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ABSTRACT OF THE DISSERTATION

Make Knowledge Computable: Towards Differentiable Neural-Symbolic AI

by

Ziniu Hu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Yizhou Sun, Co-Chair

Professor Kai-Wei Chang, Co-Chair

Recent deep learning methods could pack a vast amount of world knowledge into its

parameters. However, they remain limited in their capacity to carry out symbolic reasoning

over the memorized knowledge, such as answering complex questions that require both

numerical and logical reasoning. On the other hand, symbolic AI excels in reasoning

tasks but is inefficient when it comes to adapting to new knowledge. Existing efforts to

combine these two areas typically focus on building parsing-based Neural-Symbolic systems.

As the symbolic modules are not differentiable, these parsing-based systems cannot be

trained end-to-end from raw data. Instead, they normally require extensive annotation of

intermediate labeled programs and present significant scaling challenges.

My ultimate research goal is to enable neural model to interact with symbolic

reasoning module in a differentiable manner, and to train such Neural-Symbolic

model end-to-end without intermediate labels. To bring this vision about, I have

conducted work on:

• Designing Novel Reasoning Module: design differentiable neural modules that

can conduct symbolic reasoning, including knowledge graph reasoning [Zin+c; Zin+f]

ii



and complex Logical inference [CZS].

• Learning via Symbolic Self-Supervision: train the neural model via self-supervision

from structural and symbolic knowledge base without additional annotation [Zin+b;

Zin+d; ZCS].

• Generalizing across Domains: the modular design of Neural-Symbolic system

by its nature help to generalize better for Out-of-Distribution [Zin+g], Out-of-

Vocabulary [Zin+a], cross-lingual [Che+] and cross-type [Yoo+].

Putting these pieces together, I am pursuing the ultimate vision to build end-to-end

Neural-Symbolic system that has the capacity of reasoning, advancing to true human

intelligence. In this thesis, I will first emphasize the significance of building such differentiable

Neural-Symbolic AI, and then introduce three lines of my works, as well as the future

challenges and opportunities.
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Two roads diverged in a wood, and I

I took the one less traveled by,

And that has made all the difference.
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CHAPTER 1
Introduction

1.1 Motivation

The pursuit of machine-understandable world knowledge modelling has a long history

in artificial intelligence. Earlier generations of AI systems, typically symbolic in nature,

attempt to hard-code expert-level knowledge into programs. These systems, though powerful

in answering complex queries1, were primarily domain-specific, necessitating significant

human effort to maintain the knowledge base. Furthermore, they lacked the ability to

continuously learn new knowledge from data.

In recent years, Deep Learning has demonstrated remarkable capabilities in absorbing

and storing vast amounts of world knowledge. By using end-to-end training methods on

extensive data corpora, large-scale neural models can often outperform humans in a range

of language and vision tasks such as machine translation and image captioning. However,

these models often store knowledge implicitly within their neural network parameters.

Consequently, they struggle to handle complex tasks requiring reasoning over symbolic

knowledge. For instance, tasks like answering intricate questions that require multi-step

thinking and logical reasoning, or synthesizing high-level hardware programs, which requires

understanding structural and symbolic C/C++ codes, predicting execution results, and

1https://www.ibm.com/ibm/history/ibm100/us/en/icons/watson/breakthroughs/

1

https://www.ibm.com/ibm/history/ibm100/us/en/icons/watson/breakthroughs/


searching optimal programs in discrete space. For example, to answer the question “Which

NBA teams in Texas have not won the championship after 2000.”, even the powerful GPT4

model that already memorized the required knowledge could make mistakes, as it could fail

to understand the logical constraint in the query.

To address these challenges, I am pursuing a novel direction. Instead of statically

compiling world knowledge into model parameters, I aim to model this symbolic knowledge

using a more modular design. This design will allow both neural models and symbolic AI

modules to comprehend the knowledge, compute and conduct reasoning. This vision aligns

with traditional Neural-Symbolic AI systems that bridge the worlds of neural networks

and symbolic systems. These systems employ neural models to parse input queries x into

symbolic programs z, such as SQL queries or arithmetic circuits. A symbolic module, like a

numerical and logical solver, then uses z for planning, deduction, and reasoning, ultimately

generating the answer y.

Despite their merits, most parsing-based Neural-Symbolic AI systems face a significant

challenge. The symbolic modules are not differentiable, preventing the end-to-end training

of the entire Neural-Symbolic model using only (x, y) pairs. Instead, most previous efforts

needed to annotate the intermediate symbolic query z for training the neural module. For

many real-world applications, obtaining high-quality intermediate labels is challenging,

if not impossible, and the neural parser trained on a limited z training set often fails

to generalize across different domains or distributions. This limitation has significantly

curtailed the applicability of previous Neural-Symbolic AI systems.

1.2 My Research Overview

My ultimate research goal is to enable the neural model to interact with a

symbolic reasoning module in a differentiable way, and to train this Neural-

Symbolic model end-to-end without needing intermediate labels. To achieve this

goal, my research has focused on:
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1. Designing Novel Reasoning Module: To create an end-to-end Neural-Symbolic

system, it is crucial to make the symbolic reasoning step differentiable. My earlier

research efforts have been dedicated to designing differentiable neural modules that

can reason over relational and structured graphs and interact with external knowledge

graphs for complex question answering.

• Chapter 2 presents the Heterogensous Graph Transformer (HGT) architecture

that conducts reasoning over relational graph;

• Chapter 3 presents Knowledge Graph Empowered Language Model (OREO-LM)

that enables Language Model to interact with external Knowledge Graphs and

conduct joint reasoning.

2. Learning via Symbolic Self-Supervision: Given the trend of deep learning

models moving towards training on extensive unlabeled datasets, it is ideal for the

proposed Neural-Symbolic models to learn from unlabeled data. However, the complex

reasoning module often requires learning signals from structural knowledge instead

of raw data. To address this, I propose several techniques to leverage the structural

symbolic knowledge as self-supervision to pre-train neural models.

• Chapter 4 presents algorithm that conducts Generative Pre-training of Graph

Neural Networks (GPT-GNN).

• Chapter 5 presents End-to-End Retrieval-Augmented Visual Language Pre-

Training (REVEAL) that encodes multiple knowledge sources into a unified

memory and trains a visual-language model to learn to retrieve from it to answer

complex visual questions.

3. Generalizing across Domains: A key advantage of symbolic reasoning over neural

models is its ability to generalize better across distributions and domains. Therefore,

by representing data in a compositional and structural manner, we can view each

disentangled neural module as handling a specific functionality and change only a

particular module when transitioning to a new domain or distribution.
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• Chapter 6 presents a Few-shot hierarchical encoder (HiCE) that inferring Out-

Of-Vocabulary word embedding through meta-learning.

• Chapter 7 presents a Causal Representation Learning framework (MT-CRL)

for improving multi-task generalization by alleviating the spurious correlation.

Putting these pieces together, I am pursuing the ultimate vision to build end-to-end

Neural-Symbolic system that has the capacity of reasoning, towards achieving true human-

like intelligence.

1.3 My Research Contributions

My vision is supported by my prior research, which has led to more than 20 research

papers published in top Machine Learning venues (NeurIPS, ICLR, AAAI), Data Mining

venues (KDD, WWW, WSDM), and Nature Language Processing venues (ACL, EMNLP).

Notably, I received the Best Full Paper Award at WWW 2019, Best Student Paper

Award at DLG-KDD 2020, and Best Paper Award at SoCal-NLP 2022. Many models

I design have been integrated into machine learning libraries such as Pytorch-Geometric

and DGL2, utilized in many industrial products, including Google Youtube Shorts recom-

mendation, Microsoft Graph, Facebook hate speech detection, Tiktok & Toutial search

engine and stock trend prediction service by Microsoft. The software tools I developed

and open-sourced have received over 2000 stars in total on Github, and also served as core

building blocks for many NSF research grants.

Summary of my publications. The following are my major Ph.D. research that are

included in this thesis:

The content of Chapter 2 appears in:

2They have become basic building blocks for modern models for structured and geometric data and are
widely used in academia and industry. My proposed HGT [Zin+c] model is used as official tutorial in PyG.

4
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[Zin+c] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. “Hetero-

geneous Graph Transformer”. In: Proceedings of the ACM Web Conference

(WWW 2020, mostly cited paper)

The content of Chapter 3 appears in:

[Zin+f] Ziniu Hu, Yichong Xu, Shuohang Wang, Ziyi Yang, Chengguang

Zhu, Kai-Wei Chang, and Yizhou Sun. “Empowering Language Models with

Knowledge Graph Reasoning for Question Answering”. In: Proceedings of the

Conference on Empirical Methods in Natural Language Processing (EMNLP

2022, also best paper award in SoCal-NLP 2022)

The content of Chapter 4 appears in:

[Zin+b] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and

Yizhou Sun. “GPT-GNN: Generative Pre-Training of Graph Neural Net-

works”. In: Proceedings of the ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD 2020, Oral)

The content of Chapter 5 appears in:

[Zin+d] Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-Wei Chang,

Yizhou Sun, Cordelia Schmid, David A. Ross, and Alireza Fathi. “REVEAL:

5
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Retrieval-Augmented Visual-Language Pre-Training with Multi-Source Multi-

modal Knowledge Memory”. In: Conference on Computer Vision and Pattern

Recognition (CVPR 2023, Highlight)

The content of Chapter 6 appears in:

[Zin+a] Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou Sun. “Few-Shot

Representation Learning for Out-Of-Vocabulary Words”. In: Proceedings of

the Association for Computational Linguistics (ACL 2019)

The content of Chapter 7 appears in:

[Zin+g] Ziniu Hu, Zhe Zhao, Xinyang Yi, Tiansheng Yao, Lichan Hong,

Yizhou Sun, and Ed H Chi. “Improving Multi-Task Generalization via

Regularizing Spurious Correlation”. In: Advances in Neural Information

Processing Systems (NeurIPS 2022, Spotlight)

I have also conducted (or made one of the major contributions to) the following research

during my Ph.D. studies.

[Zin+e] Ziniu Hu, Yang Wang, Qu Peng, and Hang Li. “Unbiased Lamb-

daMART: An Unbiased Pairwise Learning-to-Rank Algorithm”. In: Proceed-

ings of the ACM Web Conference (WWW 2019 with US Patent)

[Zou+] Difan Zou*, Ziniu Hu* (equal contribution), Yewen Wang, Song
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Jiang, Yizhou Sun, and Quanquan Gu. “Layer-Dependent Importance Sam-

pling for Training Deep and Large Graph Convolutional Networks”. In:

Advances in Neural Information Processing Systems (NeurIPS 2019)

[ZCS] Ziniu Hu, Kai-Wei Chang, and Yizhou Sun. “Relation-Guided Pre-

Training for Open-Domain Question Answering”. In: Proceedings of the

Conference on Empirical Methods in Natural Language Processing (EMNLP-

Finding 2021)

[CZS] Xuelu Chen, Ziniu Hu, and Yizhou Sun. “Fuzzy Logic based Logical

Query Answering on Knowledge Graphs”. In: AAAI Conference on Artificial

Intelligence (AAAI 2022)

I have also contributed to the following publications as a co-author.

[Che+] Zhenpeng Chen, Sheng Shen, Ziniu Hu, Xuan Lu, Qiaozhu Mei, and

Xuanzhe Liu. “Emoji-Powered Representation Learning for Cross-Lingual

Sentiment Classification”. In: Proceedings of the ACM Web Conference

(WWW 2019 Best Full Paper Award)

[Wan+] Lingxiao Wang, Jing Huang, Kevin Huang, Ziniu Hu, Guangtao

Wang, and Quanquan Gu. “Improving Neural Language Generation with

Spectrum Control”. In: International Conference on Learning Representa-

tions (ICLR 2020)

[Don+] Yuxiao Dong, Ziniu Hu, Kuansan Wang, Yizhou Sun, and Jie Tang.

“Heterogeneous Network Representation Learning”. In: Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI 2020)

7
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[Wei+] Tianxin Wei, Ziwei Wu, Ruirui Li, Ziniu Hu, Fuli Feng, Xiangnan He,

Yizhou Sun, and Wei Wang. “Fast Adaptation for Cold-start Collaborative

Filtering with Meta-learning”. In: IEEE International Conference on Data

Mining (ICDM 2020)

[Yin+] Da Yin, Liunian Harold Li, Ziniu Hu, Nanyun Peng, and Kai-Wei

Chang. “Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning”.

In: Proceedings of the Conference on Empirical Methods in Natural Language

Processing (EMNLP 2021)

[Yoo+] Minji Yoon, John Palowitch, Dustin Zelle, Ziniu Hu, Russ Salakhutdi-

nov, and Bryan Perozzi. “Zero-shot Transfer Learning within a Heterogeneous

Graph via Knowledge Transfer Networks”. In: Advances in Neural Informa-

tion Processing Systems (NeurIPS 2022)
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Differentiable Symbolic Reasoning
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CHAPTER 2
HGT: Heterogeneous Graph

Transformer

Currently, most existing GNNs are designed for homogeneous graphs, in which all nodes

and edges belong to the same types, making them infeasible to represent more complex

relational data, i.e., heterogeneous graphs. To solve this problem, we propose Heterogeneous

Graph Transformer (HGT) for modeling web-scale heterogeneous and dynamic graphs.

We first abstract the underlying symbolic knowledge in the heterogeneous graph as meta

relation triplet. Then, we leverage the meta relation to parameterize the weight matrices for

calculating attention over each edge, empowering HGT to maintain dedicated representations

for different types of nodes and edges. HGT can incorporate information from high-

order neighbors of different types through message passing across layers, so that it can

automatically and implicitly learn and extract “meta paths” which are important for different

downstream tasks. Extensive experiments on the Open Academic Graph, which contain

179 million nodes and 2 billion edges, show that the proposed HGT model consistently

outperforms all the state-of-the-art GNN baselines by 9%–21% on various downstream

tasks. In addition, HGT significantly enhances the accuracy of anomaly detection for the

Microsoft Office Team, and have ranked ranks 1st on Stanford Open Graph Benchmark’s

MAG leaderboard for half year.
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2.1 Introduction

Heterogeneous graphs have been commonly used for abstracting and modeling complex

systems, in which objects of different types interact with each other in various ways.

Some prevalent instances of such systems include academic graphs, Facebook entity graph,

LinkedIn economic graph, and broadly the Internet of Things network [SH12]. For example,

the Open Academic Graph (OAG) [Zha+19b] contains five types of nodes: papers, authors,

institutions, venues (journal, conference, or preprint), and fields, as well as different types

of relationships between them.

Figure 2.1: The schema and meta relations of Open Academic Graph (OAG).

Over the past decade, a significant line of research has been explored for mining

heterogeneous graphs. One of the classical paradigms is to define and use meta paths to

model heterogeneous structures, such as PathSim [Sun+11] and metapath2vec [DCS17].

Recently, in view of graph neural networks’ (GNNs) success [KW17; HYL17; Vel+18],

there are several attempts to adopt GNNs to learn with heterogeneous networks [Sch+18;

Zha+19a; Wan+19b; Yun+19]. However, these works face several issues: First, most of

them involve the design of meta paths or variants for each type of heterogeneous graphs,

requiring specific domain knowledge; Second, they either simply assume that different

types of nodes/edges share the same feature and representation space or keep distinct

non-sharing weights for either node type or edge type alone, making them insufficient to

capture heterogeneous graphs’ properties; Finally, their intrinsic design and implementation

make them incapable of modeling Web-scale heterogeneous graphs.

In light of these limitations and challenges, we propose to study heterogeneous neural
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networks with the goal of maintaining node- and edge-type dependent representations,

avoiding customized meta paths, and being scalable to Web-scale heterogeneous graphs. In

this work, we present the HGT architecture to deal with all these challenges.

To handle graph heterogeneity, we introduce the node- and edge-type dependent attention

mechanism. Instead of parameterizing each type of edges, the heterogeneous mutual

attention in HGT is defined by breaking down each edge e = (s, t) based on its meta

relation triplet, i.e., ⟨ node type of s, edge type of e between s & t, node type of t⟩. Figure

2.1 illustrates the meta relations of heterogeneous academic graphs. In specific, we use

these meta relations to parameterize the weight matrices for calculating attention over each

edge. As a result, nodes and edges of different types are allowed to maintain their specific

representation spaces. Meanwhile, connected nodes in different types can still interact, pass,

and aggregate messages without being restricted by their distribution gaps. Due to the

nature of its architecture, HGT can incorporate information from high-order neighbors

of different types through message passing across layers, which can be regarded as “soft”

meta paths. That said, even if HGT take only its one-hop edges as input without manually

designing meta paths, the proposed attention mechanism can automatically and implicitly

learn and extract “meta paths” that are important for different downstream tasks.

We demonstrate the effectiveness and efficiency of the proposed HGT on the Web-scale

Open Academic Graph comprised of 179 million nodes and 2 billion edges, making this the

largest-scale representation learning yet performed on heterogeneous graphs. Experimental

results suggest that HGT can significantly improve various downstream tasks over state-of-

the-art GNN baselines by 9%–21%. We further conduct case studies to show the proposed

method can indeed automatically capture the importance of implicit meta paths for different

tasks.
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2.2 Preliminaries and Related Work

In this section, we introduce the basic definition of heterogeneous graphs with network

dynamics and review the recent development on graph neural networks (GNNs) and their

heterogeneous variants. We also highlight the difference between HGT and existing attempts

on heterogeneous graph neural networks.

2.2.1 Learning for Heterogeneous Graph

Heterogeneous graphs [SH12] (a.k.a., heterogeneous information networks) are an im-

portant abstraction for modeling relational data for many real-world complex systems.

Formally, it is defined as:

Definition 1. Heterogeneous Graph: A heterogeneous graph is defined as a directed

graph G = (V , E ,A,R) where each node v ∈ V and each edge e ∈ E are associated with

their type mapping functions τ(v) : V → A and ϕ(e) : E → R, respectively.

Meta Relation. For an edge e = (s, t) linked from source node s to target node t, its

meta relation is denoted as ⟨τ(s), ϕ(e), τ(t)⟩. Naturally, ϕ(e)−1 represents the inverse of

ϕ(e). The classical meta path paradigm [Sun+11; Sun+12; SH12] is defined as a sequence

of such meta relation.

Notice that, to better model real-world heterogeneous networks, we assume that there

may exist multiple types of relations between different types of nodes. For example, in OAG

there are different types of relations between the author and paper nodes by considering

the authorship order, i.e., “the first author of”, “the second author of”, and so on.

Dynamic Heterogeneous Graph. To model the dynamic nature of real-world (het-

erogeneous) graphs, we assign an edge e = (s, t) a timestamp T , when node s connects to

node t at T . If s appears for the first time, T is also assigned to s. s can be associated

with multiple timestamps if it builds connections over time.
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In other words, we assume that the timestamp of an edge is unchanged, denoting the

time it is created. For example, when a paper published on a conference at time T , T

will be assigned to the edge between the paper and conference nodes. On the contrary,

different timestamps can be assigned to a node accordingly. For example, the conference

node “WWW” can be assigned any year. WWW@1994 means that we are considering the

first edition of WWW, which focuses more on internet protocol and Web infrastructure,

while WWW@2020 means the upcoming WWW, which expands its research topics to

social analysis, ubiquitous computing, search & IR, privacy and society, etc.

There have been significant lines of research on mining heterogeneous graphs, such as

node classification, clustering, ranking and representation learning [SH12; Sun+11; Sun+12;

DCS17], while the dynamic perspective of HGs has not been extensively explored and

studied.

2.2.2 Graph Neural Networks

Recent years have witnessed the success of graph neural networks for relational data [KW17;

Vel+18; HYL17]. Generally, a GNN can be regarded as using the input graph structure as

the computation graph for message passing [Gil+17a], during which the local neighborhood

information is aggregated to get a more contextual representation. Formally, it has the

following form:

Definition 2. General GNN Framework: Suppose H l[t] is the node representation of

node t at the (l)-th GNN layer, the update procedure from the (l-1)-th layer to the (l)-th

layer is:

H l[t]← Aggregate
∀s∈N(t),∀e∈E(s,t)

(
Ψ
(
H l−1[s];H l−1[t], e

))
(2.1)

where N(t) denotes all the source nodes of node t and E(s, t) denotes all the edges from

node s to t.

There are two basic operators in GNNs: Ψ(·) and Aggregate(·). Ψ(·) represents the

14



neighbor information extractor. It uses the target node’s representation H l−1[t] and the

edge e between the two nodes as query, and extract useful information from source node

H l−1[s]. Aggregate(·) serves as the aggregation function of the neighborhood information.

The mean, sum, and max functions are often considered as the basic aggregation operators,

and more sophisticated pooling and normalization functions can be also designed.

Under this framework, various (homogeneous) GNN architectures have been proposed

due to its power for modeling relational data. For example, the graph convolutional network

(GCN) proposed by Kipf et al. [KW17] averages the one-hop neighbor of each node in the

graph, followed by a linear projection and non-linear activation operations. Hamilton et

al. propose GraphSAGE that generalizes GCN’s aggregation operation from average to

sum, max and a RNN unit. Velickovi et al. ’s graph attention network (GAT) [Vel+18]

furthers this framework by introducing the attention mechanism into GNNs, which allows

the model to assign different importance to nodes within the same neighborhood.

Heterogeneous GNNs Recently, studies have attempted to extend GNNs for modeling

heterogeneous graphs. Schlichtkrull et al. [Sch+18] propose the relational graph convo-

lutional networks (RGCN) to model knowledge graphs. RGCN keeps a distinct linear

projection weight for each edge type. Zhang et al. [Zha+19a] present the heterogeneous

graph neural networks (HetGNN) that adopts different RNNs for different node types to

integrate multi-modal features. Wang et al. [Wan+19b] extend graph attention networks by

maintaining different weights for different meta-path-defined edges. They also use high-level

semantic attention to differentiate and aggregate information from different meta paths.

Though these methods have shown to be empirically better than the vanilla GCN and

GAT models, they have not fully utilized the heterogeneous graphs’ properties. All of them

use either node type or edge type alone to determine GNN weight matrices. However,

the node or edge counts of different types can vary greatly. For relations that don’t have

sufficient occurrences, it’s hard to learn accurate relation-specific weights. To address

this, we propose to consider parameter sharing for a better generalization. Given an edge
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e = (s, t) with its meta relation as ⟨τ(s), ϕ(e), τ(t)⟩, if we use three interaction matrices

to model the three corresponding elements τ(s), ϕ(e), and τ(t) in the meta relation, then

the majority of weights could be shared. For example, in “the first author of” and “the

second author of” relationships, their source and target node types are both author to

paper, respectively. In other words, the knowledge about author and paper learned from one

relation could be quickly transferred and adapted to the other one. Therefore, we integrate

this idea with the powerful Transformer-like attention architecture, and propose HGT.

To summarize, the key differences between HGT and existing attempts include:

1. Instead of attending on node or edge type alone, we use the meta relation ⟨τ(s), ϕ(e), τ(t)⟩

to decompose the interaction and transform matrices, enabling HGT to capture both

the common and specific patterns of different relationships using equal or even fewer

parameters.

2. Different from most of the existing works that are based on customized meta paths, we

rely on the nature of the neural architecture to incorporate high-order heterogeneous

neighbor information, which automatically learns the importance of implicit meta

paths.

3. Previous works don’t take the dynamic nature of (heterogeneous) graphs into consid-

eration, while we propose the relative temporal encoding technique to incorporate

temporal information by using limited computational resources.

4. None of the existing heterogeneous GNNs are designed for and experimented with

Web-scale graphs, we therefore propose the heterogeneous Mini-Batch graph sampling

algorithm designed for Web-scale graph training, enabling experiments on the billion-

scale Open Academic Graph.
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Figure 2.2: The Overall Architecture of Heterogeneous Graph Transformer. Given a
sampled heterogeneous sub-graph with t as the target node, s1 & s2 as source nodes,
the HGT model takes its edges e1 = (s1, t) & e2 = (s2, t) and their corresponding meta
relations < τ(s1), ϕ(e1), τ(t) > & < τ(s2), ϕ(e2), τ(t) > as input to learn a contextualized
representation H(L) for each node, which can be used for downstream tasks. Color decodes
the node type. HGT includes three components: (1) meta relation-aware heterogeneous
mutual attention, (2) heterogeneous message passing from source nodes, and (3) target-
specific heterogeneous message aggregation.

2.3 Methodology

In this section, we present the Heterogeneous Graph Transformer (HGT). Its idea is to

use the meta relations of heterogeneous graphs to parameterize weight matrices for the

heterogeneous mutual attention, message passing, and propagation steps.

2.3.1 Heterogeneous Graphs and Meta Relation

Heterogeneous graphs [SH12] (a.k.a., heterogeneous information networks) are an im-

portant abstraction for modeling relational data and many real-world complex systems.

Formally, a heterogeneous graph is defined as a directed graph G = (V , E ,A,R) where

each node v ∈ V and each edge e ∈ E are associated with their type mapping functions

τ(v) : V → A and ϕ(e) : E → R, respectively.
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Meta Relation. For an edge e = (s, t) linked from source node s to target node t, its

meta relation is denoted as ⟨τ(s), ϕ(e), τ(t)⟩. Naturally, ϕ(e)−1 represents the inverse of

ϕ(e). The classical meta path paradigm is defined as a sequence of such meta relations.

Notice that, to better model real-world heterogeneous networks, we assume that there

may exist multiple types of relations between two nodes. For example, in OAG there could

be different types of relations between the author and paper nodes by considering the

authorship order, e.g., “the first author of” and “the last author of”.

2.3.2 Heterogeneous Graph Transformer Architecture

Figure 2.2 shows the overall architecture of Heterogeneous Graph Transformer. Given a

sampled heterogeneous sub-graph (Cf. Section 2.4), HGT extracts all linked node pairs,

where target node t is linked by source node s via edge e. The goal of HGT is to aggregate

information from s to get a contextualized representation for target node t. Such process

can be decomposed into three components: Heterogeneous Mutual Attention, Heterogeneous

Message Passing and Target-Specific Aggregation.

We denote the output of the (l)-th HGT layer as H(l), which is also the input of the

(l+1)-th layer. By stacking L layers, we can get the node representations of the whole

graph H(L), which can be used for end-to-end training or fed into downstream tasks.

Heterogeneous Mutual Attention. The first step is to calculate the mutual attention

between source node s and target node t. We first give a brief introduction to the general

attention-based GNNs as follows:

H l[t]← Aggregate
∀s∈N(t),∀e∈E(s,t)

(
Attention(s, t) ·Message(s)

)
(2.2)

where there are three basic operators: Attention, which estimates the importance of each

source node; Message, which extracts the message by using only the source node s; and

Aggregate, which aggregates the neighborhood message by the attention weight.
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Following this framework, we introduce Heterogeneous Mutual Attention mech-

anism. Given a target node t, and all its neighbors s ∈ N(t), which might belong to

different distributions, we want to calculate their mutual attention grounded by their meta

relations, i.e., the ⟨τ(s), ϕ(e), τ(t)⟩ triplets.

Inspired by the architecture design of Transformer [Vas+17], we map target node t into

a Query vector, and source node s into a Key vector, and calculate their dot product as

attention. The key difference is that the vanilla Transformer uses a single set of projections

for all words, while in our case each meta relation should have a distinct set of projection

weights. To maximize parameter sharing while still maintaining the specific characteristics

of different relations, we propose to parameterize the weight matrices of the interaction

operators into a source node projection, an edge projection, and a target node projection.

Specifically, we calculate the h-head attention for each edge e = (s, t) (See Figure 2.2 (1))

by:

AttentionHGT (s, e, t) = Softmax
∀s∈N(t)

(
∥

i∈[1,h]
ATT -headi(s, e, t)

)
(2.3)

ATT -headi(s, e, t) =
(
Ki(s) WATT

ϕ(e) Qi(t)T
)
·
µ⟨τ(s),ϕ(e),τ(t)⟩√

d

Ki(s) = K-Lineariτ(s)

(
H(l−1)[s]

)
Qi(t) = Q-Lineariτ(t)

(
H(l−1)[t]

)
First, for the i-th attention head ATT -headi(s, e, t), we project the τ(s)-type source node

s into the i-th Key vector Ki(s) with a linear projection K-Lineariτ(s) : Rd → R d
h , where

h is the number of attention heads and d
h
is the vector dimension per head. Note that

K-Lineariτ(s) is indexed by the source node s’s type τ(s), meaning that each type of nodes

has a unique linear projection to maximally model the distribution differences. Similarly,

we also project the target node t with a linear projection Q-Lineariτ(t) into the i−th Query

vector.

Next, we need to calculate the similarity between the Query vector Qi(t) and Key vector
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Ki(s). One unique characteristic of heterogeneous graphs is that there may exist different

edge types (relations) between a node type pair, e.g., τ(s) and τ(t). Therefore, unlike

the vanilla Transformer that directly calculates the dot product between the Query and

Key vectors, we keep a distinct edge-based matrix WATT
ϕ(e) ∈ R d

h
× d

h for each edge type ϕ(e).

In doing so, the model can capture different semantic relations even between the same

node type pairs. Moreover, since not all the relationships contribute equally to the target

nodes, we add a prior tensor µ ∈ R|A|×|R|×|A| to denote the general significance of each

meta relation triplet, serving as an adaptive scaling to the attention.

Finally, we concatenate h attention heads together to get the attention vector for each

node pair. Then, for each target node t, we gather all attention vectors from its neighbors

N(t) and conduct normalization via softmax.

Heterogeneous Message Passing. Parallel to the calculation of mutual attention, we

pass information from source nodes to target nodes (See Figure 2.2 (2)). Similar to the

attention process, we would like to incorporate the meta relations of edges into the message

passing process to alleviate the distribution differences of nodes and edges of different types.

For a pair of nodes e = (s, t), we calculate its multi-head Message by:

MessageHGT (s, e, t) = ∥
i∈[1,h]

MSG-headi(s, e, t) (2.4)

MSG-headi(s, e, t) = M-Lineariτ(s)

(
H(l−1)[s]

)
WMSG
ϕ(e)

To get the i-th message head MSG-headi(s, e, t), we first project the τ(s)-type source node

s into the i-th message vector with a linear projection M-Lineariτ(s) : Rd → R d
h . It is then

followed by a matrix WMSG
ϕ(e) ∈ R d

h
× d

h for incorporating the edge dependency. The final step

is to concat all h message heads to get the MessageHGT (s, e, t) for each node pair.

Target-Specific Aggregation. With the heterogeneous multi-head attention and mes-

sage calculated, we need to aggregate them from the source nodes to the target node (See
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Figure 2.2 (3)). Note that the softmax procedure in Eq. 2.3 has made the sum of each

target node t’s attention vectors to one, we can thus simply use the attention vector as the

weight to average the corresponding messages from the source nodes and get the updated

vector H̃(l)[t] as:

H̃(l)[t] = ⊕
∀s∈N(t)

(
AttentionHGT (s, e, t) ·MessageHGT (s, e, t)

)
.

This aggregates information to the target node t from all its neighbors (source nodes) of

different feature distributions.

The final step is to map target node t’s vector back to its type-specific distribution,

indexed by its node type τ(t). To do so, we apply a linear projection A-Linearτ(t) to the

updated vector H̃(l)[t], followed by a non-linear activation and residual connection [He+16]

as:

H(l)[t] = σ
(
A-Linearτ(t)H̃

(l)[t]
)
+H(l−1)[t]. (2.5)

In this way, we get the l-th HGT layer’s output H(l)[t] for the target node t. Due to the

“small-world” property of real-world graphs, stacking the HGT blocks for L layers (L being

a small value) can enable each node reaching a large proportion of nodes—with different

types and relations—in the full graph. That is, HGT generates a highly contextualized

representation H(L) for each node, which can be fed into any models to conduct downstream

heterogeneous network tasks, such as node classification and link prediction.

Through the whole model architecture, we highly rely on using the meta relation—

⟨τ(s), ϕ(e), τ(t)⟩—to parameterize the weight matrices separately. This can be interpreted

as a trade-off between the model capacity and efficiency. Compared with the vanilla

Transformer, our model distinguishes the operators for different relations and thus is more

capable to handle the distribution differences in heterogeneous graphs. Compared with

existing models that keep a distinct matrix for each meta relation as a whole, HGT’s triplet

parameterization can better leverage the heterogeneous graph schema to achieve parameter
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sharing. On one hand, relations with few occurrences can benefit from such parameter

sharing for fast adaptation and generalization. On the other hand, different relationships’

operators can still maintain their specific characteristics by using a much smaller parameter

set.

2.4 Training for Web-Scale Graphs

Figure 2.3: Heterogeneous Mini-Batch Graph Sampling Procedure with Inductive Times-
tamp Assignment.

In this section, we present an efficient Heterogeneous Mini-Batch Graph Sampling

algorithm—HGSampling—to enable both HGT and traditional GNNs to handle Web-

scale heterogeneous graphs with dynamic information. First, we propose an efficient

Heterogeneous Mini-Batch Graph Sampling algorithm to generate informative sub-graphs.

Second, we describe an inductive timestamp assignment method for keeping heterogeneous

graphs’ temporal information.

2.4.1 Heterogeneous Mini-Batch Graph Sampling

The original full-batch GNN [KW17] training requires the calculation of all node

representations per layer, making it not scalable for Web-scale graphs. To address this issue,
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different sampling-based methods [HYL17; CMX18; CZS18; Zou+] have been proposed to

train GNNs on a subset of nodes. However, directly using them for heterogeneous graphs

is prone to get sub-graphs that are extremely imbalanced regarding different node types,

due to that the degree distribution and the total number of nodes for each type can vary

dramatically.

As such, we propose a heterogeneous mini-batch graph sampling method (See Alg. 1)

that is able to 1) keep a similar number of nodes and edges for each type and 2) keep the

sampled sub-graph dense to minimize the information loss and reduce the sample variance.

The basic idea is to keep a separate node budget B[τ ] for each node type τ and to sample

an equal number of nodes per type with an important sampling to reduce variance.

Given node t already sampled, we add all its direct neighbors into the corresponding

budget with Algorithm 2, and add t’s normalized degree to these neighbors in line 1, which

will then be used to calculate the sampling probability. Such normalization is equivalent

to accumulate the random walk probability of each sampled node to its neighborhood,

avoiding the sampling being dominated by high-degree nodes. Intuitively, the higher such

value, the more a candidate node is correlated with the currently sampled nodes, and thus

should be given a higher probability to be sampled.

After the budget is updated, we then calculate the sampling probability in Algorithm 1

line 1, where we calculate the square of the cumulative normalized degree of each node s in

each budget. As proved in [CMX18; Zou+], using such sampling probability can reduce

the sampling variance. Then, we sample n nodes in node type τ by using the calculated

probability, add them into the output node set, update its neighborhood to the budget,

and remove it out of the budget in line 1-1. Repeating such procedure for L times, we

get a sampled sub-graph with L−th depth from the initial nodes. Finally, we reconstruct

the adjacency matrix among the sampled nodes. Using the above sampling algorithm,

the sampled sub-graph contains a similar number of nodes per node type (based on the

separate node budget), and is sufficiently dense to reduce the sampling variance (based on

the normalized degree and importance sampling), and thus it is suitable for training GNNs
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Algorithm 1 Heterogeneous Mini-Batch Graph Sampling

Adjacency matrix A for each ⟨τ(s), ϕ(e), τ(t)⟩ relation pair; Output node Set OS;
Sample number n per node type; Sample depth L.Sampled node set NS; Sampled
adjacency matrix Â. NS ← OS // Initialize sampled node set as output node set.
Initialize an empty Budget B storing nodes for each node type with normalized degree.
t ∈ NS Add-In-Budget(B, t, A, NS) // Add neighbors of t to B. l ← 1 to L source

node type τ ∈ B source node s ∈ B[τ ] prob(l−1)[τ ][s]← B[τ ][s]2

∥B[τ ]∥22
// Calculate sampling

probability for each source node s of node type τ . Sample n nodes {ti}ni=1 from
B[τ ] using prob(l−1)[τ ]. t ∈ {ti}ni=1 OS[τ ].add(t) // Add node t into Output node
set. Add-In-Budget(B, t, A, NS) // Add neighbors of t to B. B[τ ].pop(t) // Remove
sampled node t from Budget. Reconstruct the sampled adjacency matrix Â among
the sampled nodes OS from A. OS and Â;

Algorithm 2 Add-In-Budget

Budget B storing nodes for each type with normalized degree; Added node t; Adja-
cency matrix A for each ⟨τ(s), ϕ(e), τ(t)⟩ relation pair; Sampled node set NS.Updated

Budget B. each possible source node type τ and edge type ϕ D̂t ← 1 / len
(
A⟨τ,ϕ,τ(t)⟩[t]

)
// get normalized degree of added node t regarding to ⟨τ, ϕ, τ(t)⟩. source node s in
A⟨τ,ϕ,τ(t)⟩[t] s has not been sampled (s ̸∈ NS) s has no timestamp s.time = t.time //

Inductively inherit timestamp. B[τ ][s]← B[τ ][s] + D̂t // Add candidate node s to
budget B with target node t’s normalized degree. Updated Budget B

on Web-scale heterogeneous graphs.

2.4.2 Inductive Timestamp Assignment

Till now we have assumed that each node t is assigned with a timestamp T (t). However,

in real-world heterogeneous graphs, many nodes are not associated with a fixed time.

Instead, we can assign different timestamps to it. We denote these nodes as plain nodes.

For example, the WWW conference is held in both 1974 and 2019, and the WWW node in

these two years has dramatically different research topics. Therefore, we need to decide

which timestamp(s) to attach to the WWW node. Note that there also exist event nodes in

heterogeneous graphs that have an explicit timestamp associated with them. For example,

the paper node should be associated with its publication behavior and therefore attached

to its publication date.
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To address this issue, we propose an inductive timestamp assignment algorithm that

assigns plain nodes timestamps based on the event nodes that they are linked with. The

algorithm is shown in Algorithm 2 line 1. The basic idea is that we inherit the timestamp

from event nodes to plain nodes. We examine whether the candidate source node is an

event node. If yes, like a paper published at a specific year, we keep its timestamp for

capturing temporal dependency. If no, like a conference that can be associated with any

timestamp, we inductively assign the associated node’s timestamp, such as the published

year of its paper, to this plain node. In this way, we can adaptively assign timestamps

during the sub-graph sampling procedure.

During the sampling, we can have multiple event nodes linked to one plain node, such

as multiple papers published at WWW at different times. In this case, we treat the same

node with different timestamps distinctly, which means that in Algorithm 2 line 1, we

also use the associated timestamp as a judgment indicator. In this way, WWW@1974 and

WWW@2019 can both occur in our sampled subgraph, linking to the same neighborhoods.

With relative temporal encoding, the HGT model should learn to attend differently for

these two WWW nodes towards all the papers published on it in different years.

An example of sampling a heterogeneous mini-batch academic graph as well as assigning

timestamps is also illustrated in Figure 2.3. We start from a graph with Paper P1 as the

initial node. At each Step we update the budget by exploring the immediate neighbors of

newly added nodes and then sample n (n=1) nodes for each budget. During this process,

we inductively assign timestamps from target nodes to the plain source nodes, if the source

nodes don’t have fixed timestamps themselves (e.g., papers assign publication dates to

venues). In this way, we can sample a dense sub-graph with a balanced number of nodes

for each type and inductively assigned timestamps, which can be used to conduct efficient

training for large-scale graphs.
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2.5 Experiments

In this section, we evaluate the proposed HGT on the Open Academic Graph (OAG) [Zha+19b]—

the largest publicly available heterogeneous academic dataset. We conduct the Paper-Field

prediction, Paper-Venue prediction, and Author Disambiguation tasks. We also take case

studies to demonstrate how HGT can automatically learn and extract meta paths that are

important for downstream tasks1.

2.5.1 Experimental Setup

Web-scale Datasets To examine HGT and its real-world applications, we use the Open

Academic Graph (OAG) [Sin+15; Zha+19b] as our experimental basis. OAG consists

of more than 178 million nodes and 2.236 billion edges, making them at least two–three

magnitudes larger than the other datasets that are commonly used in existing heterogeneous

GNN and heterogeneous graph mining studies. Besides, it is far more distinguishable than

previously wide-adopted small citation graphs used in GNN studies, such as Cora, Citeseer

and Pubmed [KW17; Vel+18], which only contain thousands of nodes.

Tasks and Evaluation. We evaluate the HGT model on four different real-world down-

stream tasks: the prediction of Paper–Field (L1), Paper–Field (L2), and Paper–Venue, and

Author Disambiguation. The goal of the first three node classification tasks is to predict

the correct L1 and L2 fields that each paper belongs to or the venue it is published at,

respectively. We use different GNNs to get the contextual node representation of the paper

and use a softmax output layer to get its classification label. For author disambiguation,

we select all the authors with the same name and their associated papers. The task is to

conduct link prediction between these papers and candidate authors. After getting the

paper and author node representations from GNNs, we use a Neural Tensor Network to get

the probability of each author-paper pair to be linked.

1The dataset and code are publicly available at https://github.com/acbull/pyHGT.
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GNN Models GCN RGCN GAT HetGNN HAN HGTnoHeter HGT

Paper–Field (L1)
NDCG .508±.141 .511±.128 .534±.103 .543±.084 .544±.096 .571±.089 .595±.089
MRR .556±.136 .565±.105 .610±.096 .616±.076 .622±.092 .649±.081 .675±.082

Paper–Field (L2)
NDCG .218±.074 .228±.046 .239±.049 .236±.062 .242±.051 .250±.045 .258±.052
MRR .222±.067 .232±.052 .248±.045 .250±.053 .258±.049 .262±.057 .271±.064

Paper–Venue
NDCG .265±.066 .276±.051 .270±.057 .262±.071 .280±.062 .297±.058 .306±.064
MRR .258±.070 .236±.047 .260±.052 .246±.059 .278±.067 .293±.061 .317±.048

Author
Disambiguation

NDCG .612±.064 .619±.057 .645±.063 .649±.052 .660±.049 .668±.059 .683±.066
MRR .738±.042 .755±.048 .797±.044 .803±.058 .821±.056 .835±.043 .847±.043

Table 2.1: Experimental results of different methods on Open Academic Graph (OAG).

For all tasks, we use papers published before the year 2015 as the training set, papers

between 2015 and 2016 for validation, and papers between 2016 and 2019 as testing. We

choose NDCG and MRR, which are two widely adopted ranking metrics [Liu11; Li14], as

the evaluation metrics. All models are trained for 5 times and, the mean and standard

variance of test performance are reported.

Baselines. We compare HGT with several state-of-the-art GNNs, including both homogeneous—

GCN [KW17] and GAT [Vel+18]—and heterogeneous GNNs—RGCN [Sch+18], Het-

GNN [Zha+19a], and HAN [Wan+19b]. To examine the effectiveness of the heterogeneous

components in our model, we also propose the HGTnoHeter model, which uses the same set

of weights for all meta relations, as the ablation study. All baselines as well as our own

model are implemented via the PyTorch Geometric (PyG) package [FL19].

Input Features. As we don’t assume the feature of each node type belongs to the same

distribution, we are free to use the most appropriate features to represent each type of nodes.

For each paper, we use a pre-trained XLNet [Yan+19b; Wol+19] to get the representation

of each word in its title. We then average them weighted by each word’s attention to get

the title representation for each paper. The initial feature of each author is then simply

an average of his/her published papers’ representations. For the field, venue, and institute

nodes, we use the metapath2vec model [DCS17] to train their node embeddings by reflecting

the heterogeneous network structures.
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The homogeneous GNN baselines assume the node features belong to the same distribu-

tion, while our feature extraction doesn’t fulfill this assumption. To make a fair comparison,

we add an adaptation layer between the input features and all used GNNs. This module

simply conducts different linear projections for nodes of different types. Such a procedure

can be regarded to map heterogeneous data into the same distribution, which is also adopted

in literature [Zha+19a; Wan+19b].

Implementation Details. We use 256 as the hidden dimension throughout the neural

networks for all baselines. For all multi-head attention-based methods, we set the head

number as 8. All GNNs keep 3 layers so that the receptive fields of each network are exactly

the same. All baselines are optimized via the AdamW optimizer [LH19] with the Cosine

Annealing Learning Rate Scheduler [LH17]. For each model, we train it for 200 epochs and

select the one with the lowest validation loss as the reported model. We use the default

parameters used in GNN literature and donot tune hyper-parameters.

2.5.2 Experimental Results

We summarize the experimental results of the proposed model and baselines in Table

4.1. All experiments for the four tasks are evaluated in terms of NDCG and MRR. It

shows that in terms of both metrics, the proposed HGT model significantly and consistently

outperforms all baselines for all tasks. Take, for example, the Paper–Field (L1) classification

task, HGT achieves performance gains over baselines by 9–19% in terms of NDCG and 9–

21% in terms of MRR (i.e., the performance difference divided by the baseline performance).

When compared to HetGNN and HAN—the two dedicated heterogeneous GNN baselines,

on average, the relative NDCG improvements of HGT for all four tasks are 8% and 6%,

respectively. Moreover, HGT has fewer parameters and comparable batch time than all the

heterogeneous graph neural network baselines, including RGCN, HetGNN, and HAN. This

suggests that by modeling heterogeneous edges according to their meta relation schema, we

are able to have better generalization with fewer resource consumption.
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Figure 2.4: Hierarchy of the learned meta relation attention.

Ablation Study. The core component in HGT is the meta relation parameterization. To

further analyze its effect, we conduct an ablation study. HGTnoHeter only maintains a single

set of parameters for all relations, which is equivalent to the vanilla Transformer applied on

graphs. We can see that after removing this component, the NDCG performance drops

3.2%, demonstrating the importance of our meta relation parameterization.

Besides, we also try to implement a baseline that keeps a unique weight matrix for each

relation. However, such a baseline contains too many parameters so that our experimental

setting doesn’t have enough GPU memory to optimize it. This also indicates that using

the meta relation to parameterize weight matrices can achieve competitive performance

with fewer resources.

Visualize Meta Relation Attention To illustrate how the incorporated meta rela-

tion schema can benefit the heterogeneous message passing process, we pick the schema

that has the largest attention value in each of the first two HGT layers and plot the

meta relation attention hierarchy tree in Figure 2.4. For example, to calculate a pa-

per’s representation, ⟨Paper, is published at, Venue, is published at−1, Paper⟩, ⟨Paper,

has L2 field of , Field, has L5 field of
−1, Paper⟩, and ⟨Institute, is affiliated with−1,

Author, is first author of , Paper⟩ are the three most important meta relation sequences,

which can be regarded as meta paths PVP, PFP, and IAP, respectively. Note that these

meta paths and their importance are automatically learned from the data without manual

design. Another example of calculating an author node’s representation is shown on the right.
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Such visualization demonstrates that HGT is capable of implicitly learning to construct

important meta paths for specific downstream tasks, without manual customization.

2.6 Summary

In this paper, we propose the HGT architecture for modeling Web-scale heterogeneous

graphs. We leverage the meta relation to parameterize the weight matrices for calculating

attention over each edge, empowering HGT to maintain dedicated representations for

different types of nodes and edges.

30



CHAPTER 3
OREO-LM: Knowledge Graph

Reasoning Empowered Language

Model

Answering open-domain questions requires world knowledge about in-context entities.

As pre-trained Language Models (LMs) lack the power to store all required knowledge,

external knowledge sources, such as knowledge graphs, are often used to augment LMs. In

this work, we propose knOwledge REasOning empowered Language Model (OreoLM),

which consists of a novel Knowledge Interaction Layer that can be flexibly plugged into

existing Transformer-based LMs to interact with a differentiable Knowledge Graph Reasoning

module collaboratively. In this way, LM guides KG to walk towards the desired answer,

while the retrieved knowledge improves LM. By adopting OreoLM to RoBERTa and T5, we

show significant performance gain, achieving state-of-art results in the Closed-Book setting.

The performance enhancement is mainly from the KG reasoning’s capacity to infer missing

relational facts. In addition, OreoLM provides reasoning paths as rationales to interpret

the model’s decision.
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Figure 3.1: An Illustrative figure of OreoLM. Compared with previous KBQA systems
that stack reasoner on top of LM, OreoLM enables interaction between the two.

3.1 Introduction

Open-Domain Question Answering (ODQA), one of the most knowledge-intensive NLP

tasks, requires QA models to infer out-of-context knowledge to the given single question.

Following the pioneering work by Chen, Fisch, Weston, and Bordes [Che+17], ODQA

systems often assume to access an external text corpus (e.g., Wikipedia) as an external

knowledge source. Due to the large scale of such textual knowledge sources (e.g., 20GB for

Wikipedia), it cannot be encoded in the model parameters. Therefore, most works retrieve

relevant passages as knowledge and thus named Open-Book models [RRS20], with an analogy

of referring to textbooks during an exam. Another line of Closed-book models [RRS20]

assume knowledge could be stored implicitly in parameters of Language Models (LM, e.g.

BERT [Dev+19a] and T5 [Raf+20]). These LMs directly generate answers without retrieving

from an external corpus and thus benefit from faster inference speed and simpler training.

However, current LMs still miss a large portion of factual knowledge [PWS20; LSR21], and

are not competitive with Open-Book models.

To improve the knowledge coverage of LM, one natural choice is to leverage knowledge

stored in Knowledge Graph (KG, e.g. FreeBase [Bol+08] and WikiData [VK14]), which
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explicitly encodes world knowledge via relational triplets between entities. There are several

good properties of KG: 1) a KG triplet is a more abstract and compressed representation

of knowledge than text, and thus KG could be stored in memory and directly enhance LM

without using an additional retrieval model; 2) the structural nature of KG could support

logical reasoning [RHL20] and infer missing knowledge through high-order paths [LMC11;

Das+18]. Taking the question “what cheese is used to make the desert cannoli?” as an

example, even if this relational fact is missing in KG, we could still leverage high-order

relationships, e.g., both Ricotta Cheese and Cannoli are specialties in Italy, to infer the

answer “Ricotta Cheese.”

In light of the good properties of KG, there are several efforts to build Knowledge Base

Question Answering (KBQA) systems. As is illustrated in Figure 3.1(a), most KBQA

models use LM as a parser to map textual questions into a structured form (e.g., SQL

query or subgraph), and then based on KG, the queries could be executed by symbolic

reasoning [Ber+13] or neural reasoning (e.g. Graph Neural Networks) [SBC19] to get the

answer. Another recent line of research [Ver+21; Yu+20a] tries to encode the knowledge

graph as the memory into LM parameters. However, for most methods discussed above, LM

is not interacting with KG to correctly understand the question, and the answer is usually

restricted to a node or edge in KG.

In this paper, we propose knOwledge REasOning empowered Language Model (OreoLM),

a model architecture that can be applied to Transformer-based LMs to improve Closed-Book

ODQA. As is illustrated in Figure 3.1(b), the key component is the Knowledge Interaction

Layers (KIL) inserted amid LM layers, which is like cream filling within two waffles, leading

to our model’s name Oreo. KIL interacts with a KG reasoning module, in which we main-

tain different reasoning paths for each entity in the question. We formulate the retrieval

and reasoning process as a contextualized random walk over the KG, starting from the

in-context entities. Each KIL is responsible for one reasoning step. It first predicts a relation

distribution for every in-context entity, and then the KG reasoning module traverses the

graph following the predicted relation distribution. The reasoning result in each step is
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summarized as a weighted averaged embedding over the retrieved entities from the traversal.

By stacking T layers of KIL, OreoLM can retrieve entities that are T -hop away from in-

context entities and help LM to answer open questions that require out-of-context knowledge

or multi-hop reasoning. The whole procedure is fully differentiable, and thus OreoLM

learns and infers in an end-to-end manner. We further introduce how to pre-train OreoLM

over unlabelled Wikipedia corpus. In addition to the salient entity span masking objective,

we introduce two self-supervised objectives to guide OreoLM to learn better entity and

relation representations and how to reason over them.

We test OreoLM with RoBERTa and T5 as our base LMs. By evaluating on several

single-hop ODQA datasets in closed-book setting, we show that OreoLM outperforms

existing baselines with fewer model parameters. Specifically, OreoLM helps more for

questions with missing relations in KG, and questions that require multi-hop reasoning. We

further show that OreoLM can serve as a backbone for open-book setting and achieves

comparable performance compared with the state-of-the-art QA systems with dedicated

design. In addition, OreoLM has better interpretability as it can generate reasoning paths

for the answered question and summarize general relational rules to infer missing relations.

This key contributions are as follows:

1:1:1. We propose OreoLM to integrate symbolic knowledge graph reasoning with neural

LMs. Different from prior works, OreoLM can be seamlessly plugged into existing

LMs.

2. We pretrain OreoLM with RoBERTa and T5 to on the Wikipedia corpus. OreoLM

can bring significant performance gain on ODQA.

3. OreoLM offers interpretable reasoning paths for answering the question and high-

order reasoning rules as rationales.
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3.2 Preliminaries and Related Work

Open-Domain Question Answering (ODQA) gives QA model a single question

without any context and asks the model to infer out-of-context knowledge. Following the

pioneering work by Chen, Fisch, Weston, and Bordes [Che+17], most ODQA systems

assume the model can access an external text corpus (e.g. Wikipedia). Due to the large

scale of web corpus (20GB for Wikipedia), it could not be simply encoded in the QA model

parameters, and thus most works propose a Retrieval-Reader pipeline, by firstly index

the whole corpus and use a retriever model to identify which passage is relevant to the

question; then the retrieved text passage concatenate with question is re-encoded by a

seperate reader model (e.g., LM) to predict answer. As the knowledge is outside of model

parameter, Roberts, Raffel, and Shazeer [RRS20] defines these methods as Open-book, with

an analogy to referring textbooks during exam. Closed-book QA models (mostly a single LM)

try to answer open questions without accessing external knowledge. This setting is much

harder as it requires LM to memorize all pertinent knowledge in its parameters, and even

recent LMs with much larger model parameters is still not competitive to state-of-the-art

Open-book models.

Knowledge-augmented Language Models explicitly incorporate external knowledge

(e.g. knowledge graph) into LM [Yu+20c]. Overall, these approaches can be grouped into two

categories: The first one is to explicitly inject knowledge representation into language model

pre-training, where the representations are pre-computed from external sources [Zha+19c;

Liu+21; HSC21]. For example, ERNIE [Zha+19c] encodes the pre-trained TransE [Bor+13]

embeddings as input. The second one is to implicitly model knowledge information into

language model by performing knowledge-related tasks, such as entity category predic-

tion [Yu+20a] and graph-text alignment [Ke+21]. For example, JAKET [Yu+20a] jointly

pre-trained both the KG representation and language representation by adding entity

category and relation type prediction self-supervised tasks.

There also exists several QA works using KG to help ODQA. For example, Asai,
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Hashimoto, Hajishirzi, Socher, and Xiong [Asa+20] and Min, Chen, Zettlemoyer, and

Hajishirzi [Min+19] expand the entity graph following wikipedia hyperlinks or triplets

in knowledge base. Ding, Zhou, Chen, Yang, and Tang [Din+19] extract entities from

current context via entity-linking and turn them into a cognitive graph, and a graph neural

network is applied on top of it to extract answer. Dhingra, Zaheer, Balachandran, Neubig,

Salakhutdinov, and Cohen [Dhi+20] and Lin, Sun, Dhingra, Zaheer, Ren, and Cohen

[Lin+21] construct an entity-mention bipartite graph and then model the QA reasoning

as graph traversal by filtering only the contexts that are relevant to the question. Lin,

Chen, Chen, and Ren [Lin+19], Feng, Chen, Lin, Wang, Yan, and Ren [Fen+20] and

Yasunaga, Ren, Bosselut, Liang, and Leskovec [Yas+21] parse the question into a sub-graph

of knowledge base, and apply graph neural networks as reasoner for extracting one of the

entities as the answer.

To encode knowledge (significantly smaller than the web corpus) as memory into LM

parameter, a line of works try compressed knowledge including QA pairs [Che+22a; Lew+21;

Yu+22c], entity embedding [Fév+20] and reasoning cases [Das+21; Das+22]. There’s also

several works utilizing Knowledge Graph (KG) to augment LM. FILM [Ver+21] turns

KG triplets into memory. Given a question, LM retrieves most relevant triplet as answer.

GreaseLM [Zha+22c] propose to interact LM with KG via a interaction node.

Preliminary We denote a Knowledge Graph KG =
(
E ,R,A = {Ar}r∈R

)
, where each

e ∈ E and r ∈ R is entity node and relation label. Ar ∈ {0, 1}|E|×|E| is a sparse adjacency

matrix indicating whether relation r holds between a pair of entities. The task of knowledge

graph reasoning aims at answering a factoid query (s, r, ?), i.e., which target entity has

relation r with the source entity s. If KG is complete, we could simply get answers by

checking the adjacency matrix, i.e., {∀t : Ar[s, t] = 1}. For incomplete KG where many

relational facts are missing, path-based reasoning approaches [LMC11; XHW17; Das+18]

have been proposed to answer the one-hop query via finding multi-hop paths. For example,

to answer the query (s,Mother, ?), a path s
Father−−−→ j

Wife−−→ t could reach the target answer t.
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Figure 3.2: Model architecture of OreoLM. Three key procedures are highlighted in
red dotted box: 1) Relation Prediction (Sec. 3.3.1.1): Knowledge Interaction Layers
(KIL) predicts relation action for each entity mention. 2) One-step State Transition
(Sec. 3.3.1.2): Based on the predicted relation, KG re-weights each graph and conduct con-
textualized random walk to update entity distribution state. 3) Knowledge Integration
(Sec. 3.3.2): An weighted aggregated entity embedding is added into a placeholder token as
retrieved knowledge.

In this paper we try to integrate symbolic KG reasoning into neural LMs and help it deal

with ODQA problems.

3.3 Methodology

We illustrate the overall architecture of OreoLM in Figure 5.2. All the light blue blocks

are our added components to support KG reasoning, while the dark blue Transformer

layers are knowledge-injected LM. The key component of OreoLM for conducting KG

reasoning is the Knowledge Interaction Layers (KIL), which are added amid LM layers to

enable deeper interaction with the KG.

Given a question q = “The Bauhaus represented Germany’s recovery from which event?”,

QA model needs to extract knowledge about all n in-context entity mentions M = {mi}ni=1,
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e.g., the history of “Germany” at the time when “Bauhaus” is founded, to get the answer

a = “World War I”. Such open-domain Q&A can be abstracted as P (a|q,M).

Starting from each mentioned entity mi, we desire the model to learn to walk over the

graph to retrieve relevant knowledge and form a T -length reasoning path for answering

this question, where T is a hyper-parameter denote the longest reasoning path required to

answer the questions. We define each reasoning path starting from the entity mention mi

as a chain of entities (states) random variables ρi = {eti}Tt=0, where each mentioned entity is

the initial state, i.e., e0i = mi. The union of all paths for this question is defined as ϱ = {ρi},

which contains the reasoning paths from each mentioned entity to answer the question.

OreoLM factorizes P
(
a|q,M

)
by incorporating possible paths ϱ as a latent variable,

yielding:

P
(
a|q,M

)
=
∑

ϱ
P
(
ϱ|q, {mi}ni=1

)
·P
(
a|q,M,ϱ

)
=
∑

ϱ

( n∏
i=1

P
(
ρi|q,mi

))
·P
(
a|q, {mi, ρi}ni=1

)
=
∑

ϱ

( n∏
i=1

T∏
t=1

P
(
eti|q, e<ti

)︸ ︷︷ ︸
KG Reasoning (3.3.1)

)
P
(
a|q, {e0:Ti }ni=1

)
︸ ︷︷ ︸

knowledge-injected LM (3.3.2)

We assume (1) reasoning paths starting from different entities are generated indepen-

dently; and (2) reasoning paths can be generated autoregressively.

In this way, the QA problem can be decomposed into two entangled steps: 1) KG

Reasoning, which autoregressively walks through the graph to get a path ρi starting from

each entity mention mi; and 2) knowledge-injected LM, which benefits from the reasoning

paths to obtain the out-context knowledge for answer prediction.

The relational path ρi in KG Reasoning requires the selection of next entity eti at each

step t. We further decompose it into two steps: 1.a) relation prediction, in which LM is

involved to predict the next-hop relation based on the current state and context; and 1.b)

38



the non-parametric state transition, which is to predict the next-hop entity based on the

KG and the predicted relation. Formally:

P
(
eti|q, e<t

i

)︸ ︷︷ ︸
KG Reasoning (3.3.1)

=
∑
r

Prel

(
rti |q, e<t

i

)︸ ︷︷ ︸
relation prediction (3.3.1.1)

· Pwalk

(
eti|rti , e<t

i

)︸ ︷︷ ︸
contextualized random walk (3.3.1.2)

We keep track of the entity distribution at each step t via the probability vector1

π
(t)
i ∈ R|E|, with π

(t)
i [e] being the probability of staying at entity e, i.e., P

(
eti = e|q, e<ti

)
.

We highlight the three procedures in red dotted box in Figure 5.2. We take the first

reasoning step starting from entity mention “Bauhaus” as an example. In the first red box

within KIL, we predict which relation action should be taken for entity “Bauhaus”, and send

the prediction (e.g. “Founded”) to KG. In the second red box, KG re-weights the graph

and conducts contextualized random walk to update entity distribution, where “Walter”

has the highest probability. Finally, weighted by the entity distribution, an aggregated

entity embedding is sent back to KIL and added into a placeholder token as the knowledge,

so the later LM layer knows to focus on the retrieved “Walter”. We introduce these steps in

the following.

Input Initially, we first identify all N entity mentions {mi}Ni=1 in the input question q as

well as the corresponding KG entities2.. For each mention mi we add three special tokens

as the interface for Knowledge Interaction Layers (KIL) to send instruction and receive

knowledge: we add a [S-ENT] token before, and [REL], [T-ENT] tokens after each entity

mention mi. KIL can be flexibly inserted into arbitrary LM intermediate layer. By default,

we just insert each KIL every N Transformer-based LM layers, thus the input to the t-th

KIL are contextualized embeddings of each token k as LM
(t)
k , including added special tokens.

1Throughout the paper, all vectors are row-vectors

2For Wikipedia pretraining, we use the ground-truth entity label as one-hot initialization for π0
i . For

downstream tasks we use GENRE [Cao+21] to get top 5 entity links.
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3.3.1 LM involved KG Reasoning

We first introduce the reasoning process P
(
eti|q, e<ti

)
=
∑

rP
(
rti |q, e<ti

)
·P
(
eti|rti , e<ti

)
.

3.3.1.1 Relation Prediction.

For each entity mention mi, we desire to predict which relation action should take rti as

instruction to transit state. We define the predicted relation probability vector b
(t)
i =

Prel

(
rti |q, e<ti

)
∈ R|R| representing the relation distribution to guide walking through the

graph. Denote the corresponding [REL] token as REL[i] (and similarly for other special

tokens). The contextual embedding LM
(t)
REL[i] encode the relevant information in question q

that hints next relation. We maintain a global relation key memory Krel ∈ R|R|×d storing

each relation’s d-dimentional embedding. To calculate similarity, we first get relation query

Q
(t)
REL[i] by projecting relation token’s embedding into the same space of key memory via a

projection head Q-Proj3 followed by a LayerNorm (abbreviated as LN), and then calculate

dot-product similarity followed by softmax:

Q
(t)
REL[i] = LN(t)

(
Q-Proj(t)(LM

(t)
REL[i])

)
, (3.1)

b
(t)
i = Prel

(
rti |q, e<ti

)
= Softmax

(
Q

(t)
REL[i] K

T
rel

)
. (3.2)

Note that the relation queries LM
(t)
REL[i] are different for every mentionmi and reasoning step

t depending on the context, and thus the the relation distributions b
(t)
i gives contextualized

predictions based on the question q. The predicted relations are sent to the knowledge

graph reasoning module as instruction to conduct state transition.

3We denote a non-linear MLP projection as X-Proj(h) = WX
2 σ(WX

1 h+ b1) + b2, where X have different
instantiations.
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3.3.1.2 Contextualized KG Random Walk

Next, we introduce how we conduct state transition Pwalk

(
eti|rti , e<ti

)
. One classic transition

algorithm is random walk, which is a special case of markov chain, i.e. the transition

probability only depends on previous state. Consider a state at entity s, the probability

walking to target t is 1
deg(s)

if A[s, t] = 1. Based on it, we define the Markov transition

matrix for random walk as Mrw = D−1
A A, where the degree matrix DA ∈ R|E|×|E| is defined

as the diagonal matrix with the degrees deg(1), . . . , deg(|E|) on the diagonal. With random

walk Markov matrix Mrw we can transit the state distribution as: π(t) = π(t−1)M , The

limitation of random walk is that the transition strategy is not dependent on the question

q. We thus propose a Contextualized Random Walk (w).

Based on the predicted relation distribution b
(t)
i , we calculate a different weighted

adjacency matrix Ã
(t)
i ∈ R|E|×|E| by adjusting the edge weight:

Ã
(t)
i =

∑
r∈R

wr · b(t)
i,r · Ar, (3.3)

Mcrw,i
(t) = D−1

Ã
(t)
i

Ã
(t)
i , ∀i ∈ [1, N ]. (3.4)

where wr is a learnable importance weight for relation r that helps solving downstream

tasks, and b
(t)
i,r is the probability corresponding to relation r in b

(t)
i . With the transition

matrix Mcrw,i
(t), the state transition is defined as π

(t)
i = π

(t−1)
i M

(t)
crw,i.

wallows each reasoning path ρi to have its transition matrix. However, as the total

number of entity nodes |E| could be huge (e.g., 5M for WikiData), we cannot afford to

update the entire adjacency matrix for every in-batch mention. We thus adopt a scatter-

gather pipeline to implement graph walking as shown in Algorithm 3. We first gather the

entity and relation probability to each edge, and then scatter the probability to target

nodes. This allows us to simultaneously conduct message passing with modified adjacency

weight Ãti for all entity mention mi in parallel.

The complexity is # of in-batch entities times # of edges in T -hop subgraph starting

from these entities, i.e., O(n×#edge), and thus this operation is not expensive.
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Algorithm 3 Pytorch Pseudocode of CRW

def ContextualizedRandomWalk(

i_init , KG, # initial entity index and Graph

w_deg , w_rel , # inv(degree) and relation weights

p_ent , p_rel # entity and predicted relation dis -

# tribution tensor @ t-th step.

): -> FloatTensor

# Get <src , rel , tgt > edge list of k-hop subgraph

i_src , i_rel , i_tgt = k_hop_subgraph(i_init , KG)

# Gather entity and relation probability to edge

p_src = (p_ent * w_deg)[:, i_src] # N x n_edge

p_rel = (p_rel * w_rel)[:, i_rel] # N x n_edge

p_edge = l1_normalize(p_src * p_rel , dim =1)

# Scatter edge probability to target node

p_ent = scatter_add(src=p_edge , idx=i_tgt , dim =1)

return p_ent #(t+1)-th step's entity distribution

3.3.2 Knowledge-Injected LM

After we get the updated entity distribution π
(t)
i , we want to inject such information back

to the LM without harming its overall structure. We maintain a global entity embedding

value memory Vent ∈ R|E|×d storing entity embeddings. We only consider the entities within

the sampled local subgraph in each batch. We thus get an entity index list I as the query to

sparsely retrieve a set of candidate entity embeddings and then aggregate them weighted by

entity distribution and embedding table. We then use a Value Projection block to map the

aggregated entity embedding into the space of LM, and then directly add the transformed

embedding back to the output of T-ENT.

V
(t)
i = V-Proj(t)

(
π

(t)
i · Vent[I]

)
, (3.5)

L̂M
(t)

T-ENT[i] = LN(t)
(
LM

(t)
T-ENT[i] + V

(t)
i

)
. (3.6)

Then, we just take all L̂M
(t)

T-ENT as input to next Transformer-based LM layer to learn the

interaction between the retrieved knowledge with in-context words via self-attention.

By repeating the KIL for T times, the final representation L̂M
T
is conditioned on the

reasoning paths ρi = e0:Ti , which reaches entities that are T -hop away from initial entity

mi in the question. Finally, we can predict the answer of open questions P
(
a|q, {e0:Ti }ni=1

)
by taking knowledge-injected representation L̂M

T
for span extraction, entity prediction or
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direct answer generation.

3.3.3 Pre-Train OreoLM to Conduct Reasoning

The design of OreoLM allows end-to-end training given QA datasets. However, due to the

small coverage of knowledge facts for existing QA datasets, we need to pretrain OreoLM

on a large-scale corpus to get good entity embeddings.

Salient Span Masking One straightforward approach is to use Salient Span Masking

(SSM) objective [Guu+20] masks out entities or noun tokens requiring specific out-of-

context knowledge. We mainly mask out entities for guiding OreoLM to reason. Instead

of randomly masking entity mentions, we explicitly sample a set of entity IDs and mask

every mentions linking to these entities. This could prevent the model copy the entity from

the context to fill in the blank. We also follow [Yan+19c] to mask out consecutive token

spans. We then calculate the cross-entropy loss on each salient span masked (SSM) token

as LSSM .

3.3.3.1 Weakly Supervised Training of KIL

Ideally, OreoLM can learn all the entity knowledge and how to access the knowledge graph

by solely optimizing LSSM . However, without a good initialization of entity and relation

embeddings, KIL makes a random prediction, and the retrieved entities by KG reasoning

are likely to be unrelated to the question. In this situation, KIL does not receive meaningful

gradients to update the parameters, and LM learns to ignore the knowledge. To avoid this

cold-start problem and provide entity and relation embedding a good initialization, We

utilize the following two external signals as self-supervised guidance.

Entity Linking Loss To initialize the large entity embedding tables in Vent, we use other

entities that are not masked as supervision. Similar to Févry, Baldini Soares, FitzGerald,

Choi, and Kwiatkowski [Fév+20], we force the output embedding of [S-ENT] token before

43



Figure 3.3: Pre-training sample w/ golden reasoning path.

the first KIL followed by a projection head E-Proj to be close to its corresponding entity

embedding:

ES-ENT[i] = LN
(
E-Proj(LM

(1)
S-ENT[i])

)
,

P
(0)
ent

(
e|mi, q

)
= Softmax

(
ES-ENT[i] Vent[I]

T
)
,

Lent =
∑

mi

− logP
(0)
ent

(
e|mi, q

)
· π0

i [I].

Similar to Section 3.3.2, we only consider entities within the batch, denoted by index I. This

contrastive loss guides each entity’s embedding Vent[e] closer to all its previously mentioned

contextualized embedding, and thus memorizes those context as a good initialization for

later knowledge integration.

Weakly Supervised Relation Path Loss Entity mentions within each Wikipedia

passage are naturally grounded to WikiData KG. Therefore, after we mask out several

entities, we can utilize the KG to get all reasoning paths from other in-context entities to

the masked entities as weakly supervised relation labels.
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Name Number dimension #param (M)

Number of Entity 4,947,397 128 633
Number of Relation 2,008 768 1.5
Number of Edges 45,217,947 - 47

Table 3.1: Statistics and parameter of KG Memory.

Formally, we define aGrounded Dependency GraphDG, which contains all reasoning

paths within T -step from other in-context entities to masked entities, and then define

RDG(mi, t) as the set of all relations over every edges for entity mention mi at t-th hop.

Based on it, we define the weakly supervised relation label q
(t)
i ∈ R|R| as the probabilistic

vector which uniformly distributed on each relation in set. Note that we call uniformly-

weighted q
(t)
i as weakly supervised because 1) some paths lead to multiple entities rather

than only the target masked entity; 2) the correct relation is dependent on the context.

Therefore, q
(t)
i only provides all potential candidates for reachability, and more fine-grained

signals for reasoning should be learned from unsupervised LSSM . We adopt a list-wise

ranking loss to guide the model to assign a higher score on these relations than others.

Lrel =
∑

mi

∑T

t=1
− logP

(t)
rel

(
r|mi, q

)
· q(t)i .

Overall, Lent and Lrel provide OreoLM with good initialization of the large KG memory.

Afterward, via optimizing LSSM , the reasoning paths that provide informative knowledge

receive a positive gradient, guiding OreoLM to reason.

3.4 Experiments

The proposed KIL layers can be pugged into most Transformer-based Language Models

without hurting its original structure. In this paper, we experiment with both encoder-

based LM, i.e. RoBERTa-base (d = 768, l = 12), and encoder-decoder LM, i.e. T5-base

(d = 768, l = 12) and T5-large (d = 1024, l = 24). For all LMs, add 1 KIL layer or 2 KIL

layers to the encoder layers. The statistics of KG are shown in Table 3.1. Altogether,
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Models #param NQ WQ TQA ComplexWQ HotpotQA

T5 (Base) 0.22B 25.9 27.9 29.1 11.6 22.8
+ OreoLM (T=1) 0.23B + 0.68B 28.3 30.6 32.4 20.8 24.1
+ OreoLM (T=2) 0.24B + 0.68B 28.9 31.2 33.7 23.7 26.3

T5 (Large) 0.74B 28.5 30.6 35.9 16.7 25.3
+ OreoLM (T=1) 0.75B + 0.68B 30.6 32.8 39.1 24.5 28.2
+ OreoLM (T=2) 0.76B + 0.68B 31.0 34.3 40.0 27.1 31.4

T5-3B [RRS20] 3B 30.4 33.6 43.4 - 27.8
T5-11B [RRS20] 11B 32.6 37.2 50.1 - 30.2

Table 3.2: Closed-Book Generative QA performance of Encoder-Decoder LM on Single-
and Multi-hop Dataset.

it takes about 0.67B parameter for KG memory, which is affordable to load as model

parameter. We pre-train all LMs using the combination of LSSM , Lent and Lrel for 200k

steps on 8 V100 GPUs, with a batch size of 128 and default optimizer and learning rate in

the original paper, taking approximately one week to finish pre-training of T5-large model,

and 1-2 days for base model.

3.4.1 Evaluate for Closed-Book QA

OreoLM is designed for improving Closed-Book QA, so we first evaluate it in this setting.

Generative QA Task Following the hyperparameters and setting in [RRS20], we directly

fine-tune the T5-base and T5-large augmented by our OreoLM on the three single-hop

ODQA datasets: Natural Question (NQ) [Kwi+19], WebQuestions (WQ) [Ber+13]

and TriviaQA (TQA) [Jos+17]. To test OreoLM’s ability to solve complex questions,

we also evaluate on two multi-hop QA datasets, i.e. Complex WQ [TB18] and Hot-

potQA [Yan+18].

Experimental results are shown in Table 3.2. We use Exact Match accuracy as the

metric for all the datasets. On the three single-hop ODQA datasets, OreoLM with 2 KIL

blocks achieves 3.3 absolute accuracy improvement to T5-base, and 3.4 improvement to

T5-large. Compared with T5 model with more model parameters (e.g., T5-3B and T5-11B),
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our T5-large augmented by OreoLM could outperform T5-3B on NQ and WQ datasets.

In addition, OreoLM could use the generated reasoning path to interpret the model’s

prediction.

For the two multi-hop QA datasets, the performance improvement brought by OreoLM

is more significant, i.e., 7.8 to T5-base and 8.2 to T5-large. Notably, by comparing the

T5-3B and T5-11B’s performance on HotpotQA (we take results from [Che+22a]), T5-large

augmented by OreoLM achieves 1.2 higher than T5-11B. This shows that OreoLM is

indeed very effective for improving Closed-Book QA performance, especially for complex

questions.

Entity Prediction Task Encoder-based LM (i.e. RoBERTa) in most cases cannot be

directly used for Closed-Book QA, but more serve as reader to extract answer span. However,

Verga, Sun, Baldini Soares, and Cohen [Ver+21] propose a special evaluation setting as

Closed-Book Entity Prediction. They add a single [MASK] token after the question, and use

its output embedding to classify WikiData entity ID. This restricts that answers must be

entities that are covered by WikiData, which they call WikiData-Answerable questions.

We follow Verga, Sun, Baldini Soares, and Cohen [Ver+21] to use such reduced version of

WebQuestionsSP (WQ-SP) [Yih+15] and TriviaQA (TQA) as evaluation dataset, and

finetune the RoBERTa (base) model augmented by OreoLM to classify entity ID. We

mainly compare OreoLM with EaE [Fév+20] and FILM [Ver+21], which are two KG

memory augmented LM. We also run experiments on KEPLER [Wan+21a], a RoBERTa

model pre-trained with knowledge augmented task.

Experimental results are shown in Table 3.3. Similar to the observation reported

by Verga, Sun, Baldini Soares, and Cohen [Ver+21], adding KG memory for this entity

prediction task could significantly improve over vanilla LM, as most of the factual knowledge

required to predict entities are stored in KG. By comparing with FILM [Ver+21], which is

the state-of-the-art model in this setup, OreoLM with reasoning step (T = 2) outperforms

FILM by 2.9, with smaller memory consumption.
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Models #param (B) WQ-SP TQA

EaE [Fév+20] 0.11 + 0.26 62.4 24.4
FILM [Ver+21] 0.11 + 0.72 78.1 37.3
KEPLER [Wan+21a] 0.12 48.3 24.1

RoBERTa (Base) 0.12 43.5 21.3
+ OreoLM (T=1) 0.12 + 0.68 80.1 39.7
+ OreoLM (T=2) 0.13 + 0.68 80.9 40.3

Ablation Studies

RoBERTa + Concat KB + LSSM 0.12 47.1 22.6

+ OreoLM (T=2) w/o PT 0.13 + 0.68 46.9 22.7
w. LSSM 0.13 + 0.68 51.9 26.8
w. LSSM + Lent 0.13 + 0.68 68.4 35.7

Table 3.3: Closed-Book Entity Prediction performance of Encoder LM on WikiData-
Answerable Dataset.

Figure 3.4: Testing the reasoning capacity of OreoLM to infer missing relations.
On the left, the barplot shows the transfer performance on EQ before and after removing
relation edges, OreoLM (T = 2) is less influenced. On the right shows reasoning paths
(rules) automatically generated by OreoLM for each missing relation.

3.4.2 Analyze KG Reasoning Module

In our previous studies, we find that using a higher reasoning step, i.e. T = 2, generally

performs better than T = 1. We hypothesize that the KG we use has many missing

one-hop facts, and high-order reasoning helps recover them and empowers the model to

answer related questions. To test whether OreoLM indeed can infer missing facts, we use

EntityQuestions (EQ) [Sci+21], which is a synthetic dataset by mapping each WikiData

triplet to natural questions. We take RoBERTa-base model augmented by OreoLM trained

on NQ as entity predictor and directly test its transfer performance on EQ dataset without

further fine-tuning.

To test whether OreoLM could recover missing relation, we mask all the edges corre-
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Models #param (B) NQ TQA

Graph-Retriever [Min+19] 0.11 34.7 55.8
REALM [Guu+20] 0.33 + 16 40.4 -

DPR [Kar+20] + BERT 0.56 + 16 41.5 56.8
+ OreoLM (DPR, T=2) 0.57 + 17 43.7 58.5

FiD (Base) = DPR + T5 (Base) 0.44 + 16 48.2 65.0
+ OreoLM (T5, T=2) 0.45 + 17 49.3 67.1
+ OreoLM (DPR & T5, T=2) 0.46 + 17 51.1 68.4

FiD (Large) = DPR + T5 (Large) 0.99 + 16 51.4 67.6
+ OreoLM (T5, T=2) 0.99 + 17 52.4 68.9
+ OreoLM (DPR & T5, T=2) 1.00 + 17 53.2 69.5

KG-FiD (Base) [Yu+22a] 0.44 + 16 49.6 66.7
KG-FiD (Large) [Yu+22a] 0.99 + 16 53.2 69.8
EMDR2 [Sac+21a] 0.44 + 16 52.5 71.4

Table 3.4: Open-Book QA Evaluation.

sponding to each relation separately and make the prediction again. The average results

before and after removing edges are shown on the left part of Figure 3.4. When we remove

all the edges to each relation, OreoLM with T = 1 drops significantly, while T = 2 could

still have good accuracy. To understand why OreoLM (T = 2) is less influenced, in the

right part of Figure 3.4, we generate a reasoning path for each relation by averaging the

predicted probability score at each reasoning step and pick the relation with the top score.

For example, to predict the “Capital” of a country, the model learns to find the living

place of the president, or the location of a country’s central bank. Both are very reasonable

guesses. Many previous works [XHW17] could also learn such rules in an ad-hoc manner

and require costly searching or reinforcement learning. In contrast, OreoLM could learn

such reasoning capacity for all relations end-to-end during pre-training.

Ablation Studies We conduct several ablation studies to evaluate which model design

indeed contributes to the model. As shown in the bottom blocks in Table 3.3, we first

remove the KG reasoning component and provide RoBERTa base model via concatenated

KB triplets and train such a model using LSSM over the same WikiDataset. Such a
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model’s results are close to the KEPLER results but much lower than other models with

explicit knowledge memory. We further investigate the role of pre-training tasks. Without

pre-training, the OreoLM only performs slightly better than RoBERTa baseline, due to

the cold-start problem of entity and relation embedding. We further show that removing

Lent and Lent could significantly influence final performance. The current combination is

the best choice to train OreoLM to reason.

3.4.3 Evaluate for Open-Book QA

Though OreoLM is designed for Closed-Book QA, the learned model can serve as backbone

for Open-Book QA. We take DPR and FiD models as baseline. For DPR retriever, we

replace the question encoder to RoBERTa + OreoLM, fixing the passage embedding

and only finetune on each downstream QA dataset. For FiD model, we replace the T5 +

OreoLM. We also changed the retriever with our tuned DPR. Results in Table 3.4 show

that by augmenting both retriever and generator, OreoLM improves a strong baseline

like FiD, for about 3.1% for Base and 1.8% for Large, and it outperforms the very recent

KG-FiD model for 1.6% in base setting, and achieve comparative performance in a large

setting. Note that though our results is still lower than some recent models (e.g., EMDR2),

these methods are dedicated architecture or training framework for Open-Book QA. We

may integrate OreoLM with these models to further improve their performance.

3.5 Summary

We presented OreoLM, a novel model that incorporates symbolic KG reasoning with

existing LMs. We showed that OreoLM can bring significant performance gain to open-

domain QA benchmarks, both for closed-book and open-book settings, as well as encoder-

only and encoder-decoder models. Additionally, OreoLM produces reasoning paths that

helps interpret the model prediction. In future, we’d like to improve OreoLM by training

to conduct more reasoning steps, supporting locial reasoning, and apply OreoLM to a
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broader range of knowledge-intensive NLP tasks.
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Part II

Self-Supervised Learning from

Symbolic Knowledge
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CHAPTER 4
GPT-GNN: Generative Pre-Training

of Graph Neural Networks

The second attempt was to utilize symbolic knowledge as a self-supervised pre-training

signal. The goal of the pre-training is to empower GNNs to capture the intrinsic structural

and semantic properties of the graph so that it can easily generalize to any downstream tasks

on this graph with a few fine-tuning steps. To achieve this goal, we propose GPT-GNN,

which models the graph distribution by directly learning to reconstruct the attributed

graph. We factorize the likelihood of graph generation into two components: 1) attribute

generation, and 2) edge generation. By modeling both components, GPT-GNN captures

the inherent dependency between node attributes and graph structure during the generative

process. We also propose an efficient large-scale GNN pre-training framework to optimize

the generation loss, with which we only need to run GNN once without information

leakage. Comprehensive experiments on the billion-scale academic graph and Amazon

recommendation data demonstrate that GPT-GNN significantly outperforms state-of-the-

art base GNN models without pre-training by up to 9.1% across different downstream tasks.

In addition, the performance of GPT-GNN with only 10% data is comparable to direct

supervised learning with 100% data. This shows the effectiveness of pre-training, especially

when the label is scarce.
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Figure 4.1: The pre-training and fine-tuning flow of GPT-GNN: First, a GNN is pre-trained
with the self-supervised learning task—attribute and structure generations. Second, the
pre-trained model and its parameters are then used to initialize models for downstream
tasks on the input graph or graphs of the same domain.

4.1 Introduction

The breakthroughs in graph neural networks (GNNs) have revolutionized graph mining

from structural feature engineering to representation learning [Bru+13; Gil+17b; KW17].

Commonly, GNNs take a graph with attributes as input and apply convolutional filters to

generate node-level representations layer by layer. Often, a GNN model is trained with

supervised information in an end-to-end manner for one task on the input graph. That

said, for different tasks on the same graph, it is required to have enough and different

sets of labeled data to train dedicated GNNs corresponding to each task. Usually, it is

arduously expensive and sometimes infeasible to access sufficient labeled data for those

tasks, particularly for large-scale graphs. Take, for example, the author disambiguation task

in academic graphs [Tan+08], it has still faced the challenge of the lack of ground-truth to

date.

Similar issues had also been experienced in natural language processing (NLP). Recent

advances in NLP address them by training a model from a large unlabeled corpus and

transferring the learned model to downstream tasks with only a few labels—the idea of

pre-training. For example, the pre-trained BERT language model [Dev+19b] is able to
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learn expressive contextualized word representations by reconstructing the input text—

next sentence and masked language predictions, and thus it can significantly improve the

performance of various downstream tasks. Additionally, similar observations have also been

demonstrated in computer vision [OLV18; He+19; Che+20a].

Inspired by these developments, we propose to pre-train graph neural networks for graph

mining. The goal of the pre-training is to empower GNNs to capture the structural and

semantic properties of a input graph, so that it can easily generalize to any downstream

tasks with a few fine-tuning steps on the graphs within the same domain. To achieve this

goal, we propose to model the graph distribution by learning to reconstruct the input

attributed graph.

To pre-train GNNs based on graph reconstruction, one straightforward option could

be to directly adopt the neural graph generation techniques [KW16; You+18; Lia+19].

However, they are not suitable for pre-training GNNs by design. First, most of them

focus only on generating graph structure without attributes, which does not capture the

underlying patterns between node attributes and graph structure—the core of convolutional

aggregation in GNNs. Second, they are designed to handle small graphs to date, limiting

their potential to pre-train on large-scale graphs.

In this work, we design a self-supervised attributed graph generation task for GNN

pre-training, with which both the structure and attributes of the graph are modeled. Based

on this task, we present the GPT-GNN framework for generative pre-training of graph

neural networks (Cf. Figure 4.1). The pre-trained GNN on the input graph can be then

used as the initialization of models for different downstream tasks on the same type of

graphs. Specifically, our contributions are illustrated below.

First, we design an attributed graph generation task to model both node attributes

and graph structure. We decompose the graph generation objective into two components:

Attribute Generation and Edge Generation, whose joint optimization is equivalent to

maximizing the probability likelihood of the whole attributed graph. In doing this, the

pre-trained model can capture the inherent dependency between node attributes and graph
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structure.

Second, we propose an efficient framework GPT-GNN to conduct generative pre-training

with the aforementioned task. GPT-GNN can calculate the attribute and edge generation

losses of each node simultaneously, and thus only need to run the GNN once for the

graph. Additionally, GPT-GNN can handle large-scale graphs with sub-graph sampling

and mitigate the inaccurate loss brought by negative sampling with an adaptive embedding

queue.

Finally, we pre-train GNNs on two large-scale graphs—the Open Academic Graph

(OAG) of 179 million nodes & 2 billion edges and Amazon recommendation data of 113

million nodes. Extensive experiments show that the GPT-GNN pre-training framework can

significantly benefit various downstream tasks. For example, by applying the pre-trained

model on OAG, the node classification and link prediction performance is on average lifted

by 9.1% over the state-of-the-art GNN models without pre-training. In addition, we show

that GPT-GNN can consistently improve the performance of different base GNNs under

various settings.

4.2 Preliminaries and Related Work

The goal of pre-training is to allow a model (usually neural networks) to initialize its

parameters with pre-trained weights. In this way, the model can leverage the commonality

between the pre-training and downstream tasks. Recently pre-training has shown superiority

in boosting the performance of many downstream applications in computer vision and

natural language processing. In the following, we first introduce the preliminaries about

GNNs and then review pre-training approaches in graphs and other domains.

Preliminaries of Graph Neural Networks Recent years have witnessed the success of

GNNs for modeling graph data [KW17; Vel+18; HYL17; Zin+c]. A GNN can be regarded

as using the input graph structure as the computation graph for message passing [Gil+17b],
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during which the local neighborhood information is aggregated to get a more contextual

representation. Formally, suppose H
(l)
t is the node representation of node t at the (l)-th

GNN layer, the update procedure from the (l-1)-th layer to the (l)-th layer is:

H
(l)
t ← Aggregate

∀s∈N(t),∀e∈E(s,t)

({
Extract

(
H(l−1)
s ;H

(l−1)
t , e

)})
, (4.1)

where N(t) denotes all the source nodes of node t and E(s, t) denotes all the edges from

node s to t.

There are two basic operators for GNNs, which are Extract(·) and Aggregate(·).

Among them, Extract(·) represents the neighbor information extractor. It uses the target

node’s representation H
(l−1)
t and the edge e between the two nodes as query, and extract

useful information from source node H
(l−1)
s . Aggregate(·) serves as the aggregation

function of the neighborhood information. The mean, sum, and max functions are often

considered as the basic aggregation operators, while sophisticated pooling and normalization

functions can also be designed. Under this framework, various GNN architectures have

been proposed. For example, the graph convolutional network (GCN) proposed by Kipf et

al. [KW17] averages the one-hop neighbor of each node in the graph, followed by a linear

projection and then a non-linear activation. Hamilton et al. [HYL17] propose GraphSAGE

that generalizes GCN’s aggregation operation from average to sum, max and a RNN unit.

Also, there are a bunch of works incorporating the attention mechanism into GNNs. In

general, the attention-based models implement the Extract(·) operation by estimating the

importance of each source node, based on which a weighted aggregation is applied. For

example, Velickovi et al. [Vel+18] propose the graph attention network (GAT), which adopts

an additive mechanism to calculate attention and uses the same weight for calculating

messages. Recently, Hu et al. propose the heterogeneous graph transformer (HGT) [Zin+c]

that leverages multi-head attentions for different relation types to get type-dependent

attentions. The proposed pre-training framework OreoLM can apply to all of these GNN

models.
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Pre-Training for Graphs Previous studies have proposed to utilize pre-training to

learn node representations, which largely belong to two categories. The first category

is usually termed as network/graph embedding, which directly parameterizes the node

embedding vectors and optimizes them by preserving some similarity measures, such as

the network proximity [Tan+15] or statistics derived from random walks [GL16; DCS17;

Qiu+18]. However, the embeddings learned in this way cannot be used to initialize other

models for fine-tuning over other tasks. In contrast, we consider a transfer learning setting,

where the goal is to pre-train a generic GNN that can deal with different tasks.

With the increasing focus on GNNs, researchers have explored the direction of pre-

training GNNs on unannotated data. Kipf et al. propose Variational Graph Auto-

Encoders [KW16] to reconstruct the graph structure. Hamilton et al. propose Graph-

SAGE [HYL17], which can optimize via an unsupervised loss by using random walk based

similarity metric. Velickovic et al. introduce Graph Infomax [Vel+19], which maximizes

the mutual information between node representations obtained from GNNs and a pooled

graph representation. Although these methods show enhancements over purely-supervised

learning settings, the learning tasks can be achieved by forcing nearby nodes to have similar

embeddings, ignoring the rich semantics and higher-order structure of the graph. Our work

proposes to pre-train GNNs by the permutated generative objective, which is a harder

graph task and thus can guide the model to learn more complex semantics and structure of

the input graph.

In addition, there are attempts to pre-train GNNs to extract graph-level representations.

Sun et al. present InfoGraph [Sun+20], which maximizes the mutual information between

graph-level representations obtained from GNNs and the representations of sub-structures.

Hu et al. [Hu+20] introduce different strategies to pre-train GNNs at both node and graph

levels and show that combining them together can improve the performance on graph

classification tasks. Our work is different with them as our goal is to pre-train GNNs over

a single (large-scale) graph and conduct the node-level transfer.
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Pre-Training for Vision and Language Pre-training has been widely used in com-

puter vision (CV) and natural language processing (NLP). In CV, early pre-training

techniques [Gir+14; Don+14b; Pat+16] mostly follow the paradigm of first pre-training

a model on large-scale supervised datasets (such as ImageNet [Den+09]) and then fine-

tuning the pre-trained model on downstream tasks [Gir+14] or directly extracting the

representations as features [Don+14b]. Recently, some self-supervised tasks [OLV18; He+19;

Che+20a] have also been utilized to pre-train vision models. In NLP, Early works have

been focused on learning (shallow) word embeddings [Mik+13a; PSM14] by leveraging the

co-occurrence statistics on the text corpus. More recently, significant progresses have been

made on contextualized word embeddings, such as BERT [Dev+19b], XLNET [Yan+19b]

and GPT [Rad+19]. Take BERT as an example, it pre-trains a text encoder with two

self-supervised tasks in order to better encode words and their contexts. These pre-training

approaches have been shown to yield state-of-the-art performance in a wide range of NLP

tasks and thus used as a fundamental component in many NLP systems.

4.3 Methodology

In this section, we formalize the attributed graph generation task and introduce the

generative pre-training framework (GPT-GNN).

4.3.1 The GNN Pre-Training Problem

The input to GNNs is usually an attributed graph G = (V , E ,X ), where V and E denote

its node and edge sets, and X represents the node feature matrix. A GNN model learns to

output node representations under the supervision of a specific downstream task, such as

node classification. Sometimes there exist multiple tasks on a single graph, and most GNNs

require sufficient dedicated labeled data for each task. However, it is often challenging to

obtain sufficient annotations, in particular for large-scale graphs, hindering the training of a

well-generalized GNN. Therefore it is desirable to have a pre-trained GNN model that can
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generalize with few labels. Conceptually, this model should 1) capture the intrinsic structure

and attribute patterns underlying the graph and 2) thus benefit various downstream tasks

on this graph.

Formally, our goal of GNN pre-training concerns the learning of a general GNN model

fθ purely based on single (large-scale) graph G = (V , E ,X ) without labeled data such that

fθ is a good initialization for various (unseen) downstream tasks on the same graph or

graphs of the same domain. To learn such a general GNN model without labeled data on

the graph, a natural question arises here is: how to design an unsupervised learning task

over the graph for pre-training the GNN model?

4.3.2 The Generative Pre-Training Framework

Recent advances in self-supervised learning for NLP [Dev+19b; Yan+19b] and CV [OLV18;

He+19; Che+20a] have shown that unlabeled data itself contains rich semantic knowledge,

and thus a model that can capture the data distribution is able to transfer onto various

downstream tasks. Inspired by this, we propose GPT-GNN, which pre-trains a GNN by

reconstructing/generating the input graph’s structure and attributes.

Formally, given an input graph G = (V , E ,X ) and a GNN model fθ, we model the

likelihood over this graph by this GNN as p(G; θ)—representing how the nodes in G are

attributed and connected. GPT-GNN aims to pre-train the GNN model by maximizing the

graph likelihood, i.e., θ∗ = maxθ p(G; θ).

Then, the first question becomes how to properly model p(G; θ). Note that most existing

graph generation methods [You+18; Lia+19] follow the auto-regressive manner to factorize

the probability objective, i.e., the nodes in the graph come in an order, and the edges are

generated by connecting each new arriving node to existing nodes. Similarly, we denote a

permutation vector π to determine the node ordering, where iπ denotes the node id of i-th

position in permutation π. Consequently, the graph distribution p(G; θ) is equivalent to
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the expected likelihood over all possible permutations, i.e.,

p(G; θ) = Eπ
[
pθ(X

π, Eπ)
]
,

where Xπ ∈ R|V|×d denotes permutated node attributes and E is a set of edges, while Eπ
i

denotes all edges connected with node iπ. For simplicity, we assume that observing any

node ordering π has an equal probability and also omit the subscript π when illustrating the

generative process for one permutation in the following sections. Given a permutated order,

we can factorize the log likelihood autoregressively—generating one node per iteration—as:

log pθ(X,E) =

|V|∑
i=1

log pθ(Xi, Ei | X<i, E<i). (4.2)

At each step i, we use all nodes that are generated before i, their attributes X<i, and the

structure (edges) between these nodes E<i to generate a new node i, including both its

attribute Xi and its connections with existing nodes Ei.

Essentially, the objective in Eq. 4.2 describes the autoregressive generative process

of an attributed graph. The question becomes: how to model the conditional probability

pθ(Xi, Ei|X<i, E<i)?

4.3.3 Factorizing Attributed Graph Generation

To compute pθ(Xi, Ei|X<i, E<i), while capturing the dependency between the attributes

and structure for each node, we define a variable o to denote the index vector of all the

observed edges within Ei. Thus, Ei,o denotes the observed edges. Similarly, ¬o denotes the

index of all the masked edges, which are to be generated. With this, we can rewrite the

conditional probability as an expected likelihood over all observed edges:

62



pθ(Xi, Ei | X<i, E<i)

=
∑

o
pθ(Xi, Ei,¬o | Ei,o, X<i, E<i) · pθ(Ei,o | X<i, E<i)

=Eo
[
pθ(Xi, Ei,¬o | Ei,o, X<i, E<i)

]
=Eo

[
pθ(Xi | Ei,o, X<i, E<i)︸ ︷︷ ︸

1) generate attributes

· pθ(Ei,¬o | Ei,o, X≤i, E<i)︸ ︷︷ ︸
2) generate edges

]
. (4.3)

This factorization design is able to model the dependency between node i’s attributes

Xi and its associated connections Ei. The first term pθ(Xi | Ei,o, X<i, E<i) denotes the

generation of attributes for node i. Based on the observed edges Ei,o, we gather the

target node i’s neighborhood information to generate its attributes Xi. The second term

pθ(Ei,¬o | Ei,o, X≤i, E<i) denotes the generation of masked edges. Based on both the

observed edges Ei,o and the generated attributes Xi, we generate the representation of the

target node i and predict whether each edge within Ei,¬o exists.

So far, we factorize the attributed graph generation process into a node attribute

generation step and an edge generation step. The question we need to answer here is: How

to efficiently pre-train GNNs by optimizing both attribute and edge generation tasks?

4.3.4 Efficient Attribute and Edge Generation

For the sake of efficiency, it is desired to compute the loss of attribute and edge

generations by running the GNN only once for the input graph. In addition, we expect to

conduct attribute generation and edge generation simultaneously. However, edge generation

requires node attributes as input, which can be leaked to attribute generation. To avoid

information leakage, we design to separate each node into two types:

1. Attribute Generation Nodes. We mask out the attributes of these nodes by replacing

their attributes with a dummy token and learn a shared vector X init to represent
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it1. This is equivalent to the trick of using the [Mask] token in the masked language

model [Dev+19b].

2. Edge Generation Nodes. For these nodes, we keep their attributes and put them as

input to the GNN.

We then input the modified graph to the GNN model and generate the output representations.

We use hAttr and hEdge to represent the output embeddings of Attribute Generation and

Edge Generation Nodes, respectively. As the attributes of Attribute Generation Nodes are

masked out, hAttr in general contains less information than hEdge. Therefore, when conduct

the GNN message passing, we only use Edge Generation Nodes’ output hEdge as outward

messages. The representations of the two sets of nodes are then used to generate attributes

and edges with different decoders.

For Attribute Generation, we denote its decoder as DecAttr(·), which takes hAttr as input

and generates the masked attributes. We define a distance function as a metric between

the generated attributes and the real ones, such as perplexity for text or L2-distance for

vectors. Thus, we calculate the attribute generation loss via:

LAttri = Distance
(
DecAttr(hAttri ), Xi

)
. (4.4)

By minimizing the distance between the generated and masked attributes, it is equivalent

to maximize the likelihood to observe each node attribute, i.e., pθ(Xi | Ei,o, X<i, E<i).

For Edge Generation, we assume that the generation of each edge is independent with

others, so that we can factorize the likelihood:

pθ(Ei,¬o | Ei,o, X≤i, E<i) =
∏

j+∈Ei,¬o

pθ(j
+ | Ei,o, X≤i, E<i). (4.5)

Next, after getting the Edge Generation node representation hEdge, we model the

1Xinit has the same dimension as Xi and can be learned during pre-training.
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likelihood that node i is connected with node j by DecEdge(hEdgei , hEdgej ), where DecEdge is

a pairwise score function. Finally, we adopt the negative contrastive estimation to calculate

the likelihood for each linked node j+. We prepare all the unconnected nodes as S−
i and

calculate the contrastive loss via

LEdgei = −
∑

j+∈Ei,¬o

log
exp

(
DecEdge(hEdgei , hEdgej+ )

)∑
j∈S−

i ∪{j+} exp
(
DecEdge(hEdgei , hEdgej )

) (4.6)

By optimizing LEdge, it is equivalent to maximizing the likelihood of generating all the

edges, and thus the pre-trained model is able to capture the intrinsic structure of the graph.
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Figure 4.2: An illustrative example of the proposed attributed graph generation procedure.

Figure 5.2 illustrates the attributed graph generation process. Specifically: (a) We

determine the node permutation order π for the input graph. (b) We randomly select a

portion of the target node’s edges as observed edges Ei,o and the remaining as masked

edges Ei,¬o (grey dashed lines with cross). We delete masked edges in the graph. (c) We

separate each node into the Attribute Generation and Edge Generation nodes to avoid

information leakage. (d) After the pre-processing, we use the modified adjacency matrix to

calculate the representations of node 3,4 and 5, including both their Attribute and Edge

Generation Nodes. Finally, as illustrated in (d)–(e), we train the GNN model via the

attribute prediction and masked edge prediction task for each node in parallel.
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4.4 Evaluation

To evaluate the performance of GPT-GNN, we conduct experiments on the Open

Academic Graph (OAG) and Amazon Recommendation datasets. To evaluate the gener-

alizability of GPT-GNN, we consider different transfer settings—time transfer and field

transfer—which are of practical importance.

4.4.1 Experimental Setup

We conduct experiments on both heterogeneous and homogeneous graphs. For heteroge-

neous graphs, we use the Open Academic Graph and Amazon Review Recommendation

data. For homogeneous graphs, we use the Reddit dataset [HYL17] and the paper citation

network extracted from OAG. All datasets are publicly available and the details can be

found in Appendix A.

Open Academic Graph (OAG) [Wan+20; Zha+19b; Tan+08] contains more than 178

million nodes and 2.236 billion edges. It is the largest publicly available heterogeneous

academic dataset to date. Each paper is labeled with a set of research topics/fields (e.g.,

Physics and Medicine) and the publication date ranges from 1900 to 2019. We consider the

prediction of Paper–Field, Paper–Venue, and Author Name Disambiguation (Author ND)

as three downstream tasks [Zin+c; Don+20]. The performance is evaluated by MRR—a

widely adopted ranking metric [Liu11].

Amazon Review Recommendation Dataset (Amazon) [NLM19] contains 82.8 million

reviews, 20.9 million users, and 9.3 million products. The reviews are published from

1996 to 2018. Each review consists of a discrete rating score from 1 to 5 and a specific

field, including book, fashion, etc. For downstream tasks, we predict the rating score as a

five-class classification task within the Fashion, Beauty, and Luxury fields. We use micro

F1-score as the evaluation metric.

On the OAG and Amazon datasets, we use the state-of-the-art heterogeneous GNN—

Heterogeneous Graph Transformer (HGT) [Zin+c]—as the base model for GPT-GNN.

66



Furthermore, we also use other (heterogeneous) GNNs as the base model to test our

generative pre-training framework. For all base models, we set the hidden dimension as 400,

the head number as 8, and the number of GNN layers as 3. All of them are implemented

using the PyTorch Geometric (PyG) package [FL19]. We optimize the model via the

AdamW optimizer [LH19] with the Cosine Annealing Learning Rate Scheduler [LH17] with

500 epochs and select the one with the lowest validation loss as the pre-trained model.

We set the adaptive queue size to be 256. During downstream evaluation, we fine-tune

the model using the same optimization setting for 200 epochs as that in pre-training. We

train the model on the downstream tasks for five times and report the mean and standard

deviation of test performance.

There exist several works that propose unsupervised objectives over graphs, which

can potentially be used to pre-train GNNs. We thus compare the proposed GPT-GNN

framework with these baselines:

1. GAE [KW16], which denotes graph auto-encoders, focuses on a traditional link

prediction task. It randomly masks out a fixed proportion of the edges and asks the

model to reconstruct these masked edges.

2. GraphSAGE (unsp.) [HYL17] forces connected nodes to have similar output node

embeddings. Its main difference with GAE lies in that it does not mask out the edges

during pre-training.

3. Graph Infomax [Vel+19] tries to maximize the local node embeddings with global

graph summary embeddings. Following its setting for a large-scale graph, for each

sampled subgraph, we shuffle the graph to construct negative samples.

In addition, we also evaluate the two pre-training tasks in GPT-GNN by using each one of

them alone, that is, attribute generation: GPT-GNN (Attr); and edge generation:GPT-GNN

(Edge).
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Downstream Dataset OAG Amazon

Evaluation Task Paper–Field Paper–Venue Author ND Fashion Beauty Luxury

No Pre-train .336±.149 .365±.122 .794±.105 .586±.074 .546±.071 .494±.067

F
ie
ld

T
ra
n
sf
er GAE .403±.114 .418±.093 .816±.084 .610±.070 .568±.066 .516±.071

GraphSAGE (unsp.) .368±.125 .401±.096 .803±.092 .597±.065 .554±.061 .509±.052
Graph Infomax .387±.112 .404±.097 .810±.084 .604±.063 .561±.063 .506±.074

Contrastive .381±.104 .398±.102 .804±.081 .598±.059 .567±.058 .504±.067
GPT-GNN (Attr) .396±.118 .423±.105 .818±.086 .621±.053 .576±.056 .528±.061
GPT-GNN (Edge) .401±.109 .428±.096 .826±.093 .616±.060 .570±.059 .520±.047
GPT-GNN .407±.107 .432±.098 .831±.102 .625±.055 .577±.054 .531±.043

T
im

e
T
ra
n
sf
er GAE .384±.117 .412±.101 .812±.095 .603±.065 .562±.063 .510±.071

GraphSAGE (unsp.) .352±.121 .394±.105 .799±.093 .594±.067 .553±.069 .501±.064
Graph Infomax .369±.116 .398±.102 .805±.089 .599±.063 .558±.060 .503±.063

Contrastive .363±.101 .391±.107 .801±.086 .595±.054 .554±.063 .502±.062
GPT-GNN (Attr) .382±.114 .414±.098 .811±.089 .614±.057 .573±.053 .522±.051
GPT-GNN (Edge) .392±.105 .421±.102 .821±.088 .608±.055 .567±.038 .513±.058
GPT-GNN .400±.108 .429±.101 .825±.093 .617±.059 .572±.059 .525±.057

C
o
m
b
in
ed

T
ra
n
sf
er GAE .371±.124 .403±.108 .806±.102 .596±.065 .554±.063 .505±.061

GraphSAGE (unsp.) .349±.130 .393±.118 .797±.097 .589±.071 .545±.068 .498±.064
Graph Infomax .360±.121 .391±.102 .800±.093 .591±.068 .550±.058 .501±.063

Contrastive .357±.109 .389±.104 .797±.089 .588±.058 .547±.061 .500±.064
GPT-GNN (Attr) .364±.115 .409±.103 .809±.094 .608±.062 .569±.057 .517±.057
GPT-GNN (Edge) .386±.116 .414±.104 .815±.105 .604±.058 .565±.057 .514±.047
GPT-GNN .393±.112 .420±.108 .818±.102 .610±.054 .572±.063 .521±.049

Table 4.1: Performance of different downstream tasks on OAG and Amazon by using
different pre-training frameworks with the heterogeneous graph transformer (HGT) [Zin+c]
as the base model. 10% of labeled data is used for fine-tuning. We report the results under
different transfer settings with 10% fine-tuning data. Our proposed Generative Pre-training
framework can enhance the downstream evaluation performance for 9.1% and 5.7% to OAG
and Amazon respectively, and it can consistently outperform all the other baselines under
different settings.

4.4.2 Pre-Training and Fine-Tuning Setup

The goal of pre-training is to transfer knowledge learned from numerous unlabeled nodes

of a large graph to facilitate the downstream tasks with a few labels. Specifically, we first

pre-train a GNN and use the pre-trained model weights to initialize models for downstream

tasks. We then fine-tune the models with the downstream task specific decoder on the

training (fine-tuning) set and evaluate the performance on the test set.

Broadly, there are two different setups. The first one is to pre-train and fine-tune on

exactly the same graph. The second one is relatively more practical, which is to pre-train

on one graph and fine-tune on unseen graphs of the same type as the pre-training one.

Specifically, we consider the following three graph transfer settings between the pre-training
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and fine-tuning stages:

1. Time Transfer, where we use data from different time spans for pre-training and

fine-tuning. For both OAG and Amazon, we use data before 2014 for pre-training

and data since 2014 for fine-tuning.

2. Field Transfer, where we use data from different fields for pre-training and evaluating.

In OAG, we use papers in the field of computer science (CS) for downstream fine-

tuning and use all papers in the remaining fields (e.g., Medicine) for pre-training.

In Amazon, we pre-train on products in Arts, Crafts, and Sewing, and fine-tune on

products in Fashion, Beauty, and Luxury.

3. Time + Field Transfer, where we use the graph of particular fields before 2014 to

pre-train the model and use the data from other fields since 2014 for fine-tuning.

Intuitively, this combined transfer setting is more challenging than the transfer of

time or field alone.

During fine-tuning, for both datasets, we choose nodes from 2014 to 2016 for training,

2017 for validation, and since 2018 for testing. To meet the assumption that training data is

usually scarce, we only provide 10% of the labels for training (fine-tuning) by default, while

the ablation study over different data percentages is also conducted. During pre-training,

we randomly select a subset of the data as the validation set.

4.4.3 Experimental Results

We summarize the performance of downstream tasks with different pre-training methods

on OAG and Amazon in Table 4.1. As discussed above, we setup three different transfer

settings between pre-training and fine-tuning stages: Field Transfer, Time Transfer, and

Field + Time Combined Transfer, as organized in three different blocks in the Table.

Overall, the proposed GPT-GNN framework significantly enhances the performance

for all downstream tasks on both datasets. On average, GPT-GNN achieves relative
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performance gains of 13.3% and 5.7% over the base model without pre-training on OAG and

Amazon, respectively. Moreover, it consistently outperforms other pre-training frameworks,

such as Graph Infomax, across different downstream tasks for all three transfer settings on

both datasets.

Different transfer settings. Observed from Table 4.1, the performance gain lifted by

pre-training under the field transfer is higher than that under the time transfer, and the time

+ field combined transfer is the most challenging setting as evident in the least performance

gain brought by pre-training. Nonetheless, under the combined transfer, GPT-GNN still

achieves 11.7% and 4.6% performance gains on both datasets, respectively. Altogether, the

results suggest that the proposed generative pre-training strategy enables the GNN model to

capture the generic structural and semantic knowledge of the input graph, which can be used

to fine-tune on the unseen part of the graph data.

We analyze the effectiveness of the two pre-training tasks in GPT-GNN—attribute

generation and edge generation—by examining which of them is more beneficial for the

pre-training framework and, by extension, downstream tasks. In Table 4.1, we report the

performance of GPT-GNN by using attribute generation and edge generation alone, that

is, GPT-GNN (Attr) and GPT-GNN (Edge). On OAG, the average performance gains by

GPT-GNN (Attr) and GPT-GNN (Edge) are 7.4% and 10.3%, respectively, suggesting that

Edge Generation is a more informative pre-training task than Attribute Generation in GPT-

GNN. However, we have an opposite observation for Amazon, on which the performance

improved by Attribute Generation is 5.2% in contrast to the 4.1% improvement lifted

by Edge Generation. This suggests that the GPT-GNN framework benefits differently

from attribute and edge generations on different datasets. However, combining the two

pre-training tasks together produces the best performance on both cases.

We further compare the Edge Generation task against other edge-based pre-training

methods—GAE and GraphSage (unsp.)—in Table 4.1. On OAG, the performance improve-

ments brought by GPT-GNN’s edge generation, GAE, and GraphSage over no pre-training

70



Model HGT GCN GAT RGCN HAN

No Pre-train .336 .317 .308 .296 .322
GPT-GNN .407 .349 .362 .351 .384
Relative Gain 21.1% 10.1% 17.5% 18.6% 19.3%

Table 4.2: Compare the pre-training Gain with different GNN architectures. Evaluate on
OAG, Paper-Field Task, under Combined Transfer setting with 10% training data.

are 10.3%, 7.4%, and 4.0%, respectively. On Amazon, the gains are 5.2%, 3.1%, and 1.3%,

respectively. From the comparisons, we have the following observations. First, both GAE

and GPT-GNN’s edge generation offer better results than GraphSage on both datasets,

demonstrating that masking on edges is an effective strategy for self-supervised graph

representation learning. Without edge masking, the model simply retains a similar embed-

ding for connected nodes, as the label we would like to predict (whether two nodes are

linked) has already been encoded in the input graph structure. Such information leakage

will downgrade the edge prediction task to a trivial problem. Second, the proposed Edge

Generation task consistently outperforms GAE. The main advantage of GPT-GNN’s edge

generation comes from that it learns to generate missing edges autoregressively and thus

can capture the dependencies between the masked edges, which are discarded by GAE. In

summary, the results suggest that the proposed graph generation tasks can give informative

self-supervision for GNN pre-training.

Ablation studies on the base GNN. We investigate whether the other GNN archi-

tectures can benefit from the proposed pre-training framework. Therefore, in addition to

HGT [Zin+c], we try GCN [KW17], GAT [Vel+18], RGCN [Sch+18], and HAN [Wan+19b]

as the base model. Specifically, we pre-train them on OAG and then use the paper-field

prediction task under the combined transfer setting with 10% of training data for fine-tuning

and testing. Model-independent hyper-parameters, such as the hidden dimension size and

optimization, are set the same. The results are reported in in Table 4.2. We can observe that

the proposed GPT-GNN pre-training framework can enhance the downstream performance

for all the GNN architectures.
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Figure 4.3: Compare pre-training tasks with different training data size. Evaluated by the
paper–field prediction task on OAG under the field transfer setting.

Training data size. In Figure 4.3, we examine whether the proposed GPT-GNN method

can generalize well with different training data size during fine-tuning, i.e., from 10% to

100%. First, we can observe that GPT-GNN and other pre-training frameworks consistently

improve the downstream task performance with more labeled training data. Second, it is

clear that GPT-GNN performs the best among all pre-training tasks/frameworks. Finally,

we can see that with the pre-trained model, fine-tuning with only 10–20% of data (the two

leftmost blue circles) generates comparative performance to the supervised learning with

all 100% of training data (the rightmost purple diamond), demonstrating the superiority of

GNN pre-training, especially when the label is scarce.

4.5 Summary

In this work, we study the problem of graph neural network pre-training. We present

GPT-GNN—a generative GNN pre-training framework. We design the graph generation fac-

torization to guide the base GNN model to autoregressively reconstruct both the attributes

and structure of the input graph. Furthermore, we propose to separate the attribute and

edge generation nodes to avoid information leakage. In addition, we introduce the adaptive
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node representation queue to mitigate the gap between the likelihoods over the sampled

graph and the full graph. The pre-trained GNNs with fine-tuning over few labeled data can

achieve significant performance gains on various downstream tasks across different datasets

with different transfer settings.
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CHAPTER 5
REVEAL: Retrieval-Augmented

Visual Language Pre-Training

In this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model

(ReVeaL) that learns to encode world knowledge into a large-scale memory, and to retrieve

from it to answer knowledge-intensive queries. ReVeaL consists of four key components:

the memory, the encoder, the retriever and the generator. The large-scale memory encodes

various sources of multimodal world knowledge (e. ., image-text pairs, question answering

pairs, knowledge graph triplets, etc) via a unified encoder. The retriever finds the most

relevant knowledge entries in the memory, and the generator fuses the retrieved knowledge

with the input query to produce the output. A key novelty in our approach is that the

memory, encoder, retriever and generator are all pre-trained end-to-end on a massive

amount of data. Furthermore, our approach can use a diverse set of multimodal knowledge

sources, which is shown to result in significant gains. We show that ReVeaL achieves

state-of-the-art results on visual question answering and image captioning.
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Figure 5.1: We augment a visual-language model with the ability to retrieve multiple
knowledge entries from a diverse set of knowledge sources, which helps generation. Both
retriever and generator are trained jointly, end-to-end, by optimizing a language modeling
objective.

5.1 Introduction

Recent large-scale models such as T5 [Raf+20], GPT-3 [Bro+20], PaLM [Cho+22],

CoCa [Yu+22b], Flamingo [Ala+22], BEIT-3 [Wan+22a] and PaLI [Che+22b] have demon-

strated the ability to store substantial amounts of world knowledge, when scaled to tens of

billions of parameters and trained on vast text and image corpora. These models achieve

state-of-the-art results in downstream tasks such as image captioning, visual question

answering and open vocabulary recognition. Yet, these models have a number of drawbacks:

(i) they require massive scale, of parameters, data and computation, and (ii) they need to

be re-trained every time the world knowledge is updated.

To address these issues, we adopt a different approach. Instead of statically compiling

world knowledge into model weights, we transform the knowledge into a key-value memory

through neural representation learning. Our model learns to utilize the memory for answering

knowledge-intensive queries. By decoupling the knowledge memorization from reasoning,

we enable our model to leverage various external sources of knowledge (e.g., Wikipedia

passages and images [Sri+21], the WikiData knowledge graph [VK14], Web image-text

pairs [Cha+21] and visual question answering data [Goy+17]). This enables the model

parameters to focus on understanding the query and conducting reasoning, rather than

being dedicated to memorization.
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Retrieval-augmented models have attracted a fair amount of attention in the fields of

NLP [Guu+20; Iza+22] and computer vision [Lon+22; Gui+21]. Typically, these models

often use a pre-existing single-modality backbone to encode and retrieve information from

the knowledge corpus. Such approaches do not leverage all available modalities in the query

and knowledge corpora, and hence they might not find the information that is most helpful

for generating the model output. A key novelty in our approach is that we encode and

store various sources of multimodal world knowledge into a unified memory, which the

retriever can access via multimodal query encodings, to find the most relevant information

from across complementary sources. Our multimodal memory and retriever are pre-trained

end-to-end together together with the rest of the model, on a massive amount of data and

using diverse knowledge sources.

A key challenge of pre-training the multimodal retriever end-to-end is the lack of direct

supervision. There is no ground-truth indicating which knowledge entries are most helpful

for answering knowledge-intensive queries. Some of the existing works in NLP [Guu+20;

Lew+20; Sac+21b] propose to acquire training signal by assessing the usefulness of each

retrieved knowledge entry independently for helping language modelling. This approach is

inefficient, as it involves estimating hundreds of retrieved knowledge entries independently,

and also inaccurate as it discards the dependency between different knowledge entries in

the retrieval set. In contrast, we propose to get this training signal while simultaneously

considering multiple retrieved knowledge entries, by introducing an attentive fusion layer

that injects retrieval score into the attention calculation procedure. This enables the

retrieval module to be differentiable and jointly pre-trained with the rest of the model.

In summary, our key contributions are as follows:

1. We are the first to propose an end-to-end pre-training paradigm that learns to index

into a large-scale memory to solve knowledge-intensive visual-language tasks.

2. Our method can construct a large-scale memory by encoding various sources of

multimodal world knowledge, including Wikipedia passage, web images with alt-text
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captions, and knowledge graph triplets.

3. ReVeaL achieves state-of-the-art performance on several knowledge-intensive visual

question answering and image captioning datasets. Notably on the OKVQA bench-

mark, ReVeaL achieves a new state-of-the-art, 59.1% accuracy, while using order of

magnitude fewer parameters than previous works.

5.2 Related Work and Background

Knowledge-based Visual Question Answering. To evaluate a model’s ability to

comprehend multimodal world knowledge not easily inferred from input data, several

knowledge-based Visual Question Answering (VQA) datasets have been introduced. KB-

VQA [Wan+17] and FVQA [Wan+18] design questions that can be answered by retrieving

relevant triplets from domain-specific structured knowledge graphs. OK-VQA [Mar+19]

improves these datasets by necessitating the use of external knowledge, which goes beyond

what can be directly observed in the input images. More recently, A-OKVQA [Sch+22]

offers further improvements to OK-VQA by exclusively selecting questions that demand

both external knowledge and commonsense reasoning about the image scenes. To tackle

knowledge-based VQA tasks, many approaches have been proposed to incorporate external

knowledge into visual-language models. One line of research uses explicit knowledge

from structured knowledge graphs [NLS18; Gar+20; Wan+22b; Hu+22a] or unstructured

text corpora [Mar+21; Luo+21; Wu+22]. The key component for these works is the

knowledge retriever. Some works [NLS18; Gar+20; Mar+21; Wu+22] utilize off-the-

shelf vision detection models to generate image tags for knowledge retrieval, while others

train the retrieval model via distant supervision [Luo+21] or auxiliary tasks (e.g. entity

linking) [Gui+21]. Another research direction aims to incorporate implicit knowledge from

pre-trained Large Language Models, such as GPT-3 [Bro+20] or PaLM [Cho+22]. These

approaches utilize off-the-shelf image caption models to convert images into text, feed them

into a language model, and use the generated text output as augmented knowledge [Yan+21;
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Gui+21; Lin+22]. Our work follows the first direction, augmenting a vision-language model

with an explicit knowledge retriever. The main distinction is that we propose an end-to-end

training framework to jointly learn the answer generator and retriever, rather than using a

fixed or predefined knowledge retrieval.

End-to-End Training of Retrieval-Augmented Models. Given the advantage of

knowledge retrieval, a key question is how to get learning signal to train the retrieval model.

For tasks with annotated retrieval ground-truth, retrieval training can be conducted via

standard contrastive learning [Kar+20]. However, most tasks do not provide clear indications

of which knowledge entries are relevant for generating answers. To this end, a series of

studies have investigated retrieval training using supervision derived from downstream tasks.

REALM [Guu+20] trains a single-document retriever by concatenating each retrieved result

with the query, to calculate the final loss independently. A similar approach has been used

by EMDR2 [Sac+21b] for multi-document retrieval training. FID-KD [IG21] proposes to

use the aggregated attention score calculated by the generator as a distillation signal to

train the retriever. Atlas [Iza+22] further introduces a perplexity distillation loss and a

leave-one-out variant. Our ReVeaL proposes to inject the retrieval scores directly into an

attentive fusion module, enabling to train the retriever to directly optimize downstream

tasks as well as pre-training objectives.

5.3 Method

We propose a Retrieval-Augmented Visual Language Model (ReVeaL), which learns

to use knowledge from different sources for solving knowledge-intensive tasks. For both

pre-training and fine-tuning, our goal is to learn the distribution P (y | x) to generate

a textual output y conditioned on a multimodal input query x. ReVeaL contains four

components: knowledge encoding, memory, retrieval and generation. Given an input query

x, we first retrieve K possibly helpful entries M = {m1, · · · ,mK} from the memory corpora

M. Each m is a memory entry containing the encoded single key embedding and a sequence
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Figure 5.2: The overall workflow of ReVeaL consists of four main steps: (a) encode a
multimodal input into a sequence of token embeddings and a summarized query embedding;
(b) encode each knowledge entry from different corpus into unified key and value embedding
pairs, where key is used to index the memory and value contains full information of the
knowledge; (c) retrieve top-K most similar knowledge items from different knowledge
sources, and return the pre-computed in-memory value embeddings and re-encoded value;
and (d) fuse the top-K knowledge items via attentive knowledge fusion layer by injecting
the retrieval score as a prior during attention calculation. This facilitates ReVeaL’s key
novelty: the memory, encoder, retriever and the generator can be jointly trained in an
end-to-end manner.

of value embeddings (we will describe how to encode knowledge items into memory entries

in Sec. 5.3.2). With it, the retriever can use embedding similarity to find relevant memory

entries. We model this retrieval process as sampling from distribution p(M | x). Then,

we condition on both the retrieved set M and the original input query x to generate the

output y, modeled as p(y | x,M). To obtain the overall likelihood of generating y, we treat

M as a latent variable from the entire memory M̃ and marginalize over it yielding:

p(y | x) =
∑
M⊂M̃

p(M | x)︸ ︷︷ ︸
retrieval

· p(y | x,M)︸ ︷︷ ︸
generation

. (5.1)

However, this marginal probability involves an intractable summation over all size-K subsets

of the memory corpora M̃. We approximate this instead by using the top-K entries in

memory with the highest probability under p(M | x). This is reasonable if most of the

unrelated memory entries do not contribute to the generation. Note that we use an online

memory that is updated as the knowledge encoder is trained end-to-end with the rest of

the model.

Figure 5.2 illustrates the overall workflow of ReVeaL, and we describe each component
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in this section. In particular, in Sec. 5.3.1 we describe how the query is encoded. In

Sec. 5.3.2 we go over how the multimodal knowledge memory is constructed and updated

during pre-training. Next, we describe how we retrieve the memory entries that are most

relevant to the input query in Sec. 5.3.3. Finally, in Sec. 5.3.4 we describe the generator

that fuses the query and retrieved knowledge and decodes them into the generated text.

5.3.1 Query Encoding

Figure 5.2 (a) depicts how the input image-text query is encoded. We use a base visual-

language encoder b(·) to turn the query input and each knowledge item (with potentially

different modalities e.g. text-only, image-only or image-text pairs) into a sequence of

embeddings (tokens). We adopt a Vision Transformer (ViT) [Dos+21] to encode the images

and we use a lower-layer1 T5 encoder [Raf+20] to encode the texts. We add a projection

layer on top of the ViT model to map the image tokens into the same space as the text

tokens. We then concatenate the two modalities together. We use an upper-layer T5

module as both the query Head ϕQuery(·) and the key Head ϕKey(·) to compute the query

embedding and memory keys. We take the output of the first [CLS] tokens followed by

a linear projection and L2-normalization to summarize the input into a d-dimensional

embedding.

5.3.2 Memory

Figure 5.2 (b) shows how memory is constructed and updated by encoding knowledge

items. Our approach differs from previous works primarily by leveraging a diverse set of

multimodal knowledge corpora (WikiData knowledge graph, Wikimedia passages and images,

Web image-text pairs). Throughout the paper, we denote each corpus as Cj = {zj1, . . . , z
j
N},

in which each zji ∈ Cj is a knowledge item that could be an image-text pair, text only,

image only, or a knowledge graph triplet. We denote the unified knowledge corpus as

1We denote the last l layers of a T5 encoder as ‘upper-layer’, and the remaining ones including the
token embedding layer as ‘lower-layer’.
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C̃ = C1 ∪ C2 · · · ∪ CS that combines |C̃| = S different knowledge corpora. We encode the

external knowledge corpora into a unified memory M̃ = [M1, . . . ,M|C̃|]. Each knowledge

item zi is encoded into a key/value pair mi = (EmbKey(zi), EmbValue(zi)) in memory. Each key

EmbKey(z) = ϕKey
(
b(z)

)
∈ Rd is a d-dimensional embedding vector encoded via Key Head.

Each value is a sequence of token embeddings representing the full information of knowledge

item z. We follow a similar procedure as in [Guu+20] to precompute key/value embeddings

of knowledge items from different sources and index them in a unified knowledge memory.

We continuously re-compute the memory key/value embeddings as the model parameters

get updated during the pre-training phase. We update the memory M̃ asynchronously at

every 1000 training steps.

Scaling Memory by Compression A naive solution for encoding the memory value

is to keep the whole sequence of tokens for each knowledge item. Then, the generator could

fuse the input query and the top-K retrieved memory values by concatenating all their

tokens together and feeding them into a Transformer Encoder-Decoder pipeline [Lew+20].

This approach has two issues: (1) storing hundreds of millions of knowledge items in

memory is impractical given that each memory value would consist of hundreds of tokens;

(2) transformer encoder has quadratic complexity with respect to the total number of tokens

times K for self-attention.

Therefore, we propose to use the Perceiver architecture [Jae+21] as the Value Head to

encode and compress knowledge items. The Perceiver model uses a transformer decoder

ψ(·) with learnable c-length latent embeddings to compress the full token sequence into

an arbitrary length c, such that EmbValue(z) = ψ(b(z)) ∈ Rc×d (In our experiments we use

c = 32). This lets us retrieve top-K memory entries for K as large as a hundred. To make the

compressed embeddings generated by Perceiver more expressive, we add two additional regu-

larizations. The first one is a disentangled regularization [Hu+22b] that forces every two out-

put tokens to be linearly de-correlated Ldecor =
∑K

i,j=1

∥∥∥Covariance(ψ(b(zi)), ψ(b(zj)))∥∥∥2
F
,

and the second one is an alignment regularization that minimizes the distance of L2-Norm

between the query and compressed knowledge embedding: Lalign =

∣∣∣∣1− ∑
z∥ψ
(
b(z)
)
∥2∑

x∥b(x)∥2

∣∣∣∣.
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5.3.3 Retriever

Figure 5.2 (c) shows ReVeaL’s retrieval procedure. Given the input query x, the

retriever’s task is to find top-K memory entries M with the highest probability p(M | x)

which we approximate as p(M | x) =
∏

m∈M p(m | x) by retrieving each entry independently.

Note that we retrieve from a large-scale unified memory M̃ = [M1, . . . ,M|C̃|] that is

constructed from a diverse set of knowledge sources. To help the query to better choose the

most appropriate knowledge sources, we learn a gating function that models the probability

of retrieving from each memory corpus. With the corpus gating, for mj
i ∈Mj we re-weight

p(mj | x) by the computed corpus gating score:

p(mj
i | x) = p(Mj | x) · p(mj

i | x;Mj) (5.2)

= GateMj(x) ·
exp

(
Rel(x,mj

i )/τ
)∑

mj
k∈Mj exp

(
Rel(x,mj

k)/τ
) (5.3)

where GateMj (x) = Softmax(W · EmbQuery(x)+ b)[j] is a softmax gating that assigns a score

to each memory corpus M j, with W and b as function parameters. Rel(x,mj
i ) models

relevance score between query x and each memory entry via embedding dot product, such

that Rel(x,mj
i ) = EmbQuery(x)

T · EmbKey(zji ). where zi is the knowledge item corresponding

to the memory entry mi and τ is the temperature parameter.

After identifying the top-K memory entries, the retriever passes the pre-computed

in-memory key and value embeddings to the generator. In the meantime, to support

end-to-end training of the encoders, we also re-encode a small portion (i.e., 10%) of the

retrieved knowledge items zi from scratch. In this way, the memory encoders could be

updated with moderate computational cost. We concatenate the re-encoded knowledge

with in-memory ones to construct the final top-K retrieved key/value embeddings.
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Figure 5.3: Detailed procedure of attentive knowledge fusion module. We inject retrieval
probability as a prior to knowledge token embeddings, so the retriever can receive gradients
via back-propagating over {self/cross}-attention part.

5.3.4 Generator

Figure 5.2 (d) shows how the query and the retrieved knowledge items are fused to

generate the output answer. All K retrieved memory values are concatenated with the

query embedding, which is feasible due to the Perceiver module utilized as the value head

ψ(·), compressing each knowledge item into a short sequence. We denote the concatenated

query embedding and memory values as X = [b(x), ψ(b(z1)), . . . , ψ(b(zK))] ∈ R(I+c·K)×d,

where I is the number of tokens of the input query x and c is the number of compressed

tokens. To guide the generator towards attending to the most important items in X and fa-

cilitate backpropagation of gradients to the retriever, we propose an attentive fusion module

f(·) capable of incorporating the retriever score as a prior for calculating cross-knowledge

attention. The detailed procedure is illustrated in Figure 5.3. We firstly compute a latent

soft attention mask over X as Maskatt = [1, p(z1|x), . . . , p(zK |x)]. Finally, we pass the fused

representation f(X, Maskatt) into a T5 decoder module g(·) to generate the textual output.
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Knowledge Source Corpus Size Type of Text Avg. Text Length

WIT [Sri+21] 5,233,186 Wikipedia Passage 258
CC12M [Cha+21] 10,009,901 Alt-Text Caption 37
VQA-V2 [Goy+17] 123,287 Question Answer 111
WikiData [VK14] 4,947,397 Linearlized Triplets 326

Table 5.1: Statistics of the knowledge sources used.

Model Name T5 Variant Image Encoder # params. GFLOPs

ReVeaL-Base T5-Base ViT-B/16 0.4B 120
ReVeaL-Large T5-Large ViT-L/16 1.4B 528

ReVeaL T5-Large ViT-g/14 2.1B 795

Table 5.2: Model configuration of different ReVeaL variants.

5.4 Generative Pre-Training

The existing VQA datasets are not large enough for training a complex multi-component

model like ours from scratch. Therefore, we pre-train our model on a massive image-text

corpus. In Sec. 5.4.1 we go over the details of our pre-training data and objective. Then in

Sec. 5.4.2 we introduce the various sources of knowledge used in our experiments. Finally,

in Sec. 5.4.3 we describe the pre-training implementation details.

5.4.1 Pre-Training Objective

We pre-train our model on the Web-Image-Text dataset [Zha+22b], a large-scale corpus

containing 3 billion image alt-text caption pairs collected from the public Web. Since the

dataset is noisy, we add a filter to remove data points whose captions are shorter than 50

characters. This yields roughly 1.3 billion image caption pairs for pre-training.

We denote the pre-training Web-Image-Text dataset [Zha+22b] as D. We use the text

generation objective used in Wang et al. [Wan+22c]) to pre-train our model on D. Given

an image-text example x =(img, txt) from D, we randomly sample a prefix length Tp. We

feed x<Tp that contains the text prefix and image to the model as input and our objective is

to generate x≥Tp containing the rest of the text as output. The training goal is to condition
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on x<Tp and autoregressively generate the remaining text sequence x≥Tp :

LPrefixLM =− Ex∼D
[
log p(x≥Tp | x<Tp)

]
(5.4)

=− Ex∼D

[ ∑
i≥Tp

log p(xi | x<i)
]
.

Warm Starting the Model In order to pre-train all components of our model end-

to-end, we need to warm start the retriever at a good state. Otherwise, if starting with

random weights, the retriever would often return irrelevant memory items that would never

generate useful training signals.

To avoid this cold-start problem, we propose to construct an initial retrieval dataset

with pseudo ground-truth knowledge to give the pre-training a reasonable head start. We

create a modified version of the Wikipedia-Image-Text (WIT) [Sri+21] dataset for this

purpose. Each image-caption pair in WIT also comes with a corresponding Wikipedia

passage (words surrounding the text). We put together the surrounding passage with the

query image and use it as the pseudo ground-truth knowledge that corresponds to the input

query. As the passage provides rich information about the image and caption, it definitely

is useful for initializing the model. To avoid the model from relying on low-level image

features for retrieval, we apply random data augmentation to the input query image. Given

this modified dataset that contains pseudo retrieval ground-truth, we train the query and

memory key embeddings by optimizing the following contrastive loss:

Lcontra = −logSoftmax(EmbQuery(x)
TEmbKey(ẑ))

where ẑ represents the pseudo ground-truth knowledge entry corresponding to the input

query x.
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VQA Model Name Knowledge Sources Accuracy (%) Memory (GB)

MUTAN+AN [Mar+19] Wikipedia + ConceptNet 27.8 -
ConceptBERT [Gar+20] Wikipedia 33.7 -
KRISP [Mar+21] Wikipedia + ConceptNet 38.4 -
Visual Retriever-Reader [Luo+21] Google Search 39.2 -
MAVEx [Wu+22] Wikipedia+ConceptNet+Google Images 39.4 -
KAT-Explicit [Gui+21] Wikidata 44.3 1.5

PICa-Base [Yan+21] Frozen GPT-3 43.3 350
PICa-Full [Yan+21] Frozen GPT-3 48.0 350
KAT [Gui+21] (Single) Wikidata + Frozen GPT-3 53.1 1.5 + 352+ 500
KAT [Gui+21] (Ensemble) Wikidata + Frozen GPT-3 54.4 4.6 + 352 + 500
ReVIVE [Lin+22] (Single) Wikidata + Frozen GPT-3 56.6 1.5 + 354 + 500
ReVIVE [Lin+22] (Ensemble) Wikidata+Frozen GPT-3 58.0 4.6 + 354 + 500

ReVeaL-Base WIT + CC12M + Wikidata + VQA-2 55.2 0.8 + 7.5 + 744
ReVeaL-Large WIT + CC12M + Wikidata + VQA-2 58.0 2.8 + 10 + 993
ReVeaL WIT + CC12M + Wikidata + VQA-2 59.1 4.2 + 10 + 993

Table 5.3: Visual Question Answering results on OK-VQA, compared with existing
methods that use different knowledge sources. For the memory cost, we assume all models
use bfloat16. Green means on-device model parameters that are learnable, Blue means
on-device memory of frozen model parameters, and Red means CPU/disk storage cost that
are not involved in computation.

5.4.2 Knowledge Sources

We use the following four sources of knowledge in our experiments: Wikipedia-Image-

Text (WIT) [Sri+21] consists of the images in Wikipedia, as well as their alt-text captions

and contextualized text passages. Conceptual (CC12M) [Cha+21] contains web images

paired with alt-text captions. It includes many long-tail entities. VQA-v2 [Goy+17] is

a visual question answering dataset. We merge all question-answer pairs per image into

a single passage. WikiData [VK14] is a structural knowledge graph encoding relations

between Wikipedia entities. We linearize all relational triplets per entity into a textual

passage following the procedure of [Ogu+20]. We have listed the statistical details of these

knowledge sources in Table 5.1.

5.4.3 Implementation Details

Incorporating all the components introduced above, ReVeaL can be directly pre-trained

over large-scale image caption datasets after proper initialization. As our model architecture

is based on T5 and ViT, we use pre-trained ViT checkpoints from [Zha+22a] and pre-trained

T5 checkpoints from [Raf+20] to initialize the encoder parameters. The query head, key

head and attentive fusion layers are initialized from upper T5, while the base text encoder
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is initialized from lower T5. The combination of these modules can be found in Table 5.2

for three three model variants, ReVeaL-Base, ReVeaL-Large and ReVeaL, of which the

largest ReVeaL model has around 2 billion parameters.

Distributed Online Retrieval. Finding the top-k most-relevant knowledge entries

is a standard Maximum Inner Product Search (MIPS) problem. There are approximate

search algorithms [SL14; Che+22c] that scale sub-linearly with the size of the knowledge

corpus |C|. We use TPU-KNN [Che+22c] to conduct distributed MIPS search, by splitting

and storing the memory embeddings across all training devices. The query is synced to

each device, which retrieves approximate top-K results from its own memory. Then these

results are combined to compute the global top-K retrieved items.

Pre-Training Pipeline. We first train the multimodal retriever on our modified

version of the Wikipedia Image Text (WIT) dataset via Lcontra. We use the Adafactor

optimizer without momentum (β1 = 0, β2 = 0.999), with weight decay of 0.0012, and with a

peak learning rate of 6e4, to train for 10 epochs. We use this checkpoint to warm-start our

generative pre-training. We set the number of retrieved knowledge entries as K = 10 during

pre-training, and use adafactor with a peak learning rate of 1e−3 and inverse squared root

learning rate scheduler with 10,000 linear warm-up steps. We use LPrefixLM as the main

objective, adding Lcontra, Ldecor and Lalign weighted by 0.01. We use a batch size of 4096

across 256 CloudTPUv4 chips and train for about 5 days.

5.5 Experimental Results

We evaluate our proposed method on knowledge-based VQA in Sec. 5.5.1 and image

captioning in Sec. 5.5.2. We then conduct ablation studies in Sec. 5.5.3 to analyze the

impact of each model component on overall performance.

2The remaining experiments use the same optimizer configuration.
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VQA Model Name Accuracy (%)

ViLBERT [Lu+19] 30.6
LXMERT [TB19] 30.7
ClipCap [MHB21] 30.9
KRISP [Mar+21] 33.7
GPV-2 [Kam+22] 48.6

ReVeaL-Base 50.4
ReVeaL-Large 51.5
ReVeaL 52.2

Table 5.4: Visual Question Answering results on A-OKVQA.

5.5.1 Evaluating on Knowledge-Based VQA

One of the most knowledge intensive visual-language tasks is knowledge-based visual

question answering (VQA), exemplified by the OK-VQA [Mar+19] and A-OKVQA [Sch+22]

benchmarks. To finetune our pre-trained model on these VQA tasks, we use the same

generative objective where the model takes in an image question pair as input and generates

the text answer as output. There are a few differences between the fine-tuning and the

pre-training stages: 1) we set the number of retrieved knowledge entries to K = 50, so

the model is able to retrieve sufficient supporting evidence; 2) we freeze the whole base

V-L encoder to stabilize training; and 3) we use a batch size of 128, with the Adafactor

optimizier, a peak learning rate of 1e-4. We use the soft VQA accuracy metric [Ant+15] to

evaluate the model’s generated answer.

Our results on OKVQA and A-OKVQA datasets are shown in Table 5.3 and Table 5.4

respectively. For OKVQA, earlier attempts that incorporate a fixed knowledge retriever

report results that are below 45%. Recently a series of works utilize large language models

(e.g. GPT-3) as implicit knowledge sources, which achieve much better performance with

the trade-off of a huge computational cost. ReVeaL achieves higher performance than

those methods without relying on such large language models3. Compared with the previous

3As shown in the last column of Table 5.3, ReVeaL stores external knowledge as value embeddings on
disk, occupying 993GB of space. The key embeddings consume 10GB space and are kept in TPU memory
for fast lookup. On the other hand, KAT and REVIVE need to load the entire 350GB GPT-3 model in the
GPU/TPU memory. Furthermore, storing WikiData on disk consumes 500GB of disk memory.

88



Model Name MSCOCO NoCaps # params.

Flamingo [Ala+22] 138.1 - 80B
VinVL [Zha+21a] 140.9 105.1 0.4B
SimVLM [Wan+22c] 143.3 112.2 1.5B
CoCa [Yu+22b] 143.6 122.4 2.1B

ReVeaL-Base 141.1 115.8 0.4B
ReVeaL-Large 144.5 121.3 1.4B
ReVeaL 145.4 123.0 2.1B

Table 5.5: Image Captioning results on MSCOCO (Karpathy-test split) and NoCaps
(val set). Evaluated using the CIDEr metric.

state-of-the-art, KAT and ReVIVE, which also utilizes T5-Large as a generator, ReVeaL

achieves accuracy of 59.1%, which is +6.0% higher than the single KAT [Gui+21] model

and +2.5% higher than ReVIVE [Lin+22].

On A-OKVQA, ReVeaL achieves 52.2% accuracy, which is +3.6% higher than the

previous best, GPV-2 [Kam+22]. We also show two examples of these datasets in Figure 5.4.

All these results show that, with proper end-to-end retrieval training and a diverse set

of knowledge sources, ReVeaL can learn to retrieve meaningful knowledge entries, and

achieve promising results without relying on a large language model.

5.5.2 Evaluating on Image Captioning

We also evaluate ReVeaL on image captioning benchmarks: MSCOCO Captions [Che+15a]

and NoCaps [Agr+19]. We follow the evaluation protocol used in [Yu+22b]. We directly

fine-tune our generator model on the MSCOCO training split via cross-entropy gener-

ative objective. We measure our performance on the MSCOCO test split and NoCaps

val set with the CIDEr metric [VZP15]. The results of these two datasets are shown in

Table 5.5. Note that ReVeaL achieves better results than strong recent baselines such as

SimVLM [Wan+22c] and CoCa [Yu+22b] on both benchmarks. Notably, ReVeaL −Large

with 1.4B parameters outperforms the 2.1B-parameter CoCa model and is significantly

better than 80B-parameter Flamingo model [Ala+22].

89



Figure 5.4: VQA Examples. ReVeaL is able to use knowledge from different sources to
correctly answer the question. We show more examples in Figure 1-3 of Supplementary
Material, indicating that our model can retrieve and use items from diverse knowledge
sources to correctly solve different input query.

5.5.3 Analyzing Effects of Key Model Components

In the following we study which design choices contribute most to the model’s per-

formance. We focus on three research questions: (1) Does utilizing multiple knowledge

sources enhance performance? (2) Does the proposed attentive fusion surpass existing

end-to-end retrieval training methods? (3) Can we add knowledge by only updating the

memory without modifying model parameters?

90



Figure 5.5: OKVQA Accuracy of
ReVeaL using 1) Only-One-Left: only
use a single knowledge source; 2) Leave-
One-Out: use all without this knowledge
source.

Figure 5.6: OKVQA Accuracy of ReVeaL using
all Pair of Knowledge Sources. Results show
that combining multiple sources could consistently
improve performance.

Analyzing multiple knowledge sources. A major distinction of ReVeaL compared

to previous retrieval-augmented approaches is its capacity to utilize a diverse set of knowledge

sources during inference. To assess the relative importance of each data source and the

efficacy of retrieving from various corpora, we conduct two ablation studies: 1) Only-One-

Left: employing a single knowledge source to evaluate the outcomes; and 2) Leave-One-

Out: excluding one knowledge source from the complete set C. These ablation studies

are executed using the ReVeaL Base, evaluated on the OKVQA validation set under the

aforementioned conditions. As shown in Figure 5.5, among the four knowledge sources

utilized in this paper, WIT is the most informative, with the highest accuracy when used

in isolation (53.1The remaining three corpora, CC12M, VQA-v2, and WikiData, do not

offer the same level of informativeness as WIT when utilized independently. However,

excluding any of these corpora from the complete dataset results in performance decreases

of 1.3%, 0.6%, and 1.1%, respectively. This observation implies that these knowledge

sources effectively complement one another, contributing valuable information to enhance

performance. To further substantiate this hypothesis, we perform an additional experiment

involving pairs of knowledge sources, as illustrated in Figure 5.6. Notably, even when

paired with an informative knowledge source such as WIT, incorporating an extra corpus
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consistently leads to performance improvements.

Analyzing different retrieval training methods. Another core component of

ReVeaL is the attentive fusion layer, which supports efficient joint training of the retriever

and generator. We investigate its performance compared to two existing retrieval training

method categories: 1) a frozen retriever based on ALIGN [Jia+21] representations ; 2) end-

to-end retrieval training methods including Attention Distill [IG21], EMDR2 [Yan+19a],

and Perplexity Distill [Iza+22].

We use the pre-trained ReVeaL-Base model, fix the generator and randomly initialize

the retriever (query head and key head). We utilize our modified version of WIT dataset

with pseudo ground-truth retrieved labels as the evaluation corpus. We evaluate retrieval

performance by checking whether the correct passage appears in top-10/100 results. For the

ALIGN model, we directly evaluate the retrieval results from the pre-trained checkpoint,

while for other models, we perform retrieval-augmented training on the WIT dataset. To

prevent the model from relying on image similarity for accurate results, we only use text

passages as knowledge entries and discard images. Subsequently, we finetune the model on

OKVQA and report its accuracy. The results are presented in Table 5.6. We observe that

directly using pre-trained encoder does not perform well, even with a strong model like

ALIGN. Moreover, among the various end-to-end retrieval training approaches, our attentive

fusion method attains better accuracy in both retrieval and OKVQA tasks. Importantly,

our technique exhibits a computational cost (quantified by GFLOPs) comparable to that

of attention distillation, yet significantly lower than EMDR2 and Perplexity distillation.

This indicates that our proposed method is more efficient and effective for pre-training

retrieval-augmented visual-language models.

Analyzing Knowledge Modification. One advantage of utilizing knowledge memory

is that we could easily add or update knowledge entries without re-training model’s

parameters. To validate this, we conducted ablation studies in which we removed a specific

percentage of knowledge entries from the corpora and assessed the performance of the

ReVeaL-Base model on the OKVQA dataset. Subsequently, we add the removed knowledge
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Retrieval Method Acc@10 Acc@100 OKVQA Acc. GFLOPs

ALIGN [Jia+21] (fixed) 0.638 0.793 44.7 -

Attention Distill [IG21] 0.674 0.835 45.9 119
EMDR2 [Yan+19a] 0.691 0.869 46.5 561

Perplexity Distill [Iza+22] 0.704 0.886 46.7 561

Ours (Attentive Fusion) 0.726 0.894 47.3 120

Table 5.6: Analysis of Retrieval Training Method: We train ReVeaL-Base (frozen
generator, only train randomly initialized retriever) to retrieve from the WIT dataset (only
text passage without image), and show the retrieval accuracy at the first 10 or 100 results,
as well as fine-tuned OKVQA accuracy.

Figure 5.7: Study of Knowledge Update. The blue curve shows result by removing
certain percentage of knowledge during both fine-tuning and inference stage. The orange
curve shows results by still first removing the knowledge, and then adding the knowledge
back during inference, which simulates the knowledge update.

back into the corpora, allowing the trained model to make predictions using the complete

set of corpora. This approach ensured that the removed knowledge was not seen by the

model during fine-tuning, enabling us to test its ability to accurately retrieve and utilize

that knowledge for problem-solving.

The results are illustrated in Figure 5.7, with the blue curves representing the inference

outcomes without the removed knowledge and the orange curve depicting the results after

adding the removed knowledge back. A notable performance improvement was observed

upon reintroducing the knowledge (orange curve) compared to the outcomes with the
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removed knowledge (blue curve). Specifically, for the model fine-tuned with only 10% of

the knowledge, the reintroduction of the removed knowledge resulted in an accuracy of 51.8

(+6.7 higher than when removed). This finding demonstrates that the ReVeaL model can

swiftly adapt to new knowledge by merely updating the memory, obviating the need for

re-training model parameters.

5.6 Summary

This paper presents an end-to-end Retrieval-augmented Visual Language model (ReVeaL),

which contains a knowledge retriever that learns to utilize a diverse set of knowledge sources

with different modality. The retriever is trained jointly with the generator to return multiple

knowledge entries. We pre-train ReVeaL on a massive image-text corpus with four diverse

knowledge corpora, and achieves state-of-the-art results on knowledge-intensive visual

question answering and image caption tasks. In the future we’d explore the ability of this

model to be used for attribution, and applying it to broader class of multimodal tasks.
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Part III

Generalize across Domains via

Symbolic Knowledge
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CHAPTER 6
Few-Shot Representation for

Out-Of-Vocabulary Word

Existing approaches for learning word embeddings often assume there are sufficient

occurrences for each word in the corpus, such that the representation of words can be

accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary

(a.k.a. OOV) words that do not appear in training corpus emerge frequently. It is challenging

to learn accurate representations of these words with only a few observations. In this paper,

we formulate the learning of OOV embeddings as a few-shot regression problem, and

address it by training a representation function to predict the oracle embedding vector

(defined as embedding trained with abundant observations) based on limited observations.

Specifically, we propose a novel hierarchical attention-based architecture to serve as the

neural regression function, with which the context information of a word is encoded and

aggregated from K observations. Furthermore, our approach can leverage Model-Agnostic

Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly.

Experiments show that the proposed approach significantly outperforms existing methods

in constructing accurate embeddings for OOV words, and improves downstream tasks where

these embeddings are utilized.
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6.1 Introduction

Distributional word embedding models aim to assign each word a low-dimensional

vector representing its semantic meaning. These embedding models have been used as key

components in natural language processing systems. To learn such embeddings, existing

approaches such as skip-gram models [Mik+13b] resort to an auxiliary task of predicting

the context words (words surround the target word). These embeddings have shown to be

able to capture syntactic and semantic relations between words.

Despite the success, an essential issue arises: most existing embedding techniques assume

the availability of abundant observations of each word in the training corpus. When a word

occurs only a few times during training (i.e., in the few-shot setting), the corresponding

embedding vector is not accurate [Coh+17]. In the extreme case, some words are not

observed when training the embedding, which are known as out-of-vocabulary (OOV) words.

These words are often rare and might only occurred for a few times in the testing corpus.

Therefore, the insufficient observations hinder the existing context-based word embedding

models to infer accurate OOV embeddings. This leads us to the following research problem:

How can we learn accurate embedding vectors for OOV words during the inference time by

observing their usages for only a few times?

Existing approaches for dealing with OOV words can be categorized into two groups. The

first group of methods derives embedding vectors of OOV words based on their morphological

information [Boj+17; Kim+16; PGE17]. This type of approaches has a limitation when

the meaning of words cannot be inferred from its subunits (e.g., names, such as Vladimir).

The second group of approaches attempts to learn to embed an OOV word from a few

examples. In a prior study [Coh+17; HB17], these demonstrating examples are treated

as a small corpus and are used to fine-tune OOV embeddings. Unfortunately, fine-tuning

with just a few examples usually leads to overfitting. In another work [Kho+18], a simple

linear function is used to infer embedding of an OOV word by aggregating embeddings of

its context words in the examples. However, the simple linear averaging can fail to capture
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the complex semantics and relationships of an OOV word from its contexts.

Unlike the existing approaches mentioned above, humans have the ability to infer the

meaning of a word based on a more comprehensive understanding of its contexts and

morphology. Given an OOV word with a few example sentences, humans are capable of

understanding the semantics of each sentence, and then aggregating multiple sentences to

estimate the meaning of this word. In addition, humans can combine the context information

with sub-word or other morphological forms to have a better estimation of the target word.

Inspired by this, we propose an attention-based hierarchical context encoder (HiCE), which

can leverage both sentence examples and morphological information. Specifically, the

proposed model adopts multi-head self-attention to integrate information extracted from

multiple contexts, and the morphological information can be easily integrated through a

character-level CNN encoder.

In order to train HiCE to effectively predict the embedding of an OOV word from

just a few examples, we introduce an episode based few-shot learning framework. In each

episode, we suppose a word with abundant observations is actually an OOV word, and

we use the embedding trained with these observations as its oracle embedding. Then, the

HiCE model is asked to predict the word’s oracle embedding using only the word’s K

randomly sampled observations as well as its morphological information. This training

scheme can simulate the real scenarios where OOV words occur during inference, while in

our case we have access to their oracle embeddings as the learning target. Furthermore,

OOV words may occur in a new corpus whose domain or linguistic usages are different from

the main training corpus. To deal with this issue, we propose to adopt Model-Agnostic

Meta-Learning (MAML) [FAL17] to assist the fast and robust adaptation of a pre-trained

HiCE model, which allows HiCE to better infer the embeddings of OOV words in a new

domain by starting from a promising initialization.

We conduct comprehensive experiments based on both intrinsic and extrinsic embedding

evaluation. Experiments of intrinsic evaluation on the Chimera benchmark dataset demon-

strate that the proposed method, HiCE, can effectively utilize context information and

98



outperform baseline algorithms. For example, HiCE achieves 9.3% relative improvement

in terms of Spearman correlation compared to the state-of-the-art approach, à la carte,

regarding 6-shot learning case. Furthermore, with experiments on extrinsic evaluation,

we show that our proposed method can benefit downstream tasks, such as named entity

recognition and part-of-speech tagging, and outperform existing methods significantly.

The contributions of this work can be summarized as follows.

1. We formulate the OOV word embedding learning as a K-shot regression problem and

propose a simulated episode-based training schema to predict oracle embeddings.

2. We propose an attention-based hierarchical context encoder (HiCE) to encode and

aggregate both context and sub-word information. We further incorporate MAML

for fast adapting the learned model to the new corpus by bridging the semantic gap.

3. We conduct experiments on multiple tasks, and through quantitative and quali-

tative analysis, we demonstrate the effectiveness of the proposed method in fast

representation learning of OOV words for down-stream tasks.

6.2 Related Work

OOV Word Embedding Previous studies of handling OOV words were mainly based

on two types of information: 1) context information and 2) morphology features.

The first family of approaches follows the distributional hypothesis [Fir57] to infer

the meaning of a target word based on its context. If sufficient observations are given,

simply applying existing word embedding techniques (e.g., word2vec) can already learn

to embed OOV words. However, in a real scenario, mostly the OOV word only occur

for a very limited times in the new corpus, which hinders the quality of the updated

embedding [LMB17; HB17]. Several alternatives have been proposed in the literature.

Lazaridou, Marelli, and Baroni [LMB17] proposed additive method by using the average

embeddings of context words [LMB17] as the embedding of the target word. Herbelot and
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Baroni [HB17] extended the skip-gram model to nonce2vec by initialized with additive

embedding, higher learning rate and window size. Khodak, Saunshi, Liang, Ma, Stewart,

and Arora [Kho+18] introduced à la carte, which augments the additive method by a

linear transformation of context embedding.

The second family of approaches utilizes the morphology of words (e.g., morphemes,

character n-grams and character) to construct embedding vectors of unseen words based

on sub-word information. For example, Luong, Socher, and Manning [LSM13] proposed a

morphology-aware word embedding technique by processing a sequence of morphemes with a

recurrent neural network. Bojanowski, Grave, Joulin, and Mikolov [Boj+17] extended skip-

gram model by assigning embedding vectors to every character n-grams and represented each

word as the sum of its n-grams. Pinter, Guthrie, and Eisenstein [PGE17] proposed MIMICK

to induce word embedding from character features with a bi-LSTM model. Although these

approaches demonstrate reasonable performance, they rely mainly on morphology structure

and cannot handle some special type of words, such as transliteration, entity names, or

technical terms.

Our approach utilizes both pieces of information for an accurate estimation of OOV

embeddings. To leverage limited context information, we apply a complex model in contrast

to the linear transformation used in the past, and learn to embed in a few-shot setting. We

also show that incorporating morphological features can further enhance the model when

the context is extremely limited (i.e., only two or four sentences).

Few-shot learning The paradigm of learning new tasks from a few labelled observations,

referred to as few-shot learning, has received significant attention. The early studies attempt

to transfer knowledge learned from tasks with sufficient training data to new tasks. They

mainly follow a pre-train then fine-tune paradigm [Don+14a; Ben12; Zop+16]. Recently,

meta-learning is proposed and it achieves great performance on various few-shot learning

tasks. The intuition of meta-learning is to learn generic knowledge on a variety of learning

tasks, such that the model can be adapted to learn a new task with only a few training
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samples. Approaches for meta-learning can be categorized by the type of knowledge they

learn. (1) Learn a metric function that embeds data in the same class closer to each other,

including Matching Networks [Vin+16], and Prototypical Networks [SSZ17]. The nature of

metric learning makes it specified on classification problems. (2) Learn a learning policy that

can fast adapt to new concepts, including a better weight initialization as MAML [FAL17]

and a better optimizer [RL17]. This line of research is more general and can be applied to

different learning paradigms, including both classification and regression.

There have been emerging research studies that utilize the above meta-learning algo-

rithms to NLP tasks, including language modelling [Vin+16], text classification [Yu+18],

machine translation [Gu+18], and relation learning [Xio+18; Gao+19]. In this paper,

we propose to formulate the OOV word representation learning as a few-shot regression

problem. We first show that pre-training on a given corpus can somehow solve the problem.

To further mitigate the semantic gap between the given corpus with a new corpus, we adopt

model-agnostic meta-learning (MAML) [FAL17] to fast adapt the pre-trained model to new

corpus.

Contextualized Embedding The HiCE architecture is related to contextualized repre-

sentation learning [Pet+18; Dev+]. However, their goal is to get a contextualized embedding

based on a given sentence, with word or sub-word embeddings as input. In contrast, our

work utilizes multiple contexts to learn OOV embeddings. This research direction is or-

thogonal to their goal. In addition, the OOV embeddings learned by ours can be served as

inputs to ELMO and BERT, helping them to deal with OOV words.

6.3 Methodology

In this section, we first formalize the problem of OOV embedding learning as a few-shot

regression problem. Then, we present our embedding prediction model, a hierarchical

context encoder (HiCE) for capturing the semantics of context as well as morphological
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features. Finally, we adopt a state-of-the-art meta-learning algorithm, MAML, for fast and

robust adaptation to a new corpus.

6.3.1 The Few-Shot Regression Framework

Problem formulation We consider a training corpus DT , and a given word embedding

learning algorithm (e.g., Word2Vec) that yields a learned word embedding for each word w,

denoted as Tw ∈ Rd. Our goal is to infer embeddings for OOV words that are not observed

in the training corpus DT based on a new testing corpus DN .

DN is usually much smaller than DT and the OOV words might only occur for a few

times in DN , thus it is difficult to directly learn their embedding from DN . Our solution

is to learn an neural regression function Fθ(·) parameterized with θ on DT . The function

Fθ(·) takes both the few contexts and morphological features of an OOV word as input, and

outputs its approximate embedding vector. The output embedding is expected to be close

to its “oracle” embeddings vector that assumed to be learned with plenty of observations.

To mimic the real scenarios of handling OOV words, we formalize the training of this

model in a few-shot regression framework, where the model is asked to predict OOV word

embedding with just a few examples demonstrating its usage. The neural regression function

Fθ(·) is trained on DT , where we pick N words {wt}Nt=1 with sufficient observations as the

target words, and use their embeddings {Twt}Nt=1 as oracle embeddings. For each target

word wt, we denote St as all the sentences in DT containing wt. It is worth noting that we

exclude words with insufficient observations from target words due to the potential noisy

estimation for these words in the first place.

In order to train the neural regression function Fθ(·), we form episodes of few-shot

learning tasks. In each episode, we randomly sample K sentences from St, and mask out

wt in these sentences to construct a masked supporting context set SKt = {st,k}Kk=1, where

st,k denotes the k-th masked sentence for target word wt. We utilize its character sequence

as features, which are denoted as Ct. Based on these two types of features, the model Fθ is
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learned to predict the oracle embedding. In this paper, we choose cosine similarity as the

proximity metric, due to its popularity as an indicator for the semantic similarity between

word vectors. The training objective is as follows.

θ̂=argmax
θ

∑
wt

∑
SK
t ∼St

cos
(
Fθ(S

K
t , Ct), Twt

)
, (6.1)

where SKt ∼ St means that the K sentences containing target word wt are randomly sampled

from all the sentences containing wt. Once the model Fθ̂ is trained (based on DT ), it can

be used to predict embedding of OOV words in DN by taking all sentences containing these

OOV words and their character sequences as input.

6.3.2 Hierarchical Context Encoding (HiCE)

Here we detail the design of the neural regression function Fθ(·). Based on the previous

discussion, Fθ(·) should be able to analyze the complex semantics of context, to aggregate

multiple pieces of context information for comprehensive embedding prediction, and to

incorporate morphological features. These three requirements cannot be fulfilled using

simple models such as linear aggregation [Kho+18].

Recent progress in contextualized word representation learning [Pet+18; Dev+] has

shown that it is possible to learn a deep model to capture richer language-specific semantics

and syntactic knowledge purely based on self-supervised objectives. Motivated by their

results, we propose a hierarchical context encoding (HiCE) architecture to extract and

aggregate information from contexts, and morphological features can be easily incorporated.

Using HiCE as Fθ(·), a more sophisticated model to process and aggregate contexts and

morphology can be learned to infer OOV embeddings.

Self-Attention Encoding Block Our proposed HiCE is mainly based on the self-

attention encoding block proposed by Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez,

Kaiser, and Polosukhin [Vas+17]. Each encoding block consists of a self-attention layer

103



Figure 6.1: The proposed hierarchical context encoding architecture (HiCE) for learning
embedding representation for OOV words.

and a point-wise, fully connected layer. Such an encoding block can enrich the interaction

of the sequence input and effectively extract both local and global information.

Self-attention (SA) is a variant of attention mechanism that can attend on a sequence

by itself. For each head i of the attention output, we first transform the sequence input

matrix x into query, key and value matrices, by a set of three different linear projections

WQ
i ,W

K
i ,W

V
i . Next we calculate matrix product xWQ

i (xWK
i )T , then scale it by the square

root of the dimension of the sequence input 1√
dx

to get mutual attention matrix of the

sequence. Finally we aggregate the value matrices using the calculated attention matrix,
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and get aself,i as the self attention vector for head i:

aself,i = softmax

(
xWQ

i (xWK
i )T√

dx

)
xW V

i .

Combining all these self-attentions {aself,i}hi=1 by a linear projection WO, we have a

SA(x) with totally h heads, which can represent different aspects of mutual relationships

of the sequence x:

SA(x) = Concat(aself,1, ..., aself,h)W
O.

The self-attention layer is followed by a fully connected feed-forward network (FFN),

which applies a non-linear transformation to each position of the sequence input x.

For both SA and FFN, we apply residual connection [He+16] followed by layer normal-

ization [BKH16]. Such a design can help the overall model to achieve faster convergence

and better generalization.

In addition, it is necessary to incorporate position information for a sequence. Although

it is feasible to encode such information using positional encoding, our experiments have

shown that this will lead to bad performance in our case. Therefore, we adopt a more

straightforward position-wise attention, by multiplying the representation at pos by a

positional attention digit apos. In this way, the model can distinguish the importance of

different relative locations in a sequence.

HiCE Architecture As illustrated in Figure 6.1, HiCE consists of two major layers: the

Context Encoder and the Multi-Context Aggregator.

For each given word wt and its K masked supporting context set SKt = {st,1, st,2, ..., st,K},

a lower-level Context Encoder (E) takes each sentence st,k as input, followed by position-wise

attention and a self-attention encoding block, and outputs an encoded context embedding

E(st,k). On top of it, a Multi-Context Aggregator combines multiple encoded contexts, i.e.,

E(st,1), E(st,2), ..., E(st,K), by another self-attention encoding block. Note that the order of
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contexts can be arbitrary and should not influence the aggregation, we thus do not apply

the position-wise attention in Multi-Context Aggregator.

Furthermore, the morphological features can be encoded using character-level CNN

following [Kim+16], which can be concatenated with the output of Multi-Context Aggregator.

Thus, our model can leverage both the contexts and morphological information to infer

OOV embeddings.

6.3.3 Fast and Robust Adaptation with MAML

So far, we directly apply the learned neural regression function Fθ̂ trained on DT

to OOV words in DN . This can be problematic when there exists some linguistic and

semantic gap between DT and DN . For example, words with the same form but in

different domains [SLS18] or at different times [HLJ16] can have different semantic meanings.

Therefore, to further improve the performance, we aim to adapt the learned neural regression

function Fθ̂ from DT to the new corpus DN . A näıve way to do so is directly fine-tuning

the model on DN . However, in most cases, the new corpus DN does not have enough data

compared to DT , and thus directly fine-tuning on insufficient data can be sub-optimal and

prone to overfitting.

To address this issue, we adopt Model Agnostic Meta-Learning (MAML) [FAL17] to

achieve fast and robust adaption. Instead of simply fine-tuning Fθ̂ on DN , MAML provides

a way of learning to fine-tune. That is, the model is firstly trained on DT to get a more

promising initialization, based on which fine-tuning the model on DN with just a few

examples could generalize well.

More specifically, in each training episode, we first conduct gradient descent using

sufficient data in DT to learn an updated weight θ∗. For simplification, we use L to denote

the loss function of our objective function (6.1). The update process is as:

θ∗ = θ − α∇θLDT
(θ).
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We then treat θ∗ as an initialized weight to optimize θ on the limited data in DN . The final

update in each training episode can be written as follows.

θ′ = θ − β∇θLDN
(θ∗)

= θ − β∇θLDN
(θ − α∇θLDT

(θ)), (6.2)

where both α and β are hyper-parameters of two-stage learning rate. The above optimization

can be conducted with stochastic gradient descent (SGD). In this way, the knowledge learned

from DT can provide a good initial representation that can be effectively fine-tuned by a

few examples in DN , and thus achieve fast and robust adaptation.

Note that the technique presented here is a simplified variant of the original MAML,

which considers more than just two tasks compared to our case, i.e., a source task (DT ) and

a target task (DN ). If we require to train embeddings for multiple domains simultaneously,

we can also extend our approach to deal with multiple DT and DN .

6.4 Experiments

In this section, we present two types of experiments to evaluate the effectiveness of the

proposed HiCE model. One is an intrinsic evaluation on a benchmark dataset, and the

other is an extrinsic evaluation on two downstream tasks: (1) named entity recognition and

(2) part-of-speech tagging.

6.4.1 Experimental Settings

As aforementioned, our approach assumes an initial embedding T trained on an existing

corpus DT . As all the baseline models learn embedding from Wikipedia, we train HiCE

on WikiText-103 [Mer+17] with the initial embedding provided by Herbelot and Baroni

[HB17]1.

1clic.cimec.unitn.it/~aurelie.herbelot/wiki_all.model.tar.gz
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WikiText-103 contains 103 million words extracted from a selected set of articles. From

WikiText-103, we select words with an occurrence count larger than 16 as training words.

Then, we collect the masked supporting contexts set St for each training word wt with its

oracle embedding Twt , and split the collected words into a training set and a validation set.

We then train the HiCE model2 in the previous introduced episode based K-shot learning

setting, and select the best hyper-parameters and model using the validation set. After we

obtain the trained HiCE model, we can either directly use it to infer the embedding vectors

for OOV words in new corpus DN , or conduct adaptation on DN using MAML algorithm

as shown in Eq. (6.2).

Baseline Methods We compare HiCE with the following baseline models for learning

OOV word embeddings.

1. Word2Vec: The local updating algorithm of Word2Vec. The model employs the

‘Skip-gram’ update to learn a new word embedding by predicting its context word

vectors. We implement this baseline model with gensim3.

2. FastText: FastText is a morphological embedding algorithm that can handle OOV

by summing n-gram embeddings. To make fair comparison, we train FastText on

WikiText-103, and directly use it to infer the embeddings of OOV words in new

datasets. We again use the implementation in gensim3.

3. Additive: Additive model [LMB17] is a purely non-parametric algorithm that

averages the word embeddings of the masked supporting contexts St. Specifically:

eadditivet =
1

|St|
∑

c∈St

1

|c|
∑

w∈c
ew.

Also, this approach can be augmented by removing the stop words beforehand.

2github.com/acbull/HiCE

3radimrehurek.com/gensim/
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4. nonce2vec: This algorithm [HB17] is a modification of original gensim Word2Vec im-

plementation, augmented by a better initialization of additive vector, higher learning

rates and large context window, etc. We directly used their open-source implementa-

tion4.

5. à la carte: This algorithm [Kho+18] is based on an additive model, followed by

a linear transformation A that can be learned through an auxiliary regression task.

Specifically:

eà la carte
t =

A

|St|
∑

c∈St

∑
w∈c

Aeadditivew

We conduct experiments by using their open-source implementation5.

6.4.2 Intrinsic Evaluation: Evaluate OOV Embeddings on the Chimera Bench-

mark

First, we evaluate HiCE on Chimera [LMB17], a widely used benchmark dataset for

evaluating word embedding for OOV words.

Dataset The Chimera dataset simulates the situation when an embedding model faces

an OOV word in a real-world application. For each OOV word (denoted as “chimera”),

a few example sentences (2, 4, or 6) are provided. The dataset also provides a set of

probing words and the human-annotated similarity between the probing words and the

OOV words. To evaluate the performance of a learned embedding, Spearman correlation

is used in [LMB17] to measure the agreement between the human annotations and the

machine-generated results.

4github.com/minimalparts/nonce2vec

5github.com/NLPrinceton/ALaCarte
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Methods 2-shot 4-shot 6-shot

Word2vec 0.1459 0.2457 0.2498
FastText 0.1775 0.1738 0.1294
Additive 0.3627 0.3701 0.3595
nonce2vec 0.3320 0.3668 0.3890
à la carte 0.3634 0.3844 0.3941

HiCE w/o Morph 0.3710 0.3872 0.4277
HiCE + Morph 0.3796 0.3916 0.4253
HiCE + Morph + Fine-tune 0.1403 0.1837 0.3145
HiCE + Morph + MAML 0.3781 0.4053 0.4307

Oracle Embedding 0.4160 0.4381 0.4427

Table 6.1: Performance on the Chimera benchmark dataset with different numbers of
context sentences, which is measured by Spearman correlation. Baseline results are from
the corresponding papers.

Experimental Results Table 6.1 lists the performance of HiCE and baselines with

different numbers of context sentences. In particular, our method (HiCE+Morph+MAML)6

achieves the best performance among all the other baseline methods under most settings.

Compared with the current state-of-the-art method, à la carte, the relative improvements

(i.e., the performance difference divided by the baseline performance) of HiCE are 4.0%,

5.4% and 9.3% in terms of 2,4,6-shot learning, respectively. We also compare our results

with that of the oracle embedding, which is the embeddings trained from DT , and used as

ground-truth to train HiCE. This results can be regarded as an upper bound. As is shown,

when the number of context sentences (K) is relatively large (i.e., K = 6), the performance

of HiCE is on a par with the upper bound (Oracle Embedding) and the relative performance

difference is merely 2.7%. This indicates the significance of using an advanced aggregation

model.

Furthermore, we conduct an ablation study to analyze the effect of morphological

features. By comparing HiCE with and without Morph, we can see that morphological

features are helpful when the number of context sentences is relatively small (i.e., 2 and 4

6Unless other stated, HiCE refers to HiCE + Morph + MAML.
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shot). This is because morphological information does not rely on context sentences, and

can give a good estimation when contexts are limited. However, in 6-shot setting, their

performance does not differ significantly.

In addition, we analyze the effect of MAML by comparing HiCE with and without

MAML. We can see that adapting with MAML can improve the performance when the

number of context sentences is relatively large (i.e., 4 and 6 shot), as it can mitigate the

semantic gap between source corpus DT and target corpus DN , which makes the model

better capture the context semantics in the target corpus. Also we evaluate the effect

of MAML by comparing it with fine-tuning. The results show that directly fine-tuning

on target corpus can lead to extremely bad performance, due to the insufficiency of data.

On the contrary, adapting with MAML can leverage the source corpus’s information as

regularization to avoid over-fitting.

Methods
Named Entity Recognition (F1-score) POS Tagging (Acc)
Rare-NER Bio-NER Twitter POS

Word2vec 0.1862 0.7205 0.7649
FastText 0.1981 0.7241 0.8116
Additive 0.2021 0.7034 0.7576
nonce2vec 0.2096 0.7289 0.7734
à la carte 0.2153 0.7423 0.7883

HiCE w/o Morph 0.2394 0.7486 0.8194
HiCE + Morph 0.2375 0.7522 0.8227
HiCE + Morph + MAML 0.2419 0.7636 0.8286

Table 6.2: Performance on Named Entity Recognition and Part-of-Speech Tagging tasks.
All methods are evaluated on test data containing OOV words. Results demonstrate that
the proposed approach, HiCE + Morph + MAML, improves the downstream model by
learning better representations for OOV words.

6.4.3 Extrinsic Evaluation: Evaluate OOV Embeddings on Downstream Tasks

To illustrate the effectiveness of our proposed method in dealing with OOV words, we

evaluate the resulted embedding on two downstream tasks: (1) named entity recognition

(NER) and (2) part-of-speech (POS) tagging.
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Named Entity Recognition NER is a semantic task with a goal to extract named

entities from a sentence. Recent approaches for NER take word embedding as input and

leverage its semantic information to annotate named entities. Therefore, a high-quality

word embedding has a great impact on the NER system. We consider the following two

corpora, which contain abundant OOV words, to mimic the real situation of OOV problems.

1. Rare-NER: This NER dataset [Der+17] focus on unusual, previously-unseen entities

in the context of emerging discussions, which are mostly OOV words.

2. Bio-NER: The JNLPBA 2004 Bio-entity recognition dataset [CK04] focuses on tech-

nical terms in the biology domain, which also contain many OOV words.

Both datasets use entity-level F1-score as an evaluation metric. We use the WikiText-103

as DT , and these datasets as DN . We select all the OOV words in the dataset and extract

their context sentences. Then, we train different versions of OOV embeddigns based on the

proposed approaches and the baseline models. Finally, the inferred embedding is used in an

NER system based on the Bi-LSTM-CRF [Lam+16] architecture to predict named entities

on the test set. We posit a higher-quality OOV embedding results in better downstream

task performance.

As we mainly focus on the quality of OOV word embeddings, we construct the test set

by selecting sentences which have at least one OOV word. In this way, the test performance

will largely depend on the quality of the OOV word embeddings. After the pre-processing,

Rare-NER dataset contains 6,445 OOV words and 247 test sentences, while Bio-NER

contains 11,748 OOV words and 2,181 test sentences. Therefore, Rare-NER has a high

ratio of OOV words per sentence.

Part-of-Speech Tagging Besides NER, we evaluate the syntactic information encoded

in HiCE through a lens of part-of-speech (POS) tagging, which is a standard task with

a goal to identify which grammatical group a word belongs to. We consider the Twitter

social media POS dataset [Rit+11], which contains many OOV entities. The dataset is
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Figure 6.2: Visualization of attention distribution over words and contexts.

comprised of 15,971 English sentences collected from Twitter in 2011. Each token is tagged

manually into 48 grammatical groups, consisting of Penn Tree Bank Tag set and several

Twitter-specific classes. The performance of a tagging system is measured by accuracy.

Similar to the previous setting, we use different updating algorithms to learn the embedding

of OOV words in this dataset, and show different test accuracy results given by learned

Bi-LSTM-CRF tagger. The dataset contains 1,256 OOV words and 282 test sentences.

OOV Contexts Methods Top-5 similar words (via cosine similarity)

scooter
We all need vehicles like bmw
c1 scooter that allow more social
interaction while using them ...

Additive the, and, to, of, which
FastText cooter, pooter, footer, soter, sharpshooter
HiCE cars, motorhomes, bmw, motorcoaches, microbus

cello
The instruments I am going to
play in the band service are
the euphonium and the cello ...

Additive the, and, to, of, in
FastText celli, cellos, ndegéocello, cellini, cella
HiCE piano, orchestral, clarinet, virtuoso, violin

potato
It started with a green salad
followed by a mixed grill with
rice chips potato ...

Additive and, cocoyam, the, lychees, sapota
FastText patatoes, potamon, potash, potw, pozzato
HiCE vegetables, cocoyam, potatoes, calamansi, sweetcorn

scarf
I wore my hat, scarf and gloves
today i’m lucky I wore it ...

Additive the, and, trivalved, a, pealike
FastText scarfe, scarp, scar, scarpe, scarpa
HiCE appliques, edgings, drawstring, bustier, dungarees

Table 6.3: For each OOV in Chimera benchmark, infer its embedding using different
methods, then show top-5 words with similar embedding to the inferred embedding. HiCE
can find words with most similar semantics.
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Results Table 6.2 illustrates the results evaluated on the downstream tasks. HiCE

outperforms the baselines in all the settings. Compared to the best baseline à la carte, the

relative improvements are 12.4%, 2.9% and 5.1% for Rare-NER, Bio-NER, and Twitter

POS, respectively. As aforementioned, the ratio of OOV words in Rare-NER is high. As

a result, all the systems perform worse on Rare-NER than Bio-NER, while HiCE reaches

the largest improvement than all the other baselines. Besides, our baseline embedding is

trained on Wikipedia corpus (WikiText-103), which is quite different from the bio-medical

texts and social media domain. The experiment demonstrates that HiCE trained on DT is

already able to leverage the general language knowledge which can be transferred through

different domains, and adaptation with MAML can further reduce the domain gap and

enhance the performance.

6.4.4 Qualitative Evaluation of HiCE

To illustrate how does HiCE extract and aggregate information from multiple context

sentences, we visualize the attention weights over words and contexts. We demonstrate an

example in Figure 6.2, where we choose four sentences in chimera dataset, with “clarinet”

(a woodwind instrument) as the OOV word. From the attention weight over words, we

can see that the HiCE puts high attention on words that are related to instruments, such

as “horns”, “instruments”, “flows”, etc. From the attention weight over contexts, we

can see that HiCE assigns the fourth sentence the lowest context attention, in which the

instrument-related word “trumpet” is distant from the target placeholder, making it harder

to infer the meaning by this context. This shows HiCE indeed distinguishes important

words and contexts from the uninformative ones.

Furthermore, we conduct a case study to show how well the inferred embedding for

OOV words capture their semantic meaning. We randomly pick three OOV words with

6 context sentences in Chimera benchmark, use additive, fastText and HiCE to infer the

embeddings. Next, we find the top-5 similar words with the highest cosine similarity. As

is shown in Table 6.3, Additive method can only get embedding near to neutral words as
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“the”, “and”, etc, but cannot capture the specific semantic of different words. FastText can

find words with similar subwords, but representing totally different meaning. For example,

for OOV “scooter” (a motor vehicle), FastText finds “cooter” as the most similar word,

which looks similar in character-level, but means a river turtle actually. Our proposed

HiCE however, can capture the true semantic meaning of the OOV words. For example, it

finds “cars”, “motorhomes” (all are vehicles) for “scooter”, and finds “piano”, “orchestral”

(all are instruments) for “cello”, etc. This case study shows that HiCE can truly infer a

high-quality embedding for OOV words.

6.5 Summary

We studied the problem of learning accurate embedding for Out-Of-Vocabulary word

and augment them to a per-trained embedding by only a few observations. We formulated

the problem as a K-shot regression problem and proposed a hierarchical context encoder

(HiCE) architecture that learns to predict the oracle OOV embedding by aggregating only

K contexts and morphological features. We further adopt MAML for fast and robust

adaptation to mitigate semantic gap between corpus. Experiments on both benchmark

corpus and downstream tasks demonstrate the superiority of HiCE over existing approaches.
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CHAPTER 7
Causal Representation Learning for

Improving Multi-Task Generalization

Multi-Task Learning (MTL) is a powerful learning paradigm to improve generalization

performance via knowledge sharing. However, existing studies find that MTL could

sometimes hurt generalization, especially when two tasks are less correlated. One possible

reason that hurts generalization is spurious correlation, i.e., some knowledge is spurious and

not causally related to task labels, but the model could mistakenly utilize them and thus

fail when such correlation changes. In MTL setup, there exist several unique challenges of

spurious correlation. First, the risk of having non-causal knowledge is higher, as the shared

MTL model needs to encode all knowledge from different tasks, and causal knowledge for one

task could be potentially spurious to the other. Second, the confounder between task labels

brings in a different type of spurious correlation to MTL. Given such label-label confounders,

we theoretically and empirically show that MTL is prone to taking non-causal knowledge

from other tasks. To solve this problem, we propose Multi-Task Causal Representation

Learning (MT-CRL) framework. MT-CRL aims to represent multi-task knowledge via

disentangled neural modules, and learn robust task-to-module routing graph weights via

MTL-specific invariant regularization. Experiments show that MT-CRL could enhance

MTL model’s performance by 5.5% on average over Multi-MNIST, MovieLens, Taskonomy,
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CityScape, and NYUv2, and show it could indeed alleviate spurious correlation problem.

7.1 Introduction

Multi-Task Learning (MTL), a learning paradigm [Car97; ZY18] aiming to train a single

model for multiple tasks, is expected to benefit the overall generalization performance than

single-task learning [MPR16; TJJ20] given the assumption that there exists some common

knowledge to handle different tasks. However, recent studies observed that, when two tasks

are less correlated, MTL could lead to even worse overall performance [PBS16; Zha+21b]. A

line of works [Yu+20b; Wan+21b; Fif+21] resort performance drop to optimization challenge

because conflicting tasks might compete for model capacity. However, both Standley, Zamir,

Chen, Guibas, Malik, and Savarese [Sta+20] and our analysis in Section 7.3.2 show that,

even with an over-parameterized model that achieves low MTL training loss, the final

generalization performance could be worse than single-task learning. This finding motivates

us to think about the following question: Are there any intrinsic problems in MTL that

hurt generalization?

One widely studied issue that influences generalization is the spurious correlation

problem [Gei+19; Gei+20], i.e., correlation that only existed in training datasets due to

unobserved confounders [Lop16], but not causally correct. For example, as Beery, Horn,

and Perona [BHP18] discussed, when we train an image classification model to identify cows

with a biased dataset where cows mostly appear in pastures, the trained cow classification

model could exploit the features of background (e.g., pastures) to make prediction. Thus,

when we apply the classifier to another dataset where cows also appear in other locations

such as farms or rivers, it will fail to generalize [NAN21].

When it comes to MTL setting, there exist several unique challenges to handle spurious

correlation problem. First, the risk of having non-causal features is higher. Suppose

each task has different sets of causal features. To train a single model for all these tasks,

the shared representation should encode all required features. Consequently, the causal
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features for one task could be potentially spurious to the other tasks, and such risk could

be even higher with an increasing number of tasks. Second, the confounder that leads

to spurious correlation is different. Instead of the standard confounders between

feature and label, the nature of MTL brings in a unique type of confounders between task

labels, e.g., correlation between tasks’ labels could change in different distributions. For

example, when we train a MTL model to solve both cow classification and scene recognition

tasks, its encoder needs to capture both foreground and background information, and the

spurious correlation between the two tasks in training set could mislead per-task model to

utilize irrelevant information, e.g., use background to predict cow. Given such label-label

confounders that are unique for MTL, we theoretically prove that MTL is prone to taking

non-causal knowledge learned from other tasks. We then conduct empirical analysis to

validate the hypothesis. In summary, we point out the unique challenges of spurious

correlation in MTL setup, and show that it indeed influences multi-task generalization.

In light of the analysis, we try to solve the spurious correlation problem in MTL. Among

all the knowledge learned in the shared representation layer through end-to-end training,

an ideal MTL framework should learn to leverage only the causal knowledge to solve each

task by identifying the correct causal structure. Following the recent advances that enable

causal learning in an end-to-end learning model [Sch+21; Mit+21], we propose a Multi-Task

Causal Representation Learning (MT-CRL) framework, aiming to represent the multi-

task knowledge via a set of disentangled neural modules instead of a single encoder, and

learn the task-to-module causal relationship jointly. We adopt de-correlation and sparsity

regularization over popular Mixture-of-Expert (MoE) architecture [Sha+17]. The most

critical and challenging step is to learn the causal graph in the MTL setup, which requires

distinguishing the genuine causal correlation from spurious ones for all tasks. Motivated by

the recent studies that invariance could lead to causality [Ahu+20; KY21], we propose to

penalize the variance of gradients w.r.t. causal graph weights across different distributions.

On a high level, this invariance regularization encourages the causal graph to assign higher

weights to the modules that are consistently useful. In contrast, the modules encoding
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spurious knowledge that cannot consistently achieve graph optimality are assigned lower

weights and be discarded by task predictors.

We evaluate our method on existing MTL benchmarks, including Multi-MNIST, Movie-

Lens, Taskonomy, CityScape, and NYUv2. For each dataset, to mimic distribution shifts,

we adopt some attribute information given in the dataset, such as the released time of the

movie or district of a building, to split train/valid/test datasets. The results show that

MT-CRL could consistently enhance the MTL model’s performance by 5.5% on average,

and outperform both the MTL optimization and robust machine learning baselines. We also

conduct case studies to show that MT-CRL indeed alleviate spurious correlation problem

in MTL setup.

The key contributions of this paper are as follows:

1. We are the first to analyze spurious correlation problem in MTL setup, and point out

several key challenges unique to MTL with theoretical and empirical analysis.

2. We propose MT-CRL with MTL-specific invariant regularizers to elleviate spurious

correlation problem, and enhances the performance on several MTL benchmarks.

7.2 Related Work

Multi-Task Generalization. A deep neural model often requires a large number of

training samples to generalize well [Aro+19; CG19]. To alleviate the sample sparsity problem,

MTL could leverage more labeled data from multiple tasks [ZY18]. Most works studying

multi-task generalization are based on a core assumption that the tasks are correlated.

Earlier research directly define the task relatedness with statistical assumption [Bax00;

BB08; LG19]. With the increasing focus on deep learning models, recent research decompose

ground-truth MTL models into a shared representation and different task-specific layers

from a hypothesis family [MPR16]. With such decomposition, Tripuraneni, Jordan, and

Jin [TJJ20] and Du, Hu, Kakade, Lee, and Lei [Du+21] prove that a diverse set of tasks
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could help learn more generalizable representation. Wu, Zhang, and Ré [WZR20] study how

covariate shifts influence MTL generalization. Despite these findings, the core assumption of

task relatedness might not be satisfied in many real-world applications [PBS16; Zha+21b],

in which tasks could even conflict with each other to compete model capacity, and the

generalization performance of MTL could be worse than single-task training.

To solve the task conflict problem, a number of MTL model architectures have utilized

modular [Mis+16; Lu+17; RKR18; Ma+18; GLU20] or attention-based [LJD19; MRK19]

design to enlarge model capacity while preserving information sharing. Our work is model-

agnostic and could be applied to existing architectures to further solve the spurious feature

problem. Another line of research alleviate task conflict during optimization. Some propose

to balance the task weight via uncertainty estimation [KGC18], gradient norm [Che+18],

convergence rate [LJD19], or pareto optimality [SK18]. Others directly modulate task

gradients via dropping part of the conflict gradient [Che+20b] or project task’s gradient

onto other tasks’ gradient surface [Yu+20b; Wan+21b]. Though these works successfully

facilitate MTL model to converge easier, our analysis show that with spurious correlation,

the MTL model with low training loss could still generalize bad. Therefore, our proposed

MT-CRL that alleviates spurious correlation is orthogonal to these prior works, and could

be combined to further improve overall performance.

Spurious Correlation Problem. Due to the selection bias [TE11; Gur+18] or unob-

served confounding factors [Lop16], training datasets always contain spurious correlations

between non-causal features and task labels, with which trained models often leverage

non-causal knowledge and may fail to generalize Out-Of-Distribution (OOD) when such

correlation changes [NAN21]. To solve the spurious correlation problem, some fairness

research pre-define a set of non-causal features (e.g., gender and underrepresented iden-

tity) and then explicitly remove them from the learned representation [Zem+13; Gan+16;

Wan+19a]. Another line of robust machine learning research does not assume to know

spurious features, but regularize the model to perform equally well under different distri-
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bution. Distributionally Robust Optimization (DRO) optimizes worst-case risk [Sag+20].

Invariant Causal Prediction (ICP) learns causal relations via invariance testing [PBM16].

Invariant Risk Minimization (IRM) forces the final predictor to be optimal across different

domains [Arj+19]. Risk Extrapolation (REx) directly penalizes the variance of training

risk in different domains [Kru+21]. Another line of work aim at learning causal repre-

sentation [Sch+21], i.e., high-level variables representing different aspect of knowledge

from raw data input. Most of these works try to recover disentangled causal generative

mechanisms [Par+18; Ben+20; Liu+20; Mit+21]. Despite the extensive study of spurious

correlation in single-task setting, few work discuss it for MTL models. This paper is the

first to point out the unique challenges of spurious correlation in MTL setup.

7.3 Analyzing Spurious Correlation in MTL

To systematically analyze the spurious correlation problem in MTL, we first assume

that data and task labels are generated by ground-truth causal mechanisms described

in Suter, Miladinovic, Schölkopf, and Bauer [Sut+19]. We denote X as the variable of

observed data, and each data is associated with K latent generative factors F = {Fi}Ki=1

representing different semantics of the data (e.g., color, shape, background of an image). We

follow [Sch+21] to assume that the data X is generated by disentangled causal mechanisms

P (X|Fi) , such that P
(
X|F

)
=
∏K

i=1 P
(
X|Fi

)
.

As F represents high-level knowledge of the data, we could naturally define task label

variable Yt for task t as the cause of a subset of generative factors. We denote FCt as a

subset of causal feature variables within F that are causally related to each task variable Yt,

and we could define FSt = F \ FCt as a subset of non-causal feature variables to task t, such

that P (Yt|F) = P (Yt|FCt ). In other words, changing the values of any non-causal factors in

FSt does not change the conditional distribution.

Note that the discussion so far is based on the assumption that the ground-truth causal

generative model is known. In a real-world learning setting, however, we are only given
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a supervised dataset (X, Y ) without access to generative factors F. To solve the task, a

neural encoder Φ(·) is required to extract representation Z from the data that encodes the

information about the causal factors, on top of which a task predictor f(·) could predict

the label.

Figure 7.1: Spurious correlation in
Single-Task Learning is mainly caused
by factor-label confounders CSTL

dist . We
could remove spurious factors FS from
representation Z.

Figure 7.2: Spurious correlation in Multi-
Task Learning could be caused by label-label
confounders CMTL

dist . Factors for both tasks FCa
and FCb need to be encoded and potentially
spurious.

7.3.1 Spurious Correlation Problem

Based on the ground-truth generative model, an ideal predictor for each task should

only utilize the causal factors, and keep invariant to any intervention on non-causal

factors. However, in real-world problems, it is hard to achieve an invariant predictor due

to the spurious correlation issue due to unobserved confounders Cdist [Lop16]. Formally,

confounders are variables that influence the two connected variables’ correlation, and such

correlation could change under different distribution (different value of Cdist), thus the

model exploiting such spurious correlation will fail to generalize. Below we summarize the

differences of spurious correlation problems for single-task and multi-task learning settings:

Single-Task Learning (STL). As illustrated in Figure 7.1, the label-factor confounders

for single task learning CSTL
dist connects non-causal factors F ∈ FS and task label Y , bringing

in spurious correlation. For example, temperature could confound crime and ice cream
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consumption. When the weather is hot, both crime rates and ice cream sales increase, but

these two phenomena are not causally related. Based on the proof by Nagarajan, Andreassen,

and Neyshabur [NAN21] and Khani and Liang [KL21], such spurious correlation could lead

the model to use non-causal factors, and thus hurt generalization performance.

Multi-Task Learning (MTL). In the MTL setting, there exist several unique challenges

to handle spurious correlation. First, the risk of having non-causal features is higher. As is

illustrated in Figure 7.2, the shared encoder Φ needs to encode all the factors causally related

to each task in the representation Z. Therefore, for each task, all non-overlapping factors

from other tasks could be potentially spurious. Second, besides the standard label-factor

confounders CSTL
dist for each single task introduced above, we define label-label confounders

CMTL
dist connecting multiple tasks’ label {Y }. Such confounder is unique to MTL setting.

As an example, consider two binary classification tasks, with Ya and Yb as variables

from {±1} for task label. The two labels’ correlation P (Ya = Yb) = mC could change with

different confounder CMTL
dist = C. We assume the two tasks have non-overlapping factors

Fa and Fb drawn from Gaussian distribution. We then show MTL model with both two

factors as input will utilize non-causal factors:

Proposition 1. Given mC ̸= 0.5, the Bayes Optimal per-task classifier has non-zero weights

to non-causal factor. Given mC = 0.5 and limited training dataset, the trained per-task

classifier will assign non-zero weights to non-causal factor as noise.

Therefore, in this linear classification example, when we deploy the trained model to a

new distribution with changed label-label confounder CMTL
dist , the model trained by MTL

that utilizes non-causal factors generalize relatively worse. On the contrary, the model

trained by STL don’t need to encode all causal factors from two tasks. Assuming there

is no task-label confounder CSTL
dist in each task’s dataset, the trained model could remove

non-causal factors from representation.
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7.3.2 Empirical Experiments

In the following, we conduct experiments to validate the claims. As there is no existing

MTL datasets specifically designed to analyze spurious correlation problem, we construct

synthetic Multi-SEM [RRR21] and Multi-MNIST [HK16] datasets with known causal

structure to study whether the model trained by MTL indeed exploits more non-causal

factors, and how the spurious correlation influences multi-task generalization.

Spurious Score. As we know the ground-truth causal structure for the two datasets, we

could quantify how much a model utilizes the non-causal factors. Following the gradient

saliency map proposed by Simonyan, Vedaldi, and Zisserman [SVZ14], we calculate the

average absolute gradients w.r.t each factor as Grad(F ) =
∑

(x(F),y)∈D

∣∣∣∂(f(Φ(x))[y]
)

∂F

∣∣∣, which
measures how much a model leverage this factor to make prediction. We then define

the spurious score ρspur as the proportion of average gradients over non-causal feature

ρspur =
∑

F∈FS Grad(F )∑
F∈FGrad(F )

.

Figure 7.3: The gradient saliency map of right-
side digit classifier. The model trained by MTL
exploits left pixels (spurious) more.

Multi-SEM Multi-MNIST

STL MTL STL MTL

Acctrain 0.931 0.936 0.981 0.987

Accval 0.906 0.882 0.874 0.846

ρspur 0.128 0.246 0.261 0.328

Table 7.1: Empirical results of multi-
task (MTL) and single-task learning
(STL) model on synthetic datasets
with changing CMTL

dist .

Empirical Results. We train a shared-bottom model via Multi-task learning (MTL)

and single-task learning (STL) over the two datasets and report both the training and test

accuracy with spurious ratio ρspur in Table 7.1. As illustrated, the test accuracies of MTL

for both Multi-SEM and Multi-MNIST datasets are both worse than STL. The training

accuracies of MTL are very similar to STL, meaning that the performance drop is not due
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to the optimization difficulty that many previous works try to address. The spurious ratio

ρspur of MTL is much higher than the STL, which means that it exploits more non-causal

factors. To give a more straightforward illustration, we plot the gradient saliency map of

the right-side digit classifier for Multi-MNIST in Figure 7.3. The model trained by MTL

utilizes more left-side pixels, which are non-causal to the final prediction. These findings

support our hypothesis that with spurious correlation caused by label-label confounder

CMTL
dist , models trained by MTL is more prone to leverage non-causal knowledge than STL,

and thus influence generalization performance.

7.4 Methodology

Based on the previous analysis of the spurious correlation problem in MTL, we now

introduce a Multi-Task Causal Representation Learning (MT-CRL) framework with the

goal that the per-task predictor only leverages the causal knowledge instead of spurious

correlation. The high-level idea of the framework is to reconstruct the ground-truth causal

mechanisms introduced in section 7.3 through end-to-end representation learning. To

accomplish this goal, the framework aims to 1) model multi-task knowledge via a set of

disentangled neural modules; 2) learn the task-to-module causal graph that is optimal

across different distributions. With the correct causal graph as routing layer, per-task

predictor only utilizes outputs from causally-related modules, thus alleviating the spurious

correlation problem. We introduce the two crucial designs as follows.

7.4.1 Modelling via Disentangled Neural Modules

In order to alleviate spurious correlation, an ideal MTL model should learn the multi-task

knowledge in the shared representation while identifying which part of the knowledge is

causally related to each task. However, directly conducting causal discovery is impossible if

all the knowledge is fused in a single shared encoder. Thus, we seek to adopt a modularized

architecture in which each module encodes disentangled knowledge, and thus enable modeling
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causal relationship between task and modules. We adopt Multi-gate Mixture-of-Experts

(MMoE) [Ma+18], a variant of MoE [Sha+17] architecture tailored for MTL setting, as

our underlying model. Specifically, we have K different neural modules as shared encoders

Φ =
[
Φi(·)

]K
i=1

. Given a batch of input data X = {xn}Bn=1 with batch size B, we extract k

representations via different neural modules, i.e., Zi = Φi(X) ∈ RB×d. Based on sparsity

assumption of the causal mechanisms [Par+18; Ben+20; Lac+21], only a few modules

should be causally related to each task. Therefore, on top of the learned neural modules,

we learn a task-to-module routing graph, aiming to estimate which module is causally

related to each task. We model the bipartite adjacency (a.k.a. bi-adjacency) matrix

A = sigmoid(θ) ∈ [0, 1]T×K by applying sigmoid over a learnable parameter θ to enforce

the range constraint. Note that original MMoE adopts softmax to get gate vector, which

encourages only a small portion of modules being utilized for each task. Our graph modelling

allows multiple modules utilized for each task. With the correct graph weights A as routing

layer, we could utilize only the causally related modules and make predictions with per-task

predictor ft(·) as Ŷt(X) = ft
(∑

iAt,i · Φi(X)
)
.

Disentangling Modules. One of the main properties of the causal mechanisms we

introduced in section 7.3 is disentanglement, such that each factor represents a different

view of the data, and changing the value of one factor does not influence the others. If

without explicit constraints, the learned modules’ outputs could still be correlated and

hinder the causal structure learning. Therefore, we need to add regularization to disentangle

these modules during training.

Most existing disentangled representation learning methods are under the generative

modeling framework, e.g. VAE [Hig+17] or GAN [Che+16]. However, Locatello, Bauer,

Lucic, Rätsch, Gelly, Schölkopf, and Bachem [Loc+19] argues that without explicit supervi-

sion, it is hard for generative models to learn correct disentangled factors. We therefore

only borrow the regularization methods utilized in existing generative disentangled repre-

sentation works [Che+15b; Cog+16] to directly penalize the correlation of learned modules.
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Specifically, we regularize the in-batch Pearson correlation ρ(Zi,Zj) between every pair of

output dimensions from different representation matrices Zi and Zj, as:

ρ(Zi,Zj) =
Cov(Zi,Zj)√

Cov(Zi,Zi)
√
Cov(Zj,Zj)

, where Cov(Zi,Zj) =
[
Zi − Zi

]T [
Zj − Zj

]
.

(7.1)

By minimizing the Frobenius norm of the correlation matrix ρ for every two different

representation pairs, we could enforce the encoder Φ to extract disentangled representations.

Ldecor(Φ) = λdecor ·
k∑
i=1

k∑
j=i+1

∥∥∥ρ(Φi(X),Φj(X)
)∥∥∥2

F
. (7.2)

Task-to-Module Graph Regularization. Based on sparsity assumption of the causal

mechanisms [Par+18; Ben+20; Lac+21], each task is causally related to only a few modules.

To learn the graph structure, existing works [Zhe+18; Ng+19; Lac+20] propose to to fit

structural equation model (SEM) with sparsity regularization over the graph weights. We

adopt a similar sparse regularization with an entropy balancing term [Hai12] over the

bi-adjacency matrix A weights of the task-to-module routing graph:

Lgraph(A) = λsps · ||A||1 − λbal · Entropy
( ∑

tAt,∗∑
t,iAt,i

)
. (7.3)

Note that the entropy term aims at keeping the causal weights for each module i summing

over all the tasks to be balanced. This could help avoid degenerate solutions in which only

a few modules are utilized. By combining the two regularizations in Eq.(7.2) and Eq.(7.3)

with per-task supervised risk term Rt

(
Φ, At, ft

)
=
∑

(X,Yt)∈D Lt
(
Ŷt(X),Yt

)
, we get the

regularized loss as:

L̃(Φ, A, f) =
∑
t∈T

Rt

(
Φ, At, ft

)
+ Ldecor(Φ) + Lgraph(A). (7.4)
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7.4.2 Causal Learning via Graph-Invariant Regularization

It is critical and challenging to learn the correct causal graph, which requires distinguish-

ing the true causal correlation from spurious ones. Motivated by the recent studies of robust

machine learning that a predictor invariant to multiple distributions could learn causal

correlation [Ahu+20; KY21], we assume the true causal relationship to be optimal across

different distributions. To do so, we assume to have access to multiple slices of datasets

collected from different environments e ∈ E in which the confounder CMTL
dist that controls

task correlation might change. For example, one natural choice is to consider train/valid

dataset split (the setting we utilize in experiment), or assume the training set is split into

multiple slices with different attributes. We desire the task-to-module graph weights A

and per-task predictor ft to be optimal across all environments e ∈ E . Formally, we aim to

solve the following bi-level optimization problem:

min
Φ,A,f

L̃(Φ, A, f) s.t. At, ft ∈ argmin
A,f

Re
t

(
Φ, A, f

)
,∀ t ∈ T , e ∈ E . (7.5)

where Re
t denotes the risk over data slice in environment e. This optimization problem

could be regarded as a multi-task version of IRM. Based on Theorem 9 described in Ahuja,

Shanmugam, Varshney, and Dhurandhar [Ahu+20], by enforcing invariance over a sufficient

number of environments that exhibit distribution shifts (i.e., changes of confounder CMTL
dist ),

per-task predictors should only utilize modules that are consistently helpful to the task,

and assign zero weights to modules that encode non-causal factors to the task, and thus

alleviate spurious correlation and help out-of-distribution generalization. Even if all data

are sampled from the same distribution and there are no distribution shifts, invariance

could also help eliminate noisy correlation due to the limited training dataset and help

in-distribution generalization.

Invariant Optimality of Task-to-Module Graph for MTL. As discussed in IRM,

the bi-leveled optimization problem in Eq.(7.5) is highly intractable, especially with complex
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and non-linear Φ. To implement a practical optimization objective, IRM proposes to softly

regularize the gradient of the task-predictor at different environments to enforce it to be

optimal:

min
Φ,A,f

(
L̃(Φ, A, f) +

∑
t∈T

∑
e∈E

∥∥∥∇A=At,f=ftR
e
t

(
Φ, A, f

)∥∥∥2). (7.6)

However, as is discussed in IRM paper, if the complexity of a task-predictor f is much

larger than the number of environments, it could learn an over-fitted solution that makes

gradient zero but does not achieve invariance. IRM adopts a fixed all-one vector as predictor

to reduce complexity. This approach is not applicable to MTL setup, as the optimal

task-predictors f ∗
t for different task t could be very distinctive and complex, and we cannot

use a fixed uniform predictor for all tasks.

To strike a balance between invariance and complexity of multi-task predictors, we

propose only to regularize the gradient of the task-to-module routing graph while assuming

the complex predictor ft for each task is fixed at each iteration. We call this modification

as Graph-Invariant Risk Minimization (G-IRM), which is designed specifically to

MTL setup:

min
Φ,A,f

(
L̃(Φ, A, f) + λG-IRM · LG-IRM(Φ, A|f)

)
. (7.7)

By adopting the similar gradient penalty term as adopted in IRM, we define LNormG-IRM as:

LNormG-IRM(Φ, A|f) =
∑
t∈T

∑
e∈E

∥∥∥∇A=AtR
e
t

(
Φ, A, ft

)∥∥∥2. (7.8)

As we assume ft is fixed for invariance regularization term LNormG-IRM , we only calculate gradient

and optimize for Φ and A, but not updating ft. This could avoid the over-parametrized

predictor ft finding a trivial solution to achieve zero gradients instead of learning the correct

causal correlation. Similar trick is utilized in [Ahm+21]. Note that the gradient w.r.t each

graph weight means whether a module could help reduce the risk for this task. Therefore,
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by penalizing the invariance regularization, the modules containing non-causal factors will

be assigned zero weights.

In the experiments, we observe that at the early optimization stage, the model has

non-zero gradients for all parameters, including the graph weights, thus directly regularizing

the gradient norm might influence the optimization. Therefore, we propose a modified

version of gradient regularization LV arG-IRM that penalizes the variance of the task-to-module

graph’s gradient on different environments:

LV arG-IRM(Φ, A|f) =
∑
t∈T

∑
e∈E

1

|E|

∥∥∥∇A=AtR
e
t

(
Φ, A, ft

)
− Avge

(
∇A=AtR

e
t

)∥∥∥2. (7.9)

By minimizing LV arG-IRM , we force all the learned modules to have similar gradients across

different environments, and not overfit only to some of the environments. It still allows

some modules to have non-zero gradients as long as it’s the same across environments, and

relies on loss term L̃ to update these weights, while LNormG-IRM forces all gradient to be zero.

Therefore, LV arG-IRM is a loose regularization that not influences the overall optimization

too much. It shares similar intuition of REx [Kru+21] that penalizes risk variance, while

LV arG-IRM penalize gradient variance.

7.5 Experiment

In this section, we evaluate whether MT-CRL could benefit the performance of MTL

models on existing benchmark datasets, and study whether it could indeed alleviate spurious

correlation.

7.5.1 Experimental Setup

One key ingredient of our MT-CRL is to achieve the optimality of causal graph over

different distributions. However, we might not access multiple environmental labels in most

real-world multi-task learning datasets. Therefore, we adopt a more realistic setup, such
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that we only assume to have a single validation set that contains unknown distribution

shifts (i.e. change of confounder CMTL
dist ) compared to the training dataset. We thus could

utilize training and valid sets as two environments to calculate invariance regularization,

while we only utilize the training set to calculate task loss to avoid the task predictor

overfits. Note that in this way, our method could get access to the label information in the

validation set. To avoid the possibility that the performance improvement is brought by

additional label, for all the other baseline methods, we also add the validation data into

the training set to calculate task loss and learn MTL model.

Dataset. We choose five widely-used real-world MTL benchmark datasets, i.e., Multi-

MNIST [Sun19], MovieLens [HK16], Tasknomy [Zam+18], NYUv2 [Sil+12] and CityScape [Cor+16],

and try to determine train/valid/test split such that there exist distribution shifts between

these sets. Note that except NYUv2, our data split is the same as the default split settings

of these datasets, which also try to test model’s capacity to generalize across domains.

Baselines. As MT-CRL is a regularization framework built upon modular MTL archi-

tecture (in this paper we choose MMoE as instantiation, but it can be applied to other

modular networks), we mainly compare with two gradient-based multi-task optimization

baselines: PCGrad [Yu+20b] and GradVac [Wan+21b]. We also compare with two

domain generalization baselines: IRM [Ahu+20] and DANN [Gan+16]. For IRM we adopt

different per-task predictors instead of all-one vector to adapt MTL setup, and calculate

penalty via Eq. (7.6).

Hyper-Parameter Selection. For a fair comparison, all methods are based on the same

MMoE architecture. Our methods contain a lot of hyper-parameters, including some model

specific ones such as number of modules (K) and regularization specific ones. To avoid

the case that performance improvement is caused by extensive hyper-parameter tuning,

we mainly search optimal model hyper-parameter on Vanilla MTL setting, and use for

all baselines. For regularization specific parameters, we take Multi-MNIST, the simplest
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Methods Multi-MNIST MovieLens Taskonomy CityScape NYUv2 Avg.

Vanilla MTL (—baseline to calculate relative improvement—)
Single-Task Learning +3.3% +0.2% -2.5% -2.4% -12.2% -2.7%

MTL + PCGrad +4.5% +0.2% +3.1% +2.1% +7.4% +3.5%
MTL + GradVac +4.6% +0.3% +3.5% +2.1% +7.2% +3.5%

MTL + DANN +4.1% +0.4% +1.2% +0.3% -0.4% +1.1%
MTL + IRM +5.0% +0.4% +1.1% +0.6% -0.1% +1.4%

MT-CRL w/o LG-IRM +5.9% +0.2% +3.2% +1.5% +4.3% +3.0%
MT-CRL with LNorm

G-IRM +7.8% +1.0% +6.5% +2.9% +8.0% +5.2%
MT-CRL with LV ar

G-IRM +8.1% +1.1% +7.1% +2.8% +8.2% +5.5%

Table 7.2: Relative Performance improvement of different multi-task learning (MTL)
strategies compared to vanilla MTL baseline.

dataset among the testbed, to find a optimal combination, and use for all other datasets.

7.5.2 Experiment Results

As each task has a different evaluation metric and cannot be directly compared, we

calculate the relative performance improvement of each method compared to vanilla MTL,

and then average the relative improvement for all tasks of each dataset. As summarized in

Table 7.2, the average improvement of MT-CRL with LV arG-IRM is 5.5%, significantly higher

than all other baseline methods. The most critical step of MT-CRL is to learn correct

causal graph. We therefore report MT-CRL with different invariance regularization. As is

shown in the last block, LV arG-IRM achieve better results for most datasets than LNormG-IRM , while

removing the invariance regularization could significantly drop the relative performance.

Compared to IRM which calculate gradient and update per-task predictors, MT-CRL

uses disentangled modules and G-IRM to avoid overfitting to achieve invariance. Results

show that for datasets with large amount of tasks, e.g., Taskonomy and NYUv2, MT-CRL

significantly outperform IRM, showing the modification is more suitable for MTL setup.

Ablation Studies. We then study the effectiveness of the other two components in

MT-CRL, i.e., disentangled and graph regularization. We mainly report the ablation studies

on Multi-MNIST in table 7.3 as it’s relatively small so that we could quickly get the results
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Disentangled Regularization Graph Regularization Multi-MNIST
Ldecor Lβ-VAE Lsps Lbal Accuracy

✓ ✗ ✓ ✓ 0.915 ± 0.018
✗ ✓ ✓ ✓ 0.896 ± 0.024
✗ ✗ ✓ ✓ 0.882 ± 0.020

✓ ✗ ✗ ✗ 0.891 ± 0.016
✓ ✗ ✗ ✓ 0.903 ± 0.017
✓ ✗ ✓ ✗ 0.908 ± 0.021

Table 7.3: Ablation Studies of disentangled and Graph regularization components in
MT-CRL, evaluated on Multi-MNIST dataset.

of all combinations.

For disentangled regularization, after removing Ldecor, the performance drops from 0.915

to 0.882, which fits our discussion that we cannot conduct causal learning over entangled

modules. We also explore one classical generative disentangled representation method,

i.e., β-VAE. As shown in the table, the results of using β-VAE are 0.896, lower than our

utilized decorrelation regularization.. We hypothesize that this is probably because not all

generative factors are useful for downstream tasks. Generative objectives might compete

for the model capacity and in addition, the unused factors could be potentially spurious.

Another key component is graph regularization. After removing both Lsps and Lbal,

the performance drops to 0.891. This show that even if invariance regularization could

penalize non-causal modules, it would be better to force their weights to be zero via sparsity

regularization, and to be non-degenerate via balance regularization. We also conduct

ablation studies to remove either Lsps or Lbal, and results show both are important, and

combining the two could help to achieve the best results.

7.5.3 Case Study: how MT-CRL help alleviate spurious correlation

To show that real-world MTL problem indeed have spurious correlation problem and

our MT-CRL could alleciate it, we take MovieLens as an example to conduct case study.

Each task is for different movie types, and bag-of-word of movie title is one of the features.
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Figure 7.4: Task-to-Module gradients of model without MT-CRL show Module 5 is spurious.
MT-CRL could help alleviate spurious correlation.

We calculate the task-to-module gradients ∂(f(Φ(x))[y])
∂F

of the vanilla MMoE model without

MT-CRL. We then visualize ‘train’ gradients, which shows how much each module is

utilized to fit the training set, and ‘valid-train’ gradients, which shows how generalizable

each module is. We find that module 5 is utilized for children movie, but harmful in valid

set, indicating it is a spurious feature. We then use Grad-CAM to show that top words of

module 5 include strip and die, which is not relevant to children movies. One possible

reason is that some children movies contain the words club, which is often co-occurred with

strip and die in crime and war movies. After adding our MT-CRL, the module assigned

to ‘children’ movie attends Pink, Parenthood, Alice and Jungle.

We then show the (valid-train) Task-to-Module gradients over Multi-MNIST datasets.

With MT-CRL, in Figure 7.5, each module’s saliency map only focus on one side of pixels.

By looking at each task output’s saliency map, which help model to focus only on causal

part, compared with Figure 7.3(b) that have high weights on both. All these case studies

show MT-CRL could indeed alleviate spurious correlation in real MTL problems.
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Figure 7.5: (valid-train) Task-to-Module gradients of model with MT-CRL on Multi-
MNIST.

7.6 Summary

In this paper, we study spurious correlation problem in the Multi-Task Learning (MTL)

setting. We theoretically and experimentally shows that task correlation can introduce

special type of spurious correlation in MTL, and the model trained by MTL is more prone

to leverage non-causal knowledge from other tasks than single-task learning. To solve the

problem, we propose Multi-Task Causal Representation Learning (MT-CRL) which consists

of: 1) a decorrelation regularizer to learn disentangled modules; 2) a graph regularizer to

learn sparse and non-degenerate task-to-module graph; 3) G-IRM invariant regularizer. We

show MT-CRL could improve performance of MTL models on benchmark datasets and

could alleviate spurious correlation.
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CHAPTER 8
Conclusion

This thesis set out to build a bridge between deep learning and symbolic reasoning,

aiming to train a Neural-Symbolic model in an end-to-end manner without requiring

intermediate labels. Through the development of a novel reasoning module, the employment

of self-supervised learning techniques, and strategies for generalization across domains,

significant strides have been made towards realizing this my ultimate research goal: building

a Neural-Symbolic Reasoning framework that has the ability to solve challenging tasks in

many different research domains of computer science.

8.1 Future Research Agenda

In the future, I am excited to further improve my proposed neural-symbolic reasoning

framework, as well as using it to solve most fundamental and significant challenges in

other areas in computer science, such as program synthesis, hardware design, mathematical

auto-proving and scientific discovery:

Towards More Expressive Differentiable Symbolic Reasoning Systems. My past

studies have focused on symbolic reasoning over knowledge graphs. Outside this research

domain, there exist many other interesting and powerful symbolic reasoning AI, including
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numerical reasoning, physics simulation, mathematical theorem prover, as well as many

pre-defined APIs provided by industrial services. To enable integration of these symbolic

reasoning capacities into neural models, I plan to build a more general interface to bridge

the two worlds, supporting free interaction and backpropagation. Many challenges remain to

be addressed, including how to properly model this heterogeneous and structural knowledge

in a principled manner (ideally in a unified graph view), choose appropriate abstractions for

reasoning procedure, and make reasoning differentiable. I am also interested in improving

causal representation learning via modular design, and making the AI model capable of

conducting causal inference and estimate uncertainty and risks.

Explore Program Synthesis via Neural-Symbolic Reasoning. Many fundamental

tasks in computer science and artificial intelligence could be formalized as program synthesis.

For example, dialogue chatbots require parsing human language into formal SQL programs;

mathematical auto-proving requires transforming math equations; high-level synthesis

of FPGA program requires compiling and latent execution of discrete C/C++ programs.

My past research on graph representation learning and symbolic reasoning is a natural

solution for conducting program synthesis. Therefore, I am excited to apply my proposed

neural-symbolic models to solve these interesting and challenging tasks. Take hardware

synthesis as an example, I aim to represent symbolic program as latent variables, which we

could execute via neural module to infer results. Based on it, we could search for the best

program by optimizing the latent program to maximize output, in a differentiable manner.

Empower Scientific Discovery via Neural-Symbolic Reasoning. My proposed

Neural-Symbolic models have already shown improvement in a wide range of artificial

intelligence tasks. Outside of AI domains, many general scientific problems could also

be abstracted as symbolic reasoning. For example, drug discovery and design require

representing the molecule as geometric graphs; physics simulation requires understanding

complex physic environments (represented with graph with particles, fluids, plasma as

nodes, and their mutual interactions as edges). I am particularly interested in whether
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my proposed neural-symbolic AI models could be applied and benefit these fundamental

scientific problems, helping building better scientific simulation tools. In addition, I

am interested in utilizing the neural-symbolic systems to automatically discover world

knowledge, including constructing domain-specific knowledge graph, discovering new Physics

or Chemical governing laws from experiments, and identifying causal structures from real-

world social data.
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