
UCLA
UCLA Electronic Theses and Dissertations

Title
Computational Methods for the Analysis of Genomic and Proteomic Sequences

Permalink
https://escholarship.org/uc/item/3ft201vx

Author
JU, JUI-TING CHELSEA

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3ft201vx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Computational Methods for the Analysis of

Genomic and Proteomic Sequences

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Jui-Ting Ju

2019

c© Copyright by

Jui-Ting Ju

2019

ABSTRACT OF THE DISSERTATION

Computational Methods for the Analysis of

Genomic and Proteomic Sequences

by

Jui-Ting Ju

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Wei Wang, Chair

The rapid generation of biological sequences, such as nucleotide and amino acid sequences,

has revolutionized the studies in the field of molecular biology. To name a few applica-

tions, DNA sequences generated by the RNA-Sequencing technology facilitate the studies

of gene expression analysis; protein sequences represent the primary structure to predict

protein-protein interactions. Moreover, the vast amount of sequence data generated from

high-throughput technologies gears up the data analysis to the omics level. As a consequence,

developing novel computational methods and tailoring existing algorithms are highly imper-

ative to extract relevant and critical knowledge from sequence data.

In this dissertation, we introduce several computational frameworks that leverage the

genomic sequences to quantify gene expression and utilize the proteomic sequences to char-

acterize protein-protein interactions. The methodologies presented in these frameworks span

different research areas, including feature extraction from string data, string matching for

DNA sequence, statistical inference for expression quantification, and sequence-pair model-

ing through deep learning. As a result, these approaches not only tackle specific challenges

in the applications mentioned above but also present the potentials to address issues in other

sequencing applications.

ii

The dissertation of Jui-Ting Ju is approved.

Eleazar Eskin

Douglas Stott Parker

Carlo Zaniolo

Jingyi Jessica Li

Wei Wang, Committee Chair

University of California, Los Angeles

2019

iii

To my parents,

for their endless love and supports;

my late grandparents,

for their beliefs in the power of education.

iv

TABLE OF CONTENTS

List of Figures . ix

List of Tables . xi

Acknowledgments . xii

Vita . xiv

1 Introduction . 1

1.1 Scope of the Research . 2

1.2 Contributions . 3

1.3 Overview . 4

2 Related Work . 5

2.1 Alignment-Based Approaches for Expression Quantification 5

2.2 Quantification of Pseudogenes . 6

2.3 Lightweight Approaches for Expression Quantification 6

2.4 K -mers Counters . 7

2.5 Protein-Protein Interaction Predictions . 8

3 Correcting Read Alignment for Pseudogenes 9

3.1 Model . 9

3.2 Homologous Community Partition . 12

3.3 Read Count Profile Classification . 13

3.4 Training Stage . 13

v

3.5 Validation Stage . 14

3.6 Read Re-assignment . 15

4 Quantification of RNA-Seq via Variable-Length k-mers 16

4.1 Sig-mers Identification . 17

4.2 Sig-mers Selection . 19

4.3 RNA-Seq Reads Matching . 21

4.3.1 Aho-Corasick Automaton . 23

4.3.2 Thinned Automaton with Binarized Pattern Matching 23

4.3.3 Acceleration by Rolling Hash . 25

4.4 Transcript Abundance Estimation . 27

5 Multifaceted Protein-Protein Interaction Prediction Based on Siamese

Residual RCNN . 30

5.1 RCNN-based Protein Sequence Encoder . 31

5.1.1 Residual RCNN . 32

5.1.2 Protein Sequence Encoding . 34

5.1.3 Pre-trained Amino Acid Embeddings 35

5.2 Learning Architecture and Learning Objectives 36

5.2.1 Siamese Architecture . 36

5.2.2 Learning Objectives . 36

6 Datasets . 37

6.1 NGS Datasets . 37

6.1.1 Psuedogene Reference . 37

6.1.2 Reference Transcriptome . 37

vi

6.1.3 Signatures Used in TahcoRoll . 38

6.1.4 Simulated Reads for Pseudogene . 38

6.1.5 Simulated Reads for Fleximer and TahcoRoll 38

6.1.6 Real Data from Human BodyMap . 39

6.1.7 Real Data from Different Sequencing Platforms 39

6.2 Protein-Protein Interaction Datasets . 40

6.2.1 Guo’s Datasets . 40

6.2.2 STRING Datasets. 40

6.2.3 SKEMPI Dataset. 41

7 Experiments and Results . 42

7.1 Alignment Correction for Pseudogene Abundance Estimates 42

7.1.1 Misalignment of Pseudogene and Its Homologous Parent 42

7.1.2 Community Detection for Homologous Genes 44

7.1.3 k-NN Classification for Homologous Community 46

7.1.4 Read Count Estimation for Homologous Community 47

7.2 Transcript Quantification via Variable Length k -mers 48

7.2.1 Motivating Examples . 49

7.2.2 k-mers Generation . 50

7.2.3 Simulation Study . 51

7.2.4 Human BodyMap 2.0 Project . 52

7.3 Signature Profiling via Thinned Aho-Corasick Automaton 54

7.3.1 Experimental Settings . 55

7.3.2 Automaton Construction . 55

7.3.3 Pilot Study of 13 Approaches . 56

vii

7.3.4 Extensive Study on Synthetic Datasets 58

7.3.5 Real Datasets from Different Sequencing Platforms 60

7.4 Characterizing Protein-Protein Interaction via Deep Learning 61

7.4.1 Binary PPI Prediction . 62

7.4.2 Interaction Type Prediction . 65

7.4.3 Binding Affinity Estimation . 67

7.4.4 Amino Acid Embeddings . 69

7.4.5 Run-time Analysis . 69

8 Conclusion . 71

A Background on Suffix Tree . 74

B Propositions in TahcoRoll . 76

B.1 Proof of Proposition 1 . 76

B.2 Proof of Proposition 2 . 77

B.3 Proof of Proposition 3 . 77

C Hyperparameter Study for PIPR . 79

D Software Configuration for K-mer Counters 81

D.1 Thread-Safe Shared Memory Hashing . 81

D.2 Disk-Based Hashing . 81

D.3 Probabilistic Hashing . 82

D.4 Suffix-Arrays . 83

D.5 Burst Tries . 83

viii

LIST OF FIGURES

3.1 The overall framework of correcting read alignment for pseudogenes. 10

4.1 An overview of Fleximer. 17

4.2 Sig-mers identification in Fleximer. 19

4.3 Sig-mers selection and matching in Fleximer . 21

4.4 The raw and binarize Aho-Corasick automaton with five signatures. 26

4.5 Collisions in binarized representations. 26

5.1 The overall learning architecture of PIPR. 31

5.2 The structure of the residual RCNN encoder in PIPR. 31

7.1 Alignment profile between ENST00000421244 and its pseudogene. 43

7.2 Relationship between expected and observed read counts. 43

7.3 Homologous communities partition and size distribution. 45

7.4 Run time and accuracy of different community detection algorithms. 46

7.5 Parameter selection for kNN-classification. 47

7.6 Evaluation of the TPM estimation over different ks. 49

7.7 K-mer statistics of different methods. 50

7.8 Accuracy and efficiency evaluations using simulated data. 51

7.9 Read recovery rate of different methods. 52

7.10 Evaluation of Human BodyMap with Venn diagrams. 53

7.11 Evaluation of Human BodyMap with accuracy metrics. 54

7.12 Run-time and Memory for automaton construction. 56

7.13 Run-time and memory for pilot study. 57

ix

7.14 Run-time for parallel study. 60

7.15 Mutation effects on structure and binding affinity. 68

C.1 Hyperparameter Study for PIPR. 80

x

LIST OF TABLES

7.1 Description of Simulated Datasets. 44

7.2 Overall prediction errors. 48

7.3 Evaluation of read count estimations. 48

7.4 Run-time and memory of different read sets. 58

7.5 Run-time and memory for profiling different signature sets. 59

7.6 Run-time and memory of real datasets across different sequencing platforms. . . 61

7.7 Evaluation of Different Binarized Representations. 61

7.8 Evaluation of binary PPI prediction on the Yeast dataset. 64

7.9 Statistical assessment on the accuracy of binary PPI prediction. 64

7.10 Evaluation of binary PPI prediction on variants of multi-species dataset. 65

7.11 Accuracy (%) and fold changes over zero rule for PPI interaction type prediction. 66

7.12 Evaluation of binding affinity prediction on the SKEMPI dataset. 68

7.13 Comparison of amino acid representations based on binary prediction. 69

7.14 Run-Time of training embeddings and different prediction tasks. 70

xi

ACKNOWLEDGMENTS

The accomplishment of my Ph.D. journey was not possible without the support and guidance

of my supervisor, Professor Wei Wang. I would like to express my highest appreciation to her

for her patience and dedication. Most importantly, for offering me the opportunity to pursue

a Ph.D. in computational biology. Throughout the past six years, she has taught me not

only scientific knowledge but also skill-sets to make myself a more competitive professional.

To name a few, a critical mindset to assess scientific works, a calm and bright attitude to

navigate through crisis and frustration, and the values of prioritization to increase research

productivity. Although we may disagree with each other, she has always been patient and

supportive by the end of the day. With all of these, I am indebted to her.

I also own my sincere gratitude to all my thesis committee members. Professor Eleazar

Eskin has encouraged me and supported my decision to pursue a Ph.D. in computational

biology. His computational genetic class has inspired me to continue exploring the challenges

and excitements in this field. In his class, he has taught me to formulate the challenging

biological questions into attainable computational problems. Professor Stott Parker has been

a great mentor since I was pursuing my Master’s study at UCLA. I have always enjoyed our

one-to-one conversation with his fresh perspective and valuable advice. Professor Carlo

Zaniolo and I have collaborated on a few projects together. I truly appreciate his help and

support throughout our collaborations. Specifically, he always initiates many warm and kind

conversations with the students in ScAI Lab. I am also grateful to have Professor Jessica

Li serving as one of my committee members. Even though we did not have a chance to

collaborate, she has always made herself available whenever I have questions on my research.

I have many chances to collaborate with different people at UCLA. Among these collabo-

rations, I would like to express a special thanks to Professor Peipei Ping. She has offered me

the opportunities to present and to participate in several NIH meetings. She has also been

very generous and supportive of me in attending different conferences. People in her group,

including Vincent Kyi, Brian Bleakley, Howard Choi, David Liem, and Sarah Scruggs, have

xii

not only taught me the knowledge of cardiovascular diseases but also helped me on attaining

many collaborative projects. Other collaborators include Muhao Chen and Xuelu Chen from

Professor Carlo Zaniolo’s lab. Together, we have discovered the promising potential of deep

learning frameworks on different biological applications. The discussions with Dat Duong,

Lisa Gai, Jennifer Zhou, and Tevfik Dincer from Professors Eleazar Eskin’s and Jason Ernst’s

labs have also provided me a different scientific mindset.

Besides the interdisciplinary collaborations, I would like to thank each of the members of

Professor Wang’s lab. Ruirui Li and I joined the lab around the same time, and we witnessed

all the events in ScAI lab together. I appreciate his support and presence on all the ups

and downs throughout the years. The joining of Wenchao Yu, Yichao Zhou (Joey), Jyun-Yu

Jiang, Zeyu Li, Nathan LaPierre, Guangyu Zhou, Jungheng Hao (Jeff), and Xiusi Chen have

made the lab much more collaborative and interactive. We have created a positive research

environment where we discuss and challenge each other. I am very grateful to have them as

my second family in Los Angeles.

I would also like to offer a heartfelt thanks to my close friends at UCLA: Farhad Hor-

mozdiari, Petko Fiziev, Larry Lam, Ai Sasho, and Robert Brown. We studied for classes

together, brainstormed on various bioinformatics projects, discussed a diverse range of re-

search topics, and explored different cuisine and places around the city. We also shared

many important moments and life events throughout the years. Our friendship is the great-

est treasure supporting me through both the good and bad times.

Last but not least, to the most important people in my life, my parents (Amy Liao and

Nai-Chang Ju) and my sister (Chloe Ju). I am forever indebted to them for their faith and

endless love. They may not necessarily understand the challenges of this journey, but they

have always given me the freedom and courage to pursue anything that I set my mind to.

xiii

VITA

2001 – 2006 B.Sc. (Biological Science), University of Alberta, Edmonton, Canada

2006 – 2009 Research Technologist, University of Alberta, Edmonton, Canada

2009 – 2011 Bioinformatician, Qteros, Inc., Marlborough, Massachusetts

2012 – 2012 SQA Engineering Intern, Symantec, Inc., Culver City, California

2011 – 2013 M.S. (Computer Science), UCLA.

2014 – 2014 Technical Research Intern, eBay, Inc., San Jose, California

2014 – 2015 Teaching Assistant, Computer Science Department, UCLA

2016 – 2016 Bioinformatics Intern, Natera, Inc., San Carlos, California

2013 – 2019 Graduate Student Researcher, Computer Science Department, UCLA

PUBLICATIONS

Parts of the work in this thesis have appeared in the following publications:

Muhao Chen∗, Chelsea J.-T. Ju∗, Guangyu Zhou, Tianran Zhang, Xuelu Chen, Kai-Wei

Chang, Carlo Zaniolo and Wei Wang. Multifaceted protein-protein interaction prediction

based on Siamese residual RCNN. Bioinformatics (ISMB/ECCB 2019).

Chelsea J.-T. Ju∗, Jyun-Yu Jiang∗, Ruirui Li, Zeyu Li and Wei Wang. TahcoRoll: An

efficient approach for signature profiling in genomic Data through variable-length k-mers.

bioRxiv, 2017. pre-print.

xiv

Chelsea J.-T. Ju, Ruirui Li, Zhengliang Wu, Jyun-Yu Jiang, Zhao Yang and Wei Wang.

Fleximer: Accurate quantification of RNA-Seq via variable-Length k-mers. In Proceedings of

The 8th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics

(ACMBCB 2017).

Chelsea J.-T. Ju, Zhuangtian Zhao and Wei Wang. Efficient approach to correct read

alignment for pseudogene abundance estimates. IEEE/ACM Transactions on Computational

Biology and Bioinformatics (TCBB),14(3): 522-533, 2017.

Chelsea J.-T. Ju, Zhuangtian Zhao and Wei Wang. PseudoLasso: leveraging read align-

ment in homologous regions to correct pseudogene expression estimates via RNASeq. In

Proceedings of The 5th ACM Conference on Bioinformatics, Computational Biology, and

Health Informatics (ACMBCB 2014).

Other relevant publications:

Nathan LaPierre, Chelsea J.-T. Ju, Guangyu Zhou and Wei Wang. MetaPheno: A critical

evaluation of deep learning and machine learning in metagenome-based disease prediction.

Methods, 2019.

Ruirui Li, Jyun-Yu Jiang, Chelsea J.-T. Ju and Wei Wang. CORALS: Who are my

potential new customers? Tapping into the wisdom of customers’ decisions. In Proceedings

of The 12th ACM International Conference on Web Search and Data Mining (WSDM 2019).

Guangyu Zhou, Jyun-Yu Jiang, Chelsea J.-T. Ju and Wei Wang. Inferring microbial

communities for city scale metagenomics using neural networks. In Proceedings of 2018

IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018).

xv

CHAPTER 1

Introduction

The advances of high throughput technologies have an incredible impact in the field of

molecular biology, facilitating the movement of conventional experiments to the “-omics”

research. In genomics, high throughput sequencing (HTS) is the leading technology to study

genome-wide analysis. One of the applications, RNA-Sequencing (RNA-Seq), captures the

snapshot of existing RNA for gene expression quantification by reading out the transcript

sequences into millions of short reads. Following a series of data analysis, the number of

reads from a transcript can be used to estimate the expression abundance of that transcript.

In proteomics, mass spectrometry has been the predominant method for de novo peptide

sequencing, providing the primary structure for protein complexes. Leveraging the protein

sequences, many downstream data analyses can be carried out, including but are not lim-

ited to, functional annotation, predicting protein-protein interaction, and characterizing the

interaction types. Regardless of the sequence type (i.e. the nucleic acid sequence for DNA

or the amino acid sequence for protein), knowledge extracted from the sequence information

allows researchers to answer certain biological questions of interest. As a result, the develop-

ment of computational tools and algorithms is critical to cope with the rapid generation of

sequencing data, and to facilitate a wide range of tasks in data analysis. In this dissertation,

we study three different research problems in analyzing the biological sequences. The first

two problems focus on leveraging the RNA-Seq reads to quantify the expression of gene iso-

form. The third problem focuses on analyzing a pair of protein sequences to decipher their

interaction properties. For each problem, we discuss the limitations of existing approaches,

and propose new methods to address these challenges.

1

1.1 Scope of the Research

The advent of RNA-Seq poses substantial computational problems, specifically in handling

the massive amount of read data [98]. Two of these problems are summarized below. The

amino acid sequence serves as the primary structure of a protein complex, which is the

simplest type of information obtained through direct sequencing or translated from DNA

sequences. For the third research problem, we discuss the challenges and potential of char-

acterizing a pair of proteins directly from the sequence information.

• Read alignment in low complexity regions. The data analysis of an RNA-Seq

experiment starts from aligning short reads to the reference genome or transcriptome.

However, existing aligners lack the sensitivity to distinguish reads that come from

homologous regions of a genome. One group of these homologies is the paralog pseu-

dogenes. Pseudogenes arise from duplication of a set of protein-coding genes, and share

a significant amount of sequence similarity with their parent genes. They have been

considered as degraded paralogs in the genome due to their loss of functionality. Recent

studies have provided evidence to support their novel regulatory roles in biological pro-

cesses. With the growing interests in quantifying the expression level of pseudogenes,

it is critical to have a sensitive method that can correctly align ambiguous reads and

accurately estimate the expression level among homologous genes.

• Quantification of RNA-Seq via variable length k-mers. The alignment step of

the data analysis requires a significant amount of computational resources [23]. Even

with parallel computing, analyzing a reasonable size of RNA-Seq experiment can still

take hours [70]. To alleviate this computational bottleneck, a series of methods have

been proposed to perform a lightweight quantification in an alignment-free manner.

These methods utilize the notion of k -mers, which are short consecutive sequences

representing the signatures of each transcript, to estimate the relative abundance from

RNA-Seq reads. Existing k -mers based approaches make use of a set of fixed size

k -mers; however, selecting the appropriate k is not intuitive. Additionally, the best k

2

to characterize a transcript sequence varies for different transcripts. Thus, an efficient

approach to identify and select an optimal set of variable length k -mers is needed.

• Characterization of protein-protein interactions via protein sequences. Protein-

protein interaction (PPI) prediction represents a fundamental computational biology

problem. Existing efforts focus on extracting predefined features from individual se-

quences, followed by applying statistical algorithms to classify the PPIs. These explicit

features are dedicated to specific facets of the protein profiles, and hence provide lim-

ited coverage on the PPI information. Evidently, an efficient mechanism is needed to

apprehend the mutual influence of protein pairs. It is also essential to have a framework

that can be generalized to different prediction tasks, such as binary PPI prediction,

interaction type prediction, and binding affinity estimation.

1.2 Contributions

In this dissertation, we emphasize the importance of the research problems mentioned above,

and identify the specific challenges fall within each research problem. We propose a series

of computational methods to tackle these challenges.

The first issue of analyzing the RNA-Seq data lies on aligning reads that come from

regions with low sequence complexity. Reads from these regions can be aligned to more than

one position in the genome. Incorrect alignment leads to inaccurate expression abundance

estimation, which poses the major challenge for quantifying the expression of homologous

genes. We propose a linear regression approach to learn the alignment behaviors among

homologous genes. Since the homologous genes are sparse throughout the genome, we first

incorporate a community detection algorithm to cluster genes into different groups based

on sequence similarity. Following the partition, read count estimation can be efficiently and

concurrently performed on smaller sets of genes through the linear regression model. Once

the read count of each gene is accurately estimated, reads are re-assigned to regions in which

the observed read count is lower than the estimation. Results show that our approach is

3

able to accurately estimate abundance and correctly assign reads among homologous genes.

The second research problem addresses the caveats of using the fixed length of k -mers to

analyze RNA-Seq data. We propose a novel framework, Fleximer, containing four modules

to estimate the transcript abundance using k -mers with different lengths. Fleximer takes

a predefined genomic or transcriptomic partition as an input. The partition can be based

on sequence similarity, biological functions, or any other user-defined scheme. To discover

k -mers that are unique to each cluster with all possible lengths, we rely on the structure and

properties of a suffix tree [8]. Fleximer also provides a feasible data structure that builds

upon the Aho-Corasick algorithm [1] to store and to profile these k -mers in sequencing data

efficiently. Experimental results have shown that the selected k -mers own more distinguishing

features, and thus substantially reduce the errors in transcript abundance estimation.

The third work focuses on modeling a pair of protein sequences to predict their inter-

actions. We present an end-to-end framework, PIPR, which incorporates a deep residual

recurrent convolutional neural network in the Siamese architecture. This architecture lever-

ages both robust local features and contextualized information, which are significant for

capturing the mutual influence of a pair of protein sequences. Experimental evaluations

show that PIPR outperforms various state-of-the-art systems on the binary PPI prediction.

It also shows a promising performance on more challenging problems of interaction type

prediction and binding affinity estimation.

1.3 Overview

The rest of the dissertation is organized as follows: Chapter 2 summarizes the relevant

works for each research problem. Chapters 3 and 4 describe our methods in addressing

the challenges of transcript quantification via RNA-Seq. Chapter 5 presents our framework

in studying the protein sequence pairs. Chapter 6 provides the description of the datasets

used in different experiments. Chapter 7 presents the experiments and findings. Chapter 8

concludes this dissertation with a summary of the works and the plan of future extensions.

4

CHAPTER 2

Related Work

2.1 Alignment-Based Approaches for Expression Quantification

The conventional approaches for the RNA-Seq pipeline can be divided into three stages [23]:

read mapping, transcriptome reconstruction, and expression quantification. Millions of short

reads are first aligned either to a reference transcriptome or genome. Several commonly

used aligners include Tophat [38], MapSplice [95], and SpliceMap [4]. In transcriptome

reconstruction, overlapped alignments from the first stage are aggregated and assembled

into transcripts. The abundance of each transcript is quantified based on the number of

mapped reads, and normalized to account for transcript size and the total number of mapped

reads. Cufflinks [91], RSEM [44], and eXpress [76] are the leading approaches that employ an

expectation-maximization (EM) algorithm [66] to iteratively reconstruct the transcriptome

and estimate the transcript abundances. Statistical analysis can be further applied to identify

significant changes in gene expression across different experiments.

During the course of data analysis, each step has a cascading effect, and the outcome

from read alignment can predominantly change the results of any downstream analysis.

Most Eukaryotic genomes, including the human genome, are full of large repeated segments.

As a result, reads generated from these regions can be mapped to more than one place in

the genome. This type of reads is referred to as the “multiread”. Existing aligners either

mis-align these reads [47] or employ a scoring system to keep the “best” alignment [111].

However, a read can still have multiple alignments with equally good scores. In a situation

like this, it remains difficult to identify the true origin of a read.

5

2.2 Quantification of Pseudogenes

One type of the repeat sequences in the genome is the pseudogenes, which has received

notable attention due to the novel discovery of their regulatory roles in different biological

processes [28, 50, 114]. In the effort of quantifying the expression of pseudogene, Tonner et al.

[90] developed a pipeline that created a composite genome to include the human genome

and the mRNA sequence of ribosomal protein genes. Their method keeps only the uniquely

mapped read for abundance estimation. The idea of discarding all multireads is one of the

most common practices in resolving the multiple alignment issues. It is easy to apply, but

tosses out critical information for the quantification step. As a result, it creates a bias

toward genes or pseudogenes with more unique sequences in the genome. Another approach

is to assign the multireads based on the mapping quality. Nevertheless, there can be more

than one alignment that shares the same quality score due to sequence similarity. Other

approaches include assigning multireads to the best locus based on local coverage estimation

from uniquely mapped reads [62], or based on probabilistic models [44, 69]. However, none

of these approaches leverages the relationship of read alignment among homologous regions.

2.3 Lightweight Approaches for Expression Quantification

In the recent development of RNA-Seq data analysis, alignment-free methods have been

proposed to alleviate the computational burden of read alignment. Sailfish [70] is the first

implementation to use k -mers for transcript quantification. It indexes all k -mers that appear

at least once in the transcriptome and counts their occurrences in RNA-Seq data. Based

on these counts, it estimates the relative transcript abundance through the EM algorithm.

Further ameliorating the throughput, RNA-Skim [110] divides the transcriptome into clusters

based on sequence similarity. For each cluster, it selects a set of k -mers that do not appear in

any other clusters, denoting as sig-mers (signatures of a cluster). Since each cluster contains

a unique set of k -mers, the quantification step can be performed independently for smaller

groups of transcripts. Kallisto [9] builds targeted de-Bruijn graphs on all k -mers to facilitate

6

the quantification, and claims faster and more accurate performance than Sailfish. All these

approaches have demonstrated a promising performance, improving the running time from

hours to minutes compared to the alignment-based approaches.

Selecting the best k can be challenging for a new experiment. A k -mer cannot be too

short because it can randomly match to a read that comes from a different transcript than the

k -mer origins. On the other hand, a longer k -mer is less robust to read containing sequencing

errors or individual variations. Sailfish originally set the default value of k to be 20, but

changed it to 31 according to its website. The initial choice is based on the evaluations over

a small range of k (15 - 25) without further optimization. RNA-Skim studies the overall

accuracy of transcript abundances for different k before setting it to 60 as the default option.

Neither of them has provided any guidance in selecting the right k for a new experiment.

2.4 K -mers Counters

The success of the lightweight approach in processing the sequencing data is fostered by

the rapid development of efficient algorithms in k -mer counting. Existing k -mer counters

index reads into a compact and searchable structure, such as a hash table, a burst trie, or a

compact suffix array. The occurrences of a specific k -mer can be retrieved by querying these

data structures. Jellyfish [54] has been widely used as the underlying structure for Sailfish,

Kraken [100] which assigns taxonomic labels for metagenomic reads, and DIAMUND [82]

which detects mutation without whole-genome alignment. It exploits the compare-and-swap

assembly instruction to update a memory location in a multi-threaded environment. With

a similar approach, Squeakr [68] employs the thread-safe approach to efficiently query the

counts of a specific k -mer. Probabilistic hashing is also commonly used in k -mer counting.

Its implementations include BFCounter [58] and khmer [108]. Disk-based hashing is another

popular technique, and its related algorithms are DSK [75], MSPkmerCounter [49], and

KMC [17, 18, 41]. Other data structures include burst tries used in KCMBT [53], and

suffix-array structures employed in Tallymer [43] and MSBWT [32].

7

Several implementations, such as khmer and KCMBT, restrict the choice of k to fall

in a threshold to mitigate the memory consumption and running time. Suffix-array based

approach is the only one that presents the potential to process k -mers of variable lengths.

Other methods are designed to process sequences with a fixed k. Thus, repeating the process

for different ks is unavoidable, which limits the analysis on a small range of k ’s.

2.5 Protein-Protein Interaction Predictions

To predict the binary form of PPIs, homology-based methods [72] rely on BLAST [3] to map

a pair of sequences to known interacting proteins. Alternatively, other works address the task

with statistical learning models, including SVM [25, 106], kNN [101], Random Forest [99],

multi-layer perceptron (MLP) [20], and ensemble ELM (EELM) [105]. These approaches rely

on feature extraction of the protein sequences, such as conjoint triads (CT) [87, 105], autoco-

variance (AC) [25, 87, 105], composition-transition-distribution (CTD) descriptors [20, 101],

multi-scale continuous and discontinuous (MCD) descriptors [105], and local phase quanti-

zation (LPQ) [99]. These features measure physicochemical properties of the amino acids,

and aim at summarizing sequence information relevant to PPIs. More recent works [87, 96]

propose stacked autoencoders (SAE) to refine these heterogenous features in low-dimensional

spaces. Leveraging the deep learning architectures, DPPI [26] employs a convolutional neu-

ral network (CNN) to capture the local features from protein profiles. However, it requires

excessive efforts to obtain protein profiles through PSI-BLAST [3]. Most importantly, its

architecture does not captures the contextualized and sequential features. DNN-PPI [45] rep-

resents another relevant work of this line, which uses two separated CNN encoders. However,

DNN-PPI does not incorporate physicochemical properties into amino acid representations,

and fails to characterize pairwise relations of sequences.

Fewer efforts have been made towards multi-class prediction to infer the interaction

types [85, 113] and the regression task to estimate binding affinity [86, 107]. These methods

have largely relied on their capability of extracting and selecting better features, while the

extracted features are far from fully exploiting the interaction information.

8

CHAPTER 3

Correcting Read Alignment for Pseudogenes

The ultimate goal of this work is to accurately estimate the read count for each gene, and

leverage this information to guide the correction of short read alignments among homologous

loci. The overall workflow is illustrated in Figure 3.1. The training stage contains two tasks,

which are indicated by different colors: steps with blue arrows describe the first task of

feature generation and community detection; steps with purple arrows describe the second

task of read distribution computation within each community. In the validation stage, reads

from other experiments are first aligned to the reference genome. The alignment profiles are

matched to the best normalized matrices from the training stage using k-nearest neighbor

classification. The true expressions are estimated using a non-negative least-square model.

3.1 Model

Given a set of read alignment records, the number of reads in each genomic locus can be

computed by counting the number of alignments fall into each region. A locus can be a region

that spans through a well-annotated gene or pseudogene, or a fragment of an intergenic

region. Reads for expressed genes are mostly aligned back to themselves (the corresponding

genomic loci), but they can also be misaligned or ambiguously aligned to other homologous

loci. Thus, the goal is to estimate the true read counts for these expressed genes. Let sj be

the observed read count for locus i among m loci (1 < j < m), and ŷi be the estimated read

count for gene i among n genes (1 < i < n) 1. The input of our problem is a vector of s, and

the output is a vector of estimated read count ŷ.

1We use “∧” to represent estimated variables

9

Simulator:
RNAseqSim

0 0 2
3
4

Short Reads

Reference Genome GRCh38

Aligner: TopHat2

Alignment Counter

Training

ACGTACGATCAGTACCC
ACGTACGATCAGTACCCA
ACGTACGATCAGTACCCA

ENST00000337401
ENST00000558580
ENST00000262644
ENST00000519315

ENST00000421791
ENST00000535786
ENST00000361470
ENST00000270642

Gene List (Release 79)

Feature Generator:
Sliding Windows

Consecutive Substrings

Reference Genome GRCh38

Community Separator:
infomap

Homologous
Gene Clusters

LA LB LC LD LE LF

GA 1000 0 10 5 291 0

GB 0 504 209 0 0 102

GC 2 290 869 0 1 29

Partition &
Normalize
Distribution
Matrix

Normalized
Read Distribution
 of Homologous Genes

Reads from Simulated or Experimental Data

Aligner: TopHat2

Assembler:
Cufflinks

VERIFICATION

Validation

Alignment Correction:
§ Normalized Distribution
Matrix Estimation (kNN-
model selection)
§ Non-negative Least
Square Optimization

Reference Genome GRCh38

Reference Genome GRCh38

Reference Genome GRCh38

LA LB

GA 1000 0

GB 0 504
LA LB LC

GA 1000 0 0

GB 0 504 209

GC 0 290 869

LE LF

GE 1000 0

GF 0 504 LE LF

GE 1000 0

GF 0 504

TASK 1 TASK 2

LA LB LC LD LE LF

GA 1000 0 10 5 291 0

GB 0 504 209 0 0 102

GC 2 290 869 0 1 29

Figure 3.1: The overall framework of correcting read alignment for pseudogenes.

Knowing only the read alignments and read counts for all loci is insufficient to recover

the true read counts of expressed genes. However, we can consider reads aligned to each

locus come from the corresponding known gene (itself) and its homologous genes. The ratio

of this composition is learned from simulated data. We use a distribution matrix X to keep

track of the aligned loci for each gene, where rows represent the origin of reads, and columns

represent the destination of the alignment. The distribution matrix is defined below.

Definition 1. Distribution Matrix. Let G be a set of genes, G = {g1, g2, . . . , gn}, and L be

a set of genomic loci with aligned reads, L = {l1, l2, . . . , lm}. X is a n × m matrix with n

genes and m loci. Each value in the distribution matrix xij represents the number of reads

from gene gi aligned to locus lj.

Using the distribution matrix, the input of our problem statement is equivalent to the column

sum of each locus, i.e. number of aligned reads in a locus. It is mathematically defined in

10

Equation 3.1, where the errors follow a standard normal distribution.

sj =
n∑

i=1

xij + ε, ε ∼ N(0, 1) (3.1)

Assuming that the read distribution among homologous locus follows a linear relation,

the general distribution ratio can be learned from simulated replicates. We define a pseudo

matrix A for these ratios, where aij is the normalized value of xij.

Definition 2. Pseudo Matrix. The pseudo matrix An×m is the normalized version of the

distribution matrix. It is defined by the proportion of reads mapped to locus lj out of the

total number of reads for a given gene gi. Let y be a vector of expected number of reads for

genes G, y = {y1, y2, . . . , yn}. yi is defined as the total number of reads simulated from gene

gi. Each value in A is computed as aij = xij/yi.

With the pseudo matrix, we can rewrite Equation 3.1 as

sj =
n∑

i=1

yiaij + ε, ε ∼ N(0, 1). (3.2)

Putting all n genes and m loci in a matrix form, we have

sm×1 = AT
m×nYn×1 + εm×1, ε ∼ N(0, 1). (3.3)

Reinstating the problem statement using Equation 3.3, s is the data input, which is a

vector of observed read count in each genomic locus, A is the pseudo matrix obtained from

training data, and y is the unknown read count of expressed genes. The goal is to estimate

the read count for all expressed genes with the following objective function,

argmin
yi

||s−ATY||2, s.t. yi ≥ 0,∀yi (3.4)

The number of reads for each gene cannot be negative, and this restriction is reflected in the

non-negative constraint in Equation 3.4. In general, there are more loci (m) than expressed

11

genes (n) due to homologous repeats in the genome. The complexity and running time in

solving the linear equation increases exponentially with the number of expressed genes. An

important observation is that both distribution and pseudo matrices are sparse, since each

gene only has a few homologous loci across the genome. The sparsity allows us to partition

the matrices into clusters of homologous loci. Each partition can be assessed independently

to elevate the computational burden. We use a community detection algorithm to explore

and identify these homologous communities.

3.2 Homologous Community Partition

The read count estimation for an expressed gene relies on the information of reads aligned to

itself and its homologous loci. A group of homologous loci can be identified by their sequence

similarity. From a data mining perspective, a set of objects can be grouped together if they

share a certain amount of features. In order to cluster these loci, we consider all substrings

of the DNA sequence to be the features of expressed genes. A conventional approach is the

k -mean clustering algorithm, which partitions the genomes into k clusters. Since each cluster

has to capture all the adequate homologous loci, not just the parents and pseudogenes, the

challenge falls in predetermining the number of clusters, k. Instead, when we examine the

alignments of these substrings, we can interpret them as information flow from a source (the

locus of an expressed gene) to destinations (homologous loci). These flows depend on how

an aligner recognize the reads. Thus, we propose a network model with directed graphs and

use a community detection algorithm to divide genomic regions into different communities

based on the behavior of a specific aligner.

In a directed graph, the vertex represents a locus in the genome, and the direct edge

connecting two vertices describes the information flow between two loci. The weight of each

edge is depicted by the number of reads from one locus aligned to another locus. Intuitively,

the heavier the weight between two vertices indicates that more features are shared between

this pair of loci. An edge to itself is expected to have a high weight since most of the reads

come from one gene are likely to map back to itself. On the other hand, an edge with a small

12

weight may due to random misalignment. The information flow approach is able to remove

this type of noise and exclude the vertices with weak connections in the community. Weights

for this network graph can be acquired through the global distribution matrix, which keeps

track of all alignment behaviors for gene features. The partitioning step uses the information

from a global distribution matrix X to separate the genomic loci into different homologous

communities. By breaking the distribution matrix into many smaller matrices, each of them

can be computed independently with the same objective function described in Equation 3.4.

3.3 Read Count Profile Classification

The pseudo matrix represents ratios between the expected read count and the read count at

different loci. This ratio can fluctuate slightly among replicates due to different sources of

noise. To capture the noises and augment the prediction accuracy, we match the observed

read count of a locus to the best profile obtained from the training data. This is performed

using the k-nearest neighbors algorithm.

3.4 Training Stage

To identify the homologous loci, we use all substrings of transcript sequences as features.

Given a list of transcript sequences, substrings are generated using a sliding window approach

with a window size of 100bp. The choice of this window size is consistent with the read length

we intend to model. These substrings are tagged with a gene ID of their origins, and are

aligned back to the reference genome using TopHat2. We iterate through all alignment

records to construct the distribution matrix, indicating the origins and the destinations

of all reads. Since all substrings are included, this distribution matrix is referred to as

the global distribution matrix, providing complete knowledge of information flows among

genomic regions. We use infomap implemented in the igraph package of R [78, 79] to identify

and partition homologous loci. infomap uses map equation as the objective function, which

aims at maintaining the information flow during community partition.

13

For training, ten different levels of read coverage are simulated to imitate low (5X, 7X,

and 10X), medium (13X, 15X, 17X, and 20X) and deep (23X, 27X, and 30X) sequencing;

transcript abundance is assigned either with a fix number across all transcripts (4A, 6A,

8A) 2 or with three different sets of random numbers (R1A, R2A, R3A) 3. In total, the

combination yields 60 sets of data. Six of them are randomly chosen for validation, and

the remaining sets serve as technical replicates during training. We use TopHat2 for short

reads alignment. Applying its default settings, multiple alignments are reported up to 20

records, and kept in our analysis. In addition, we use Samtools [46] to retrieve the alignment

information for mapped reads, and Bedtools [73] to facilitate the matching between genomic

loci and gene annotations. It is worth mentioning that we target the alignment correction

on the gene level, and treat isoforms as the same gene in the matching step.

3.5 Validation Stage

As described in Equation 3.4, given a new set of reads, read count for each gene can be esti-

mated through the observed counts of all loci along with the pseudo matrices from training.

The observed read counts are first matched to the best pseudo matrix using k-nearest neigh-

bor classification, and the predicted read counts are optimized by solving the non-negative

least squares equation. Both functions come from the default implementation in Matlab.

For validation, a separate set of replicates from the simulation is used to verify the

predicted read counts for a list of genes. The prediction error is evaluated by the absolute

relative error with respect to the true count. The true count is obtained by counting the

number of reads tagged with the corresponding gene ID.

2We use ’A’ to denote the magnitude of abundance level.

3Abundance levels are randomly assigned to each gene, ranging from 5A to 10A.

14

3.6 Read Re-assignment

After estimating read count for each gene, reads can be realigned and reassigned to the most

plausible regions. The algorithm contains three phases: retain uniquely mapped reads; assign

multireads to the most likely region; relocate uniquely mapped reads among homologs.

In the first phase, uniquely mapped reads that fall within the genomic locus lj are sorted

based on the sequence quality (MAPQ) and whether the mate read is properly mapped

for paired-end sequencing. Each gene gi has a corresponding locus li in the distribution

matrix; loci that do not overlap with any expressed genes are estimated with a read count

of zero. The top ŷi uniquely mapped reads are kept for the associated locus li . If the count

of retained reads reaches the estimated amount (ŷi), the locus is marked as resolved. On

the other hand, if the number of uniquely mapped reads exceeds the estimated abundance,

leftover reads are subjected to be reassigned to other homologous loci in the third phase.

In the second phase, “unresolved loci” from phase I are sorted based on their remaining

counts. Unassigned multireads are retrieved for these loci and sorted using the same criteria

mentioned above. The correction starts with a locus with the least amount of remaining

counts, and assign the sorted multireads to locus lj until either it is resolved or there are no

more multireads aligned to this locus. Once a multiread has been assigned, it is removed

from the pool. The remaining count is updated after each assignment.

The remaining unresolved loci do not have enough aligned reads, and thus require realign-

ing leftover reads from the homologous regions identified in phase I. Within each homologous

community, homologous locus can be revealed by the non-zero value in the sub-matrix of

the global distribution matrix, where xij > 0; i 6= j for gene gi and locus lj. Similar to phase

II, the correction starts with the locus with the least number of remaining counts. Leftover

reads are aligned back to the sequence spanned unresolved loci using Blastn [2]. The top

alignments with e-value ≤ 1.00E − 05 are assigned to the unresolved gene until either there

is no more alignment or the gene is resolved. The Blastn alignment record is converted to

the BAM format, allowing it to proceed to downstream analyses.

15

CHAPTER 4

Quantification of RNA-Seq via Variable-Length k-mers

The lightweight algorithms for RNA-Seq quantification start with identifying a set of k -mers

in a transcriptome, followed by either counting the occurrence of k -mers in RNA-Seq reads,

or directly counting the reads that contain these k -mers. Since we know the transcript origins

of these k -mers, transcript abundance can be inferred from read counts or k -mer counts. In

our approach, we first partition a transcriptome into a set of non-overlapping clusters Θ

based on sequence similarity, and select a special type of k -mers named sig-mers, for each

cluster. These sig-mers represent the discriminating short sequences of a cluster and do not

appear in any other clusters. Adopting the terminology introduced by RNA-Skim [110], a

set of sig-mers S in cluster θi is defined as

Ω(θi) = {S | S ∈ (k-mers in θi),∀θj ∈ Θ \ θi, S 6∈ (k-mers in θj)} (4.1)

The size of k -mers can have a predominant effect toward the accuracy of transcript abun-

dance estimation. We propose Fleximer, which discover and use a set of k -mers with variable

length for transcript abundance estimation. We divide our objective into four components

as demonstrated in Figure 4.1, with the first two focusing on sig-mer identification (high-

lighted by the blue boxes) and the last two addressing transcript quantification (highlighted

by the green boxes). We follow the partition scheme in RNA-Skim to generate a set of

non-overlapping clusters based on transcript sequence similarity. The partition is stored

in a specialized fasta format, where each entry represents one cluster. The header starts

with a cluster name, follow by transcript names. The sequence field contains all transcript

sequences in a cluster, separated by a special character “|”. Given this set of clusters, the

16

transcript sequences are inspected using a suffix tree data structure to identify the sig-mers

of each cluster. We select a subset of these sig-mers that are robust to read errors, and

can best describe the signatures of each transcript. We then use the Aho-Corasick [1] to

efficiently determine the occurrence of sig-mers in each read. The presence of these sig-mers

provides the information of transcripts where each read is potentially originated from. The

counts are then distributed by the EM algorithm [66] for expression quantification.

Transcript Clusters

>ClusterX|T1|T2
AAT|AAG
>ClusterY|T1|T2
TTA|GCG

RNA-Seq Reads

>Read1
AATTGACAT
>Read2
ATTGGCATA

Identification

[Y, 1] [X, 1]

[Y, 1]

[X, 1] [X, 1′]

[Y, 1′]

[Y, 1]

[X, 1] [Y, 1] [X, 1′]

[Y, 1]

[X, 1] [X, 1′]

[Y, 1′]
[X, 1]
[X, 1′]
[Y, 1]

[Y, 1]
[X, 1′]
[Y, 1′]

A C G T

A

C
T
G
$

G

C
T
G
$

G
C
T
$

C
T

T
T
$

$
T
$

A
G
T
T
$

T

$
G
$

T
$

$
C
T

T
T
$

T
$

$

$ G
$

T
$

Selection

C	 E	

D	

L	A	 B	v1	R	 v2	 v3	

A	 B	

B	 C	 E	

B	 D	 E	

T1

T2

T3

sy
sx

sz

Matching

[Y, 1] [X, 1] [Y, 1] [Y, 1] [X, 1]

[X, 1]

[Y, 1]

A C G

A

C G

A

G

T

G T

C T

T

A A C T G

Read Query:

[Y,1] [Y,1] \

Estimation
E-step:

ze,τ =
ye,τ×ατ`τ∑

e∈E(θi)

ye,τ×ατ`τ

M-step:

ατ =

∑
e∈E(θi)

ze,τ×|e|

|R(θi)|

Transcript Clusters

>ClusterX|T1|T2
AAT|AAG
>ClusterY|T1|T2
TTA|GCG

Selected Sig-mers

CLUSTERX AAT
CLUSTERX AAG
CLUSTERY TTA
CLUSTERY GCG

Transcript Abundance

CLUSTERX T1 10
CLUSTERX T2 20
CLUSTERY T1 15
CLUSTERY T2 10

Figure 4.1: An overview of Fleximer.

4.1 Sig-mers Identification

Given a set of n transcripts in a cluster θi, our first task is to identify the sig-mers that

can characterize the uniqueness of a cluster. Suppose the average length of transcripts

is m, then the number of possible sig-mers with length less than k is O(nm − nk(k +

1)/2). In the human genome, there are over 20,000 protein coding genes, corresponding

to more than 198,000 transcripts, and the average length of a transcript is approximately

2,000bp. Therefore, enumerating all possible substrings to check for their uniqueness is

computationally intractable. The suffix tree is a powerful data structure for string searching

algorithm, and it has been widely applied to a diverse range of biological sequence analyses

[31, 36, 42]. Appendix A provides the background of suffix tree. Leveraging the suffix tree

structure and properties, we apply a post-order traversal to identify all unique substrings.

We build a suffix tree based on all prefixes and suffixes of transcript sequences. We use

both forward and reverse complementary sequences to construct the tree. There are two

practical aspects to include the reverse complementary sequences. First, reads from the

sequencing technology can be generated from the complementary strand. Second, suffixes

17

of a reverse complementary sequence serve as the same mean as the prefixes of its forward

sequence. If a substring is a sig-mer, then its reverse complementary sequence is also a

sig-mer. In a suffix tree, if a substring from the root to any node appears only once in

our transcript sequences, this path contains at least one sig-mer. We refer this node as a

candidate. An internal node typically represents a substring that appears more than once in

our transcript sequences. The path to any internal node contains a sig-mer only if all of the

starting positions of this substring are located in the same cluster. These starting positions

can be retrieved recursively from its descendants. Specifically, we use a bottom-up approach

to examine each node through a post-order traversal.

The post-order traversal starts with the left subtree, followed by the right subtree, and the

parent. We store the substring information of the nodes that have already been visited. This

information does not include the actual sequence, but is sufficient to retrieve the cluster and

sequence IDs, and the starting positions of a substring. At each internal node, we determine

if it is a candidate by examining all substrings from its children. If all substrings come from

the same cluster, then it is a candidate. Otherwise, the search process terminates for this

branch, marking this node and its ancestors disqualified. Since the cluster information of a

substring propagates from the leaves, all the ancestors of a disqualified node can be pruned.

We use this anti-monotonic constraint to avoid further computation of its ancestors.

Figure 4.2 uses a toy example to illustrate this idea to discover all sig-mers. We include

both forward and reverse complementary sequences of each transcript to construct a gener-

alized suffix tree. Each leaf contains the information of cluster and sequence IDs of a suffix.

Each edge is labeled by a substring. The same information of an internal node is retrieved

from its descendants through a post-order traversal. Candidates are highlighted in red. For

example, substring AGCT$ and AGCTT$ appear uniquely in sequence 1 and sequence 1 (reverse

complementary of sequence 1) of cluster X, respectively. Thus, their nodes are candidates.

Their parent is also a candidate since AGCT only appears in cluster X but not in cluster Y.

However, their grandparent is not a candidate as AG appears in both cluster X and Y. The

traversal process terminates here for this subtree. In order to generate all sig-mers with

18

different sizes, we consider all prefixes of an edge label between a candidate and its parent.

Therefore, AGC is also a sig-mer in addition to AGCT.

>ClusterX|T1
AAT
>ClusterY|T1
TTA

Transcript
Clusters

>ClusterX|T1
AAT
>ClusterX|T1’
TTA
>ClusterY|T1
TTA
>ClusterY|T1’
AAT

Adding Reverse
Complementary

Sequences

[Y, 1] [X, 1]

[Y, 1]

[X, 1] [X, 10]

[Y, 10]

[Y, 1]

[X, 1] [Y, 1] [X, 10]

[Y, 1]

[X, 1] [X, 10]

[Y, 10]
[X, 1]
[X, 10]
[Y, 1]

[Y, 1]
[X, 10]
[Y, 10]

A C G T

A

C
T
G
$

G

C
T
G
$

G
C
T
$

C
T

T
T
$

$
T
$

A
G
T
T
$

T

$
G
$

T
$

$
C
T

T
T
$

T
$

$

$ G
$

T
$

[cluster id, seq id]

AACTG AACT
AAC AAGCT
AAGC AAG
ACTG ACT
AC AGCT
AGC AGCTT
AGTT AGT
CAGTT CAGT
CAG CA
CTG CTT
GCT GC
GCTT GTT
GT TG

Sig-mers Discovered
by Su�x Tree

Figure 4.2: Sig-mers identification in Fleximer.

4.2 Sig-mers Selection

The compressed suffix tree allows us to efficiently discover all sig-mers with different sizes.

However, not all of them are necessary for the quantification stage. We select a set of

representative sig-mers that possess three properties: 1) Be robust to sequencing errors and

individual variations. 2) Characterize the uniqueness of each transcript. 3) Provide sufficient

coverage across all transcript sequences. We first discuss the optimal range of ks.

In an ideal scenario where there are no sequencing errors and individual variations, sig-

mers will match all reads that come from the same cluster. In reality, reads contain se-

quencing errors and individual variations. These reads are less likely to be recognized by

long sig-mers since the matching process requires an exact match. On the other hand, these

reads have a higher risk to be “matched” by short sig-mers that belong to other clusters.

Therefore, a sig-mer cannot be too long or too short, with the optimal range depending on

the sequencing error rate and the fraction of individual variations. In addition, the upper

bound of k is constrained by the read length of an RNA-Seq experiment. We set the lower

bound to 25bp, and the upper bound to 80% of the read length.

With the remaining Sig-mers, we use the concept of a splicing graph [30, 83] to guide the

19

selection. Splicing graph is first introduced to predict and represent the choices of alternative

splicing for a gene model. It is a directed cyclic graph, in which vertices represent the splicing

sites and edges are the exons or introns between two splicing sites. Two virtual vertices

are added, root (R) and leaf (L), along with virtual edges, so that each transcript can be

represented by a path that goes from R to L. Vertices with their indegree and outdegree

equal to 1 are uninformative for delimiting alternative splicing event, and are often collapsed

to obtain a more compact representation. Analogously, we can use a compact splicing graph

to represent all member transcripts in a cluster. A cluster can contain transcripts from more

than one gene, depending on the partitioning scheme. To accommodate this scenario, we

broaden the definition of the edges and vertices. Edges represent different sequence segments

that appear at least once in a cluster; vertices represent transition points where the incoming

edge covers a different set of transcripts from the outgoing edge.

Figure 4.3a illustrates a compact splicing graph of a cluster with three transcripts. Each

box represents either a unique or shared sequence segment. For example, segment B is

shared by all transcripts, where segmant A is unique to transcript T1. If they are isoforms

of the same gene, segment B can be interpreted as a common exon. In this graph, each edge

represents a segment, and each vertex indicates a transition point. Sequences of these three

transcripts are depicted by three paths (blue, red, and gray) from R to L. A sig-mers is a

substring of an edge, denoted by the pink lines. As we observe from the graph, a sig-mer

possesses higher discriminating power if it spans through a vertex. Considering three sig-

mers, sx, sy, and sz, sx resides completely on segment E and is shared by two transcripts.

Given a read that contains sx, the origin of this read can be either one of these transcripts.

On the other hand, sy and sz are unique to transcript T2 and T3, respectively. Since sy and

sz are superstrings of sx, reads containing sy and sz also contain sx. However, sy and sz

provide specific information regarding the origin of these reads. As a result, the selection

process prioritizes sig-mers that span through a vertex.

The original proposal of splicing graph is constructed through ESTs (expressed sequence

tags) or RNA-Seq reads assembly. Since we already know the starting positions of all sig-

20

mers, we do not need to assemble these sig-mers. Instead, we order the sig-mers based on

their starting positions. As we traverse through all starting positions in a sequential order,

we pave all paths of a splicing graph. To provide a sufficient coverage for each transcript,

we select additional sig-mers along the path, spaced by a small gap (e.g., 5bp) between two

sig-mers. Since the transcript sequences can be read in either forward or reverse direction,

complementary sequences of the selected sig-mers are added to the final list.

C	 E	

D	

L	A	 B	v1	R	 v2	 v3	

A	 B	

B	 C	 E	

B	 D	 E	

T1

T2

T3

sy
sx

sz

(a) Sig-mer selection via splicing graph

[Y, 1] [X, 1] [Y, 1] [Y, 1] [X, 1]

[X, 1]

[Y, 1]

A C G

A

C G

A

G

T

G T

C T

T

A A C T G

Read Query:

[Y,1] [Y,1] \
(b) Sig-mer matching by TahcoRoll

Figure 4.3: Sig-mers selection and matching in Fleximer

4.3 RNA-Seq Reads Matching

The quantification stage starts with determining the potential transcript origins of each

read. We refer this set of potential transcripts as the “transcript profile” of a read. In the

traditional framework, the transcript profile is determined by aligning the read sequence to

the reference transcriptome. In this setting, each sig-mer is associated with a transcript

profile indicating its origins. We can construct the transcript profile for each read by taking

the intersection of all transcript profiles associated with the sig-mers that appear in a read.

Discovering the occurrence of our representative sig-mers in reads is equivalent to the

keyword searching problem in computer science. A trivial approach is to index the repre-

sentative sig-mers (keywords) with a hash table. Since we allow variable sig-mer sizes, the

21

challenge lies on scanning through each read with different window sizes. Even with an effi-

cient hashing function, such as rolling hash [37], the number of comparisons increases with

the range of window sizes. Assume that the read length is `, and total length of sig-mers is

m. The sizes of these sig-mers range from k1 to kd. The time complexity for constructing

the hash is O(m), and for searching sig-mers in one read is O(`× k1) + . . .+O(`× kd). The

total time complexity would be O(m+ `× k1+kd
2
× d).

A linear search solution is the Aho-Corasick algorithm [1], which constructs a finite state

automaton for all sig-mers. This automaton is a keyword tree with additional links between

internal nodes. These extra links allow fast transition between sig-mer matches without the

need for backtracking. The complexity of building the automaton is O(m) and for searching

is O(z) where z refers to the total number of occurrences of sig-mers in a read. Figure 4.3b

illustrates the search using the Aho-Corasick algorithm. Each node consists a failure link

to guide the search. Given a query AACTG, we follow the path AAC (dark blue) and find the

substring belongs to sequence 1 in cluster Y. Following the failure link, we can quickly find

CTG (light blue), which also belongs to sequence 1 in cluster Y.

A drawback of maintaining this automaton is the memory requirement for storing long

or large number of sig-mers. As we increase the number and the length of sig-mers, the

tree grows wider and deeper respectively. Fortunately, the concise representation of DNA

molecules allows further reduction in memory requirement of this automaton. Since these

sig-mers are composed of only four different characters: A, C, G, and T. We propose to

partition these characters into two groups, and use one bit, i.e., 0 or 1, to represent them.

This binarized representation allows us to significantly shrink the structure of the trie, and

to substantially reduce the memory. To avoid collisions of sig-mers with identical binarized

representations on the tree, each node contains a hash table to facilitate recovering the

original sig-mers. We name this enhanced matching algorithm TahcoRoll, thinned Aho-

Corasick automaton accelerated by rolling hash, and describe the algorithm in details below.

22

4.3.1 Aho-Corasick Automaton

Given a set of sig-mers S, and a set of reads R, our goal here is to retrieve all sig-mers s ∈ S

that occurs in each read r ∈ R. This task can be reduced into multiple pattern matching [65]

by mapping sig-mers onto patterns and reads into the input text.

Aho-Corasick algorithm (AC) conducts the matching process along a trie that corresponds

to patterns. Each node in AC has a failure link that allows fast transitions from one node

to the other representing its longest possible suffix without backtracking. Informally, AC

constructs a finite state machine (or an automaton) that resembles a trie and failure links.

The pattern matching process can be treated as transitions between nodes in the automaton,

and failure links provide efficient transitions between failed matches. Figure 4.4a shows an

example of AC with five sig-mers. Black solid links are trie links, and red dashed links are

failure links. Colored nodes and thicker links are traversed while profiling a read ATTTC. For

example, the node of sig-mers ACAT has a failure link to the node of AT. When profiling the

read ATTTC, the algorithm will first match the sig-mer ATT in the blue node. Then, it fails to

match the third T and transits to the orange node that still has no child of T. After traveling

along the failure link again to the yellow node, both the last two characters TC can proceed

towards the orange and brown nodes that indicate a match of sig-mer TTC.

The construction of the automaton in AC with sig-mers s ∈ S requires a simple breadth-

first search (BFS) with a O(
∑

s∈S |s|) linear time complexity. To profile sig-mers in read

r ∈ R, AC only needs to simulate transitions on the automaton, which also has a linear

time complexity O(
∑

r∈R |r| +
∑

s∈S cs), where cs is the occurrences of s in R. The space

complexity of AC is also linear, O(
∑

s∈S|s|), to maintain a node and a constant number of

links for each character. In theory, AC is a perfect fit for sig-mer profiling.

4.3.2 Thinned Automaton with Binarized Pattern Matching

Even though the theoretical bound of AC for sig-mer profiling is linear, there are still some

hurdles in practice. One of the most critical issues is the memory usage when the number of

23

sig-mers is enormous. More specifically, each individual character in sig-mer can be referred

to as a trie node, which provides plenty information and consumes a considerable amount of

memory. For example, as demonstrated in Figure 7.12b, the Python implementation of AC

requires more than 240 GB of memory to process 24 million sig-mers whose lengths range

from 131 to 151. Especially for sig-mers with fewer and shorter common prefixes, nodes

tend to have more child nodes. The greater width leads to the increase of memory usage.

To reduce both the number of nodes and the width of the automaton, we propose the

thinned automaton with binarized pattern matching. Formally, each sig-mers s [1 . . . |s|] ∈ S

is transformed into a binarized pattern s′ [1 . . . |s|] before being added into the automaton.

The i-th character s′ [i] of s′ is defined as follows:

s′ [i] = binarize (s [i]) , where binarize (c) =





0 , c ∈ {A, G}
1 , c ∈ {C, T}

. (4.2)

Note that these four characters can be randomly divided into two groups. From the

analysis presented in Table 7.7, we use a balanced partition which groups A,G together.

Compressing two characters into one bit 0 or 1, binarized patterns improve the representation

capability of a depth-d node in a trie from 1 to 2d unbinarized pattern(s), thereby reducing

both the width of the automaton and the number of nodes. We further conduct a theoretical

analysis of the improvement of this thinned automaton against the plain AC. For convenience,

we assume that each character in a sig-mer is uniformly distributed. To estimate the worst-

case scenario, we assume that every sig-mer has the largest length m observed in the set.

While inserting a sig-mer into a trie, the number of newly added nodes depends on the

presence of its prefixes in the trie. Proposition 1 gives an expectation of finding prefixes for

n sig-mers with c possible characters.

Proposition 1 (Proved in Appendix B.1). Given n sig-mer with c possible characters to be

added into a trie, the expected number of sig-mer that fail to find their length-i prefixes along

the trie during its insertion is ci
(

1−
(
ci−1
ci

)n)
− ci−1

(
1−

(
ci−1−1
ci−1

)n)
, where 0 ≤ i ≤ m.

24

Based on Proposition 1, we derive the expected number of nodes in a trie in Proposition 2.

Proposition 2 (Proved in Appendix B.2). Given n sig-mer of length m with c possible

characters to be added into a trie, the expected number of trie nodes is
∑m

i=1

[
ci − ci

(
ci−1
ci

)n]
.

Following Proposition 2, Proposition 3 derives the expected improvement on the number

of trie nodes when the number of sig-mers is approaching to a large number.

Proposition 3 (Proved in Appendix B.3). When the number of sig-mers in the automaton

is approaching to a large number, the expected number of nodes in the thinned automaton is

only 3
2
· 1
2m+1

of those in the plain AC.

As shown in Proposition 3, the improvement with the thinned automaton is guaranteed

under the assumption mentioned above. However, DNA sequences are biased. In this sce-

nario, where the characters of each sig-mer are not uniformly distributed, the improvement

can be more pronounced because more duplicated segments lead to fewer trie nodes. Fig-

ure 4.4b illustrates the thinned automaton of the same sig-mers demonstrated in Figure 4.4a.

Even though the thinned automaton reduces the number of nodes, compressed repre-

sentations may lead to collisions. Figure 4.5 shows an example of binarized results for five

sig-mer and two sequencing reads. Two sig-mers CA and TG share the same binarized pattern

10 (highlighted in red) and result in a collision when reaching the yellow node in Figure 4.4b.

Substrings with identical binarized representations may also lead to false matches. For in-

stance, ATGC in the second read, which is not a sig-mer, has the same binarized representation

0101 as the sig-mer ACAT (highlighted in blue). To maintain the correctness of matching,

each match to a binarized pattern needs to be verified with the original sig-mer. In other

words, it is very time-consuming if there are serious collisions in certain nodes. A näıve com-

parison costs O
(∑

s∈{S|s′=h,s∈S} |s|
)

time to verify sig-mers with the same representation.

4.3.3 Acceleration by Rolling Hash

Using hash functions is an intuitive idea to speed up comparisons between strings. As the

lengths of sig-mer vary, arbitrary substrings of the read r ∈ R is required to compute

25

A

T

A

T

T

ATT

A T

T
Failure Links

Trie Links

C

G
C

C

TTC

TG

CA

ACAT

(a) The raw automaton.

Failure Links

Trie Links

0

1

1
1
0 1

ATT

0
1 1 TTG

TGCA

ACAT

(b) The binarized automaton.

Figure 4.4: The raw and binarize Aho-Corasick automaton with five signatures.

Sig-mers S Sequencing Reads R
Original ATT CA TTC ACAT TG AATTCACAT ATTCAGATGC

Binarized 011 10 111 0101 10 001110101 0111000101

Figure 4.5: Collisions in binarized representations.

hash values during verification. However, on-the-fly computation of hash values takes an

additional linear time O (|r|) for each checkup; pre-computing all possible substrings is also

infeasible due to dispensable computations and extensive O(|r|2) additional memory.

To accelerate verification, we propose to apply rolling hash [13] that alleviates the time

complexity for each checkup from linear to constant with a linear-time pre-processing and

an additional linear memory consumption. Rolling hash is a family of hash functions where

the input is hashed with a window that moves through the input. A new hash value can be

rapidly calculated from the given old hash value in O(1) time. It also allows O(1) query time

on the hash value of any substring in the input with content-based slicing. We implement

the Rabin-Karp algorithm [37] as the rolling hash function. Formally, the hash value of a

length-L input r[1 . . . L] is defined as follows:

H (r[1 . . . L]) = r[1]aL−1 + r[2]aL−2 + · · ·+ r[L− 1]a1 + r[L]a0 (mod q), (4.3)

where r[i] is the i-th character of the input; a is a constant multiplier; q is a constant prime

modulus. The hash value of a length-i prefix of r can be recursively calculated through the

26

hash value of the length-(i− 1) prefix:

H (r[1 . . . i]) =





H (r[1 . . . i− 1]) · a+ r[i] , if i > 1

r[1] , if i = 1
(mod q). (4.4)

With bottom-up computation, hash values of all prefixes H (r[1 . . . i]) can be preprocessed

in both O(L) time and space complexity. Given the hash values of all prefixes, the hash value

of any substring r[i . . . j] can be derived in O(1) as follows:

H(r[i . . . j]) =





H(r[1 . . . j])−H(r[1 . . . i− 1]) · aj−i+1 , if i > 1

H(r[1 . . . j]) , if i = 1
(mod q). (4.5)

As a theoretical analysis, Proposition 4 gives a theoretical upper-bound of the collision

probability. The larger the prime modulus q, the smaller the hash collision probabilities.

Proposition 4 (Gonnet and Baeza-Yates [24]). The probability of two different random

strings of the same length having the same hash value in Rabin-Karp rolling hash is P (collision) ≤
1/q, where q is the prime modulus in computations of the Rabin-Karp algorithm.

To apply rolling hash for acceleration, each node contains a hash table that maps a hash

value onto the original sig-mers. When transitioning to the node, the hash value of the

matching substring in the read can be rapidly calculated and verified for its presence in

the hash table. As a result, the average time complexity of each checkup reduces to O(1).

The overall time complexity of TahcoRoll is O
(∑

s∈S |s|+
∑

r∈R |r|+
∑

s∈S cs
)
, including

the construction of the automaton and the matching process. The only memory overhead is

hash tables with exactly |S| values, which is an amortized O(|S|) space.

4.4 Transcript Abundance Estimation

Since the transcriptome is partitioned into a set of non-overlapping cluster, each cluster can

be quantified independently. After the sig-mer matching step, each read is associated with

27

a transcript profile indicating its potential origins. Based on these profiles, we can group

reads into their corresponding clusters. For each cluster θi, we use R(θi) to represent the

set of reads assigned to cluster θi, and T(θi) to represent the set of transcripts in θi. Each

transcript τ ∈ T(θi) is associated with a probability ατ indicating its proportion of reads in

cluster θi, and
∑
ατ = 1. If we know the exact origin of each read, we can form an indicator

matrix Z, where zr,τ = 1 indicating that read r ∈ R(θi) comes from transcript τ , and 0

otherwise. Since each read only comes from one transcript, ατ can be estimated by
∑
zr,τ /

|R(θi)|, where |R(θi)| is the total number of reads in θi. However, Z is not fully observed, and

what we observed is the transcript profiles for each read, forming another indicator matrix

Y. Similarly, yr,τ = 1 if τ is in the transcript profile of read r. Z is the hidden variable, and

is recovered from the observation Y. We use the following likelihood function to estimate α:

L(α|Y) =
∏

r∈R(θi)

∑

τ∈T(θi)

yr,τ
ατ
`τ

=
∏

e∈E(θi)

(∑

τ∈T(θi)

ατ
`τ

)|e|
(4.6)

In this log-likelihood function, `τ is the effective length for transcript τ . We can improve

the computation speed and memory by grouping reads with the same transcript profile

into equivalence classes. The concept of the equivalence class is widely used in transcript

abundance estimation [9, 70, 110]. We use E(θi) to represent the set of equivalence classes

in θi, and equivalence class e ∈ E(θi) contains |e| reads. We use the EM algorithm to

compute the maximum likelihood estimates of α from our observed data Y. The algorithm

alternates between allocating the fraction of counts of each equivalence class (E-step), and

estimating the relative abundance given this allocation (M-step). More specifically, the E-

step reconstruct the hidden variable Z as

ze,τ =
ye,τ × ατ

`τ∑
e∈E(θi)

ye,τ × ατ
`τ

, (4.7)

28

and the M-step updates the probability through Z,

ατ =

∑
e∈E(θi)

ze,τ × |e|

|R(θi)|
. (4.8)

The algorithm converges when the change of α is less than 10−7. At convergence, read

count of τ can be recovered through ατ and |R(θi)|. We report transcript abundance in

three commonly used metrics: raw read count, RPKM (Reads Per Kilobase of transcript

per Million mapped reads), and TPM (Transcripts Per Kilobase Million). Both RPKM and

TPM are normalized units that account for sequencing depth and transcript length.

29

CHAPTER 5

Multifaceted Protein-Protein Interaction Prediction

Based on Siamese Residual RCNN

To characterize protein-protein interaction, a model must capture the mutual influence of

protein pairs. In this work, we present an end-to-end framework, PIPR, for PPI predic-

tions using only the sequence information. The overall learning architecture is illustrated

in Figure 5.1. PIPR employs a Siamese architecture of residual RCNN (recurrent convo-

lutional neural network) encoder to better apprehend and utilize the mutual influence of

two sequences. To capture the features of the protein sequences from scratch, PIPR pre-

trains the embeddings of canonical amino acids to capture their contextual similarity and

physicochemical properties. The latent representation of each protein sequence is obtained

by feeding the corresponding amino acid embeddings into the sequence encoder. The em-

beddings of the two sequences are then combined using element-wise multiplication to form

a sequence pair vector. Finally, this sequence pair vector is fed into a multi-layer perceptron

with appropriate loss functions, suiting for specific prediction tasks. More specifically, we

use the same architecture to address three challenging tasks for PPI: (i) Binary prediction

to indicate whether a protein pair interacts. (ii) Interaction type prediction to identify the

interaction type of two proteins. (iii) Binding affinity prediction to estimate the strength of

the binding interaction.

30

Residual
RCNN

Shared
parameters

Element-wise multiplication

Residual
RCNN

MQSPYPMTQVSNVDDGSLLK... MLERIQQLVNAVNDPRSDVAT...

Interaction
prediction

Binding affinity
estimation

Interaction type
prediction

MSE

Binary cross-entropy Categorical cross-entropy

Multi-Layer
Perceptron

Prediction
Tasks

Sequence Pair Vector

Protein Sequences

Residual
RCNN

Sequence Embedding
Vectors

Pre-trained Embeddings

Figure 5.1: The overall learning architecture of PIPR.

GRU

GRU

GRU

GRU

GRU

GRU

Max Pool Max Pool Max Pool Max Pool...

...

GRU

GRU
...

... ...

Bidirectional
GRU

with residual
shortcuts

Convolution
Layer

Pooling

Output

Input

RCNN Unit

Convolution Layer

Global Average Pooling

RCNN Unit

Pre-trained Embeddings

Sequence Embedding Vector

RCNN Unit

...

Figure 5.2: The structure of the residual RCNN encoder in PIPR.

5.1 RCNN-based Protein Sequence Encoder

We employ a deep Siamese architecture of residual RCNN to capture latent semantic features

of the protein sequence pairs. In this section, we start with a brief overview of the residual

RCNN architecture. The output of the stacked residual RCNN units renders the latent

representation of each protein; the input of the first RCNN unit is the pre-trained amino

acid embeddings. The diagram on the right of Figure 5.2 demonstrates the flow for the three

components discussed in this section.

31

5.1.1 Residual RCNN

The RCNN seeks to leverage both the global sequential information and local features that

are significant to the characterization of PPI from the protein sequences. This deep neural

encoder stacks multiple instances of two computational modules, i.e. convolution layers with

pooling and bidirectional residual gated recurrent units. The architecture of an RCNN unit

is shown on the left of Figure 5.2.

5.1.1.1 Convolution Layer with Pooling

We use V = [v1,v2, . . . ,vl] to denote an input vector sequence to an RCNN unit. For

the first layer of RCNN, this input vector corresponds to the embedded amino acids of the

protein sequence. For the rest of the RCNN units, it corresponds to the outputs of a previous

neural layer. A convolution layer applies a weight-sharing kernel Mc ∈ Rh×k to generate a

k-dimension latent vector h
(1)
t from a window vt:t+h−1 of the input vector sequence V:

h
(1)
t = Conv(vt:t+h−1) = Mcvt:t+h−1 + bc

for which h is the kernel size, and bc is a bias vector. The convolution layer applies the kernel

as a sliding window to produce a sequence of latent vectors H(1) = [h
(1)
1 ,h

(1)
2 , ...,h

(1)
l−h+1],

where each latent vector combines the local features from each h-gram of the input sequence.

The n-max-pooling mechanism is applied to every consecutive n-length subsequence (i.e.,

non-overlapped n-strides) of the convolution outputs, which takes the maximum value along

each dimension j by h
(2)
i,j = max(h

(1)
i:n+i−1,j). The purpose is to discretize the convolution

results, and preserve the most significant features within each n-stride [10, 26, 40]. By

definition, this mechanism divides the size of processed features by n. The outputs from the

max-pooling are fed into the bidirectional gated recurrent units in our RCNN encoder.

32

5.1.1.2 Residual Gated Recurrent Units

The Gated Recurrent Unit model (GRU) represents an alternative to the Long-short-term

Memory network (LSTM) [12], which consecutively characterizes the sequential information

without using separated memory cells [19]. Each unit consists of two types of gates to track

the state of the sequence, i.e. the reset gate, rt, and the update gate, zt. Given the embedding

vt of an incoming item (either a pre-trained amino acid embedding, or an output of the

previous layer), GRU updates the hidden state h
(3)
t of the sequence as a linear combination

of the previous state h
(3)
t−1 and the candidate state h̃

(3)
t of a new item vt, which is calculated

as below.

h
(3)
t = GRU(vt) = zt � h̃

(3)
t + (1− zt)� h

(3)
t−1 (5.1)

zt = σ
(
Wzvvt + Wzhh

(3)
t−1 + bz

)
(5.2)

h̃
(3)
t = tanh

(
Whvvt + rt � (Whhh

(3)
t−1) + bs

)
(5.3)

rt = σ
(
Wrvvt + Wrhh

(3)
t−1 + br

)
. (5.4)

� thereof denotes the element-wise multiplication. The update gate zt balances the infor-

mation of the previous sequence and the new item, where capitalized W∗ denote different

weight matrices, b∗ denote bias vectors, and σ is the sigmoid function. The candidate state

h̃
(3)
t is calculated similarly to those in a traditional recurrent unit, and the reset gate rt

controls how much information of the past sequence contributes to h̃
(3)
t . Note that GRU

generally performs comparably to LSTM in sequence encoding tasks, but is less complex

and requires much fewer computational resources for training.

A bidirectional GRU layer characterizes the sequential information in two directions. It

contains the forward encoding process
−−−→
GRU that reads the input vector sequence V from

v1 to vl, and a backward encoding process
←−−−
GRU that reads in the opposite direction. The

encoding results of both processes are concatenated for each input item vt as

h
(4)
t = BiGRU(vt) = [

−−−→
GRU(vt),

←−−−
GRU(vt)]. (5.5)

33

The residual mechanism passes on an identity mapping of the GRU inputs to its out-

put side through a residual shortcut [29]. By adding the forwarded input values to the

outputs, the corresponding neural layer is only required to capture the difference between

the input and output values. This mechanism aims at improving the learning process of

non-linear neural layers by increasing the sensitivity of the optimization gradients [29, 39],

as well as preventing the model from the vanishing gradient problem. It has been widely

deployed in deep learning architectures for various tasks of image recognition [29], document

classification [14] and speech recognition [109]. In our deep RCNN, the bidirectional GRU

is incorporated with the residual mechanism, and will pass on the following outputs to its

subsequent neural network layer:

h
(5)
t = ResGRU(vt) = [

−−−→
GRU(vt) + vt,

←−−−
GRU(vt) + vt] (5.6)

In our development, the residual mechanism is able to drastically simplify the training pro-

cess, and largely decreases the epochs of parameter updates for the model to converge.

5.1.2 Protein Sequence Encoding

Given a protein sequence p, the RCNN encoder ERCNN(p) alternately stacks multiple oc-

currences of the above two intermediary neural network components. A convolution layer

serves as the first encoding layer to extract local features from the input sequence. On top

of that, a residual GRU layer takes in the preserved local features, whose outputs are passed

to another convolution layer. Repeating of these two components in the network structure

conducts an automatic multi-granular feature aggregation process on the protein sequence,

while preserving the sequential and contextualized information on each granularity of the

selected features. The last residual GRU layer is followed by another convolution layer for a

final round of local feature selection to produce the last hidden states, H′ = [h′1,h
′
2, . . . ,h

′
|H′|].

Note that the dimensionality of the last hidden states does not need to equal that of the

previous hidden states. A high-level sequence embedding of the entire protein sequence is

34

obtained from the global average-pooling [51] of H′, i.e. ERCNN(p) = 1
|H′|
∑|H′|

i=1 h′i.

5.1.3 Pre-trained Amino Acid Embeddings

A protein is profiled as a sequence of amino acids, p = [a1, a2, . . . , al], such that each character

is an amino acid ai ∈ A. We use A to denote the vocabulary of 20 canonical amino acids.

To support inputting the non-numerical sequence information, we use a semi-latent vector

to represent each amino acid. We use bold-faced a to denote its embedding representation.

Each embedding vector is a concatenation of two sub-embeddings, i.e. a = [ac, aph].

The first part ac measures the co-occurrence similarity of the amino acids, which is

obtained by pre-training the Skip-Gram model [59] on a collection of protein sequences. The

learning objective of Skip-Gram is to minimize the following negative log likelihood loss,

where |p| represent the sequence length of protein p.

JSG = − 1

|p|
∑

at∈p

∑

−C<j<C

log Pr(ac,t+j|ac,t) (5.7)

ac,t thereof is the first-part embedding of the t-th amino acid at ∈ p, ac,t+j is that of a

neighboring amino acid, and C is the size of half context. The context here refers to a

subsequence of a given protein sequence p, such that the length of the subsequence is 2C+1.

The probability is defined as the following softmax:

Pr(ac,t+j|ac,t) =
exp(ac,t+j · ac,t)∑n
k=1 exp(a′c,k · ac,t)

(5.8)

where n is the negative sampling size, and a′c,k is a negative sample that does not co-occur

with ac,t in the same context.

The second part aph represents the similarity of electrostaticity and hydrophobicity among

amino acids. The 20 amino acids can be clustered into seven classes based on their dipoles

and volumes of the side chains to reflect this property. Thus, aph is a one-hot encoding based

on the classification defined by Shen et al. [84].

35

5.2 Learning Architecture and Learning Objectives

5.2.1 Siamese Architecture

Given a pair of proteins b = (p1, p2) ∈ B, the same RCNN encoder is used to obtain the

sequence embeddings ERCNN(p1) and ERCNN(p2). Two embeddings are combined using

element-wise multiplication, i.e., ERCNN(p1)�ERCNN(p2). This is a commonly used opera-

tion to infer the relation of two sequences [26, 35, 77, 89]. Other works use the concatenation

operation [87, 103], which we find to be less effective in modeling the relations of proteins.

5.2.2 Learning Objectives

The embeddings of a protein pair is fed into a multi-layer perceptron (MLP) with leaky

ReLU [52] to render an output for the prediction task. This output, ŷb, is either a vector for

a classification task or a scalar for a regression task. The learning architecture is trained to

optimize the following two types of losses according to different PPI prediction problems.

(i) Cross-entropy loss is optimized for binary prediction and interaction type prediction.

In this case, ŷb is a vector, whose dimensionality equals the number of classes m. ŷb is

normalized by a softmax function, where the i-th dimension yb =
exp(ŷbi)∑
j exp(ŷ

b
j)

corresponds to

the confidence score for the i-th class. The learning objective is to minimize the following

cross-entropy loss, where ob is a one-hot indicator for the class label of protein pair b.

Lcross−entropy = − 1

|B|
∑

b∈B

m∑

i=1

obi log ybi (5.9)

(ii) Mean squared loss (MSE) is optimized for the binding affinity estimation task. In this

case, ŷb is a scalar output normalized by a sigmoid function yb = 1
1+exp(ŷb)

, which is trained

to approach the normalized ground truth ob ∈ [0, 1] by minimizing the following objective:

LMSE =
1

|B|
∑

b∈B

∣∣yb − ob
∣∣2 (5.10)

36

CHAPTER 6

Datasets

We provide a detail descriptions of the datasets used in different experiments.

6.1 NGS Datasets

6.1.1 Psuedogene Reference

The Yale pseudogene knowledgebase provides the information that describes the relationship

between pseudogenes and their homologous parents. Build 79 contains 15,774 pseudogenes

and 6,206 parent genes locating on the canonical chromosomes (chr1-22, X, Y, and mitochon-

dria). Since majority of the pseudogenes are inferred computationally, and only a portion

of them are presented with evidence at transcript level, we focus on these known expressed

pseudogenes for the analyses. The 15,774 pseudogenes are crossed reference to the gene def-

initions from Ensembl release 79 of Human Genome GRCh38 [102]. Of these pseudogenes,

there are only 2610 annotated as transcribed pseudogenes. Our final gene list contains 8816

transcripts (6206 parents and 2610 pseudogenes).

6.1.2 Reference Transcriptome

We use the gene annotation from Ensembl release 81 of Human Genome GRCh38 for the

analyses in Fleximer and TahcoRoll, which contains more than 22,000 protein-coding genes.

Of these genes, 19,817 locate on the canonical chromosomes. Our experiments focus only on

the transcripts encoded by these genes, which correspond to 143,609 gene isoforms.

37

6.1.3 Signatures Used in TahcoRoll

To examine the effects of signature number and length, we use synthetic k-mers with different

ranges of size, denoted by small(15-31bp), medium(65-81bp), large(131-151bp), and wide(15-

131bp). Each batch contains four sets of 1.2, 6, 12, and 24 million k-mers. These number

are arbitrarily chosen to examine the scalability of different methods. The sequence of each

k-mers is randomly assigned with four nucleotide characters, and a random length that falls

in the appropriate range. These random signatures are designed to test the worst scenario

as their characters are uniformly distributed and may not share as many common prefixes

as in the real sequencing data. Each k-mer is represented by its canonical form (i.e., the

lexicographical minimum of itself and its reverse complementarysequence). Duplicated k-

mers are removed from the list.

In order to profile real sequencing data, we use a list of 10,962,469 sig-mers selected

by Fleximer to examine the RNA-Seq datasets, and a list of 10,935,397 short sequences

randomly selected from the reference genome to examine the WGS datasets. The randomly

selected signatures range from 25-60bp.

6.1.4 Simulated Reads for Pseudogene

Given a list of transcripts and their abundances, we use RNAseqSim [110] to simulate paired-

end reads for training, with fragment size ranging from 100bp to 400bp. In order to mark

the origin of each read, we modify the software to inherit the gene ID in read names.

6.1.5 Simulated Reads for Fleximer and TahcoRoll

We use polyester [22] to generate single-end RNA-Seq reads for selected transcripts. In

each sample, 2-10% of the protein-coding transcripts are randomly selected to be expressed.

Sequencing errors are implanted following the Illumina model.

In Fleximer, 15 sets of experiments with 75bp are simulated, with three different read

coverages: 10X, 20X, and 30X. Each sample contains 3-97 million of reads. Each read is

38

tagged with the name of the transcript where it originated. The expected number of reads

for each transcript is computed by counting the transcript names in the raw read file. The

expected RPKM and TPM are calculated from the expected read count.

In TahcoRoll, 15 sets of experiments are generated in similar manner, with five different

read lengths: 75, 100, 125, 150, and 180bp. Each set contains 10-115 million of reads. The

flexibility of synthetic data allows us to examne the effects of read number and length.

6.1.6 Real Data from Human BodyMap

We also include a public dataset provided by the Illumina Human BodyMap 2.0 Project

(GSE30611). The samples contain individual tissue or a mixture of 16 human tissues RNA,

and are sequenced using Illumina HiSeq 2000 System. Among all these samples, we use six

of the single-end data with 75bp read length to evaluate the performance of Fleximer: female

brain, female breast, female colon, male adrenal, male lung, and male liver. The Expression

Atlas [71] provides gene expression information of highly-curated and quality-checked RNA-

seq experiments, including all 16 human tissues of the Human BodyMap Project. We use the

gene expression values reported in http://www.ebi.ac.uk/gxa/experiments/EMTAB- 513/ as

our ground standard to evaluate the predictions of different methods.

6.1.7 Real Data from Different Sequencing Platforms

We download public datasets generated from a diverse range of sequencing platforms. The

first dataset contains two experiments to study the transcriptomic analyses for lymphoblas-

toid cells [11]: SRR1293901 is a 2x262 cycle run from Illumina MiSeq and SRR1293901 is a

2x76 cycle run from Illumina HiSeq 2000. The second dataset, GSM1254204, aims to char-

acterize the transcriptome of human embryonic stem cells using PacBio long reads [5]. The

third datasets are generated by Oxford Nanopore to study the whole genome of breast cancer

model cell line. It contains three experiments: SRR5951587, SRR5951588, and SRR5951600

with different read lengths.

39

6.2 Protein-Protein Interaction Datasets

6.2.1 Guo’s Datasets

Guo et al. [25] generate several datasets from different species for the binary prediction of

PPIs. Each dataset contains a balanced number of positive and negative samples. Among

these resources, the Yeast dataset is a widely used benchmark by most state-of-the-art meth-

ods [26, 99, 105, 106]. There are 2,497 proteins forming 11,188 cases of PPIs, with half of

them representing the positive cases, and the other half the negative cases. The positive

cases are selected from the database of interacting proteins DIP 20070219 [81], where pro-

teins with fewer than 50 amino acids or ≥ 40% sequence identity are excluded. We use the

full protein sequences in our model, which are obtained from the UniProt [15]. The negative

cases are generated by randomly pairing the proteins without evidence of interaction, and

filtered by their sub-cellular locations. In other words, non-interactive pairs residing in the

same location are excluded. In addition, we combine the data for Caenorhabditis elegans,

Escherichia coli, and Drosophila melanogaster as the multi-species dataset. We use the clus-

ter analysis of the CD-HIT [48] program to generate non-redundant subsets. Proteins with

fewer than 50 amino acids or high sequence identify (40%, 25%, 10%, or 1%) are removed.

6.2.2 STRING Datasets.

The STRING database [88] annotates PPIs with seven types of interactions: activation,

binding, catalysis, expression, inhibition, post-translational modification (ptmod), and reac-

tion. We download all interaction pairs for Homo sapiens from database version 10.5, along

with their full protein sequences. Among the corresponding proteins, we randomly select

3,000 proteins and 8,000 proteins that share less than 40% of sequence identity to generate

two subsets. In this process, we randomly sample instances of different interaction types

to ensure a balanced class distribution. Eventually, the two generated datasets, denoted by

SHS27k and SHS148k, contain 26,945 cases and 148,051 cases of interactions respectively.

We use these two datasets for the PPI type prediction task.

40

6.2.3 SKEMPI Dataset.

We obtain the protein binding affinity data from SKEMPI (the Structural database of Ki-

netics and Energetics of Mutant Protein Interactions) [61] for the affinity estimation task.

It contains 3,047 binding affinity changes upon mutation of protein sub-units within a pro-

tein complex. The binding affinity is measured by equilibrium dissociation constant (Kd),

reflecting the strength of biomolecular interactions. The smaller Kd value means the higher

binding affinity. Each protein complex contains single or multiple amino acid substitutions.

The sequence of the protein complex is retrieved from the Protein Data Bank (PDB) [7].

We manually replace the mutated amino acids. For duplicate entries, we take the average

Kd. The final dataset contains 2,792 mutant protein complexes, along with 158 wild-types.

41

CHAPTER 7

Experiments and Results

7.1 Alignment Correction for Pseudogene Abundance Estimates

Pseudogene quantification via RNA-Seq remains challenging due to the high sequence sim-

ilarity with their parent genes. Short read sequences from low complexity genome region

are likely to align to multiple places, and thus are difficult to re-establish the origins of the

reads. In this section, we first emphasize the importance of this issue through a motivating

example, followed by demonstrating the effectiveness of our approach.

7.1.1 Misalignment of Pseudogene and Its Homologous Parent

We examine the read alignments of TopHat2 [38] between homologous regions, specifically

between the regions of a pseudogene and its parent. Paired-end reads are generated from

one of the human transcripts for diacylglycerol kinase (DGKZ), ENST00000421244, with two

different coverages, 10X and 30X. Reads are aligned to the reference genome by TopHat2,

and the abundance is estimated by Cufflinks [91]. PGOHUM00000248578 is a processed

pseudogenes of this transcript, and is not expressed in our simulation. Cufflinks reports

a relatively high abundance in terms of FPKM (Fragment per Kilobase of transcript per

Million mapped fragments) for this processed pseudogene compared to DGKZ. As illustrated

in Figure 7.1, most of the reads are assigned to the pseudogene.

We further examine the relationship between expected read count and observed read

count in functional parent genes and their homologous pseudogenes. We choose ten pairs

of parent-pseudogenes to demonstrate the findings in Figure 7.2. Paired-end reads of 100bp

42

ENST00000421244 PGOHUM00000248578

30X

10X

Location 11:46369137-46401497 13:44542559-44545332

Experiment 10X 30X 10X 30X

Expected Count 109 348 0 0

Expected FPKM 2923 3105 0 0

Reported Count 9 15 153 159

Reported FPKM 160 305 3519 3673

Figure 7.1: Alignment profile between ENST00000421244 and its pseudogene.

are simulated for functional parent genes only. The expected number of reads for each gene

(x-axis) is plotted against the observed read counts to itself and its pseudogene (y-axis),

showing a linear relationship across different replicates. Parent gene and pseudogene profiles

are depicted by different symbols, and the parent-pseudogene pair is indicated by the same

color. This linear property allows us to learn a general distribution from simulated replicates.

●
●

●●
●●●●

●●●
●

●●
●●●●

●●
●

●

●●
●

●●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●
●●●●

●●●
●

●●
●

●●●

●
●

●

●

●●

●
●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●●●

●
●

●

●

●●

●
●●

●

●
●

●

●

●●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●●
●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●
●●●

●
●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●
●●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

3000

6000

9000

0 3000 6000 9000
Fragment Count for Expected Parent Genes

F
ra

gm
en

t C
ou

nt
 fo

r
O

bs
er

ve
d

A
lig

nm
en

ts

●

●

●

●

●

●

●

●

●

●

ENSG00000066923_PGOHUM00000302870
ENSG00000073578_PGOHUM00000300477
ENSG00000127824_PGOHUM00000298882
ENSG00000167996_PGOHUM00000300501
ENSG00000168818_PGOHUM00000294376
ENSG00000174450_PGOHUM00000293134
ENSG00000188612_PGOHUM00000294147
ENSG00000196123_PGOHUM00000294719
ENSG00000198019_PGOHUM00000296519
ENSG00000231924_PGOHUM00000295026

● Parents
Pseudogenes

Figure 7.2: Relationship between expected and observed read counts.

43

7.1.2 Community Detection for Homologous Genes

We first simulate several small subsets of parent genes and their homologous pseudogenes to

examine the effectiveness and efficiency of our method. We then gradually increase the num-

ber of expressed genes to fully model the read distribution between transcribed pseudogene

and their parents. Table 7.1 summarizes the datasets, including the number of expressed

transcripts, corresponding genes, and the number of aligned genomic regions. Since our ap-

proach focuses on gene level, genomic regions are characterized based on gene definitions.

There are 6202 parents and 2610 expressed pseudogenes in our list. For datasets A-D, par-

ents are randomly selected from the list, along with the transcripts of their corresponding

pseudogenes. Isoforms are merged and labeled with the same gene ID. Simulated reads from

these genes are aligned to the reference genome. Keeping all multiple alignments, number

of aligned regions are recorded for each dataset. Dataset E contains the full set of genes.

Table 7.1: Description of Simulated Datasets.

Dataset Parent Transcripts Pseudogene Transcripts Corresponding Genes Aligned Loci
A 600 304 712 4926
B 800 408 918 7146
C 1200 616 1398 8622
D 2000 930 2248 12997
E 6202 2610 5890 29071

The effectiveness of the community detection technique in identifying homologous loci is

first examined with a small dataset (dataset A) where 600 of parent transcripts are expressed,

along with 304 pseudogene transcripts. Using the sliding window approach, consecutive

substrings are treated as short reads and mapped to the reference genome. These substrings

align to 4926 loci. Applying the community detection algorithm with information flow

approach (infomap), these 4926 loci are grouped into 875 homologous communities, with

the biggest community of 2377 loci. The partition of these communities is illustrated in

Figure 7.3a. Loci in the same community are either positioned in a closed proximity or

linked with an arrow. The arrow indicates the information flow between two loci in the same

community. Figures 7.3b-c demonstrate the distribution of community size for datasets A

and E respectively, where a great portion of community contains only one member. The

44

biggest community contains 12,915 genomic loci in dataset E.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●●● ●●
● ●
● ●●
● ●

●

●
●
●●●

●●

●
●●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

● ●
●

●

●

●

●●

●

●
●

●

●
●●
●●

●

●
●●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●● ●●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Homologous community partition for dataset A.

single	
 cluster	
 :	
 427	
 2	
 members	
 :	
 168	

3	
 members	
 :	
 107	

4	
 members	
 :	
 64	

5	
 members	
 :	
 33	

6	
 -­‐	
 10	
 members	
 :	
 46	

11	
 -­‐	
 30	
 members	
 :	
 23	

31	
 -­‐	
 90	
 members	
 :	
 5	

>	
 90	
 members	
 :	
 2	

(b) Dataset A.

single	
 cluster	
 :	
 4062	
 2	
 members	
 :	
 1223	

3	
 members	
 :	
 107	

4	
 members	
 :	
 373	

5	
 members	
 :	
 216	

6	
 -­‐	
 10	
 members	
 :	
 339	

11	
 -­‐	
 30	
 members	
 :	
 102	

31	
 -­‐	
 90	
 members	
 :	
 13	

>	
 90	
 members	
 :	
 2	

(c) Dataset E.

Figure 7.3: Homologous communities partition and size distribution.

We use all six datasets to evaluate the advantage of incorporating community partition

approach to our framework. The igraph package in R provides two different methods to

perform community detection in a directed graph, infomap and edge-betweenness. Edge-

betweenness focuses on the property of community structure, and has the tendency to pro-

duce larger communities. We analyze the performance of three different approaches, includ-

ing no community partition, partition with infomap, and partition with edge-betweenness.

The average running time of six replicates in each dataset is plotted in Figure 7.4a. In

the comparison between keeping and discarding the partition, average running time grows

quadratically as we increase the number of genes without community partition. On the

other hand, the running time grows linearly with the number of genes when incorporating

the community detection approaches. Comparing the two community detection methods,

infomap is able to provide a more efficient growth in running time than edge-betweenness.

We further analyze the accuracy using the same set of data. The average prediction error

45

is plotted in Figure 7.5b. Overall, the prediction errors are similar between infomap and

edge-betweenness for smaller gene lists (dataset A - C); however, the error is much smaller

(less than 10%) in infomap for larger gene lists (dataset D and E). Besides the advantage

of time efficiency and prediction accuracy, the concept of information flow provides a better

explanation to our distribution matrix, and thus is able to remove noise and capture the

underlying structure of homologous gene communities.

0

5

10

15

20

71
2

91
8

13
98

22
48

58
90

Number of Genes

R
un

ni
ng

 T
im

e
(h

r)

Betweeness InfoMap None

(a) Average running time.

2.06
1.35

4.56 4.2
5.17 5.35

6.25

4

12.5

7.83

0

5

10

71
2

91
8

13
98

22
48

58
90

Number of Genes

P
re

di
ct

io
n

E
rr

or
 (

%
)

Betweeness InfoMap

(b) Overall error.

Figure 7.4: Run time and accuracy of different community detection algorithms.

7.1.3 k-NN Classification for Homologous Community

k-NN classification is used to select the best pseudo matrix describing reads alignment be-

havior for a new dataset. In the training stage, there are 54 sets of replicates representing

a wide range of coverage, and hence the alignment profile of each homologous community

can be classified into 54 possible models. However, the running time increases as we raise

the value of k, especially for datasets with a large number of expressed genes. In order to

find the optimal k, we use two small gene lists (dataset A and B) to evaluate the trade-off

between running time and accuracy for different values of k. The average running time and

prediction errors over six replicates are plotted in Figure 7.5. The number next to each data

point indicates the choice of k. The results show that the error rate drops rapidly at first,

and reaches a steady phase after k = 10, as highlighted by the grey boxes in both figures.

Compares to using all 54 replicates, a similar accuracy can be achieved at 10 replicates with

46

a five-fold increase in speed. Consequently, we set k = 10 for all of the analyses.

●

●

●

●

●
●

●

●
● ●

●
●

●
●

●
●

●
● ● ● ●

● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

3

6

9
12

15
18 21 24 27 30 33 36 39 42 45 48 51 541.3

1.4

1.5

1.6

0.
15

0.
26

0.
38

0.
49 0.

6
0.

72
0.

82
0.

95
1.

06
1.

16
1.

27 1.
4

1.
51

1.
63

1.
74

1.
86

1.
97

2.
08

Running Time (min)

P
re

di
ct

io
n

E
rr

or
 (

%
)

● Dataset A

(a) Dataset A.

●

●

●

●
●

● ● ● ●
●

● ● ● ●
● ● ●

●
●

●
●

●
●

● ● ●
●

● ● ● ● ●
● ● ●

●
● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ●

3

6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 544.2

4.3

4.4

4.5

4.6

0.
34

0.
66

0.
96

1.
27

1.
58

1.
87

2.
19

2.
49

2.
79

3.
09 3.

4
3.

7 4
4.

32
4.

63
4.

94
5.

26
5.

55

Running Time (min)

P
re

di
ct

io
n

E
rr

or
 (

%
)

● Dataset B

(b) Dataset B.

Figure 7.5: Parameter selection for kNN-classification.

7.1.4 Read Count Estimation for Homologous Community

As described in Chapter 3, reads are simulated for the gene list in dataset E with different

coverages and abundance. Six replicates are randomly selected for validation, and the rest

are used for training. For each gene community, 10 of the 54 replicates are randomly chosen

for model fitting in kNN classification. Once the distribution profile is recovered, read counts

are optimized through non-negative least squares estimation. We compare the read counts

to the expected number of reads for these 5890 expressed genes. Table 7.2 shows the overall

errors before and after applying our method. The default setting of TopHat2 keeps up to 20

multiple alignment records, and it is let to be decided by downstream analysis tools in regards

to the number of multiple-alignments to keep. Read counts are quantified by counting all

reads fall into gene regions, and the overall errors are above 35% for all six validations. On

the other hand, our method estimates read counts through training data first, and corrects

the alignments before proceeding to any downstream analysis. After applying our method

on TopHat2, the error rates fall below 10% on all six validation data.

We use a small subset of genes to demonstrate our read count estimation in details in

Table 7.3. The results show that the counts computed directly from TopHat2 alignments are

much more deviated from the true count than applying our method. Among these genes,

47

Table 7.2: Overall prediction errors.

Dataset Validation 1 Validation 2 Validation 3 Validation 4 Validation 5 Validation 6
(7X, R1A) (7X, 6A) (7X, 8A) (17X, R2A) (23X, R1A) (27X, 8A)

TopHat2 0.374 0.357 0.353 0.382 0.363 0.363
Our Method 0.0854 0.0814 0.0806 0.0865 0.0856 0.0806

ENSG00000128422 is cross-referenced to PGOHUM00000293972, which is a homologous

pseudogene of ENSG00000131885. TopHat2 reports more read alignments to this pseudo-

gene, and less to the parent gene. Genes with more reads correctly aligned are able recovery

the true read count in downstream analysis, as it is easier to remove extra alignments. How-

ever, genes with fewer alignments are less likely to be recovered since the information is

missing. On the contrary, our method is able to accurately recover the true read counts

among these homologous pair across all replicates.

Table 7.3: Evaluation of read count estimations.

Dataset Validation 1 Validation 2 Validation 3
Gene Name Truth Our Est. TopHat2 Truth Our Est. TopHat2 Truth Our Est. TopHat2
ENSG00000114416 201 201.34 133 153 153.59 107 247 247.68 160
ENSG00000100522 417 415.42 310 359 340.92 255 457 450.65 341
ENSG00000134352 84 85.18 107 60 63.74 77 75 76.69 91
ENSG00000128422 780 769 1076 428 406.56 639 622 597.53 944
ENSG00000131885 193 187.89 74 158 163.46 69 218 214.36 83

Dataset Validation 4 Validation 5 Validation 6
Gene Name Truth Our Est. TopHat2 Truth Our Est. TopHat2 Truth Our Est. TopHat2
ENSG00000114416 410 408.86 264 671 676.25 598 904 890.04 598
ENSG00000100522 889 865.56 649 1370 1368.55 1314 1734 1730.08 1314
ENSG00000134352 179 179.33 244 294 283.23 325 270 269.07 325
ENSG00000128422 857 841.52 1582 2566 2444.54 3875 2398 2487.43 3875
ENSG00000131885 402 406.97 166 677 659.43 358 837 848.37 358

7.2 Transcript Quantification via Variable Length k-mers

Current lightweight quantification methods use a fixed k; however, a set of fixed size k-

mers may not be sufficient to capture the signature of each transcript. In this section,

we demonstrate the importance of having a set of k-mers with different sizes through a

motivating example, followed by the evaluation of our method in simulated and real datasets.

48

7.2.1 Motivating Examples

We first evaluate the effect of different ks in transcript abundance estimation for both

Kallisto [9] and RNA-Skim [110]. Kallisto allows users to set k to be any odd integer

up to 31; RNA-Skim does not have any restriction on the choice of k. For Kallisto, we index

the reference transcriptome using six different ks (21, 23, 25, 27, 29, 31). For RNA-Skim, we

select 14 sets of sig-mers with different ks (21, 23, 25, 27, 29, 31, 35, 40, 45, 50, 55, 60, 65,

70). We use these k-mers to estimate the TPM (Transcripts Per Kilobase Million) of a sim-

ulated dataset containing 11.484 expressed isoforms. We compute the absolute differences

between true and estimated TPM. A smaller value indicates a better estimation.

Among these sets of k-mers, we mark the k that presents the best prediction (smallest

difference) for each transcript. Figure 7.6a shows the distribution of the best k. We also

plot three transcripts that display interesting patterns over different ks in Figures 7.6b-d.

Fleximer uses a wide range of ks, so the error (absolute difference of TPM) is plotted as a

single line. The estimations fluctuate largely in RNA-Skim for these transcripts, indicating

that this method is very sensitive to the choice of k. The variation is less severe in Kallisto;

however, setting k to 21 produces the best prediction for ENST00000626009, but gives the

worst prediction for both ENST00000265881 and ENST00000357370. These results indicate

that the optimal k varies for different transcripts. The selection of k has a substantial

influence on the prediction accuracy.

0

2000

4000

6000

21 23 25 27 29 31 35 40 45 50 55 60 65 70

k−mer size

F
re

qu
en

cy

Kallisto
RNASkim

(a) k-mer distribution.

● ● ● ● ● ● ● ● ● ● ● ● ● ●

40

60

80

212325272931 35 40 45 50 55 60 65 70

k−mer size

A
bs

ol
ut

e
D

iff
er

en
ce

 (
T

P
M

)

● Fleximer
Kallisto
RNASkim

(b) ENST00000265881.

● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

30

60

90

212325272931 35 40 45 50 55 60 65 70

k−mer size

A
bs

ol
ut

e
D

iff
er

en
ce

 (
T

P
M

)

● Fleximer
Kallisto
RNASkim

(c) ENST00000357370.

● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

50

100

150

212325272931 35 40 45 50 55 60 65 70

k−mer size

A
bs

ol
ut

e
D

iff
er

en
ce

 (
T

P
M

)

● Fleximer
Kallisto
RNASkim

(d) ENST00000626009.

Figure 7.6: Evaluation of the TPM estimation over different ks.

49

7.2.2 k-mers Generation

Fleximer selects 6,299,554 sig-mers with sizes ranging from 25 to 60. Note that since the

sequencing reads of our datasets are 75bp, we set the upper bound of k to 60. The distribution

of the sig-mer size is illustrated in Figure 7.7a. The majority of the sig-mers reside on our

lower boound; however, the rest of the sig-mers are equally distributed among this range.

On the other hand, using the default parameters, RNA-Skim generates a set of 4,221,162

sig-mers with a fixed size of 60. Using the recommended k of 31, Sailfish produces a set

of 95,601,88 k-mers and Kallisto produces 94,945,357 k-mers. Figure 7.7b compares the

number of k-mers generated in different methods. In terms of computational resources,

Fleximer needs more time to identify a set of optimal sig-mers than other methods since the

search space is much bigger. It is worth mentioning that this step only needs to be executed

once. Sadakane’s compressed suffix tree allows us to perform this step in less than 10G,

which requires less memory than Sailfish and RNA-Skim.

0

5

10

15

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Sig−mer size

F
re

qu
en

cy
 (

lo
g

sc
al

e)

(a) Sig-mer size distribution of Fleximer.

4221162 6299554

94945357 95601889

RNASkim Fleximer Kallisto Sailfish

N
um

be
r

of
 k

−m
er

s

(b) Number of k-mers.

Figure 7.7: K-mer statistics of different methods.

50

7.2.3 Simulation Study

We evaluate the prediction accuracy using 15 simulated datasets. The accuracy metrics

include Pearson correlation, rank correlation, and root-mean-square error (RMSE).

Figurse 7.8a-c illustrate three metrics separately for different read depths (10X, 20X,

30X). Each bar shows the mean and standard deviation over five datasets. Results indicate

that Fleximer and Sailfish perform similarly with consistent Pearson and rank correlations.

The Pearson correlations are slightly higher for Fleximer at different read depths. Higher

correlation values are better as the predictions are in the same trend as the ground truth. On

the other hand, lower residual errors are better as the predictions are closer to the ground

truth. Fleximer presents the smallest RMSE among four methods. We also evaluate the

running time as shown in Figure 7.8d. Fleximer requires more time than others due to

searching sig-mers of different sizes; however, it scales linearly with the number of reads.

All experiments finish in less than 25 minutes (1500s). We further examine the utilization

of our representative sig-mers. We calculate the fraction of reads recovered by each method.

Figure 7.9a shows that Fleximer is able to recognize more than 90% of the reads with fewer

k-mers than Kallisto and Sailfish. The sig-mers used in Fleximer are much more effective

than the sig-mers in RNA-Skim, which only recovers less than 30% of the reads.

0.5

0.6

0.7

0.8

0.9

1.0

10X 20X 30X

C
or

re
la

tio
n

Fleximer Kallisto RNASkim Sailfish

(a) Pearson Correlation.

0.4

0.6

0.8

1.0

10X 20X 30X

C
or

re
la

tio
n

Fleximer Kallisto RNASkim Sailfish

(b) Rank Correlation.

0

25

50

75

10X 20X 30X

R
M

S
E

Fleximer Kallisto RNASkim Sailfish

(c) RMSE.

●●
●

●

●

●
●

●

●●●
●

●
●

●

5

10

15

20

0.
0e

+0
0

2.
5e

+0
7

5.
0e

+0
7

7.
5e

+0
7

1.
0e

+0
8

Number of Reads

T
im

e
(s

ec
s

in
 lo

g2
 s

ca
le

)

● Fleximer
Kallisto
RNASkim
Sailfish

(d) Run Time.

Figure 7.8: Accuracy and efficiency evaluations using simulated data.

51

7.2.4 Human BodyMap 2.0 Project

Simulated datasets cannot capture all of the biases presented in a real RNA-Seq experiment;

therefore, we evaluate the performance of different methods using six datasets from the

Human BodyMap project. Figure 7.9b shows that on average, Fleximer is able to identify a

similar amount of reads in these datasets as Sailfish and Kallisto (> 60%), but with fewer

number of k-mers. This result is consistent as demonstrated in the simulated studies.

Since we do not know the true abundance of each transcript, we use the estimated

abundance reported in Expression Atlas as our ground standard. Expression Atlas provides

expression values in RPKM or FPKM (Read or Fragment per Kilobase of transcript per

Million mapped fragments) on gene-level, instead of transcript level. Two post-processing

techniques are applied to normalize these values. First, we convert expression values reported

in Expression Atlas to TPM. Second, we aggregate the expressions of all gene-isoforms

estimated in each method to represent the gene expression. After normalization, we remove

the non-protein coding genes from Expression Atlas and perform the analyses on gene-level.

Figure 7.10 shows six Venn diagrams to compare the number of expressed genes identified

by each method. Expressed genes are defined as those with TPM greater than zero. Across

six datasets, all methods identify a large number of shared expressed genes as demonstrated

0.00

0.25

0.50

0.75

1.00

RNASkim Fleximer Kallisto Sailfish

R
ea

d
R

ec
ov

er
y

(a) Simulated Studies.

0.00

0.25

0.50

0.75

1.00

RNASkim Fleximer Kallisto Sailfish

R
ea

d
R

ec
ov

er
y

(b) Human BodyMap.

Figure 7.9: Read recovery rate of different methods.

52

by the large overlap in Venn diagrams. Among these four methods, RNA-Skim misses out

the largest number of expressed genes reported in Expression Atlas (counts that are outside

the RNA-Skim ellipse and inside the Expression Atlas ellipse: 620 for adrenal, 477 for lung,

342 for liver, 532 for brain, 472 for breast, and 407 for colon). Each method identifies a few

number of unique genes that are not picked up by others. However, Sailfish and Kallisto

pick up around 100 more genes than Fleximer that are not reported in Expression Atlas (105

and 134 more for Sailfish and Kallisto respectively in adrenal, 75 and 68 more in lung, 206

and 181 more in liver, 121 and 126 more in brain, 104 and 99 more in breast, and 125 and

129 more in colon). These false positives are illustrated by comparing the counts outside

the Expression Atlas ellipse. We also experiment with different thresholds in defining the

expressed genes (i.e. 0.1, 0.5, and 1), and observe similar results as setting it to 0.

42

26

26

15

601

34

4

2

0

12
117

2

4

29

030

1

0

12

525

41

0
3

520
1

0

659

16039

Fleximer

RNASkim

Kallisto

Sailfish

Expression Atlas

(a) Male Adrenal.

56

26

14

28

362

714

2

0

1

19
111

2

4

26

292

0

0

5

504

16

0
5

391
0

0

623

15674

Fleximer

RNASkim

Kallisto

Sailfish

Expression Atlas

(b) Male Lung.

75

38

14

41

330

428

4

4

2

29
200

2

5

18

351

0

0

2

852

73

0
6

274
0

0

1128

14125

Fleximer

RNASkim

Kallisto

Sailfish

Expression Atlas

(c) Male Liver.

40

30

15

16

650

516

0

5

4

12
115

1

4

27

372

0

0

9

547

50

2
10

421
0

0

690

16138

Fleximer

RNASkim

Kallisto

Sailfish

Expression Atlas

(d) Female Brain.

50

34

13

22

550

015

2

0

0

13
116

3

9

18

261

1

0

10

510

38

0
6

382
0

0

761

15865

Fleximer

RNASkim

Kallisto

Sailfish

GoldStandard

(e) Female Breast.

58

33

18

32

451

812

2

1

2

23
133

1

1

28

153

0

0

9

598

51

1
5

318
0

1

782

15392

Fleximer

RNASkim

Kallisto

Sailfish

Expression Atlas

(f) Female Colon.

Figure 7.10: Evaluation of Human BodyMap with Venn diagrams.

53

We further evaluate the prediction power of four different methods against the values

reported in Expression Atlas using all genes. Figure 7.11 summarizes the average values

of each accuracy metric over six datasets on gene-level. Fleximer demonstrates the best

accuracy assessments, with the highest Pearson and rank correlations and the lowest RMSE.

0.840

0.845

0.850

0.855

0.860

0.865

Fleximer Kallisto RNASkim Sailfish

P
ea

rs
on

(a) Pearson Correlation.

0.9300

0.9325

0.9350

0.9375

0.9400

Fleximer Kallisto RNASkim Sailfish

R
an

k

(b) Rank Correlation.

345

350

355

360

365

370

Fleximer Kallisto RNASkim Sailfish

R
M

S
E

(c) RMSE.

Figure 7.11: Evaluation of Human BodyMap with accuracy metrics.

7.3 Signature Profiling via Thinned Aho-Corasick Automaton

Aho-Corasick (AC) algorithm presents a promising approach to profile a list of variable-

length k-mers in genomic data. However, the memory consumption of the automaton can

be impractical as we increase the number and the size of k-mers. To mitigate the issue, we

propose TahcoRoll which builds upon the Aho-Corasick algorithm for this task. Specifically,

we partition nucleotides into two groups and use one bit to represent them. We integrate the

rolling hash technique to efficiently recover the original string for matching. In this section,

we demonstrate the effectiveness of our approach through both synthetic and real data. The

analyses focus on counting the occurrences of a list of signatures (k-mers) in the dataset.

54

7.3.1 Experimental Settings

Since most of the k-mer counters process reads with a fixed k, we use a Python script as a

wrapper to handle different k-mer sizes and to call the appropriate functions from command

line. We include all the k-mer counters mentioned in the related works (Chapter 2). We

implement two baseline methods. The first one is a näıve implementation in C++, denoted

by “Näıve”. It uses a hash table to store k-mers and scans through the reads multiple

times with different window sizes. Theoretically, Näıve is light in memory, but requires an

extensive running time. The second baseline is the conventional Aho-Corasick algorithm.

We test two public source code written in Python (PlainAC Py) and C++ (PlainAC C++).

Configuration details of different softwares are described in Appendix D.

7.3.2 Automaton Construction

The memory of AC is sensitive to the composition of signature patterns, such as k-mer

lengths, the number of k-mers, and common prefixes shared by different k-mers. Fig-

ure 7.12 compares the computational resources used for automaton construction in different

approaches over 16 sets of signatures. The implementation of PlainAC C++ uses several

additional data structures on each node to facilitate the traversal, causing a huge mem-

ory overhead. As a result, PlainAC C++ is fast, but requires twice and five times more

memory than PlainAC Py and TahcoRoll, respectively. For the large batch of 24 million

k-mers, PlainAC C++ maxes out the memory capacity (>396GB) of our server, and thus

the recorded time is truncated. Our thinned automaton consistently requires less time than

PlainAC Py in construction. As we increase the number of k-mers, the construction time

rises. The memory of the thinned automaton is significantly reducing to nearly half of the

memory required in PlainAC Py. Larger k-mers are more diverse in their sequences, and

often share shorter common prefixes with others. This phenomenon is reflected in our anal-

ysis, where the large batches of k-mers require more time and memory than others. The

wide batches use less resource than the large ones because they contain fewer long k-mers.

55

0.0

0.3

0.6

0.9

1.2

sm
all

_0
12

sm
all

_0
60

sm
all

_1
20

sm
all

_2
40

med
ium

_0
12

med
ium

_0
60

med
ium

_1
20

med
ium

_2
40

lar
ge

_0
12

lar
ge

_0
60

lar
ge

_1
20

lar
ge

_2
40

wide
_0

12

wide
_0

60

wide
_1

20

wide
_2

40

K−mer Sets

T
im

e
(H

ou
r)

TahcoRoll PlainAC_Py PlainAC_C++

(a)

0

100

200

300

400

sm
all

_0
12

sm
all

_0
60

sm
all

_1
20

sm
all

_2
40

med
ium

_0
12

med
ium

_0
60

med
ium

_1
20

med
ium

_2
40

lar
ge

_0
12

lar
ge

_0
60

lar
ge

_1
20

lar
ge

_2
40

wide
_0

12

wide
_0

60

wide
_1

20

wide
_2

40

K−mer Sets

M
em

or
y

(G
B

)

TahcoRoll PlainAC_Py PlainAC_C++

(b)

Figure 7.12: Run-time and Memory for automaton construction.

7.3.3 Pilot Study of 13 Approaches

We perform a preliminary assessment of the memory footprint and running time on 11

existing counters, together with two baselines and TahcoRoll. Since most of these counters

are designed to process data with a fixed k, they present a limitation on handling a wide

range of k’s. Moreover, few of these algorithms limit the choice of k. For these reasons,

we inspect the capability of different approaches with single thread using small datasets:

synthetic reads with 75bp and small batches of signatures.

We separate the analyses into two panels as demonstrated in Figure 7.13. The top panel

focuses on different number of reads with 1.2 million of k-mers, and the bottom panel focuses

on different number of k-mers with 34,497,448 reads. Methods in the bottom-left corner of

each plot indicate being both time and memory efficient. As we predicted, Näıve uses very

little memory, but takes a long time to complete. PlainAC is fast, but requires a large

amount of memory when increasing the number of k-mers. Consistent with the analysis in

Figure 7.12, PlainAC C++ uses twice as much memory as PlainAC Py.

TahcoRoll is the most efficient approach in five out of these six analyses. KMC3 and

Squeakr use less memory, but requires more time than TahcoRoll when there are 24 million

k-mers. When we fix the number of k-mers (top panel), the memory footprint and running

time for KMC3 and Squeakr increase with the number of reads, but the memory stays

constant for both TahcoRoll and Jellyfish. Jellyfish is memory efficient when counting a

56

given list of k-mers with the same size; however, repeating this process for different k ’s

makes it more time-consuming than TahcoRoll.

We also validate the accuracy by comparing the counts reported in each approach to

Näıve. Probabilistic approaches, BFCounter and khmer, neglect singleton k-mers. The

exact counting mode of Squeakr is unable to count small k-mers if all of them exist in reads,

due to its implementation design. All other approaches agree with Näıve.

To avoid waiting on extremely slow counters, we remove Näıve, DSK, khmer, BFCounter,

MSPKC, and KCMBT for further analyses. From the memory usage prospectie, we take

out Tallymer and PlainAC C++ since Tallymer does not scale well with more and longer

reads and PlainAC C++ uses up the memory for more and longer k-mers. Squeakr is also

removed as it often fails to count smaller k-mers. The remaining analsyses are carried out

for PlainAC Py, Jellyfish, KMC3, MSBWT, and TahcoRoll.

●

●

●

●

●

●
●

●

●

●

●
●

●

●

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3 MSBWT

MSPKC

Naive

PlainAC_C++

PlainAC_Py
Squeakr

TahcoRoll

Tallymer

●

●

●

●

●

●
●

●

●

●

●
●

●

●

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3

MSBWT

MSPKC

Naive

PlainAC_C++

PlainAC_Py

Squeakr

TahcoRoll

Tallymer

●
●

●

●

●

●

● ●

●

●

●

●

●

●

BFCounter
DSK

Jellyfish

KCMBT

khmer

KMC3

MSBWT MSPKC

Naive

PlainAC_C++

PlainAC_Py

Squeakr

TahcoRoll

Tallymer

Number of Reads: 10128312 Number of Reads: 34497448 Number of Reads: 97011938

0.25 1.00 0.5 2.0 8.0 2 8

0.5

4.0

32.0

0.5

4.0

32.0

0.5

4.0

32.0

Time (Hour)

M
em

or
y

(G
B

)

● ● ● ● ● ● ● ● ● ● ● ● ● ●TahcoRoll Naive PlainAC_Py PlainAC_C++ MSBWT KMC3 Jellyfish DSK Tallymer KCMBT khmer BFCounter MSPKC Squeakr

●

●

●

●

●

●
●

●

●

●

●

●●

●

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3

MSBWT

MSPKC

Naive

PlainAC_C++

PlainAC_Py

Squeakr

TahcoRoll

Tallymer

●

●

●

●

●

●
●

●

●

●

●

●
●

●

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3

MSBWT

MSPKC

Naive

PlainAC_C++

PlainAC_Py

Squeakr

TahcoRoll

Tallymer

●

●

●

●

●

●
●

●

●

●

●

●

●

●

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3

MSBWT

MSPKC

Naive

PlainAC_C++

PlainAC_Py

Squeakr

TahcoRoll

Tallymer

Number of Kmers: 6000000 Number of Kmers: 12000000 Number of Kmers: 24000000

1 4 1 4 1 4

2

8

32

128

2

8

32

128

2

8

32

128

Time (Hour)

M
em

or
y

(G
B

)

● ● ● ● ● ● ● ● ● ● ● ● ● ●TahcoRoll Naive PlainAC_Py PlainAC_C++ MSBWT KMC3 Jellyfish DSK Tallymer KCMBT khmer BFCounter MSPKC Squeakr

Figure 7.13: Run-time and memory for pilot study.

57

7.3.4 Extensive Study on Synthetic Datasets

We use 1.2 million k-mers ranging from 15-151bp (wide) to evaluate the scalability on differ-

ent read lengths and number of reads. We highlight the total run time (hour) and memory

consumption (GB) of each approach in Table 7.4. Time is further split into the preparation

(Prep) and querying (Query) phases. In TahcoRoll and PlainAC Py, the preparation phase

refers to automaton construction and the querying stage queries all reads. In MSBWT and

KMC3, the preparation stage focus on indexing the reads, and the querying stage queries

all k-mers. Therefore, running time of query phase is not in the same scale across different

approaches. We use Jellyfish’s function to count the list of k-mers directly, so the running

time cannot be split in details. Dagger (†) marks the most time efficient approach; asterisk

(∗) marks the most memory efficient approach. Although Jellyfish is the second most mem-

ory efficient approach behind TahcoRoll, its running time does not scale well with datasets

containing more or longer reads. TahcoRoll consistently outperforms others across different

read sets in both time and memory. Our thinned automaton is more compact, which makes

it more efficient than the conventional automaton.

Table 7.4: Run-time and memory of different read sets.

Read Total TahcoRoll PlainAC Py MSBWT KMC3 Jellyfish

Length Reads Prep Query Time Mem Prep Query Time Mem Prep Query Time Mem Prep Query Time Mem Time Mem

10,128,312 0.006 0.09 0.10† 3.29∗ 0.02 0.11 0.13 6.75 0.40 0.01 0.41 5.86 1.49 0.02 1.51 3.30 1.83 4.74

75bp 34,497,448 0.005 0.28 0.29† 3.29∗ 0.02 0.37 0.39 6.75 0.90 0.01 0.91 7.88 2.45 0.09 2.53 5.52 5.55 4.74

97,011,938 0.005 0.78 0.78† 3.29∗ 0.02 1.04 1.06 6.75 3.26 0.02 1.95 17.57 5.82 0.68 6.50 8.00 15.24 4.74

11,397,007 0.005 0.13 0.14† 3.29∗ 0.03 0.17 0.20 6.75 0.45 0.01 0.46 6.40 2.42 0.33 2.75 3.83 3.32 4.74

100bp 41,054,662 0.005 0.47 0.48† 3.29∗ 0.02 0.59 0.61 6.75 1.29 0.01 1.30 11.10 4.81 0.61 5.42 7.56 11.25 4.74

114,813,452 0.006 1.35 1.36† 3.29∗ 0.02 1.59 1.61 6.75 3.49 0.02 3.51 26.00 16.23 3.35 19.58 20.10 31.78 4.74

10,822,319 0.004 0.15 0.15† 3.29∗ 0.03 0.19 0.22 6.75 0.63 0.01 0.65 6.83 2.81 0.81 3.61 4.15 5.26 4.74

125bp 58,012,701 0.005 0.77 0.78† 3.29∗ 0.03 0.99 1.02 6.75 2.59 0.02 2.61 17.48 10.53 2.51 13.04 19.03 27.22 4.74

107,375,244 0.005 1.37 1.38† 3.29∗ 0.02 1.84 1.87 6.75 4.56 0.02 4.58 29.75 18.46 3.92 22.37 34.59 50.41 4.74

27,628,054 0.006 0.35 0.36† 3.29∗ 0.02 0.55 0.57 6.75 1.69 0.01 1.71 11.46 9.09 1.88 10.97 14.87 18.78 4.74

150bp 57,437,772 0.007 1.20 1.21† 3.29∗ 0.02 1.20 1.22 6.75 3.50 0.02 3.51 20.31 17.26 3.98 21.24 31.10 36.86 4.74

114,306,300 0.006 2.01 2.01† 3.29∗ 0.03 2.42 2.44 6.75 5.86 0.02 5.88 37.27 33.45 8.25 41.69 58.23 74.29 4.74

180bp 16,197,631 0.006 0.35 0.35† 3.29∗ 0.03 0.40 0.43 6.75 2.43 0.01 2.45 9.30 7.45 1.99 9.44 14.61 15.51 4.74

37,836,905 0.005 0.86 0.87† 3.29∗ 0.02 0.87 0.90 6.75 3.20 0.02 3.22 16.96 16.05 4.20 20.26 33.34 35.14 4.74

Next, we use 86,976,737 reads of 180bp to evaluate the scalability on different batches of

58

Table 7.5: Run-time and memory for profiling different signature sets.

K-mer Total TahcoRoll PlainAC Py MSBWT KMC3 Jellyfish

Batch K-mers Prep Query Time Mem Prep Query Time Mem Prep Query Time Mem Prep Query Time Mem Time Mem

1,200,000 0.0004 2.56 2.56 0.51∗ 0.003 1.81 1.81† 1.25 5.39 0.01 5.40 34.35 3.99 0.35 4.34 14.61 11.15 0.83

Small 6,000,000 0.002 4.83 4.83 2.09 0.02 2.42 2.44† 5.70 5.39 0.06 5.46 34.31 5.39 0.84 6.23 14.61 11.11 0.83∗

(15-31bp) 12,000,000 0.003 5.48 5.48 3.85 0.03 2.74 2.77† 10.93 5.39 0.12 5.51 34.35 5.89 0.95 6.84 14.61 11.17 0.83∗

24,000,000 0.006 7.22 7.23 7.13 0.09 3.11 3.21† 20.93 5.39 0.23 5.63 34.35 5.94 0.96 6.91 14.61 11.15 0.83∗

1,200,000 0.005 2.01 2.01† 2.82 0.03 2.42 2.45 5.83 5.39 0.01 5.40 34.35 5.03 2.59 7.62 58.16 11.41 2.47∗

Medium 6,000,000 0.02 2.47 2.49† 13.49 0.13 4.77 4.90 28.59 5.39 0.06 5.45 34.35 4.90 1.91 6.81 58.16 11.37 2.47∗

(65-81bp) 12,000,000 0.09 3.53 3.62† 26.52 0.27 5.27 5.54 56.71 5.39 0.11 5.50 34.33 4.90 1.93 6.83 58.16 11.07 2.47∗

24,000,000 0.16 4.00 4.16† 52.11 0.75 5.25 6.00 112.5 5.39 0.22 5.61 34.35 4.87 1.49 6.37 58.16 11.36 2.47∗

1,200,000 0.02 2.65 2.67† 6.10 0.06 2.98 3.04 12.24 5.39 0.02 5.41 34.35 3.51 2.35 5.87 67.27 6.66 4.74∗

Large 6,000,000 0.08 3.51 3.59† 29.91 0.29 4.34 4.63 60.63 5.39 0.08 5.47 34.35 4.28 4.04 8.32 67.27 6.72 4.74∗

(131-151bp) 12,000,000 0.18 4.37 4.55† 58.43 0.55 4.98 5.53 118.97 5.39 0.16 5.55 34.33 5.14 4.50 9.65 69.19 8.59 4.38∗

24,000,000 0.42 4.42 4.84† 117.79 1.33 4.90 6.23 240.67 5.39 0.29 5.69 34.35 4.10 3.05 7.17 67.27 6.73 4.74∗

k-mers, which are designed to test the worst scenario. Table 7.5 shows that when the k-mers

are short (small batch), PlainAC Py uses the least amount of time. This observation is due

to less collision in the signature sets. Under a severe condition where there is a large number

(12 and 24 million) of k-mers with uniformly distributed characters, TahcoRoll requires more

memory than MSBWT in three out of six cases. It is worth mentioning that both MSBWT

and KMC3 write a huge amount of intermediate files to disk (at least 16GB for MSBWT and

43 GB for KMC3 in this dataset) to alleviate the memory bottleneck. In contrast, TahcoRoll

is an in-memory approach that does not generate any intermediate data.

MSBWT, KMC3, and Jellyfish allow indexing reads in parallel, so we evaluate the parallel

settings on the wide batch of k-mers. Figure 7.14 shows the running time of analyzing

86,976,737 synthetic reads of 180bp across four sets of k-mers. Both Jellyfish and TahcoRoll

scale well with number of threads, but the improvement of MSBWT and KMC3 is marginal.

This is mainly due to the limitation of I/O as these two approaches constantly read and

write files to disk. The running time of TahcoRoll remains faster than others across different

experiments and threads. The four-thread TahcoRoll also demonstrates to be faster than

others with 16 threads.

59

●

●
●

●
● ●

●

●

●
●

●
●

●

●

●

● ● ●

●

●

●●

●
●

● ●

●

●
● ●

●

●

●●

●
●

●
●

●

● ● ●

●

●

●●

●
●

Number of K−mers: 1200000 Number of K−mers: 6000000 Number of K−mers: 12000000 Number of K−mers: 24000000

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16

0.5

2.0

8.0

32.0

0.5

2.0

8.0

32.0

0.5

2.0

8.0

32.0

0.5

2.0

8.0

32.0

Number of Threads

T
im

e
(H

ou
r)

● ● ● ●TahcoRoll MSBWT KMC3 Jellyfish

Figure 7.14: Run-time for parallel study.

7.3.5 Real Datasets from Different Sequencing Platforms

Synthetic studies demonstrate the worst case of signature sets. Here, we examine the prac-

tical usage by analyzing signatures from real DNA sequences with reads from different se-

quencing platforms. Experiments are conducted on a desktop machine of Coretm i7-3770

CPU@3.4.0GHz.

Table 7.6 summarizes the nature and analysis of each dataset. MSBWT, KMC3, and

Jellyfish are run with eight threads; TahcoRoll is run with single thread and eight threads.

For the measurement that is less efficient than TahcoRoll, we compute the fold-change to

those reported by the eight-thread TahcoRoll. MSBWT is unable to finish indexing for the

PacBio data within two days. KMC3 cannot index long reads from Nanopore as it exceeds

the buffer size automatically set by the program; it also uses up the memory on the machine

(32G) for the PacBio data. Overall, the running time of single-thread TahcoRoll is as efficient

as Jellyfish with eight threads, and significantly outperforms KMC3 and MSBWT in short

and long reads, respectively. In the parallel settings, TahcoRoll runs at least four times

faster than MSBWT and Jellyfish, and demonstrates a drastic improvement over KMC3.

Lastly, we examine the impact of different binary representations of the nucleotides. The

concise representation requires a many-to-one mapping between four nucleotides and two

single binary values. The four characters can be divided into balanced partitions: [{A,C},
{G,T}], [{A,T}, {C,T}], and [{A,G}, {C,T}], or unbalanced partitions: [{A}, {C,G,T}], [{C},
{A,G,T}], [{G}, {A,C,T}], and [{T}, {A,C,G}]. The default setting groups {A,G} together,

60

Table 7.6: Run-time and memory of real datasets across different sequencing platforms.

Dataset SRR1293902 SRR1293901 GSM1254204 SRR5951587 SRR5951588 SRR5951600
Source RNA-Seq RNA-Seq RNA-Seq WGS WGS WGS
Platform Illumina HiSeq Illumina MiSeq PacBio Nanopore Nanopore Nanopore
Number of Reads 38,278,052 9,524,186 3,239,918 205,685 171,398 161,148
Average Read Length 75 262 1113 3kb 8kb 12kb

TahcoRoll (1-thread) 1.20 1.40 1.17 0.27 0.44 0.65
TahcoRoll (8-thread) 0.23 0.28 0.22 0.06 0.09 0.16

Time MSBWT 0.95 (4.1X) 1.64 (5.8X) NA 3.03 (53.4X) 2.79 (29.5X) 12.31 (77.7X)
(Hour) KMC3 15.85 (68.5X) 14.16 (50.7X) 19.26 (87.3X) exceed buffer size

Jellyfish 0.94 (4.0X) 1.56 (5.6X) 1.13 (5.1X) 0.27 (4.8X) 0.48 (5.1X) 0.68 (4.2X)

TahcoRoll 4.18 4.17 4.18 10.5 10.5 10.5
Memory MSBWT 7.76 (1.8X) 70.10 (16.8X) NA 1.89 3.16 4.65

(GB) KMC3 28.76 (6.8X) 24.84 (5.9X) 31.34 (7.4X) exceed buffer size
Jellyfish 1.79 1.79 1.79 1.79 1.79 1.79

and {C,T}. Table 7.7 summarizes the comparison of alternative mappings using real datasets.

On average, the default mapping runs faster (shown in Table 7.6) than alternative mappings.

Among all balanced partitions, the default setting uses the least amount of memory, but

its running time is not significantly different from others (p-values > 0.05). Unbalanced

partitions provide more compact representations as revealed by their memory usages, but

require more time to resolve collisions than the default setting (p-values < 0.05). The p-

values are computed through paired t-tests and adjusted by Bonferroni correction.

Table 7.7: Evaluation of Different Binarized Representations.

Mapping 0={A,C}; 1={G,T} 0={A,T}; 1={C,G} 0={A}; 1={C,G,T} 0={C}; 1={A,G,T} 0={G}; 1 ={A,C,T} 0={T}; 1={A,C,G}
Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

SRR1293902 1.28 4.49 1.27 4.42 1.54 3.36 1.42 3.20 1.54 3.12 1.93 2.98
SRR1293901 1.35 4.49 1.39 4.42 1.72 3.36 1.71 3.20 1.79 3.12 1.96 2.98
GSM1254204 1.26 4.49 1.26 4.42 1.46 3.36 1.64 3.20 1.70 3.12 2.01 2.98
SRR5951587 0.32 11.11 0.30 10.84 0.34 9.85 0.47 7.93 0.57 7.85 0.54 9.27
SRR5951588 0.52 11.11 0.48 10.84 0.58 9.85 0.83 7.93 1.21 7.85 0.81 9.27
SRR5951600 0.76 11.11 0.74 10.84 0.78 9.85 1.46 7.93 1.36 7.85 1.11 9.27

p-value 0.3408 0.12714 0.033552 0.043938 0.008988 0.010212

7.4 Characterizing Protein-Protein Interaction via Deep Learning

We present the experimental settings and evaluations of PIPR on three PPI prediction tasks,

i.e. binary prediction, multi-class interaction type prediction, and binding affinity estimation.

The experiments are conducted on three different datasets. Based on the results, we compare

and discuss the performance of various baseline approaches.

61

7.4.1 Binary PPI Prediction

Binary PPI prediction is the primary task targeted by a handful or previous works [26, 84,

87, 101, 103]. The objective of these works is to identify whether a given pair of proteins

interacts or not based on their sequences. We use the Yeast benchmark dataset from Guo

et al. [25] to compare PIPR with various baseline approaches. In addition, we use the multi-

species dataset to demonstrate PIPR’s capability of predicting interactions for proteins of

different species that share very low sequence identity with those in training.

The baseline approaches include SVM-AC [25], kNN-CTD [101], EELM-PCA [105], SVM-

MCD [106], MLP [20], Random Forest LPQ (RF-LPQ) [99], SAE [87], DNN-PPI [45], and

DPPI [26]. These approaches vary in terms of the selected features and the classification

methods. In addition, we report the results of a Siamese Residual GRU (SRGRU) architec-

ture, which is a simplification of PIPR, where we discard all intermediary convolution layers

and keep only the bidirectional residual GRU. The purpose of SRGRU is to show the signif-

icance of the contextualized and sequential information of protein profiles in characterizing

PPIs. We also report the results of Siamese CNN (SCNN) by removing the residual GRU

in PIPR. This degenerates our framework to a similar architecture to DPPI, but differs in

that SCNN directly conducts an end-to-end training on raw sequences instead of requiring

the protein profiles constructed by PSI-BLAST [3].

We use AMSGrad [74] to optimize the cross-entropy loss, for which we set the learning

rate α to 0.001, the exponential decay rates β1 and β2 to 0.9 and 0.999, and batch size to

256 on both datasets. The number of occurrences for the RCNN units (i.e., one convolution-

pooling layer followed by one bidirectional residual GRU layer) is set to 5, where we adopt

3-max-pooling and the convolution kernel of size 3. We set the hidden state size to be 50,

and the RCNN output size to be 100. This configuration ensures the RCNN to compress the

selected features in a reasonably small vector sequence before the features are aggregated

by the last global average-pooling. We zero-pad short sequences to the longest sequence

length in the dataset. This is a widely adopted technique for sequence modeling in NLP [10,

29, 33, 104, 112] as well as in bioinformatics [60, 64, 67] for efficient training. Note that

62

the configuration of embedding pre-training is discussed in Section 7.4.4, and the model

configuration study of different hyperparameter values is provided in the Appendix C. All

model variants are trained until converge at each fold of the cross-validation.

Following the settings in previous works [26, 84, 87, 103, 106], we conduct 5-fold cross-

validation (CV) on the Yeast dataset. Under the k-fold CV setting, the data is equally

divided into k non-overlapping subsets, and each subset has a chance to train and to test

the model so as to ensure an unbiased evaluation. We aggregate fix metrics on the test cases

of each fold, i.e. the overall accuracy, precision, sensitivity, specificity, F1, and Matthews

correlation coefficient (MCC) on positive cases. All these metrics are preferred to be higher

to indicate better performance. Based on the reported accuracy over 5-folds, we also conduct

two-tailed Welch’s t-tests [97] to evaluate the significance of the improvement on different

pairs of approaches. The p-values are adjusted by the Benjamini-Hochberg procedure [6] to

control the false discovery rate for multiple hypothesis testing.

As shown in Table 7.8, the CNN-based architecture, DPPI, demonstrates state-of-the-art

performance over other baselines that employ statistical learning algorithms or densely con-

nected MLP. This shows the superiority of deep-learning-based techniques in encapsulating

various types of information of a protein pair, such as amino acid composition and their co-

occurrences, and automatically extracting the robust ones for the learning objectives. That

said, DPPI requires an extensive effort in data pre-processing, specifically in constructing

the protein profile for each sequence. On average, each PSI-BLAST search of a protein

against the NCBI non-redundant protein database (184,243,125 sequences) requires around

90 minutes of computation on our server. Even with eight cores, each search finishes in 15

minutes. We estimate that processing 2,497 sequences of the Yeast dataset from scratch can

take about 26 days. It is worth mentioning that PIPR only requires 8 seconds to pre-train

the amino acid embedding, and 2.5 minutes to train on the Yeast dataset (see Table 7.14).

We implement SCNN to evaluate the performance of a simplified CNN architecture, which

produces comparable results as DPPI. These two frameworks show that CNN can already

leverage the significant features from primary protein sequences. In addition, the SRGRU

63

architecture has offered comparable performance to SCNN. This indicates that preserving

the sequential and contextualized features of the protein sequences is as crucial as incor-

porating the local features. By integrating both significant local features and sequential

information, PIPR outperforms DPPI by 2.54% in accuracy, 4.93% in sensitivity, and 2.68%

in F1-Score. Next, we evaluate whether the improved accuracy of PIPR is statistically sig-

nificant. Table 7.9 reports the p-values of SRGRU, SCNN, and PIPR compared to other

baseline approaches, where the statistically significant comparisons (p-values < 0.01) are

highlighted in red. Since the standard deviation of DPPI is unavailable, we are not able

to include DPPI in this analysis. The evaluation shows that PIPR performs statistically

significantly better than all other approaches, including SCNN and SRGRU. On the other

hand, SCNN is not statistically significantly better than SRGRU. Thus, the residual RCNN

is very promising for modeling binary PPIs.

Table 7.8: Evaluation of binary PPI prediction on the Yeast dataset.

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) MCC(%)

SVM-AC 87.35 ± 1.38 87.82 ± 4.84 87.30 ± 5.23 87.41 ± 6.33 87.34 ± 1.33 75.09 ± 2.51
kNN-CTD 86.15 ± 1.17 90.24 ± 1.34 81.03 ± 1.74 NA 85.39 ± 1.51 NA
EELM-PCA 86.99 ± 0.29 87.59 ± 0.32 86.15 ± 0.43 NA 86.86 ± 0.37 77.36 ± 0.44
SVM-MCD 91.36 ± 0.4 91.94 ± 0.69 90.67 ± 0.77 NA 91.3 ± 0.73 84.21 ± 0.66
MLP 94.43 ± 0.3 96.65 ± 0.59 92.06 ± 0.36 NA 94.3 ± 0.45 88.97 ± 0.62
RF-LPQ 93.92 ± 0.36 96.45 ± 0.45 91.10 ± 0.31 NA 93.7 ± 0.37 88.56 ± 0.63
SAE 67.17 ± 0.62 66.90 ± 1.42 68.06 ± 2.50 66.30 ± 2.27 67.44 ± 1.08 34.39 ± 1.25
DNN-PPI 76.61 ± 0.51 75.1 ± 0.66 79.63 ± 1.34 73.59 ± 1.28 77.29 ± 0.66 53.32 ± 1.05
DPPI 94.55 96.68 92.24 NA 94.41 NA
SRGRU 93.77 ± 0.84 94.60 ± 0.64 92.85 ± 1.58 94.69 ± 0.81 93.71 ± 0.85 87.56 ± 1.67
SCNN 95.03 ± 0.47 95.51 ± 0.77 94.51 ± 1.27 95.55 ± 0.77 95.00 ± 0.50 90.08 ± 0.93
PIPR 97.09 ± 0.24 97.00 ± 0.65 97.17 ± 0.44 97.00 ± 0.67 97.09 ± 0.23 94.17 ± 0.48

Table 7.9: Statistical assessment on the accuracy of binary PPI prediction.

p-value SRGRU SCNN PIPR
SVM-AC 9.69E-05 1.22E-04 9.69E-05
kNN-CTD 1.03E-05 2.23E-05 2.84E-05
EELM-PCA 2.33E-05 3.94E-08 2.43E-10
SVM-MCD 1.67E-03 2.60E-06 1.35E-07
MLP 1.71E-01 5.29E-02 1.12E-06
RF-LPQ 7.28E-01 4.10E-03 1.75E-06
SAE 4.27E-10 1.78E-10 4.19E-09
DNN-PPI 1.62E-08 2.27E-10 2.70E-09
SRGRU NA 2.87E-02 6.60E-04
SCNN 2.87E-02 NA 1.80E-04

64

Table 7.10: Evaluation of binary PPI prediction on variants of multi-species dataset.

Seq. Identity # of Proteins Pos. Pairs Neg. Pairs Accuracy (%) F1-Score (%)

Any 11529 32959 32959 98.19 98.17
<0.40 9739 25916 22012 98.29 98.28
<0.25 7790 19458 15827 97.91 98.08
<0.10 5769 12641 9819 97.54 97.79
<0.01 5171 10747 8065 97.51 97.80

We also report the 5-fold CV performance of PIPR on variants of the multi-species

dataset, where proteins are excluded based on different thresholds of sequence identity.

The dataset contains proteins from Caenorhabditis elegans, Drosophila melanogaster, and

Escherichia coli. Table 7.10 shows that PIPR performs consistently well under lenient and

stringent criteria of sequence identity between training and testing. More importantly, PIPR

is able to train and test on multiple species, and is robust against extremely low sequence

identity of less than 1%.

7.4.2 Interaction Type Prediction

The objective of this task is to predict the interaction type of two interacting proteins. We

evaluate this task using SHS27k and SHS148k datasets. To the best of our knowledge, fewer

efforts attempt for the multi-class PPI prediction in contrast to the binary prediction. Zhu

et al. [113] train a two-stage SVM classifier to distinguish obligate, non-obligate, and crystal

packing interactions; Silberberg et al. [85] use logistic regression to predict several types of

enzymatic actions. However, none of their implementations are publicly available. Different

from the categories of interaction types used above, we aim at predicting the interaction

types annotated by the STRING database. We train several statistical learning algorithms

on the widely employed AC and CTD features for protein characterization as our baselines.

These algorithms include SVM, Random Forest, Adaboost (SAMME.R algorithm [27]), kNN

classifier, and logistic regression. For deep-learning approaches, we deploy the SCNN archi-

tecture where an output MLP with categorical cross-entropy loss is incorporated, as well as

a similar SRGRU architecture into comparison. Results of two näıve baselines of random

65

Table 7.11: Accuracy (%) and fold changes over zero rule for PPI interaction type prediction.

Features N/A AC CTD Embedded raw seqs

Methods Rand Zero rule SVM RF AdaBoost kNN Logistic SVM RF AdaBoost kNN Logistic SCNN SRGRU PIPR

SHS27k 14.28 16.70 33.17 44.82 28.67 35.44 25.47 35.56 45.76 31.81 35.56 30.57 55.54 51.06 59.56
(fold×) — 1.00× 1.99× 2.68× 1.72× 2.12× 1.52× 2.13× 2.74× 1.90× 2.13× 1.83× 3.33× 3.06× 3.57×

SHS148k 14.28 16.21 28.17 36.01 27.87 33.81 24.96 31.37 36.65 29.67 33.13 26.96 55.29 54.05 61.91
(fold×) — 1.00× 1.74× 2.22× 1.72× 2.09× 1.54× 1.94× 2.26× 1.83× 2.04× 1.66× 3.41× 3.33× 3.82×

guessing and zero rule (i.e., predicting the majority class) are also reported for reference.

All approaches are evaluated on the two datasets by 10-fold CV, using the same partition

scheme for a more unbiased evaluation [34, 56]. We carry forward the model configurations

from the last experiment to evaluate the performance of the frameworks under controlled

variables. For baseline models, we examine three different ways of combining the feature

vectors of the two input proteins, i.e. element-wise multiplication, the Manhattan difference

(i.e. the absolute differences of corresponding features [64]) and concatenation. The Man-

hattan difference consistently obtains better performance, considering the small values of

the input features and the asymmetry of the captured protein relations.

The prediction accuracy and fold changes over the zero rule baseline are reported in

Table 7.11. Note that since the multi-class prediction task is much more challenging than

the binary prediction task, it is expected to observe lower accuracy and longer training-time

(Table 7.14) than that reported in the previous experiment. Among all the baselines using

explicit features, the CTD-based models perform better than the AC-based ones. CTD

descriptors seek to cover both continuous and discontinuous interaction information [101],

which potentially better discriminate among PPI types.

The best baseline using Random Forest thereof achieves satisfactory results by more

than doubling the accuracy of zero rule on the smaller SHS27k dataset. However, on the

larger SHS148k dataset, the accuracy of these explicit-feature-based models is notably im-

paired. We hypothesize that such predefined explicit features are not representative enough

to distinguish the PPI types. On the other hand, the deep-learning-based approaches do

not need to explicitly utilize these features, and perform consistently well in both settings.

The raw sequence information is sufficient for these approaches to drastically outperform

the Random Forest by at least 5.30% in accuracy on SHS27k and 17.40% in accuracy on

66

SHS148k. SCNN thereof outperforms SRGRU by 4.48% and 1.24% in accuracy on SHS27k

and SHS148k, respectively. This implies that the local interacting features are relatively

more deterministic than contextualized and sequential features on this task. The results by

the residual RCNN-based framework are very promising, as it outperforms SCNN by 4.02%

and 6.62% in accuracy on SHS27k and SHS148k respectively. It also remarkably outper-

forms the best explicit-feature-based baselines on the two datasets by 13.80% and 25.26% in

accuracy, and more than 3.5 of fold changes over the zero rule on both datasets.

7.4.3 Binding Affinity Estimation

As the last task, we evaluate PIPR for binding affinity estimation using the SKEMPI dataset.

We employ the mean squared loss variant of PIPR to address this regression task. Since the

lengths of protein sequences in SKEMPI are much shorter than those in the other datasets,

we accordingly reduce the occurrences of RCNN units to 3, while other configurations remain

unchanged. For baselines, we compare against several regression models based on the AC and

CTD features, which include Bayesian Redge regressor (BR), SVM, Adaboost with decision

tree regressors and Random Forest regressor. The corresponding features for two sequences

are again combined via the Manhattan difference. We also modify SCNN and SRGRU to

their mean squared loss variants, in which we reduce the layers in the same way of RCNN.

We aggregate three metrics through 10-fold CV, i.e. mean squared error (MSE), mean

absolute error (MAE) and Pearson’s correlation coefficient (Corr). These are commonly

reported metrics for regression tasks, for which lower MSE and MAE as well as higher

Corr indicate better performance. In the cross-validation process, we normalize the affinity

values of the SKEMPI dataset to [0, 1] via min-max re-scaling. This is due the fact that

we use sigmoid function to smooth the output of the regressor. Note that it does not affect

correlation, while MSE, MAE and the original affinity scores can be easily re-scaled back.

Table 7.12 reports the results for this experiment. It is noteworthy that, one single change

of amino acid can lead to a drastic effect on binding affinity. While such subtle changes are

difficult to be reflected by the explicit features, the deep-learning-based methods can com-

67

Table 7.12: Evaluation of binding affinity prediction on the SKEMPI dataset.

Features AC CTD Embedded raw seqs
Methods BR SVM RF AdaBoost BR SVM RF AdaBoost SCNN SRGRU PIPR

MSE (×10−2) 1.70 2.20 1.77 1.98 1.86 1.84 1.49 1.84 0.87 0.95 0.63
MAE (×10−2) 9.56 11.81 9.81 11.15 10.20 11.04 9.06 10.69 6.49 7.08 5.48

Corr 0.564 0.353 0.546 0.451 0.501 0.501 0.640 0.508 0.831 0.812 0.873

petently capture such changes from the raw sequences. Our RCNN-based framework again

offers the best performance among the deep-learning-based approaches, and significantly

outperforms the best baseline (CTD-based Random Forest) by offering a 0.233 increase in

Corr, as well as remarkably lower MSE and MAE. Figure 7.15 demonstrates an example of

the effect of changing an amino acid in a protein complex. The blue entity is Subtilisin BPN’

precursor (Chain E), and the red entity is Chymotrypsin inhibitor (Chain I). The mutation

is highlighted in yellow. The wild type (1TM1) and mutant (1TO1) complexes are retrieved

from PDB. Tyrosine at position 61 of Chymotrypsin inhibitor 2 (Chain I) is substituted with

Alanine, causing the neighboring region of Subtilisin BPN’ precursor (Chain E) to relax. The

binding affinity (kd) changes from 2.24E-12 to 2.70E-10, which is validly captured by PIPR.

While our experiment is conducted on a relatively small dataset, we seek to extend our PIPR

framework to a more generalized solution for binding affinity estimation, once a larger and

more heterogeneous corpus is available.

Mutation on Chain I
 Y61 -> A

PDB ID 1TM1 (wild type) 1TO1 (mutant)
Binding Affinity (kd) 2.24E-12 2.70E-10
PIPR Prediction (kd) 2.54E-12 3.52E-10

Figure 7.15: Mutation effects on structure and binding affinity.

68

Table 7.13: Comparison of amino acid representations based on binary prediction.

[ac, aph] ac only aph only One-hot

Dimension 12 5 7 20
Accuracy 97.09 96.67 96.03 96.11
Precision 97.00 96.35 95.91 96.34
F1-Score 97.09 96.51 96.08 96.10

7.4.4 Amino Acid Embeddings

Each amino acid is represented by a vector of numerical values that describe its relative

physicochemical properties. The first part of the embedding vector ac, which measures

the co-occurrence similarity of the amino acids in protein sequences, is empirically set as

a 5-dimensional vector. ac is obtained by pre-training the Skip-Gram model on all 8,000

sequences from our largest STRING dataset, SHS148k, using a context window size of 7

and a negative sampling size of 5. The second part contains a 7-dimensional vector, aph,

which describes the categorization of electrostaticity and hydrophobicity for the amino acid.

We examine the performance of using each part individually, as well as the performance of

combining them as used in our framework. In addition, we include a näıve one-hot vector

representation, which does not consider the relatedness of amino acids and treats each of

them independently. Table 7.13 shows that, once we remove either of the two parts of the

proposed embedding, the performance of the model slightly drops. Meanwhile, the proposed

pre-trained embeddings lead to noticeably better performance of the model than adopting the

näıve one-hot encodings of the canonical amino acids. This pre-training process completes

in 8 seconds on a commodity workstation as shown in Table 7.14. This is a one-time effort

that can be reused on different tasks and datasets.

7.4.5 Run-time Analysis

All of the experiments are conducted on one NVIDIA GeForce GTX 1080 Ti GPU. We

report the training time for each experiment, as well as for the amino acid embedding in

Table 7.14. For each experiment, we calculate the average training time over either 5-

69

Table 7.14: Run-Time of training embeddings and different prediction tasks.

Task Embeddings Binary Multi-class Multi-class Regression

Dataset SHS148k Yeast SHS27k SHS148k SKEMPI
Sample Size 8,000 11,188 26,945 148,051 2,950

Training Time 8sec 2.5min 15.8min 138.3min 12.5min

fold (Yeast dataset) or 10-fold (others) CV. In both binary and multi-class predictions, the

training time increases along with the increased number of training cases. The regression

estimation generally requires more iterations per training case to converge than classification

tasks. Thus, with much fewer cases, the training time on SKEMPI for affinity estimation is

more than that on the Yeast dataset for binary prediction.

70

CHAPTER 8

Conclusion

We have introduced three computational frameworks to address the challenges in leveraging

sequence information to extract biological knowledge. The first framework aims at cor-

recting the alignment of short sequences generated from genes located in the regions with

low sequence complexity. The corrected alignments further facilitate accurate expression

estimates among homologous genes. The second framework, Fleximer, contains a series of

algorithms and statistical methods to quantify transcript expression abundance via a set of

attentively selected k-mers with variable lengths. The third framework, PIPR, employs a

Siamese architecture to capture the mutual influence of a protein sequence pair in charac-

terizing the interaction properties. The contributions of this dissertation in advancing the

sequence analysis of genomic and proteomic data can be summarized as follows:

• We present a genome-wide approach to correct read alignment among homologous

loci, specifically for pseudogenes and their parents. Our approach directly models the

alignment distribution among homologous loci, and correct the falsely aligned reads.

• To expedite the analyses, we incorporate community detection algorithm to partition

the genome into different homologous communities, and build a linear regression model

separately for each community. The non-negative least square problem is then solved

on a smaller dataset with a further potential of parallelism.

• We emphasize the importance of considering a list of k-mers with different sizes to

quantify the transcript abundance via RNA-Seq.

• To overcome the limitation of a fixed k in transcript abundance quantification, we

71

develop an efficient approach that leverages the structure of suffix tree and the concept

of splicing graph to discover and select an optimal set of variable-length k-mers. The

quantification step relies on the Aho-Corasick algorithm and the EM algorithm for

relative abundance estimations.

• Further accelerating the matching process between variable length k-mers and sequenc-

ing reads, we propose a thinned Aho-Corasick algorithm which incorporates the one-bit

representation for four nucleotides and a rolling hash technique for a loss-less matching.

• We construct an end-to-end framework for PPI prediction that requires only the pri-

mary protein sequences as the input. It is trained to automatically preserve the critical

features from the sequences.

• When analyzing the protein sequences, we emphasize and demonstrate the needs of

considering the contextualized and sequential information in the model.

• The proposed framework can be flexibly used to address different PPI tasks, includ-

ing binary interaction prediction, multi-class interaction type prediction, and binding

affinity estimations.

Each framework contains several components to address specific aspect of the challenges.

We have also demonstrated the effectiveness in terms of accuracy and/or efficiency using a

wide range of datasets in the different experiments.

The algorithmic techniques developed in Fleximer can be easily extended for tasks that

involve processing vast sequencing data. These application includes, but are not limited to

metagenomic sequencing, bisulfite sequencing, ChIPseq, miRNASeq and cfDNA-Seq (cell free

DNA sequencing). Specifically, the framework of Fleximer can be applied to metagenomic

studies. A set of variable-length signatures bears more discriminating power in distinguishing

reads among strains, and thus provides the potential of quantifying the microbial abundance

down to the strain level.

72

The framework of PIPR provides an automatic multi-granular feature selection mech-

anism to capture both local significant features and sequential features from the protein

sequences. One important direction is to apply the PIPR framework to other sequence-

based inference tasks in bioinformatics, such as modeling RNA and protein interactions. We

also seek to incorporate attention mechanisms [94] to help pinpoint interaction sites on pro-

tein sequences. Since PIPR has alleviated any costly domain-invariant feature engineering

process, how to extend PIPR with transfer learning based domain adaptation for different

species is another meaningful direction.

73

APPENDIX A

Background on Suffix Tree

Let t′ be a string over the alphabet Σ = {A,C,G, T}, and “$” be a unique character, such

that $ /∈ Σ. This unique character is appended to the end of the string t′ to guarantee that

every suffix ends at a leaf in the tree. Therefore, we use the following notations: t denotes

the entire string with a terminator (t′ + $), and |t| denotes the size of t. The string t can

be degenerated into |t| suffixes, and stored into a compressed tree structure, known as the

suffix tree. This suffix tree contains exactly |t| leaves, which are labeled by the starting

position of the corresponding suffix. Each internal node has at least two children. The label

of an internal node is omitted for memory efficiency. Each edge is labeled with a non-empty

substring of t; edges connecting from the same parent contains different starting characters.

The edge labels can be concatenated through a path in the tree, forming a longer substring

of t. Thus, any individual suffix of t can be recreated by traversing along a path from the

root to a leaf and concatenating the labels of the edges along the way.

Multiple sequences can be stored in the same tree, forming a generalized suffix tree

(GST) [8]. A GST can be constructed by appending different unique symbols at the end of

each sequence to ensure no suffix is a substring of another. Alternatively, we can concatenate

sequences into one long string, separated by a single terminator, and build a regular suffix

tree. Regardless of using a single or multiple terminators, each leaf node stores sufficient

information to retrieve the starting positions and sequence of origin for each suffix.

The construction of a suffix tree takes linear time and space respect to the total sequence

size [21, 55, 92]. The most memory efficient implementation to handle genomic sequences is

the Sadakane’s compressed suffix tree [80, 93], which relies on several abstract data structures

74

to reduce the memory footprint. It also preserves all the operations for a normal suffix tree.

One of the abstract data structures is balanced parentheses [63], which represents the tree in

pre-order. This structure can be further modified to retrieve node information in post-order.

For these reasons, we implement our method using Sadakane’s compressed suffix tree, which

is available from Succinct Data Structure Library (SDSL) 1.

1https://github.com/simongog/sdsl-lite/

75

APPENDIX B

Propositions in TahcoRoll

B.1 Proof of Proposition 1

Proof. Given the prefix length i and the number of possible characters c, there are ci possible

prefixes in total. Assuming the characters are uniformly distributed, the probability that a

particular prefix exists in n sig-mers is:

1−
(

1− 1

ci

)n
.

Therefore, the expected number of collided prefixes is:

n− ci
(

1−
(

1− 1

ci

)n)
,

and the expected number of prefixes without any collision is:

n−
(
n− ci

(
1−

(
1− 1

ci

)n))
= ci

(
1−

(
1− 1

ci

)n)
= ci

(
1−

(
ci − 1

ci

)n)
.

However, the expected number above includes the cases that fail before reaching the i-th

character. Hence, the expected number of these cases should be deducted. Finally, the

expected number of sig-mers that fail to find their length-i prefixes along the trie during its

insertion is:

ci
(

1−
(
ci − 1

ci

)n)
− ci−1

(
1−

(
ci−1 − 1

ci−1

)n)
.

76

B.2 Proof of Proposition 2

From Proposition 1, the expected number of node for prefix length i in n sig-mers is

ci
(

1−
(
ci−1
ci

)n)
. Intuitively, summing all possible prefix lengths up to the length of sig-

mer m, the expected number of trie nodes is

m∑

i=1

ci
(

1−
(
ci − 1

ci

)n)
.

Proof. Denote the expected number of sig-mers that fail to find their length-i prefixes on

the trie during its insertion as f(i). Given the length of sig-mers m, each sig-mer that fails

to find the length-i prefix along the trie during its insertion will result in the addition of

m− i+ 1 nodes. Based on Proposition 1, the expected number of nodes in the trie is:

m∑

i=1

(m− i+ 1) · f(i) =
m∑

i=1

(m− i+ 1)

[
ci
(
1−

(
ci − 1

ci

)n)
− ci−1

(
1−

(
ci−1 − 1

ci−1

)n)]

=

m∑

i=1

(m− i+ 1)

[
ci
(
1−

(
ci − 1

ci

)n)]
−
m−1∑

i=1

(m− i)

[
ci
(
1−

(
ci − 1

ci

)n)]

=
m−1∑

i=1

[(m− i+ 1)− (m− i)]

[
ci
(
1−

(
ci − 1

ci

)n)]
+ cm

(
1−

(
cm − 1

cm

)n)

=
m∑

i=1

ci
(
1−

(
ci − 1

ci

)n)
.

B.3 Proof of Proposition 3

Proof. Suppose that the number of sig-mers to be added into a trie is extremely large. The

expected number of nodes with c possible characters is:

lim
n→∞

m∑

i=1

ci
(

1−
(
ci − 1

ci

)n)
=

m∑

i=1

ci =
c (cm − 1)

c− 1
=
cm+1 − c
c− 1

.

77

For the plain AC, there are four possible characters, i.e., A, C, G and T. Hence, the expected

number of its nodes NA is:

NA =
4m+1 − 4

4− 1
=

(22)
m+1 − 4

3
=

22m+2 − 4

3
=

4 (22m − 1)

3
.

For the thinned automaton, there are two possible characters, i.e., 0 and 1. Hence, the

expected number of its nodes NT is:

NT =
2m+1 − 2

2− 1
= 2(2m − 1).

Finally, we compute the ratio of the expected number of two approaches as follows:

NT

NA

=
2(2m − 1)
4(22m−1)

3

=
3

2
· 2m − 1

22m − 1
=

3

2
· 2m − 1

(2m + 1) (2m − 1)
=

3

2
· 1

2m + 1 .

78

APPENDIX C

Hyperparameter Study for PIPR

We examine the configuration of two critical factors that can affect the performance of PIPR:

the dimensionality of hidden states and the number of occurrences for the RCNN units. We

show the effects of different settings of these two factors based on the binary PPI prediction

task. The hidden state sizes are chosen from {10, 25, 50, 75}. As illustrated in Fig C.1a, the

performance of PIPR initially increases as we raise the dimensionality of the hidden states

until it passes 50, and then starts to decline. The occurrences of RCNN units contribute

to the levels of granularity in feature aggregation. Fewer occurrences correspond to less

aggregation. However, too many occurrences can lead to over-compressing the features. We

examine the occurrences from 1 to 5 based on Yeast. Note that we do not adopt the setting

with 6 occurrences, where the RCNN encoder over-compresses the extracted features to a

very small number of latent vectors before the last global average pooling. Aligned with

our hypothesis, Fig C.1b shows that the accuracy, precision, and F1-score improve when

we increase the number of occurrences of the RCNN units. The improvement from 2 to 5

occurrences is marginal, which shows that our framework is robust to this setting as long as

there are more than 2 occurrences of RCNN units.

79

●

●

●

●

94

95

96

97

98

10 25 50 75
Dimensionality of Hidden States

V
al

ue
s

● Accuracy Precision F1−Score

(a) Hidden states.

●

●
● ●

●

70

80

90

100

1 2 3 4 5
Occurrence of RCNN Units

V
al

ue
s

● Accuracy Precision F1−Score

(b) RCNN units.

Figure C.1: Hyperparameter Study for PIPR.

80

APPENDIX D

Software Configuration for K-mer Counters

Existing k-mer counters index the reads into a compact and searchable structure, such as

a hash table, a burst trie, or a compact suffix array. The occurrences of a specific k -mer

can be retrieved by querying these data structures. Most of these counters are designed to

process reads with fixed-size k -mers; several of them restrict the choice of k to fall within a

threshold. These algorithms can be adapted to count k -mers of different sizes by repeating

the process with different k ’s. Here, we discuss these approaches.

D.1 Thread-Safe Shared Memory Hashing

Jellyfish [54] exploits the CAS (compare-and-swap) assembly instruction to update a mem-

ory location in a multi-threaded environment, and uses the ‘quotienting technique’ and bit-

packed data structure to reduce wasted memory. It provides a function (--if=kmerfile)

to count only a list of specific k -mers with the same k. The counting step is repeated for

different k. Squeakr [68] builds an off-the-shelf data structure based on counting quotient

filter (CQF). It maintains both global and local CQFs to facilitate updates of each thread.

D.2 Disk-Based Hashing

Disk-based hashing reduces memory with complementary disk space. In general, this ap-

proach splits k -mers into bins, and stores in files. Each bin is then loaded back for counting.

DSK [75] divides k -mers using a specific hash function based on the targeted memory

and disk space. To account for arbitrary k -mer lengths, we compile the source code with

81

default parameters (-DKSIZE LIST=32). For each experiment, we first load the k -mers into

memory and determine the range of the k -mer sizes. We index reads with different k’s using

the main program, and dump the result into a human readable format with dsk2ascii.

MSPKmerCounter (MSPKC) [49] proposes Minimum Substring Partitioning to re-

duce the memory usage of storing k -mers. Observing the fact that consecutive k -mers in

a read often share a shorter substring, these consecutive k -mers can be compressed and

stored in one bin. It is recommended to index reads with an odd number k less than 64.

The software contains three functions to be run in sequence: partition, count, and dump.

The partition step divides data using minimum substring partitioning, the count step com-

putes the frequencies of existing k -mers, and the dump step converts the results into human

readable format. This sequel is repeated for each k.

KMC [17], KMC2 [18], and KMC3 [41] are serial developments of parallel counters.

These methods scan reads one block at a time and use a number of splitter threads to process

the blocks. KMC2 leverages the concept of minimizer to further reduce disk usage. KMC3

accelerates the running time and optimizes the memory by taking a larger part of input

data and better balancing the bin sizes. We use the main program from KMC3 to count

the k -mer of all sizes seen in the list, with one k at a time. We set the -cs parameter to

4294967295 to ensure all of the frequently occurred k-mers are included.

D.3 Probabilistic Hashing

This approach avoids counting the k -mers that are likely to arise from sequencing errors.

BFCounter [58] uses Bloom filter to identify all k -mers that are present more frequently

than a threshold with a low false positive rate. The algorithm scans read data in two passes.

The count function of BFCounter requires an estimation of the number of k-mers. We use

KmerStream [57] to pre-compute the k-mer statistics in reads. We use the dump function to

convert the results into human readable format to extract the frequencies.

khmer [108] uses a streaming-based probabilistic data structure, CountMin Sketch [16].

82

The algorithm is designed to perform in-memory counting, and cannot handle k larger than

32. We use its Python wrapper script, load-into-counting, to perform counting, which

writes a k -mer graph for each k to files. We repeat this step for different k’s. Each k -mer

graph is loaded back to the memory one at a time, allowing us to query the count. We set

the maximum amount of memory for data structure to be 16G as the required parameter.

D.4 Suffix-Arrays

Suffix-arrays present the potential of searching arbitrary k -mers on a single scan. However,

constructing a suffix-array on read data can be computationally expensive.

Tallymer [43] is tailored to detect de novo repetitive elements ranging from 10 to 500bp

in the genome. The algorithm first constructs an enhanced suffix array (gt suffixerator),

and indexes k -mers one k at a time. We use gt tallymer mkindex to extract the k -mer

index from the enhanced suffix-array, and use gt tallymer search to retrieve their counts.

MSBWT [32] compresses raw reads via a multi-string variant of Burrows-Wheeler Trans-

form (BWT). Instead of concatenating all reads and sorting, it builds a BWT on each string

and merges these multi-string BWTs through a small interleave array. The final structure

allows a fast query of k -mers of arbitrary k.

D.5 Burst Tries

KCMBT [53] uses a cache efficient burst trie to store compact k -mers. The trie structure

stores k -mers that share the same prefix in the same container. When a container is full,

k -mers are sorted and burst. A good balance between the container size and the tree depth

is essential to avoid constant sorting and bursting. As a result, KCMBT uses hundreds of

trees. Unfortunately, it is limited to process k -mers with k less than 32. We first load the list

of k -mers into memory. KCMBT generates binary files containing k-mers and their counts.

We use kcmbt dump to convert the binary data into human readable files.

83

BIBLIOGRAPHY

[1] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic

search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340, 1975. 4, 17, 22

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local

alignment search tool,” Journal of molecular biology, vol. 215, no. 3, pp. 403–410,

1990. 15

[3] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J.

Lipman, “Gapped blast and psi-blast: a new generation of protein database search

programs,” Nucleic acids research, vol. 25, no. 17, pp. 3389–3402, 1997. 8, 62

[4] K. F. Au, H. Jiang, L. Lin, Y. Xing, and W. H. Wong, “Detection of splice junctions

from paired-end rna-seq data by splicemap,” Nucleic acids research, vol. 38, no. 14,

pp. 4570–4578, 2010. 5

[5] K. F. Au, V. Sebastiano, P. T. Afshar, J. D. Durruthy, L. Lee, B. A. Williams, H. van

Bakel, E. E. Schadt, R. A. Reijo-Pera, J. G. Underwood et al., “Characterization of the

human esc transcriptome by hybrid sequencing,” Proceedings of the National Academy

of Sciences, vol. 110, no. 50, pp. E4821–E4830, 2013. 39

[6] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and

powerful approach to multiple testing,” Journal of the Royal statistical society: series

B (Methodological), vol. 57, no. 1, pp. 289–300, 1995. 63

[7] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.

Shindyalov, and P. E. Bourne, “The protein data bank,” Nucleic acids research, vol. 28,

no. 1, pp. 235–242, 2000. 41

[8] P. Bieganski, J. Riedl, J. V. Carlis, and E. F. Retzel, “Generalized suffix trees for

biological sequence data: Applications and implementation,” in HICSS (5), 1994, pp.

35–44. 4, 74

84

[9] N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, “Near-optimal probabilistic rna-

seq quantification,” Nature biotechnology, vol. 34, no. 5, p. 525, 2016. 6, 28, 49

[10] M. Chen, C. Meng, G. Huang, and C. Zaniolo, “Neural article pair modeling for

wikipedia sub-article matching,” in Joint European Conference on Machine Learning

and Knowledge Discovery in Databases. Springer, 2018, pp. 3–19. 32, 62

[11] H. Cho, J. Davis, X. Li, K. S. Smith, A. Battle, and S. B. Montgomery, “High-resolution

transcriptome analysis with long-read rna sequencing,” PLoS One, vol. 9, no. 9, p.

e108095, 2014. 39

[12] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical

machine translation,” arXiv preprint arXiv:1406.1078, 2014. 33

[13] J. D. Cohen, “Recursive hashing functions for n-grams,” ACM Transactions on Infor-

mation Systems (TOIS), vol. 15, no. 3, pp. 291–320, 1997. 26

[14] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep convolutional net-

works for text classification,” arXiv preprint arXiv:1606.01781, 2016. 34

[15] U. Consortium et al., “Uniprot: the universal protein knowledgebase,” Nucleic acids

research, vol. 46, no. 5, p. 2699, 2018. 40

[16] G. Cormode and S. Muthukrishnan, “An improved data stream summary: the count-

min sketch and its applications,” Journal of Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

82

[17] S. Deorowicz, A. Debudaj-Grabysz, and S. Grabowski, “Disk-based k-mer counting on

a pc,” BMC bioinformatics, vol. 14, no. 1, p. 160, 2013. 7, 82

[18] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, “Kmc 2: fast and

resource-frugal k-mer counting,” Bioinformatics, vol. 31, no. 10, pp. 1569–1576, 2015.

7, 82

85

[19] B. Dhingra, H. Liu, Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Gated-attention

readers for text comprehension,” arXiv preprint arXiv:1606.01549, 2016. 33

[20] X. Du, S. Sun, C. Hu, Y. Yao, Y. Yan, and Y. Zhang, “Deepppi: boosting predic-

tion of protein–protein interactions with deep neural networks,” Journal of chemical

information and modeling, vol. 57, no. 6, pp. 1499–1510, 2017. 8, 62

[21] M. Farach, “Optimal suffix tree construction with large alphabets,” in Proceedings 38th

Annual Symposium on Foundations of Computer Science. IEEE, 1997, pp. 137–143.

74

[22] A. C. Frazee, A. E. Jaffe, B. Langmead, and J. T. Leek, “Polyester: simulating rna-seq

datasets with differential transcript expression,” Bioinformatics, vol. 31, no. 17, pp.

2778–2784, 2015. 38

[23] M. Garber, M. G. Grabherr, M. Guttman, and C. Trapnell, “Computational methods

for transcriptome annotation and quantification using rna-seq,” Nature methods, vol. 8,

no. 6, p. 469, 2011. 2, 5

[24] G. H. Gonnet and R. A. Baeza-Yates, “An analysis of the karp-rabin string matching

algorithm,” Information Processing Letters, vol. 34, no. 5, pp. 271–274, 1990. 27

[25] Y. Guo, L. Yu, Z. Wen, and M. Li, “Using support vector machine combined with auto

covariance to predict protein–protein interactions from protein sequences,” Nucleic

acids research, vol. 36, no. 9, pp. 3025–3030, 2008. 8, 40, 62

[26] S. Hashemifar, B. Neyshabur, A. A. Khan, and J. Xu, “Predicting protein–protein

interactions through sequence-based deep learning,” Bioinformatics, vol. 34, no. 17,

pp. i802–i810, 2018. 8, 32, 36, 40, 62, 63

[27] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statistics and its

Interface, vol. 2, no. 3, pp. 349–360, 2009. 65

86

[28] P. G. Hawkins and K. V. Morris, “Transcriptional regulation of oct4 by a long non-

coding rna antisense to oct4-pseudogene 5,” Transcription, vol. 1, no. 3, pp. 165–175,

2010. 6

[29] H. He, K. Gimpel, and J. Lin, “Multi-perspective sentence similarity modeling with

convolutional neural networks,” in Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, 2015, pp. 1576–1586. 34, 62

[30] S. Heber, M. Alekseyev, S.-H. Sze, H. Tang, and P. A. Pevzner, “Splicing graphs and

est assembly problem,” Bioinformatics, vol. 18, no. suppl 1, pp. S181–S188, 2002. 19

[31] M. Höhl, S. Kurtz, and E. Ohlebusch, “Efficient multiple genome alignment,” Bioin-

formatics, vol. 18, no. suppl 1, pp. S312–S320, 2002. 17

[32] J. Holt and L. McMillan, “Merging of multi-string bwts with applications,” Bioinfor-

matics, vol. 30, no. 24, pp. 3524–3531, 2014. 7, 83

[33] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network architectures for

matching natural language sentences,” in Advances in neural information processing

systems, 2014, pp. 2042–2050. 62

[34] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical

learning. Springer, 2013, vol. 112. 66

[35] J.-Y. Jiang, F. Chen, Y.-Y. Chen, and W. Wang, “Learning to disentangle interleaved

conversational threads with a siamese hierarchical network and similarity ranking,” in

Proceedings of the 2018 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), 2018, pp. 1812–1822. 36

[36] L. Kaderali and A. Schliep, “Selecting signature oligonucleotides to identify organisms

using dna arrays,” Bioinformatics, vol. 18, no. 10, pp. 1340–1349, 2002. 17

87

[37] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”

IBM journal of research and development, vol. 31, no. 2, pp. 249–260, 1987. 22, 26

[38] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg, “Tophat2:

accurate alignment of transcriptomes in the presence of insertions, deletions and gene

fusions,” Genome biology, vol. 14, no. 4, p. R36, 2013. 5, 42

[39] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very

deep convolutional networks,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 1646–1654. 34

[40] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint

arXiv:1408.5882, 2014. 32

[41] M. Kokot, M. D lugosz, and S. Deorowicz, “Kmc 3: counting and manipulating k-mer

statistics,” Bioinformatics, vol. 33, no. 17, pp. 2759–2761, 2017. 7, 82

[42] S. Kurtz and C. Schleiermacher, “Reputer: fast computation of maximal repeats in

complete genomes.” Bioinformatics (Oxford, England), vol. 15, no. 5, pp. 426–427,

1999. 17

[43] S. Kurtz, A. Narechania, J. C. Stein, and D. Ware, “A new method to compute k-

mer frequencies and its application to annotate large repetitive plant genomes,” BMC

genomics, vol. 9, no. 1, p. 517, 2008. 7, 83

[44] B. Li and C. N. Dewey, “Rsem: accurate transcript quantification from rna-seq data

with or without a reference genome,” BMC bioinformatics, vol. 12, no. 1, p. 323, 2011.

5, 6

[45] H. Li, X.-J. Gong, H. Yu, and C. Zhou, “Deep neural network based predictions of

protein interactions using primary sequences,” Molecules, vol. 23, no. 8, p. 1923, 2018.

8, 62

88

[46] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abeca-

sis, and R. Durbin, “The sequence alignment/map format and samtools,” Bioinformat-

ics, vol. 25, no. 16, pp. 2078–2079, 2009. 14

[47] M. Li, I. X. Wang, Y. Li, A. Bruzel, A. L. Richards, J. M. Toung, and V. G. Cheung,

“Widespread rna and dna sequence differences in the human transcriptome,” science,

vol. 333, no. 6038, pp. 53–58, 2011. 5

[48] W. Li and A. Godzik, “Cd-hit: a fast program for clustering and comparing large sets

of protein or nucleotide sequences,” Bioinformatics, vol. 22, no. 13, pp. 1658–1659,

2006. 40

[49] Y. Li et al., “Mspkmercounter: a fast and memory efficient approach for k-mer count-

ing,” arXiv preprint arXiv:1505.06550, 2015. 7, 82

[50] H. Lin, A. Shabbir, M. Molnar, and T. Lee, “Stem cell regulatory function mediated

by expression of a novel mouse oct4 pseudogene,” Biochemical and biophysical research

communications, vol. 355, no. 1, pp. 111–116, 2007. 6

[51] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400,

2013. 35

[52] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural

network acoustic models.” 36

[53] A.-A. Mamun, S. Pal, and S. Rajasekaran, “Kcmbt: ak-mer counter based on multiple

burst trees,” Bioinformatics, vol. 32, no. 18, pp. 2783–2790, 2016. 7, 83

[54] G. Marçais and C. Kingsford, “A fast, lock-free approach for efficient parallel counting

of occurrences of k-mers,” Bioinformatics, vol. 27, no. 6, pp. 764–770, 2011. 7, 81

[55] E. M. McCreight, “A space-economical suffix tree construction algorithm,” Journal of

the ACM (JACM), vol. 23, no. 2, pp. 262–272, 1976. 74

89

[56] G. McLachlan, K.-A. Do, and C. Ambroise, Analyzing microarray gene expression data.

John Wiley & Sons, 2005, vol. 422. 66

[57] P. Melsted and B. V. Halldórsson, “Kmerstream: streaming algorithms for k-mer abun-

dance estimation,” Bioinformatics, vol. 30, no. 24, pp. 3541–3547, 2014. 82

[58] P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in dna sequences using

a bloom filter,” BMC bioinformatics, vol. 12, no. 1, p. 333, 2011. 7, 82

[59] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-

sentations of words and phrases and their compositionality,” in Advances in neural

information processing systems, 2013, pp. 3111–3119. 35

[60] X. Min, W. Zeng, N. Chen, T. Chen, and R. Jiang, “Chromatin accessibility pre-

diction via convolutional long short-term memory networks with k-mer embedding,”

Bioinformatics, vol. 33, no. 14, pp. i92–i101, 2017. 62

[61] I. H. Moal and J. Fernández-Recio, “Skempi: a structural kinetic and energetic

database of mutant protein interactions and its use in empirical models,” Bioinfor-

matics, vol. 28, no. 20, pp. 2600–2607, 2012. 41

[62] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and

quantifying mammalian transcriptomes by rna-seq,” Nature methods, vol. 5, no. 7, p.

621, 2008. 6

[63] J. I. Munro and V. Raman, “Succinct representation of balanced parentheses and static

trees,” SIAM Journal on Computing, vol. 31, no. 3, pp. 762–776, 2001. 75

[64] A. T. Muller, J. A. Hiss, and G. Schneider, “Recurrent neural network model for

constructive peptide design,” Journal of chemical information and modeling, vol. 58,

no. 2, pp. 472–479, 2018. 62, 66

[65] G. Navarro and M. Raffinot, Flexible pattern matching in strings: practical on-line

90

search algorithms for texts and biological sequences. Cambridge University Press,

2002. 23

[66] L. Pachter, “Models for transcript quantification from rna-seq,” arXiv preprint

arXiv:1104.3889, 2011. 5, 17

[67] X. Pan and H.-B. Shen, “Predicting rna–protein binding sites and motifs through com-

bining local and global deep convolutional neural networks,” Bioinformatics, vol. 34,

no. 20, pp. 3427–3436, 2018. 62

[68] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “Squeakr: an exact and approx-

imate k-mer counting system,” Bioinformatics, vol. 34, no. 4, pp. 568–575, 2017. 7,

81

[69] B. Paşaniuc, N. Zaitlen, and E. Halperin, “Accurate estimation of expression levels of

homologous genes in rna-seq experiments,” Journal of Computational Biology, vol. 18,

no. 3, pp. 459–468, 2011. 6

[70] R. Patro, S. M. Mount, and C. Kingsford, “Sailfish enables alignment-free isoform

quantification from rna-seq reads using lightweight algorithms,” Nature biotechnology,

vol. 32, no. 5, p. 462, 2014. 2, 6, 28

[71] R. Petryszak, M. Keays, Y. A. Tang, N. A. Fonseca, E. Barrera, T. Burdett,

A. Füllgrabe, A. M.-P. Fuentes, S. Jupp, S. Koskinen et al., “Expression atlas up-

datean integrated database of gene and protein expression in humans, animals and

plants,” Nucleic acids research, vol. 44, no. D1, pp. D746–D752, 2015. 39

[72] O. Philipp, H. D. Osiewacz, and I. Koch, “Path2ppi: an r package to predict protein–

protein interaction networks for a set of proteins,” Bioinformatics, vol. 32, no. 9, pp.

1427–1429, 2016. 8

[73] A. R. Quinlan and I. M. Hall, “Bedtools: a flexible suite of utilities for comparing

genomic features,” Bioinformatics, vol. 26, no. 6, pp. 841–842, 2010. 14

91

[74] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” arXiv

preprint arXiv:1904.09237, 2019. 62

[75] G. Rizk, D. Lavenier, and R. Chikhi, “Dsk: k-mer counting with very low memory

usage,” Bioinformatics, vol. 29, no. 5, pp. 652–653, 2013. 7, 81

[76] A. Roberts and L. Pachter, “Streaming fragment assignment for real-time analysis of

sequencing experiments,” Nature methods, vol. 10, no. 1, p. 71, 2013. 5

[77] T. Rocktäschel, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, and P. Blunsom, “Rea-

soning about entailment with neural attention,” arXiv preprint arXiv:1509.06664,

2015. 36

[78] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal

community structure,” Proceedings of the National Academy of Sciences, vol. 105,

no. 4, pp. 1118–1123, 2008. 13

[79] M. Rosvall, D. Axelsson, and C. T. Bergstrom, “The map equation,” The European

Physical Journal Special Topics, vol. 178, no. 1, pp. 13–23, 2009. 13

[80] K. Sadakane, “Compressed suffix trees with full functionality,” Theory of Computing

Systems, vol. 41, no. 4, pp. 589–607, 2007. 74

[81] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg,

“The database of interacting proteins: 2004 update,” Nucleic acids research, vol. 32,

no. suppl 1, pp. D449–D451, 2004. 40

[82] S. L. Salzberg, M. Pertea, J. A. Fahrner, and N. Sobreira, “Diamund: Direct compar-

ison of genomes to detect mutations,” Human mutation, vol. 35, no. 3, pp. 283–288,

2014. 7

[83] M. Sammeth, “Complete alternative splicing events are bubbles in splicing graphs,”

Journal of Computational Biology, vol. 16, no. 8, pp. 1117–1140, 2009. 19

92

[84] J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li, and H. Jiang, “Predicting

protein–protein interactions based only on sequences information,” Proceedings of the

National Academy of Sciences, vol. 104, no. 11, pp. 4337–4341, 2007. 35, 62, 63

[85] Y. Silberberg, M. Kupiec, and R. Sharan, “A method for predicting protein-protein

interaction types,” PLoS One, vol. 9, no. 3, p. e90904, 2014. 8, 65

[86] Y. S. Srinivasulu, J.-R. Wang, K.-T. Hsu, M.-J. Tsai, P. Charoenkwan, W.-L. Huang,

H.-L. Huang, and S.-Y. Ho, “Characterizing informative sequence descriptors and pre-

dicting binding affinities of heterodimeric protein complexes,” BMC bioinformatics,

vol. 16, no. 18, p. S14, 2015. 8

[87] T. Sun, B. Zhou, L. Lai, and J. Pei, “Sequence-based prediction of protein protein

interaction using a deep-learning algorithm,” BMC bioinformatics, vol. 18, no. 1, p.

277, 2017. 8, 36, 62, 63

[88] D. Szklarczyk, J. H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, A. Santos,

N. T. Doncheva, A. Roth, P. Bork et al., “The string database in 2017: quality-

controlled protein–protein association networks, made broadly accessible,” Nucleic

acids research, p. gkw937, 2016. 40

[89] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from

tree-structured long short-term memory networks,” arXiv preprint arXiv:1503.00075,

2015. 36

[90] P. Tonner, V. Srinivasasainagendra, S. Zhang, and D. Zhi, “Detecting transcription

of ribosomal protein pseudogenes in diverse human tissues from rna-seq data,” BMC

genomics, vol. 13, no. 1, p. 412, 2012. 6

[91] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. Van Baren, S. L.

Salzberg, B. J. Wold, and L. Pachter, “Transcript assembly and quantification by rna-

seq reveals unannotated transcripts and isoform switching during cell differentiation,”

Nature biotechnology, vol. 28, no. 5, p. 511, 2010. 5, 42

93

[92] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14, no. 3, pp.

249–260, 1995. 74

[93] N. Välimäki, W. Gerlach, K. Dixit, and V. Mäkinen, “Compressed suffix treea basis

for genome-scale sequence analysis,” Bioinformatics, vol. 23, no. 5, pp. 629–630, 2007.

74

[94] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in neural information

processing systems, 2017, pp. 5998–6008. 73

[95] K. Wang, D. Singh, Z. Zeng, S. J. Coleman, Y. Huang, G. L. Savich, X. He,

P. Mieczkowski, S. A. Grimm, C. M. Perou et al., “Mapsplice: accurate mapping

of rna-seq reads for splice junction discovery,” Nucleic acids research, vol. 38, no. 18,

pp. e178–e178, 2010. 5

[96] Y.-B. Wang, Z.-H. You, X. Li, T.-H. Jiang, X. Chen, X. Zhou, and L. Wang, “Pre-

dicting protein–protein interactions from protein sequences by a stacked sparse au-

toencoder deep neural network,” Molecular BioSystems, vol. 13, no. 7, pp. 1336–1344,

2017. 8

[97] B. L. Welch, “The generalization ofstudent’s’ problem when several different popula-

tion variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35, 1947. 63

[98] B. T. Wilhelm and J.-R. Landry, “Rna-seq-quantitative measurement of expression

through massively parallel rna-sequencing,” Methods, vol. 48, no. 3, pp. 249–257, 2009.

2

[99] L. Wong, Z.-H. You, S. Li, Y.-A. Huang, and G. Liu, “Detection of protein-protein

interactions from amino acid sequences using a rotation forest model with a novel

pr-lpq descriptor,” in International Conference on Intelligent Computing. Springer,

2015, pp. 713–720. 8, 40, 62

94

[100] D. E. Wood and S. L. Salzberg, “Kraken: ultrafast metagenomic sequence classification

using exact alignments,” Genome biology, vol. 15, no. 3, p. R46, 2014. 7

[101] L. Yang, J.-F. Xia, and J. Gui, “Prediction of protein-protein interactions from protein

sequence using local descriptors,” Protein and Peptide Letters, vol. 17, no. 9, pp. 1085–

1090, 2010. 8, 62, 66

[102] A. Yates, W. Akanni, M. R. Amode, D. Barrell, K. Billis, D. Carvalho-Silva, C. Cum-

mins, P. Clapham, S. Fitzgerald, L. Gil et al., “Ensembl 2016,” Nucleic acids research,

vol. 44, no. D1, pp. D710–D716, 2015. 37

[103] W. Yin and H. Schütze, “Convolutional neural network for paraphrase identification,”

in Proceedings of the 2015 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies, 2015, pp. 901–911.

36, 62, 63

[104] W. Yin, H. Schütze, B. Xiang, and B. Zhou, “Abcnn: Attention-based convolutional

neural network for modeling sentence pairs,” Transactions of the Association for Com-

putational Linguistics, vol. 4, pp. 259–272, 2016. 62

[105] Z.-H. You, Y.-K. Lei, L. Zhu, J. Xia, and B. Wang, “Prediction of protein-protein

interactions from amino acid sequences with ensemble extreme learning machines and

principal component analysis,” in BMC bioinformatics, vol. 14, no. 8. BioMed Central,

2013, p. S10. 8, 40, 62

[106] Z.-H. You, L. Zhu, C.-H. Zheng, H.-J. Yu, S.-P. Deng, and Z. Ji, “Prediction of protein-

protein interactions from amino acid sequences using a novel multi-scale continuous

and discontinuous feature set,” in BMC bioinformatics, vol. 15, no. 15. BioMed

Central, 2014, p. S9. 8, 40, 62, 63

[107] K. Yugandhar and M. M. Gromiha, “Protein–protein binding affinity prediction from

amino acid sequence,” Bioinformatics, vol. 30, no. 24, pp. 3583–3589, 2014. 8

95

[108] Q. Zhang, J. Pell, R. Canino-Koning, A. C. Howe, and C. T. Brown, “These are not

the k-mers you are looking for: efficient online k-mer counting using a probabilistic

data structure,” PloS one, vol. 9, no. 7, p. e101271, 2014. 7, 82

[109] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks for end-to-end

speech recognition,” in 2017 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2017, pp. 4845–4849. 34

[110] Z. Zhang and W. Wang, “Rna-skim: a rapid method for rna-seq quantification at

transcript level,” Bioinformatics, vol. 30, no. 12, pp. i283–i292, 2014. 6, 16, 28, 38, 49

[111] Z. Zhang, S. Huang, J. Wang, X. Zhang, F. Pardo Manuel de Villena, L. McMillan, and

W. Wang, “Genescissors: a comprehensive approach to detecting and correcting spu-

rious transcriptome inference owing to rna-seq reads misalignment,” Bioinformatics,

vol. 29, no. 13, pp. i291–i299, 2013. 5

[112] T. Zhou, M. Chen, J. Yu, and D. Terzopoulos, “Attention-based natural language

person retrieval,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, 2017, pp. 27–34. 62

[113] H. Zhu, F. S. Domingues, I. Sommer, and T. Lengauer, “Noxclass: prediction of

protein-protein interaction types,” BMC bioinformatics, vol. 7, no. 1, p. 27, 2006.

8, 65

[114] M. Zou, E. Y. Baitei, A. S. Alzahrani, F. Al-Mohanna, N. R. Farid, B. Meyer, and

Y. Shi, “Oncogenic activation of map kinase by braf pseudogene in thyroid tumors,”

Neoplasia, vol. 11, no. 1, pp. 57–65, 2009. 6

96

	Title Page
	Abstract
	Committee
	Dedication
	TABLE OF CONTENTS
	List of Figures
	List of Tables
	Acknowledgments
	Vita
	1 Introduction
	1.1 Scope of the Research
	1.2 Contributions
	1.3 Overview

	2 Related Work
	2.1 Alignment-Based Approaches for Expression Quantification
	2.2 Quantification of Pseudogenes
	2.3 Lightweight Approaches for Expression Quantification
	2.4 K-mers Counters
	2.5 Protein-Protein Interaction Predictions

	3 Correcting Read Alignment for Pseudogenes
	3.1 Model
	3.2 Homologous Community Partition
	3.3 Read Count Profile Classification
	3.4 Training Stage
	3.5 Validation Stage
	3.6 Read Re-assignment

	4 Quantification of RNA-Seq via Variable-Length k-mers
	4.1 Sig-mers Identification
	4.2 Sig-mers Selection
	4.3 RNA-Seq Reads Matching
	4.3.1 Aho-Corasick Automaton
	4.3.2 Thinned Automaton with Binarized Pattern Matching
	4.3.3 Acceleration by Rolling Hash

	4.4 Transcript Abundance Estimation

	5 Multifaceted Protein-Protein Interaction Prediction Based on Siamese Residual RCNN
	5.1 RCNN-based Protein Sequence Encoder
	5.1.1 Residual RCNN
	5.1.2 Protein Sequence Encoding
	5.1.3 Pre-trained Amino Acid Embeddings

	5.2 Learning Architecture and Learning Objectives
	5.2.1 Siamese Architecture
	5.2.2 Learning Objectives

	6 Datasets
	6.1 NGS Datasets
	6.1.1 Psuedogene Reference
	6.1.2 Reference Transcriptome
	6.1.3 Signatures Used in TahcoRoll
	6.1.4 Simulated Reads for Pseudogene
	6.1.5 Simulated Reads for Fleximer and TahcoRoll
	6.1.6 Real Data from Human BodyMap
	6.1.7 Real Data from Different Sequencing Platforms

	6.2 Protein-Protein Interaction Datasets
	6.2.1 Guo's Datasets
	6.2.2 STRING Datasets.
	6.2.3 SKEMPI Dataset.

	7 Experiments and Results
	7.1 Alignment Correction for Pseudogene Abundance Estimates
	7.1.1 Misalignment of Pseudogene and Its Homologous Parent
	7.1.2 Community Detection for Homologous Genes
	7.1.3 k-NN Classification for Homologous Community
	7.1.4 Read Count Estimation for Homologous Community

	7.2 Transcript Quantification via Variable Length k-mers
	7.2.1 Motivating Examples
	7.2.2 k-mers Generation
	7.2.3 Simulation Study
	7.2.4 Human BodyMap 2.0 Project

	7.3 Signature Profiling via Thinned Aho-Corasick Automaton
	7.3.1 Experimental Settings
	7.3.2 Automaton Construction
	7.3.3 Pilot Study of 13 Approaches
	7.3.4 Extensive Study on Synthetic Datasets
	7.3.5 Real Datasets from Different Sequencing Platforms

	7.4 Characterizing Protein-Protein Interaction via Deep Learning
	7.4.1 Binary PPI Prediction
	7.4.2 Interaction Type Prediction
	7.4.3 Binding Affinity Estimation
	7.4.4 Amino Acid Embeddings
	7.4.5 Run-time Analysis

	8 Conclusion
	A Background on Suffix Tree
	B Propositions in TahcoRoll
	B.1 Proof of Proposition 1
	B.2 Proof of Proposition 2
	B.3 Proof of Proposition 3

	C Hyperparameter Study for PIPR
	D Software Configuration for K-mer Counters
	D.1 Thread-Safe Shared Memory Hashing
	D.2 Disk-Based Hashing
	D.3 Probabilistic Hashing
	D.4 Suffix-Arrays
	D.5 Burst Tries

