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Abstract We investigate several natural invariants of curves and knots in R
3. These invari-

ants generalize bridge number and width. As with bridge number, there are connections to
the total curvature of a curve.

Keywords Knot theory · Three-dimensional topology · Thin position · 2-width · k-width

Mathematics Subject Classification (2000) 57M25

1 Introduction

In this article, we investigate the notions of k-bridge number and k-width for a knot or link in
R

3, where k is an integer between 1 and 4. These provide increasingly detailed information,
as k grows, on the intersections of a curve with flat planes and round spheres in R

3. We
examine properties of curves that minimize k-bridge number or k-width within their isotopy
class. These notions correspond to well known quantities for k = 1, but do not appear to
have been studied before for k > 1.

We have two main motivations for these constructions. The first is a search for geomet-
ric interpretations of some of the new knot and 3-manifold invariants introduced in recent
years. Recently introduced invariants associated to curves and knots in R

3 come from many
sources, such as topological quantum field theory and the categorification of previously
known invariants. The geometric and topological interpretations of many of these invariants
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8 Geom Dedicata (2009) 143:7–18

are not well understood. There appears to be a need for geometrically constructed knot and
curve invariants which can then be compared to these recently discovered invariants.

A second motivation is to better understand geometric properties of knots associated to
the motion of a knotted strand through a physical medium. Such properties are connected to
the understanding of biological molecules such as DNA and RNA. The motion of loops of
DNA through a gel appears to depend on the knot type of the loop. This allows the construc-
tion of experiments that provide information about the behavior of certain enzymes [12–14].
Experimental work and simulations indicate that the average crossing number of a knot is
closely connected to its motion under gel electrophoresis. The average crossing number is
a rough measure of how tightly compacted is a loop of given length. It may be that other
measures of the cross-sectional size of a knot are more accurate predictors of its motion
through a medium such as a liquid or a gel. The widths we study in this paper are natural
quantities arising from this point of view.

In Sects. 3 and 4 we develop properties of 2-bridge number and 2-width in some detail.
We show that 2-bridge number and 2-width are proper invariants, meaning that only finitely
many knots have values less than a given constant. Like crossing number, 2-bridge number
and 2-width give ways to order all knots in terms of increasing complexity. We also show
that the unknot and the trefoil realize the two smallest values of the invariants for k = 2 and
give explicit formulas for the value of these invariants on (2, n) torus knots.

We then relate the 2-bridge number and 2-width of a curve to its curvature. Milnor and
Fary showed that if a smooth curve γ has total curvature less than 4π then γ is unknotted
[4,9]. Their arguments also show that if the total curvature of γ is less than 2nπ then there
is a direction relative to which γ has at most n maxima, and as a consequence, its bridge
number is at most n. The converse is false. A curve of bridge number n can have arbitrarily
large curvature. In contrast, we show that if a knot K in R

3 has 2-bridge number n then some
planar projection of n has total curvature at most 4π(n − 1)2. Similarly if K has 2-width
n, then some planar projection of γ has total curvature at most 2πn3/2. So if every planar
projection has large total curvature then both the 2-width and 2-bridge number are large.

In Sect. 2 we introduce k-width for curves in R
3. In Sect. 3 we show that there are only a

finite number of knot types with 2-bridge number or 2-width bounded by a given constant
and in Sect. 4 we look at the knots with small 2-bridge number or 2-width. In Sect. 5 we
establish the connection between 2-bridge number or 2-width and the total curvature of a
curve.

2 Definitions

Combinatorial knot invariants computed by counting intersections of a generic smooth curve
γ with linear subspaces of R

3 include Schubert’s bridge number [11], Kuiper’s superbridge
number [7] and Gabai’s thin position [6]. The bridge number of γ is the number of maxima
of γ for the height function given by the z-coordinate function. It equals half the number of
tangencies of γ to the 1-parameter family of planes parallel to the xy-plane in R

3, and can
therefore be regarded as a 1-parameter invariant. We present 2, 3 and 4-parameter families
of planes and spheres in R

3 that give natural generalizations of this notion. We will describe
these in R

3, but they are equally natural in S
3.

Definition. Let S1 be the set of planes in R
3 parallel to the xy-plane, S2 the set of planes

in R
3 parallel to the z-axis, S3 the set of all planes in R

3 and S4 the set of planes and round
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Geom Dedicata (2009) 143:7–18 9

2-spheres in R
3. For 1 ≤ k ≤ 4, let Tk(γ ) be the open subset of elements of Sk consisting of

planes or spheres that are transverse to γ .

The points in Sk are in 1–1 correspondence with an open k-dimensional manifold. We
will assume that the curve γ is in general position relative to the family of planes or spheres
in Sk . In particular, any plane or sphere in Sk has at most k tangencies with γ .

Definition. The k-bridge number bk(γ ) is the number of path components in Tk(γ ). A curve
γ is in k-bridge position if it minimizes k-bridge number among curves in its isotopy class.

We now give the relationship between the 1-bridge number b1(γ ) and the usual notion of
bridge number for curves in R

3.

Lemma 1 A curve γ is in bridge position if and only if it is in 1-bridge position.

Proof The 1-bridge number of a curve equals twice its bridge number plus one, where the
addition of one is caused by the planes not meeting the curve. Therefore standard bridge
position also minimizes 1-bridge number. ��

A related but distinct invariant is the superbridge index of a curve, introduced by
N. Kuiper [7]. It is defined to be the maximum bridge number of the curve for all direc-
tions in R

3. From our point of view, superbridge index is a 3-parameter invariant since it
is obtained by considering intersections with planes in S3. In [7] it is shown that there are
infinitely many knots with superbridge index bounded by 4. In fact, Kuiper showed that for
all odd q, an appropriate embedding of the (2, q)-torus knot has superbridge index 4, realized
by positioning the (2, q) torus knot as a satellite of a “tennis ball” curve on the 2-sphere, a
curve that intersects any plane in at most four points. When positioned to be almost parallel
to the tennis ball curve, the (2, q) torus knot intersects any flat plane in at most 8 points and
thus has superbridge index 4. In contrast, the 3-bridge numbers of these knots do not appear
to be bounded.

Definition. Let φ : S → Z be a function from a set S to the integers. We say that φ is a
proper invariant of S if for each n ∈ Z, the number of elements s ∈ S with φ(s) ≤ n is finite.

Proper invariants are useful for compiling lists of objects in organizing a classification.
The integers can be replaced with a general ordered set in this definition. In knot theory,
invariants such as crossing number and stick number are proper, while genus and bridge
number are not. The above remark shows that the superbridge number is not a proper knot
invariant.

A variation of the notion of k-bridge number that contains more information is the k-width.

Definition. The k-width wk(γ ) is the total number of intersections of γ with a collection of
planes, with one plane in each path component of Tk(γ ):

wk(γ ) =
∑

Pi ∈Tk (γ )

#(Pi ∩ γ ).

A curve γ is k-width minimizing if it minimizes k-width among curves in its isotopy class.

The notion of 1-width coincides with the notion of width introduced by Gabai, and a
1-width minimizing curve is a curve in thin position [6].

The manifold Sk is separated by the planes and spheres with non-transverse intersection
with γ into a collection of open k-dimensional components. For generic γ the non-transverse
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10 Geom Dedicata (2009) 143:7–18

planes and spheres form a (k − 1)-complex in Sk that is the image of a piecewise-smooth
immersion in general position. The non-transverse points are the image of a curve in S2, of
a torus in S3, and of a line bundle over a torus in S4. This point of view can be exploited to
analyze 2-bridge number and 2-width.

It is possible to define 2-bridge number and 2-width while working entirely with the
projection p(γ ) of γ onto the xy-plane, since changes in its z-coordinate do not affect the
intersections of γ with a plane in S2. However to define b3, b4, w3, w4 requires considering
curves in R

3. Thus a 3-bridge or 3-width minimizing curve gives one approach to finding an
“optimal” imbedding of a knot into R

3. Note however that these numbers are preserved by
affine maps of R

3, so 3-bridge or 3-width minimizing curves are far from unique. Similarly
the 2-width of a curve is preserved by affine maps of R

2. As with the knot energy studied by
Freedman, He and Wang, b4 and w4 are conformal invariants of γ [5].

Lemma 2 If γ ′ is the image of γ by a conformal map of R
3, then b4(γ

′) = b4(γ ) and
w4(γ

′) = w4(γ ).

Proof There is a 1–1 correspondence between the planes and spheres transverse to γ in T4

and those for γ ′. This correspondence preserves the number of intersections with the curve.
��

We can define widths of still higher order by considering intersections with quartics and
other families of surfaces. The main results of this article concern 2-width.

3 Knots with bounded 2-bridge number or 2-width

Knot tables are usually arranged to reflect increasing crossing number. This is feasible because
for any constant n, only finitely many knots have crossing number less than n. This property
does not hold for other common invariants, such as unknotting number, tunnel number and
bridge number. While 1-width and 1-bridge number share this shortcoming, we prove below
a finiteness result for 2-bridge number and for the 2-width invariant.

The planes in S2 are parallel to the z-axis, and are in 1–1 correspondence with the set M
of lines in the xy-plane, homeomorphic to a Mobius band. The Mobius band M is double
covered by the set of oriented lines in the plane, which is homeomorphic to an open annulus.
At each point q on a generic γ there is a unique plane in S2 tangent to γ at q. The set of
tangent planes describes a curve λ in the open Mobius band S2. Double tangencies of γ

with planes in S2 give double points of λ and inflection points of the planar projection of
γ give rise to cusps of λ. For generic γ the number of regions in S2 complementary to λ is
finite and equal to the 2-bridge number. Two components of S2 with a common boundary
segment correspond to planes whose intersection numbers with γ differ by two. One of the
complementary components corresponds to planes that miss γ , leading to an upper bound on
the 2-width of a generic curve. There are a total of b2(γ ) components. One contains planes
missing γ and components with a common segment have intersection numbers that differ by
two, so

w2(γ ) ≤ 0 + 2 + · · · + 2(b2(γ ) − 1) = (b2(γ ))(b2(γ ) − 1)

We now show that for any constant n, only finitely many knots in R
3 have 2-width or

2-bridge number less than or equal to n.
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Theorem 1 The 2-bridge number and the 2-width are proper invariants.

Proof Let γ ⊂ R
3 be a generic embedded curve. Using the projection p : R

3 → R
2, we

project γ to a planar curve p(γ ) in the xy-plane. To each point in p(γ ) we associate the
tangent line at that point. The set of tangent lines gives a graph α in S2 which we call the
graphic of γ . The 4-valent graph α is the image of a curve that is immersed in S2 except at
a finite number of cusps that are the images of inflection points of p(γ ). Only finitely many
planes in S2 are tangent to γ at two points. Such double tangent planes correspond to order
four vertices in α.

Let v be the number of such vertices and r the number of regions of the complement of
α in S2. These regions consist of f simply-connected faces, one non-compact annular region
and possibly one Mobius band region. We can assign an integer to each region, equal to the
number of times a representative plane intersects γ . The 2-width of γ is the sum of these
integers over all the regions. The 2-bridge number is just the number of regions r.

The double tangent planes of γ are divided into two types. A double tangent plane is
said to be exterior if it does not separate small neighborhoods of the two tangent points and
interior if it does separate them. Let t be the number of exterior double tangent planes of γ

and s the number of interior double tangent planes. Let i be the number of inflection points
and c the number of crossings of p(γ ). An inflection point corresponds to a point where γ

is tangent to a vertical plane and this plane separates any neighborhood in γ of the point of
tangency. A crossing point of p(γ ) is a point where a vertical line meets γ twice.

A theorem of Fabricius-Bjerre [3] provides the tool needed to link properties of γ to the
graph α. Fabricius-Bjerre considered the relation between the numbers of double tangent
lines, crossing points and inflection points of a plane curve δ. He established the following
result [3].

Theorem 2 (Fabricius-Bjerre) Let δ be a generic plane curve with t exterior double tangent
lines, s interior double tangent lines, i inflection points and k crossings. Then c + 1

2 i = t − s.

Lemma 3 For a generic plane curve with c crossings and whose graphic has v valence-4
vertices, we have c ≤ v.

Proof Double tangent planes in S2 correspond to valence-4 vertices of the graph α, so the
number of such vertices v of α equals s + t. Applying Theorem 2, we obtain

c ≤ c + 1

2
i = t − s ≤ t + s = v.

��
The next lemma relates v to the number of simply connected faces f in the complement

of α. While α may have cusps, they do not play a role in this computation.

Lemma 4 For a generic plane curve whose graphic has v valence-4 vertices, f simply-
connected faces, and r faces of all types, we have v = f and either r = f + 1 or r = f + 2.
The latter occurs when there is a region in the graphic homeomorphic to a Mobius band.

Proof One region in the complement of α, corresponding to planes missing γ , is homeo-
morphic to a half-open annulus. There may be one region homeomorphic to a Mobius band.
Such a region exists when there is a path of planes transverse to γ that starts at a plane and
ends at the same plane with reversed orientation. When a curve is in braid position in R

3,
the set of planes through the braid axis gives such a Mobius band. Annular and Mobius band
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12 Geom Dedicata (2009) 143:7–18

regions do not contribute to the Euler characteristic computation. Let e be the number of
edges connecting valence four vertices. The Euler characteristic of S2 is zero, obtained by
taking the sum, giving v − e + f = 0. Since vertices are of valence four, we have e = 2v,
and so f = v as claimed. Depending on whether a Mobius band component exists in the
complement of α, we have r = f + 1 or r = f + 2. ��

Now let R1, R2, . . . , Rr denote the regions in the complement of the graph α, with asso-
ciated intersection numbers with γ given by n1, n2, . . . , nr respectively. Each ni is a non-
negative even integer, and the sum of these integers is w2(γ ). At most one of the ni ’s equals
zero, since there is a single equivalence class of planes in R

3 disjoint from γ . Thus all the
other integers contribute at least 2 to w2(γ ). which satisfies

w2(γ ) ≥ 2(r − 1) ≥ 2 f = 2v ≥ 2c.

Similarly, the 2-bridge number satisfies

b2(γ ) = r ≥ f = v ≥ c.

So the crossing number of γ is bounded above by half of its 2-width. The crossing number
is also bounded above by the 2-bridge number. Since only finitely many knots have crossing
number less than a given integer, the theorem follows. ��

4 Bounds on 2-width

Definition. A knot projection is positively curved if it contains no inflection points.

Lemma 5 Every curve in R
3 can be isotoped to have a positively curved projection.

Proof Every curve γ is isotopic to a curve with a braid presentation [2]. This representation
of the curve can be given in cylindrical coordinates by the formula γ (s) = (r(s), θ(s), z(s))
with θ ′(s) > 0 and r(s) > 0. By scaling we can assume 0 < r(s) < 1. An isotopy
γt (s) = (t + (1 − t)r(s), θ(s), z(s)), 0 ≤ t ≤ 1 − ε takes γ to a curve in a 2ε-neighborhood
of the unit radius cylinder {r = 1}. As ε → 0, p(γ ) smoothly converges to a cover of the
unit circle. Thus for ε sufficiently small, the projection p(γ1−ε) has positive curvature. ��

We can apply this to get an upper bound on the 2-width and 2-bridge number of a knot.

Proposition 1 Let c be the minimal crossing number of a braid projection of a knot K. Then

w2(K ) ≤ (c + 1)(c + 2)

and

b2(K ) ≤ c + 2.

Proof Choose γ representing K so that p(γ ) has minimal crossing number over all braid
representations of K. Further isotopy γ so that its projection p(γ ) is positively curved as
in Lemma 5. This isotopy does not change its crossing number. After the isotopy p(γ ) has
no inflection points and no internal double tangencies. So its crossing number c equals the
number of external double tangencies t , which in turn equals the number of vertices v in
the graphic of p(γ ). From Lemma 4 we know that the number of regions in the graphic r
satisfies c + 1 ≤ r ≤ c + 2. In particular b2(K ) = r ≤ c + 2.
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Each region has width a non-negative even integer, and one region has width zero. Regions
in the graphic with a common edge have width that differs by 2. So the sum of the widths is
at most 2 + 4 + 6 + · · · + 2(c + 1) = (c + 2)(c + 1). ��

We can obtain a lower bound for 2-width and 2-bridge number in terms of the number of
intersections between the curve and a plane in S2.

Proposition 2 If a plane in S2 intersects γ in 2n points then b2(γ ) ≥ n + 1 and w2(γ ) ≥
n(n + 1).

Proof Some plane in S2 intersects γ in zero points. Each region in the graphic has width
a positive even integer, and at least one region has width 2n. Regions in the graphic with a
common edge have width that differs by 2, so there are at least n + 1 regions in the graphic
and b2(γ ) ≥ n + 1. The regions have representative planes whose widths include the values
0, 2, 4, . . . 2n and the total width is at least 2 + 4 + 6 + · · · + 2n = n(n + 1). ��
Theorem 3 The only knots with 2-width less than or equal to 10 or 2-bridge number less
than 7 are the trefoil and the unknot.

Proof Suppose w2(γ ) ≤ 10. If γ meets a plane in S2 in at least 6 points then Lemma 2
implies that its width is at least 12. So we can assume that γ transversely intersects any plane
in S2 in at most 4 points.

Call a crossing of p(γ ) exterior if one of the complementary regions of the projection
of the curve to the xy-plane whose closures contains the crossing is the unbounded region.
Otherwise call it interior. A ray in the xy-plane from a point near an interior crossing to
infinity must cross p(γ ) at least once. If γ is knotted then p(γ ) has an exterior crossing.
Suppose p(γ ) also has an interior crossing. Then a line in the xy-plane passing very close
to both an interior and an exterior crossing meets p(γ ) twice near each crossing and at least
once more in passing from a point near the interior crossing to infinity. Since the intersection
number with p(γ ) is even, the intersection consists of at least six points. So γ meets a plane
in S2 transversely in at least six points and w2(γ ) ≥ 12. So we can assume that all crossings
of p(γ ) are exterior.

Color the complementary regions to p(γ ) black and white, with the unbounded region
white and regions with a common edge having different colors. Rays based at points in a
white region intersect p(γ ) in an even number of points, while rays based in a black region
intersect it an odd number of times. If there are no bounded white regions then a small
neighborhood of any crossing meets the unbounded region in two components, the knot is
composite, and a simple induction argument shows that γ is unknotted, satisfying the con-
clusion of the Theorem. Otherwise there is at least one bounded white region. A ray from a
bounded white region to infinity meets p(γ ) in at least two points. If there are two distinct
bounded white regions, then a line segment connecting a point in each intersects p(γ ) in at
least 2 points. Extending this segment to a line by adding two rays gives a line intersecting
p(γ ) in at least six points, contradicting our width assumption. So we can assume that p(γ )

has exactly one bounded white region, W.
Let W be an interior point of W. Every line through W intersects p(γ ) in exactly 4 points.

So p(γ ) gives a 2-braid projection of γ , with axis the vertical line over W. The number of
crossings of a 2-braid knot is odd, and since we assume that γ is not a trefoil or unknot we
have that the number of crossings is at least 5. Applying Lemma 3 shows that the number of
regions in the graphic is at least 7, with one annular and one Mobius band region. Thus the
2-bridge number is at least 7. One region has width 4 and at least five other regions have width
at least two, giving that the 2-width of γ is no less than 14, contradicting our assumption.

We conclude that γ is a trefoil or an unknot. ��
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14 Geom Dedicata (2009) 143:7–18

Theorem 4 The (2, n)-torus knot K has 2-width 2n + 4.

Proof A positively curved 2-braid projection of K has a graphic with r = n + 2. One region
has width 0, one has width 4 and n have width 2, giving a total width of 2n + 4. It remains
to show no representative of K has smaller 2-width.

Let γ be any representative of K. Since K has n crossings in an alternating projection,
the number of crossings of p(γ ) is at least n [10]. Applying Lemmas 3 and 4 shows that the
number of regions in the graphic of p(γ ) is n + 1 or n + 2. As in the proof of Theorem 3
there is at least one interior white region for p(γ ). An interior white region has width at least
4. If there is exactly one then the graphic has a Mobius band region of width 4 and r = n +2.
In that case the width is at least 4 + 2n as claimed. If there is more than one interior white
region, then the total width is at least 4 + 4 + 2(n − 2) = 2n + 4. The result follows. ��
Remark Width can be defined and computed for links in the same way. The number of zero-
width regions in the graphic associated to a link can be greater than one if the link is split.
The Hopf link and the 2-component unlink each have w2(L) = 8 and the (2, 4)-torus link
has w2(L) = 12.

5 Curvature and 2-width

The total curvature of a curve in R
3 is obtained by integrating the absolute value of the curva-

ture function. Milnor and Fary showed that if a smooth curve γ has total curvature less than
4π then γ is unknotted [4,9]. Milnor’s proof proceeds by finding a direction in R

3 relative to
which the curve has only one maximum and one minimum. The same argument shows that
if the total curvature of γ is less than 2nπ then there is a direction relative to which γ has
fewer than n maxima. As a consequence, its bridge number is less than n. The converse is
false. Curves of bridge number two can have unbounded curvature. A curve can be deformed
to have arbitrarily large total curvature without changing its bridge number, so small bridge
number does not imply small total curvature. In contrast, we show that if a curve has small
2-width then its projection onto the associated 2-plane has small total curvature.

Lemma 6 Suppose β is a positively curved arc properly embedded in the upper half-plane
that begins at the origin, curves counterclockwise and meets the x-axis precisely at its two
endpoints. Then β ends on the non-positive x-axis.

Proof If a neighborhood of its endpoints are fixed, the total curvature of β depends only
on its isotopy class, being equal to the total angle turned. This total curvature is positive
for curves that terminate on the negative x-axis and negative for those that terminate on the
positive x-axis. ��
Lemma 7 Suppose a properly embedded planar curve β has a subarc δ that has non-zero
curvature and total curvature k0. Then δ intersects the line through its two endpoints in at
least [k0/π] points and β intersects some line in at least k0/π points.

Proof By an isometry and scaling that doesn’t change total curvature, we can assume that δ

runs from the origin to the point (1, 0) and is positively curved, so that it rotates monotonically
counterclockwise. By adding small twists near the initial and final points, possibly increasing
the total curvature to a new value k′

0 but without changing the number of intersections with
the x-axis, we can arrange that the initial and terminal tangent vectors are horizontal. The
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total curvature of δ is now a multiple of π . Consider a subarc α of δ of total curvature π

whose initial and final points are horizontal. We show that such a subarc α must meet the
x-axis.

Suppose that α runs from an initial point A to a terminal point B while staying below the
x-axis and that B is closer to the x-axis. See Fig. 1.

As δ continues past B it falls, turning counterclockwise, and eventually becomes horizon-
tal once again at a point C. Suppose that the y-coordinate of A is less than that of C. Extend a
horizontal line segment S from C to the arc α. S cuts off a disk in the plane (shaded in Fig. 1)
into which the continuation of δ enters after passing through C. By Lemma 6 δ cannot escape
from this disk, since it cannot cross S. The cases where A is closer to the x-axis than C, or
where α lies above the x-axis, are similar.

A curve with endpoints on the x-axis that turns through precisely 4π achieves equality,
and therefore the estimate on δ is sharp. However it is sharp only if the arc δ turns through
an angle that is an even multiple of π . In the case where the estimate on δ is sharp, the
intersection of the x-axis with δ is not transverse, and a small perturbation of the axis yields
a line that intersects β in an additional point. Thus in all cases we have that β intersects some
line in at least k0/π points. ��

It follows from the arguments above that a simple arc of non-zero curvature can be decom-
posed into at most two spirals, as in Fig. 2. We will not need this fact here.

Lemma 8 Suppose that γ projects to a C2 curve p(γ ) immersed in the xy-plane and that
p(γ ) contains a simple positively curved subarc δ with total curvature k0. Then

b2(γ ) ≥ k0

2π
+ 1

and

w2(γ ) ≥ k0
2

4π2 .

Proof Lemma 7 implies that p(γ ) has at least k0/π intersection points with some line. Since
adjacent regions in the graphic have representative planes whose intersection with γ differ
by two, there are at least (k0/2π) + 1 such regions, giving the stated lower bound for b2.

Fig. 1 A positively curved arc turning through π between A and B
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16 Geom Dedicata (2009) 143:7–18

Fig. 2 A positively curved simple arc

For a bound on 2-width, assume first that k0/π is an even integer. Then the 2-width of γ

is at least

k0/π + (k0/π − 2) + · · · + 2 = (k0/π)(k0/π + 2)

4
>

k0
2

4π2 .

The intersection numbers of transverse lines with the projection p(γ ) are even. If a line
intersects p(δ) non-transversely in an odd number of points, then a small translation results
in a line intersecting p(δ) transversely in a larger, even number of points. So the number of
intersection points of p(γ ) and some transverse line is an even integer that, by Lemma 7 is
no less than k0/π . The above argument then applies to give a lower bound on w2(γ ). ��
Theorem 5 If p(γ ) is a C2 curve immersed in the plane with total curvature k1 then

w2(γ ) > k1
2/3/(2π)2/3

and

b2(γ ) >
√

k1/4π + 1.

Proof Let m = 2c + i where c is the number of crossings of p(γ ) and i is the number of
inflection points. By Theorem 2 we have that 2c + i = 2t − 2s ≤ 2t + 2s = 2v where v

counts the vertices in the graphic of p(γ ). Lemma 4 implies that v = f and either r = f +1
or r = f + 2. So w2(γ ) ≥ 2 f ≥ m. If m > k1

2/3/(2π)2/3 then the Theorem follows. So
assume m ≤ k1

2/3/(2π)2/3.
The crossing and inflection points of γ divide γ into m = 2c + i subarcs, each with

no crossing or inflection points. Since γ has total curvature k1, one of the subarcs of p(γ )

disjoint from its inflection and crossing points has non-zero curvature. We can assume it
is positively curved with total curvature greater than k1/m, by reflecting if necessary. By
Lemma 8 we have that

w2(γ ) >
(k1/m)2

4π2 = k1
2

(2mπ)2 >
(2π)4/3k1

2

(2πk1
2/3)2

= k1
2/3

(2π)2/3 .

A similar argument applies to 2-bridge number. We have

b2(γ ) ≥ m/2 + 1.

If b2(γ ) ≤ √
k1/4π + 1 then m ≤ √

k1/π . Then a subarc of γ disjoint from its inflection
and crossing points has non-zero curvature. Its total curvature is no less than k1/m and the
resulting lower bound on b2(γ ) from Lemma 8 is
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b2(γ ) ≥ k1/m

2π
+ 1 ≥ k1

2π
√

k1/π
+ 1 = √

k1/4π + 1.

��
Theorem 5 has the following implication for knots in R

3.

Corollary 1 If b2(K ) ≤ n then some planar projection of K has total curvature at most
4π(n − 1)2. If w2(K ) ≤ n then some planar projection of K has total curvature at most
2πn3/2.

Proof If every planar projection of K has curvature greater than 4π(n − 1)2 then Theorem 5
implies that b2(K ) > n. Similarly if every planar projection of K has curvature greater than
2πn3/2 then Theorem 5 implies that w2(K ) > n. ��

6 Generic curves

In order to compute the width invariants discussed in this paper we need to assume that γ has
certain generic properties. We state here the required conditions. For k-parameter invariants,
the definition of genericity is based on the singular values of the associated graphic. In each
case, the space Sk contains a singular subset corresponding to planes and spheres tangent to
γ , possibly at multiple points. The condition we set for a curve γ to be generic is that these
singular planes give rise to a singular set that is a piecewise immersed, smooth submanifold
in general position. In the case of 1-width and 1-bridge numbers, we require that the height
function on γ is a Morse function. This ensures that there are finitely many critical points
and that critical values are distinct. For k = 2, the graphic is the image of a circle, formed by
one vertical tangent plane in S2 for each point on a generic curve. This graphic is required
to be a piecewise smooth immersed curve in general position. Note that the graphic has
cusps corresponding to finitely many inflection points on γ , and therefore is not a regular
immersion. For k = 3, the graphic is the image of a torus, formed by a circle’s worth of
tangent planes for each point of γ . For k = 4, the graphic is the image of a line bundle over
a torus. We again require that these graphics are immersed piecewise smooth submanifolds
in general position.
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