a prior-belief beam center, in 
a grid search for the true beam center m using the method outlined in section 2.3.  To 
determine if r lay within the zone of convergence, the true beam position was sought 
within a radius S =1.3*|r-m|.  Determination of the new putative beam position was 
followed by indexing, least squares parameter refinement, and Bravais lattice selection as 
outlined above (sections 2.4-2.8).  The procedure was considered successful for a 
particular point r if it gave the correct beam center, Bravais lattice, and unit cell.  In a 
control experiment we used the grid point r directly for the indexing step, relying only on 
subsequent least squares parameter refinement to improve the beam position.  
 
A typical set of results is shown in Fig. 5.  As expected, the control experiment produces 
a reliable solution only with an initial beam position error ∆m ≤ 0.4L (Fig. 5a,b).  With 
the Fourier coefficient method, this particular image can be reliably indexed with any ∆m 
≤ 0.6L (Fig. 5c).  The results improve even more dramatically when Bragg spots are 
combined from two images with φ settings 90˚ apart (Fig 5d).  In this case, the correct 
solution is obtained whenever ∆m ≤ 1.2L = 1.8 mm.  Note that to produce this result from 
the analysis of two images, one must assume that the detector remains stationary 
throughout the experiment.  This is generally true for modern charge couple device 
detectors and stationary phosphorimaging plates, but not for earlier detectors such as film 
or manually exchangeable imaging plates. 
 
This simulation suggests that the beam position can reasonably be discovered if Bragg 
spots are combined from two images and the search radius is set to S = L.  Since the 
reduced basis is not available a priori to calculate L, it is reasonable instead to use the 
candidate cell lengths {d} corresponding to each direction in the set {t}.  The search 
radius is set to 
 
 S = λD/max({d}). (13) 
 
At present, knowing the beam center is generally considered to be a solved problem.  
Synchrotron beamlines, for example, often use a separate experiment to determine the 



beam coordinates before the crystal sample is exposed.  However, there is a small but 
finite failure rate associated with such procedures.  Invariably the final analysis requires 
visual inspection of the diffraction image, to confirm that the indexing solution agrees 
with the observed Bragg spots.  If indexing fails, the correctness of the direct beam 
position is typically the first item to be checked.  In future applications such as automated 
data collection, it will be necessary for indexing to occur automatically and nearly 
flawlessly, without time consuming manual intervention.  The Fourier coefficient method 
is attractive in this regard.  It relaxes the stringency with which the beam center must be 
determined by other methods, and it’s built-in grid search effectively replaces the trial-
and-error methods of visual inspection.  It will be especially useful for crystals with large 
unit cells, where the indexing of closely spaced Bragg reflections is sensitive to small 
errors in the prior beam estimate.   
 
In the preceeding discussion, it is understood that the prior-belief beam position is 
obtained from information tabulated in the image file header, created at the time the data 
are acquired.  A well-known issue is that this tabulated position may be expressed in 8 
possible coordinate systems, with various detector manufacturers having chosen among 
the different conventions (Gewirth, 2003).  It is important for the coordinate system to be 
properly identified prior to indexing, as it enters into the calculation of reciprocal space 
coordinates x.  Once this determination has been made, it is normally applicable to all 
images collected with a particular detector at a particular beamline. 
 
3.2 Reindexing solves a longstanding problem 
 
Any indexing procedure for deducing the lattice basis from experimental data must 
address the question of whether the resulting basis is primitive (Fig. 4).  Our test suite of 
177 successfully indexed crystals provides numerous cautionary examples: in 90 of these 
samples, at least one combination of high-ranking candidate basis vectors (Eq. 6) needs 
to be corrected by the procedure of section 2.5, to assure proper indexing in the triclinic 
setting.  Indeed, the best solution requires correction in 20 cases, when basis solutions are 
ranked by the rmsd score introduced in section 2.6.   Although this problem has long been 
alluded to in the literature (see for example Section 5.1 of Henry & Lonsdale, 1965), it 
has also been ignored in practice by macromolecular crystallographers.  To compensate 
for the lack of adequate methods, interactive graphical indexing programs are available, 
allowing the user to index by trial and error.  If a basis set looks incorrect, the program 
parameters are slightly altered and a better basis is chosen.  In the present context 
however, we aim to index crystal lattices without the need for visual inspection of the 
result.  The test presented in Eq. 9 permits automatic recognition of this important class 
of misindexed results, thus improving the reliability of any automated system. 
 
3.3 Correct identification of rhombohedral symmetry by detection of two-folds 
 
We now examine a case in which correct identification of the primitive basis can 
nevertheless lead to improper identification of the lattice symmetry, when method A 
(section 2.8) is used for symmetry determination.  Consider a hexagonal rhombohedral 
setting, with a=b=10, c=30; as depicted in Fig. 6a, with the Niggli-reduced basis (a,b,c) 



as indicated.  Using this basis to determine the metric symmetry of the unit cell, it can be 
shown algebraically that the metric tensor (Eq. 12) satisfies these conditions:  A = B; D = 
E = F = A/2.  Looking for these conditions in Table 9.3.1 of the International Tables for 
Crystallography (Burzlaff et al., 1996), one indeed discovers that they define character 
#9, one of four hexagonal rhombohedral characters.  Note that since there is no prior 
information to bias the choice of basis, there is no guarantee that (a,b,c) will be selected 
as a candidate basis for the cell; in fact it is equally likely to choose the vectors (a  
shown in Fig 6b.  Although this basis is not reduced, application of the Křivý-Gruber 
(1976) algorithm immediately recovers the Niggli-reduced basis (a,b,c), and again the 
conditions are fulfilled for rhombohedral character #9.   

cb ′′′ ,, )

 
Now we include experimental uncertainty in the choice of basis vectors.  If, for example, 
one begins with basis (a,b,c), we can ask what will happen if vectors b or c are perturbed 
by a small angle.  In each case, the perturbation does not alter the fact that the basis is in 
Niggli-reduced form.  Method A (section 2.8) allows a tolerance on the metric conditions, 
thus the small perturbation will not change the finding that the likely lattice is of 
character #9.  This is exactly as expected:  a small uncertainty should not change the final 
conclusions about symmetry.  In contrast, suppose that the starting point is basis set 
(a ), and consider perturbations of either  or c  in the ab plane as shown in Fig. 
6c.  Here the situation is quite different: application of the Křivý-Gruber algorithm gives 
the Niggli-reduced basis (a,b,c) when either  or c  is rotated slightly counterclockwise, 
but a different Niggli-reduced basis when either is rotated clockwise.  The alternate 
reduced basis satisfies different metric conditions, giving a monoclinic C-centered cell.  
Thus, an infinitesimally small uncertainty can lead to misidentification of symmetry. 

cb ′′′ ,, b′
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It is appropriate to ask under what experimental conditions this can occur.  We 
investigated the ability to determine the symmetry of a crystal in space group R32, with 
a=b=143Å, c=519 Å.  As explained in section 2.6 the candidate basis (three directions) is 
selected from the set {t}, based on a ranking of how well the basis vectors can predict the 
input Bragg spots.  Small differences in experimental parameters, particularly the direct 
beam position, can influence the relative ranking of the candidate bases.  We set up a two 
dimensional grid around the true beam position, with each grid element in turn being 
considered as the assumed beam center.  For the purpose of this test no Fourier 
coefficients were used to re-determine the beam center (section 2.3), nor was any 
parameter refinement undertaken; we simply took the highest scoring candidate basis, 
applied the Křivý-Gruber reduction, and attempted to determine the Bravais symmetry.   
 
Fig 7a, shows how well method A determines the symmetry when different grid points 
are assumed to be the beam center.  The correct rhombohedral symmetry is deduced in 
fewer than half of the cases.  Moreover, there is no zone of convergence for either the 
correct rhombohedral or the incorrect monoclinic symmetry; the symmetry determination 
oscillates in a chaotic manner as the imposed beam center moves across the image.  Both 
symmetries can be deduced with input beam estimates within 0.1 mm of the true beam 
center.  While Fig 7a shows the results of indexing one 0.8° oscillation image, similar 
results were obtained for joint indexing of two images collected 90° apart in φ (not 
shown).  In contrast, method B produces the correct solution across most of the grid (Fig. 



7b).  These results support method B as a computationally tractable alternative that can 
unambiguously identify metric symmetry elements in the lattice.  The method is thus well 
suited for inclusion in automatic systems.   
 
 
4. Conclusions 
 
While automated processing carries great potential benefit for the beamline user, it also 
places high demands for robustness upon its component algorithms and software.  
Problem areas that can be instantly recognized by the human experimentalist using a 
graphical interface may go unnoticed by an automated system, with potentially disastrous 
results for subsequent analysis steps.  The methods presented above, if incorporated into 
the beamline control environment, will quickly produce reliable indexing and symmetry 
solutions immediately after the images have been acquired.  A 2.8 GHz Intel Xeon 
processor typically requires 7 seconds to choose Bragg reflections from a pair of 10 
Mbyte images, and 11 seconds for the remainder of the analysis. 
 
It is particularly striking how a pair of images (Fig. 5d) can yield a much more robust 
direct beam position than a single image.  It is also likely that the derived unit cell 
dimensions are more accurate, since two images together sample reciprocal space more 
completely.  With modern, scriptable beamline control software, it is typically easy to set 
up standard protocols to acquire these two images.  One need only assume that the 
sample is rigidly affixed to the goniometer and is well centered in the beam.  Thus it is 
important to exercise care when mounting and cryocooling the crystal.   
 
We have successfully used LABELIT to process images from about 50 crystal forms.  
Notably, once the program parameters are switched to accept a high resolution cutoff of 
15Å, LABELIT is able to index correctly tetragonal I-centered ribosome crystals with 
unit cell dimensions a=b=674 Å, c=2776 Å (A. Vila-Sanjurjo & J. Cate, unpublished 
results).  Therefore the toolbox is expected to be generally applicable to all 
crystallographic experiments using the oscillation method. 
 
 
5.  Availability 
 
LABELIT is organized as a hybrid software package where the high level scripts 
directing the algorithm use the Python scripting language, while the numerically intensive 
calculations are executed by optimized, compiled C++ code.  LABELIT makes extensive 
use of code objects from our open-source Computational Crystallography Toolbox 
(Grosse-Kunstleve et al., 2002), and is therefore an example of the benefits of code reuse.  
Python bindings for C++ objects are provided by the Boost.Python library (Abrahams & 
Grosse-Kunstleve, 2003), and SCons (www.scons.org) is used as a build facility.  
LABELIT can be installed on a number of computing platforms, and customized for 
various data collection environments by modifying the included example scripts. 
 



LABELIT will be available as a web service at the URL http://cci.lbl.gov/labelit,   
enabling general users to upload raw image data and retrieve the model parameters from 
the resulting indexing solutions.  LABELIT will also be available for download to non-
commercial users.   
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Figures 
 
 

 
 
Figure 1.  Overall indexing procedure. 



 
 
 

 
 
Figure 2.  Analysis of observed Bragg reflections projected in reciprocal space onto a 
direction later determined to be the a axis of the sample’s orthorhombic unit cell.   Panel 
(a) shows the histogram f(j) of reflections projected onto this axis, while panel (c) gives 
its power spectrum.  The peak at l=18 corresponds to a lattice periodicity along this axis 
of 36.4 Å.  The single Fourier coefficient F(18) can be used [Equation (5)] to create an 
approximate model for f(j), shown in panel (b).  Note that the projection of the true beam 
position onto the axis, indicated by a (*), corresponds exactly to a crest in this model.  
Panels (a) and (c) correspond to Figs. 1 and 2 in Steller et al. (1997).   



 

 
 
Figure 3.  Map of a small portion of the imaging detector centered on the true beam 
position, depicting conditional probability contours for the location of the direct beam, 
given an input beam position (black dot).  This particular input beam position is 0.8 mm 
from the true value.   Probabilities were determined using the projections of reciprocal 
space points from one image onto (a) the b axis;  (b) all three unit cell axes; and (c) the 
top 20 directions identified by Fourier analysis.  Panel (d) uses projections of reciprocal 
space points from two images collected 90° apart in φ, onto the top 20 directions.  The 
circle in panel (c) shows the largest search radius, 1.2 mm, which could have been used 
to find the true beam center given the input value.  In panel (d) the largest useful search 
radius is at least 3.3 mm.  The crystal is the same as used in Fig. 1, with a=36Å, b=65Å, 
and c=84Å.  1° oscillation exposures were collected with a detector distance of 130 mm, 
and an X-ray wavelength of 1.0Å. 
 



 

 
 
Figure 4.  (a) Detail of a misindexed image, with incorrect reciprocal space basis vectors 
a*’ and c*’ shown in the inset.  Although all observed reflections are spanned by this 
basis, no reflections are observed when h’ + l’ is an odd number.  (b) Corrected basis 
after application of the algorithm in section 2.5.  New basis vectors are chosen such that        
a* = b*’; b* = a*’ + c*’; c* = a*’ – c*’.  The reader will note that the new Miller 
indices are given by h = k’; k = (h’ + l’)/2; l = (h’ – l’)/2.  The matrix transforming the 
Miller indices is the inverse transpose of the matrix transforming the basis vectors.   
 



 

 
 
Figure 5.  Ability to index the diffraction pattern as described in section 3.1, given an 
input beam position at various coordinates on the detector.  The portion of the detector 
shown is the same as in Fig. 2, with the true beam position shown as a black dot.  The 
sample is the same as in Figs. 1 and 2, with the low angle spot-to-spot separation from 
the longest cell dimension being L=1.5mm.  Red pixels are input beam positions that lead 
to correct refined beam parameters, unit cell dimensions and Bravais symmetry.  
Positions where otherwise correct indexing gives monoclinic symmetry (instead of 
orthorhombic) are given in yellow.  Incorrect indexing is shown in lavender, and white 
pixels indicate that no indexing was possible.  The first two panels show the control 
where the input beam position is used directly for indexing, with Bragg reflections from 
either one (a) or two (b) images.   Note that in the single image used for panel (a) the c-
axis is parallel to the incident beam.  Consequently two lattice angles are poorly 
determined, accounting for the preponderance of input beam positions giving monoclinic 
rather than orthorhombic symmetry.  When two images are used (b) this ambiguity 
disappears.  The lattice-like arrangement of lavender patches in panel (a) corresponds to 
the lattice of probable (but incorrect) beam positions in Fig. 2.  In the last two panels, the 
true beam position is pre-determined by a grid search, based on one (c) or two (d) images.  
 



 

 
 
Figure 6.  (a) Symmetry diagram for rhombohedral space group R3, showing the 
conventional a  and b  unit cell axes in black.  The c  axis is perpendicular to the 
page.  Axes (a,b,c) of the Niggli (reduced) cell are shown in green, with the reduced c 
axis vector ending at a fractional position z=1/3 above the plane of the page.  (b) An 
alternate basis set (a’=a, b’=b-a, c’=c–2(a+b)/3) equally likely to be chosen (Equation 
6).  Cell reduction transforms (a’, b’, c’) back into the Niggli cell (a,b,c).  (c) 
Experimental uncertainty in the b’ or c’ basis vectors breaks the symmetry, with the 
(a’, b’, c’) basis no longer reducing to (a,b,c) when either b’ or c’is perturbed 
clockwise.  If method A (section 2.8) is then used to compute the metric symmetry, the 
result incorrectly depends on the sign of the perturbation.   
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Figure 7.  Determination of metric symmetry from a single oscillation image as a 
function of the input beam position.  The true beam position is indicated by a black dot.  
Green pixels indicate correct determination of rhombohedral symmetry, while yellow 
denotes input parameters that incorrectly lead to a monoclinic C-centered lattice, and 
cyan denotes a triclinic lattice.  Grey pixels indicate that no indexing is possible.  Method 
A (section 2.8) was used to determine symmetry in panel (a), while method B was used 
in panel (b).   
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