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Abstract

This paper aims at developing numerically validated models for predicting the through-

plane effective index of refraction and absorption index of nanocomposite thin films. First,

models for the effective optical properties of such materials are derived from previously

reported analysis applying the volume averaging theory (VAT) to the Maxwell’s equations.

The transmittance and reflectance of nanoporous thin films are computed by solving the

Maxwell’s equations and the associated boundary conditions at all interfaces using finite

element methods. The effective optical properties of the films are retrieved by minimizing the

root mean square of the relative errors between the computed and theoretical transmittance

and reflectance. Nanoporous thin films made of SiO2 and TiO2 consisting of cylindrical

nanopores and nanowires are investigated for different diameters and various porosities.

Similarly, electromagnetic wave transport through dielectric medium with embedded metallic

nanowires are simulated. The numerical results are compared with predictions from widely

used effective property models including (1) the Maxwell-Garnett Theory, (2) the Bruggeman

effective medium approximation, (3) the parallel, (4) series, (5) Lorentz-Lorenz, and (6) the

VAT models. Very good agreement is found with the VAT model for both the effective index

of refraction and absorption index. Finally, the effect of volume fraction on the effective index

of refraction and absorption index predicted by the VAT model is discussed. For certain

values of wavelengths and volume fractions, the effective index of refraction or absorption

index of the composite material can be smaller than that of both the continuous and dispersed

phases. These results indicate guidelines for designing nanocomposite materials with desired

optical properties.
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1 Introduction

In recent years, synthesis and characterization of nanocomposite thin films in general and

nanoporous in particular, have been the subject of intense study [1, 2, 3, 4]. Potential appli-

cations include dye-sensitized solar cells [5, 6, 7], low-k dielectric materials [8, 9], biosensors

[10, 11, 12], and optical devices including waveguides [13, 14, 15], Bragg reflectors and

Fabry-Perot filters [16, 17, 18, 19, 20, 21, 22]. For example, in order to confine and propa-

gate electromagnetic waves within a waveguide, the guide region itself must have a higher

index of refraction than the surrounding cladding [23]. On the other hand, Bragg reflectors

and Fabry-Perot filters are built by generating alternating layers with prescribed thickness

and index of refraction. This geometry uses constructive and destructive interferences to

selectively reflect or transmit at desired wavelengths. In each of these optical applications,

the index of refraction is tuned by controlling the morphology and porosity of the nanosize

pores formed by electrochemical etching of silicon, for example. Optimizing the performance

of a given component requires accurate knowledge of the effect of porosity, pore shape and

size as well as the optical properties of each phase on the effective optical properties of the

nanocomposite medium.

Various effective property models have been proposed in the literature and were discussed

in our previous study [24]. In brief, the Maxwell-Garnett Theory (MGT) [25] was first

developed to model the effective electric permittivity of heterogeneous media consisting of

monodispersed spheres arranged in a cubic lattice structure within a continuous matrix and

of diameter much smaller than the wavelength of the incident electromagnetic (EM) wave.

Then, the effective dielectric constant εr,eff is expressed as,

εr,eff = εr,c

[
1− 3φ(εr,c − εr,d)

2εr,c + εr,d + φ(εr,c − εr,d)

]
(1)

where εr,c and εr,d are the dielectric constant of the continuous and dispersed phases, respec-

tively, while φ is the porosity. For dispersed phase volume fractions larger than π/6 ' 52%

and polydispersed spheres the Bruggeman [26] model gives the following implicit equation
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for εr,eff ,

1− φ =

(
εr,eff
εr,c

− εr,d
εr,c

)

[(
εr,eff
εr,c

)1/3 (
1− εr,d

εr,c

)] (2)

On the other hand, the Lorentz-Lorenz model gives the effective index of refraction neff as,
(

n2
eff − 1

n2
eff + 2

)
= (1− φ)

(
n2

c − 1

n2
c + 2

)
+

(
φ

n2
d − 1

n2
d + 2

)
(3)

where nc and nd are the index of refraction of the continuous and dispersed phases, respec-

tively. Alternatively, the parallel model gives the effective property ψeff as a linear function

of the properties of the continuous and dispersed phases, i.e.,

ψeff = (1− φ)ψc + φψd (4)

The series model, on the other hand, is expressed as,

1

ψeff

=
1− φ

ψc

+
φ

ψd

(5)

In addition, del Rio et al. [27] suggested the following effective model for electrical conduc-

tivity based on the reciprocity theorem,

σeff = σc

1 + φ
(√

σc/σd − 1
)

1 + φ
(√

σd/σc − 1
) (6)

Recently, del Rio and Whitaker [28, 29] applied the volume averaging theory (VAT) to the

Maxwell’s equations for an ensemble of dispersed domains of arbitrary shape in a continuous

matrix. They predicted the effective dielectric constant εr,eff , relative permeability µr,eff ,

and electrical conductivity σeff of a two-phase mixture as [28],

εr,eff = (1− φ)εr,c + φεr,d (7)

1/µr,eff = (1− φ)/µr,c + φ/µr,d (8)

σeff = (1− φ)σc + φσd (9)

The range of validity of these expressions was discussed in details, and a set of inequalities

to be satisfied was developed by Del Rio and Whitaker [28]. Their model has been numer-

ically validated by Braun and Pilon [24] for the effective through-plane index of refraction
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of non-absorbing nanoporous media with open and closed cylindrical nanopores of various

shapes and sizes corresponding to a wide range of porosity. The other models however,

underpredicted the numerical results [24].

Moreover, validation of the above models against experimental data often yields contra-

dictory results [30]. These contradictions can be attributed to the fact that first, some of

these models were not developed for the index of refraction but for the dielectric constant.

However, they have been used for optical properties (e.g., Ref.[8, 9, 31, 13]). Second, un-

like the present study, some of these models have also been derived by considering a unit

cell containing one pore with uniform incident electromagnetic fields thus ignoring possible

interference taking place between adjacent pores [25, 26, 32]. Finally, large experimental

uncertainty may exist in the measure of the porosity and the retrieval of the complex index

of refraction from transmittance and reflectance measurements. The latter is very sensitive

to the surface roughness of the film and to the uniformity and value of the film thickness.

Unfortunately, often, neither the film thickness L nor the experimental uncertainty for both

φ and meff are reported.

The present study extends our previous investigation to absorbing nanocomposite thin

films. It aims at modeling both the through-plane effective index of refraction and absorption

index of (1) nanoporous thin films consisting of horizontally aligned cylindrical nanopores

or nanowires with different diameters and various porosities and of (2) dielectric medium

with embedded metallic nanowires. Such thin films are anisotropic and this study focuses on

properties in the direction normal to the film surface. It is limited to non-magnetic materials

for which µr,c = µr,d = µr,eff = 1. Spectral normal-normal transmittance and reflectance are

obtained by numerically solving the Maxwell’s Equations and used to retrieve the effective

index of refraction and absorption index. The numerical results are then compared with

previously reviewed models. Finally, the VAT model is analyzed in details.
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2 Analysis

2.1 Optical Properties From Volume Averaging Theory

The index of refraction n and the absorption index k of homogeneous media can be expressed

in terms of the real part of their dielectric constant εr and of their electrical conductivity σ

as [23],

n2 =
1

2


εr +

√√√√ε2
r +

(
λσ

2πc0ε0

)2

 (10)

k2 =
1

2


−εr +

√√√√ε2
r +

(
λσ

2πc0ε0

)2

 (11)

where λ is the wavelength of incident radiation, c0 is the speed of light in vacuum, and ε0

is the permittivity of free space. The expression derived by Del Rio and Whitaker [28] for

the effective dielectric constant εr,eff and electrical conductivity σeff of a two-phase medium

[Equations (7) and (9)] can be used to derive the effective optical properties of a two-phase

nanocomposite material,

n2
eff =

1

2

[
A +

√
A2 + B2

]
(12)

k2
eff =

1

2

[
−A +

√
A2 + B2

]
(13)

where

A = εr,eff = φ(n2
d − k2

d) + (1− φ)(n2
c − k2

c ) (14)

and B =
λσeff

2πc0ε0

= 2ndkdφ + 2nckc(1− φ) (15)

In particular, when the dispersed phase is vacuum, εr,d = nd = 1, and kd = σd = 0. Note also

that, unlike other effective property models, the above VAT models for neff and keff depend

on both the real and complex parts of the complex indices of refraction of the dispersed and

continuous phases. In other words, kc and kd affect not only keff but also neff .

2.2 Governing Equations and Numerical Implementation

In order to develop the numerical model, let us first consider a surrounding environment

(medium 1, n1, k1 = 0) from which an electromagnetic wave is incident on an absorbing thin
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film (medium 2, n2, k2) deposited onto an absorbing dense substrate (medium 3, n3, k3).

A linearly polarized plane wave in transverse electric (TE) mode is incident normal to the

film top surface and propagates through the two-dimensional thin film along the x-direction.

As the wave propagates in the x-y plane, it has only one electric field component in the z-

direction, while the magnetic field has two components in the x-y plane (i.e., perpendicularly

polarized), such that in a general time-harmonic form,

~E(x, y, t) = Ez(x, y)eiωt~ez and ~H(x, y, t) = [Hx(x, y)~ex + Hy(x, y)~ey]e
iωt (16)

Here, ~E is the electric field vector, ~H is the magnetic field vector, ~ex, ~ey, and ~ez are the

unit vectors, and ω = 2πc0/λ is the angular frequency of the wave. For general time-varying

fields in a conducting medium, the Maxwell’s Equations can be written as,

∇×
[

1

µrµ0

∇× ~E(x, y, t)

]
− ω2ε∗rε0

~E(x, y, t) = 0 (17)

∇×
[

1

ε∗rε0

∇× ~H(x, y, t)

]
− ω2µrµ0

~H(x, y, t) = 0 (18)

where µ0 and µr are the magnetic permeability of vacuum and the relative magnetic per-

meability, respectively, while ε∗r (= n2 − k2 − i2nk) is the complex dielectric constant. The

associated boundary conditions are,

~n× ( ~H1 − ~H2) = 0 at the surroundings-film interface (19)

~n× ~H = 0 at symmetry boundaries (20)

√
µrµ0(~n× ~H) +

√
ε0ε∗r ~E = 0 at the film-substrate interface (21)

√
µ0µr(~n× ~H) +

√
ε0ε∗r ~E = 2

√
ε0ε∗r ~E0 at the source surface (22)

where ~n is the normal vector to the appropriate interface. Equation (21) corresponds to

the impedance boundary condition for a semi-infinite substrate while Equation (22) is the

low reflecting boundary condition to model the imaginary source surface where the incident

electromagnetic wave ~E0 = E0~ez is emitted and that is transparent to the reflected waves.

Moreover, the Poynting vector ~π is defined as the cross product of the electric and mag-

netic vectors, ~π = 1
2
Re{ ~E × ~H}. Its magnitude corresponds to the energy flux carried by
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the propagating electromagnetic wave. Averaging the x-component of the Poynting vector

at location (x,y) over a period 2π/ω of the EM wave gives [23],

|πx|avg(x, y) = −1

2
Re{EzH

∗
y} and |πy|avg(x, y) =

1

2
Re{EzH

∗
x} (23)

The incident electric field ~E0 = E0z~ez and therefore, the incident time-averaged Poynting

vector |~π0|avg are imposed at all locations along the source surface. The values of the the

x-component of the Poynting vector along the film-substrate interface are then calculated

numerically and averaged along the boundary to yield |πx,t|avg. The transmittance of the thin

film is then recovered by taking the ratio of the transmitted to the incident average Poynting

vectors, i.e., Tnum = |πx,t|avg/|πx,0|avg. Similarly, the magnitude of the x-component of the

reflected time-averaged Poynting vector |πx,r|avg is computed numerically, and the reflectance

of the film is computed according to Rnum = |πx,r|avg/|πx,0|avg.

Finally, the above equations were solved numerically using a commercially available finite

element solver (FEMLAB 3.0) applying the Galerkin finite element method on unstructured

meshes. The two-dimensional Maxwell’s equations are solved in the frequency domain using

a 2D transverse electric (TE) wave formulation as described by Equation (16). In particular,

the discretization uses second order elements to solve for the electric field [33].

In order to validate the numerical implementation of this system of equations, a system

composed of a dense absorbing thin film (n2 = 1.7, k2) of thickness L deposited on a perfectly

reflective substrate (n3 = k3 → ∞) in air (n1=1, k1=0) was simulated. The value of

k2 was varied over 3 orders of magnitude from 0.001 to 1, and the infinitely large optical

constants of the substrate were imposed as n3 = k3 = 106. Normal reflectivity of the system

was computed and plotted as a function of πL/λ [30]. The numerical solutions match the

analytical solutions found in Ref.[23], for example.

Figure 1 schematically shows the geometry of the simulated nanocomposite thin film

on a semi-infinite substrate. The Maxwell’s equations are solved in both phases separately

as previously described. Equation (19) is used as the boundary condition not only at the

incident vacuum-film interface but also at all continuous/dispersed phase interfaces. Figure

1 is a schematic representation of an actual model consisting of three nanopores or nanowires
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of diameter D=10 nm and cell width H of 20 nm corresponding to a volume fraction φ =

πD2/4H2 =0.1963. Figure 1 also indicates material properties of the different domains and

the locations at which each of the boundary conditions are applied. Note that the lines

separating two adjacent cubic cells do not correspond to an actual boundary conditions.

Finally, it is important to note that Maxwell’s equations are generally applied to macro-

scopic averages of the fields which can vary widely in the vicinity of individual atoms where

they undergo quantum mechanical effects. In addition, both the matrix and the nanodomains

are treated as homogeneous and isotropic with index of refraction n and absorption index k

equal to that of the bulk.

2.3 Retrieval of Effective Complex Index of Refraction

The effective complex index of refraction of the nanocomposite thin film was retrieved by

minimizing the root mean square of the relative error for the transmittance δT and reflectance

δR defined as,

δT 2 =
1

N

N∑

i=1

[
Tcalc(λi)− Tnum(λi)

Tnum(λi)

]2

and δR2 =
1

N

N∑

i=1

[
Rcalc(λi)−Rnum(λi)

Rnum(λi)

]2

(24)

where Tnum(λi) and Rnum(λi) are the transmittance and reflectance computed numerically

using FEMLAB 3.0 while Tcalc(λi) and Rcalc(λi) are the transmittance and reflectance pre-

dicted from electromagnetic wave theory at N different wavelengths λi between 400 and 900

nm.

In predicting the theoretical transmittance Tcalc and reflectance Rcalc from EM wave

theory, polarization effects are disregarded since (1) the incident EM wave is normal to the

surface, i.e., the plane of incidence is not defined and the components of the polarization

cannot be distinguished [23] and (2) scattering is neglected as the nanopores or nanowires

are much smaller than the wavelength of the EM wave. In addition, non-linear optical effects

are neglected and surface waves are not observed in the current situation as resonance modes

were not excited for the materials and wavelengths considered. Finally, we assume that all

interfaces are optically smooth, i.e., surface roughness is much smaller than the wavelength
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of the incident EM wave. This assumption may not be satisfied in practice and scattering

by the sometimes rough film surface can be observed [34, 35, 36].

The Microsoft Excel Solver based on the generalized reduced gradient nonlinear optimiza-

tion method [37] was used to identify the optimum neff and keff that minimizes the root

mean square δT and δR. The theoretical transmittance and reflectance for homogeneous

thin films under normal incidence are expressed as [38],

Tcalc(λ) =
τ12τ23e

−κ2L

1 + 2r12r23e−κ2Lcos(δ12 + δ23 − ζ2) + r2
12r

2
23e

−2κ2L
(25)

Rcalc(λ) =
r2
12 + 2r12r23e

−κ2Lcos(δ12 + δ23 − ζ2) + r2
23e

−2κ2L

1 + 2r12r23e−κ2Lcos(δ12 + δ23 − ζ2) + r2
12r

2
23e

−2κ2L
(26)

where

r2
ij =

(ni − nj)
2 + (ki − kj)

2

(ni + nj)2 + (ki + kj)2
, τij =

ni

nj

4(n2
i + k2

i )

(ni + nj)2 + (ki + kj)2

tanδij =
2(nikj − njki)

n2
i + k2

i − (n2
j + k2

j )
, κ2 = 4πk2/λ, and ζ2 = 4πn2/λ (27)

Here, the subscripts 1 and 3 refer to the the media above and below the nanocomposite thin

film treated as an effective homogeneous and referred to by subscript 2. Validation of the

retrieval method combined with the numerically computed transmittance was performed by

simulating a dense silicon absorbing thin film of thickness L=1 µm surrounded on both sides

by vacuum (n1 = n3 =1.0, k1 = k3 =0.0) and having a constant complex index of refraction

m2 = n2 − ik2= 3.5-i0.01 over the spectral interval from 440 to 1700 nm. The values of n2

and k2 retrieved with the above mentioned optimization method fall within 9.0×10−6 % and

0.06% of the input values, respectively. Therefore, both the numerical simulation tool and

the inverse method to retrieve the effective complex index of refraction of nanocomposite

thin films from transmittance and reflectance calculations have been validated and can now

be used.
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3 Results and Discussion

3.1 Absorbing Nanoporous Media

Simulations of electromagnetic wave transport in nanoporous absorbing SiO2 thin film were

conducted for various porosities, film thicknesses, and pore shapes and sizes. First, the con-

tinuous phase was assumed to be characterized by constant optical properties nc=1.44 and

kc=0.01 over the spectral range from 400 to 900 nm while nd = n1 = 1.0, kd = k1 = k3 = 0.0,

and n3 = 3.39. The optimization method previously described was used to retrieve the

through-plane effective index of refraction neff and absorption index keff from the numer-

ically computed transmittance. A numerically converged solution was obtained with more

than 50,000 triangular meshes for 250 wavelengths with a 2 nm increment. The pore di-

ameter was 10 or 100 nm while the ratio of the film thickness L to pore diameter D varied

from 10 to 200. Finally, for a given pore diameter, the porosity φ varied from 0.0 to 0.7 by

changing the dimensions of the cubic cells.

Figure 2 shows the evolution of the through-plane effective index of refraction neff and

absorption index keff as functions of the ratio L/D for a porosity φ equal to 0.1963. The thick

solid line corresponds to the predictions of the VAT models given by Equations (12) and (13).

The data points represent the values retrieved from the numerically computed transmittance

by minimizing δT . As established for non-absorbing thin films [24], the effective index of

refraction neff as well as the effective absorption index keff become independent of both

the film thickness and the pore diameter for thick enough films corresponding to L/D >

100 in the cases investigated. In addition, for porosity φ=0.1963, the VAT model predicts

the retrieved values of neff and keff for L/D=200 within 0.13% and 0.075%, respectively.

Finally, Figure 3 shows the root mean square δT as a function of the ratio L/D. The value of

δT remains small and decreases as the film thickness increases due to smoother interference

fringes. It also decreases as the bubble diameter decreases thanks to reduction in scattering

by the bubbles. For most cases (except for L/D < 20 and D=100 nm), the numerical and

calculated transmittances Tnum and Tcalc plotted for wavelengths between 400 and 900 nm
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are undistinguishable. For example, for D=10 nm, L/D=150, and φ = 0.3, the maximum

relative error |Tnum − Tcalc|/Tnum is 0.07% while δT is equal to 2.04 × 10−4. Note also that

(i) all numerical results were converged, i.e., independent of the number of meshes and (ii)

the root mean square remains relative small. Thus, the large variations in neff and keff

observed for small values of L/D are attributed to interferences between nanopores whose

effect tend to average out once enough pores are considered. Then, beyond a critical film

thickness to pore diameter ratio, the medium behaves as homogeneous with some effective

properties.

Moreover, Figure 4 compares the predictions of various effective medium approaches

applied to the through-plane effective index of refraction neff and absorption index keff

of nanoporous thin films as a function of porosity for nc=1.44, kc=0.01, nd=1.0, kd=0.0,

D=10 nm, and L/D=150. Note that the series and reciprocity models cannot be computed

for keff because kd=0.0. As intuitively expected, neff and keff decrease as the porosity

increases. Overall, good agreement is found between the VAT model and the numerical

results while the parallel, series, Maxwell-Garnett, and reciprocity models applied to neff

and keff underpredict the numerical values. The same conclusions were obtained when

considering the effective index of refraction of non-absorbing nanoporous thin films [24].

Note that the values of neff predicted by the Lorentz-Lorenz equation [39] fell within 0.2%

of the predictions of the Maxwell-Garnett model and therefore, were omitted in Figure 4 for

the sake of clarity. In addition, when the pores are open and consist of a set of alternating

columns of dispersed and continuous phase, perpendicular to the substrate, the dielectric

constant can be modelled using the parallel model given by Equation (7) [30]. Therefore, the

VAT model for both neff and keff provides an accurate prediction of the effective optical

properties of the nanoporous thin films simulated with various pore sizes and porosities.

The other effective property models appear not to be appropriate for the reasons previously

discussed.

In addition, spectral calculations for nanoporous TiO2 over the spectral range from 400

to 900 nm have been performed for cylindrical nanopores and nanowires of diameter D=10

12



nm and for porosity of 0.2146 as illustrated in Figure 5. The overall film thickness L was

such that L/D=150 to ensure that the heterogeneous thin film behaves as homogeneous

with some effective properties. The spectral dependency of the complex index of refraction

of bulk TiO2 was accounted for by fitting reported experimental data [40] with a second

order polynomial to yield,

nc,λ = 2.179− 3.234× 10−4λ + 7.967× 10−8λ2 (28)

kc,λ = 8.501× 10−4 + 1.264× 10−5λ− 9.362× 10−9λ2 (29)

where the wavelength λ is expressed in nanometers and varies between 400 and 900 nm.

First, the transmittance and reflectance computed for cylindrical pores embedded in a TiO2

matrix and for cylindrical TiO2 nanowires (Figure 5) were found to be identical. This

indicates that the beyond a critical film thickness, the pore shape has no effect on the

effective optical properties of the nanocomposite materials as found by Braun and Pilon

[24] for non-absorbing nanoporous thin films. Note that the top surface of the thin film

is optically smooth and the film surface roughness due to the presence of nanowires is not

accounted for.

Finally, the theoretical transmittance and reflectance were computed using Equations

(25) to (27) for an homogeneous thin film having effective spectral index of refraction and

absorption index predicted by the VAT model [Equations (12) to (15)]. Figure 6 shows

good agreement between the numerical and theoretical transmittances and reflectances of a

nanoporous TiO2 thin film of porosity 0.2146. The maximum absolute errors in transmittance

and reflectance were less than 0.03 % and 0.0065 %, respectively and an average relative

error less than 3.0%. This confirms the validity of the VAT model on a spectral basis for

the effective complex of refraction of nanoporous media consisting of cylindrical pores in an

absorbing matrix or of closely packed nanowires.

3.2 Dielectric Medium with Metallic Nanowires

This section aims at assessing the validity of the VAT model for dielectric materials or fluids

containing metallic nanowires. Let us consider a dielectric continuous phase of complex
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index of refraction mc=1.4 - i 0.0 containing gold nanowires and having the same index of

refraction as bulk gold at 400 nm, i.e., md=1.66 - i 1.96 [23]. Two nanowire diameters D

are considered namely 10 and 100 nm and, in all cases, the overall film thickness L is such

that L/D=150. Then, the film can be treated as homogeneous and effective properties can

be defined.

Figure 7 compares the through-plane effective index of refraction and absorption index

of the nanocomposite medium retrieved from both numerical transmittance and reflectance

with those predicted by the VAT model for volume fraction of nanowires φ ranging from 0.0 to

0.7. Note that the retrieved effective optical properties were obtained by minimizing δT +δR

and were very sensitive to the initial guess particularly for D=100 nm when transmittance

was very small. In those cases, the properties were retrieved by minimizing only the root

mean square δR. Overall, there exist a relatively good agreement between the retrieved

values of neff and keff at all nanowire volume fractions and for both D=10 and 100 nm.

The VAT model predicts the retrieved effective index of refraction neff within ±6.2% and

the effective absorption index keff within ± 2.9 %. The fact that metallic nanowires have

size dependent optical properties has been ignored but can be accounted for provided that

these properties be measured independently.

Moreover, it is interesting to note that the presence of a strongly absorbing dispersed

phase such as metallic nanowires reduces dramatically the effective index of refraction of

the composite medium even for small volume fractions φ. For certain values of φ, the

effective index of refraction neff is smaller than that of either the continuous or dispersed

phases, i.e., neff ≤ Min(nc, nd). It also reaches a minimum at the volume fraction φ1=0.25

as discussed in details in the next section. Simultaneously, the effective absorption index

increases significantly even for small metallic nanowire volume fractions. Note also that if

the film is thick enough for the effective medium approximation to be valid, the metallic

nanowires can take various shapes and/or sizes without affecting the above predictions.

Finally, scattering by the nanopores and nanoparticles can be neglected if their size

is much smaller than the wavelength of the incident radiation [41, 42]. A quantitative
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criterion requires that the size parameter χ = πD/λ be much smaller than unity [41]. This

assumption is typically valid for absorbing nanocomposite materials and nanofluids in the

visible and infrared part of the spectrum. In the present study χ varies between 0.011 and

0.25. In estimating Tcalc and Rcalc from EM wave theory, the fraction of energy scattered

by nanopores or nanowires was neglected compared with that transmitted and reflected by

the film along the incident direction. This assumption was confirmed numerically for all

reported results by comparing the magnitude of the y-component of the Poynting vector

perpendicular to the incident directions with its x-component at all locations in the x-y

plane, i.e., |πy|avg ¿ |πx|avg.

3.3 Discussion of the Effective VAT Model

The objective of this section is to mathematically analyze the now numerically validated

expressions of neff and keff given by Equations (12) and (13). Their derivatives with respect

to volume fraction φ are expressed as,

∂n2
eff

∂φ
=

1

2

[
α + (A2 + B2)−

1
2 (Aα + Bβ)

]
(30)

∂k2
eff

∂φ
=

1

2

[
−α + (A2 + B2)−

1
2 (Aα + Bβ)

]
(31)

where

α =
∂A

∂φ
= (n2

d − k2
d)− (n2

c − k2
c ) and β =

∂B

∂φ
= 2(ndkd − nckc) (32)

Note that the derivatives of A and B with respect to porosity φ denoted by α and β,

respectively, are independent of porosity. The effective properties neff and keff reach their

maximum or minimum when the first order derivatives with respect to volume fraction

vanish, i.e., when

(
A2 + B2

)− 1
2 (Aα + Bβ) = −α (33)

and
(
A2 + B2

)− 1
2 (Aα + Bβ) = α (34)

Squaring both sides of Equations (33) and (34) yields the same second order polynomial in

terms of the volume fraction φ. Given the complex index of refraction of both phases, one
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can solve for the critical volume fraction corresponding to a minimum and/or maximum of

the effective index of refraction and/or absorption index. After rearrangement two roots φ1

and φ2 can be found,

φ1 =
2 [(α2 − β2)nckc − αβ(n2

c − k2
c )]

β(α2 + β2)
(35)

φ2 =
nckc

nckc − ndkd

(36)

In order to know whether neff and keff reach their maximum or minimum, their second

order derivatives with respect to φ have to be examined. Based on Equations (33) and (34),

the second order derivatives of neff or keff are the same for φ1 and φ2 and can be expressed

as,

∂2neff

∂φ2

∣∣∣∣∣
φ1,2

=
1

4neff

(Aβ −Bα)2

(A2 + B2)
3
2

(37)

∂2keff

∂φ2

∣∣∣∣∣
φ1,2

=
1

4keff

(Aβ −Bα)2

(A2 + B2)
3
2

(38)

Since the terms on the right-hand side of the above two equations are always positive, neff

and keff can only reach a minimum.

However, for an arbitrary set of dispersed and continuous phases, the values of φ1 and

φ2 do not always fall in the physically acceptable range of porosities between 0 and 1. For

positive values of the properties nc, nd, kc, and kd, one can show that, unlike φ1, the second

root φ2 never falls between 0 and 1.

Moreover, the following expressions can be used to identify whether φ1 is the solution of

Equation (33) or (34), i.e., whether neff or keff reach a minimum at φ = φ1,

χ =
ndkd − nckc

nckc(n2
d − k2

d)− ndkd(n2
c − k2

c )
(39)

If χ is strictly positive then keff reaches a minimum while neff reaches a minimum if χ is

strictly negative. Neither neff nor keff reach a minimum if χ = 0. In the case of nanoporous

media, χ and φ2 are constant and equal to -1 and 1, respectively. Therefore neff can reach a

minimum less than 1.0 at an acceptable φ1. Finally, for the dielectric medium with embedded
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metallic nanowires simulated previously, χ is strictly negative and neff reaches a minimum.

This is illustrated in Figure 7 where neff reaches a minimum of 1.33 at φ1=0.25.

Finally, this study constitutes the first two-dimensional numerical validation for TE

polarization of the VAT applied to the three-dimensional Maxwell’s equations [28, 29] in

two-phase systems with dispersed domains of arbitrary shape. For complete validation, the

present study should be extended to both a three-dimensional and transverse magnetic (TM)

polarization cases.

4 Conclusions

The VAT models for the effective dielectric and electrical properties of two-phase media [28]

have been used to derive the through-plane effective index of refraction neff and absorption

index keff of nanoporous materials. Moreover, a numerical scheme has been developed and

implemented to solve the Maxwell’s equations for a normally incident TE electromagnetic

wave travelling through (1) nanoporous SiO2 and TiO2 consisting of cylindrical pores or

nanowires and (2) dielectric medium containing cylindrical nanowires. All interfaces were

treated as optically smooth and the dispersed phase volume fraction varied from 0.0 to 0.7.

Calculation were performed on a gray or spectral basis between 400 and 900 nm. The effective

optical properties for the simulated nanocomposite thin films were retrieved by minimizing

the root mean square of the relative errors for the transmittance and reflectance. In all cases,

the results for both keff and neff are in good agreement with the predictions from the VAT

model. Finally, the numerically validated VAT model is discussed and used to predict the

behavior of the optical properties of nanocomposite materials. It shows that under certain

conditions, the effective index of refraction or absorption index of the composite material

can be smaller than that of both the continuous and dispersed phases. The same results and

conclusions are expected for spherical pores and nanoparticles. These results can be used

to design and optimize nanocomposite materials with tunable optical properties as well to

measure the porosity or nanowire volume fraction provided that the film be thick enough to

be treated as homogeneous with some effective properties and that all surfaces be optically

17



smooth.
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S. Szatmári, “Optical properties of porous silicon. Part III: Comparison of experimental

and theoretical results”, Optical Materials, vol. 28, pp. 506–513, 2006.

[35] P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-

infrared: Effects of scattering”, Applied Physics Letters, vol. 77, pp. 3535–3537, 2000.

[36] G. Lerondel and R. Romestain, “Quantitative analysis of light scattering effects on

porous silicon optical measurements”, Thin Solid Films, vol. 297, pp. 114–117, 1997.

[37] L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized

reduced gradient code for nonlinear programming”, ACM Transactions on Mathematical

Software, vol. 4, no. 1, pp. 34–49, 1978.

22



[38] M. F. Modest, Radiative Heat Transfer, McGraw-Hill, New York, NY, 2002.

[39] C.J. Brinker and C.W. Scherer, “Lorentz-Lorenz equation”, in Sol-Gel Science, p. 803C.

Academic Press, San Diego, 1990.
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Figure Captions

Figure 1. Schematic of the physical model and the corresponding finite element grid of the

absorbing nanoporous thin film along with the boundary conditions.

Figure 2. Evolution of the through-plane effective index of refraction and absorption index

of nanoporous SiO2 thin films as a function of L/D for films with 19.63% porosity and pore

diameters of 10 and 100 nm.

Figure 3. Root mean square δT as calculated according to Eq. (24) as a function of L/D.

Figure 4. Evolution of the through-plane effective index of refraction and absorption index

as a function of porosity for nanoporous thin films with nc=1.44, kc=0.01, nd=1.0, kd=0.0,

D=10 nm, and L/D=150.

Figure 5. Morphology of simulated nanoporous TiO2 with cylindrical nanopores (left) or

nanowires (right) for φ=0.2146.

Figure 6. Comparison of theoretical and numerical spectral transmittance and reflectance

of nanoporous TiO2 with cylindrical nanopores and nanowires of diameter D = 10 nm and

porosity φ 0.2146 over the wavelength range between 400 and 900 nm and film thickness L

= 150 D.

Figure 7. Comparison between the VAT model and numerically retrieved effective index

of refraction and absorption index of dielectric medium (mc = 1.4 − i0.0) with embedded

metallic nanowires (md = 1.66− i1.96) for various volume fractions and nanowire diameter.
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Figure 1: Schematic of the physical model and the corresponding finite element grid of the

absorbing nanocomposite thin film along with the boundary conditions.
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Figure 2: Evolution of the through-plane effective index of refraction and absorption index

of nanoporous SiO2 thin films as a function of L/D for films with 19.63% porosity and pore

diameters of 10 and 100 nm.
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Figure 3: Root mean square δT as calculated according to Eq. (24) as a function of L/D for

nanoporous SiO2 thin films with φ=19.63% and pore diameter D equal to 10 and 100 nm.
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Figure 4: Evolution of effective index of refraction and absorption index as a function of

porosity for nanoporous thin films with nc=1.44, kc=0.01, nd=1.0, kd=0.0, D=10 nm, and

L/D=150.
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Figure 5: Morphology of simulated nanoporous TiO2 with cylindrical nanopores (left) or

nanowires (right) for φ=0.2146.
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Figure 6: Comparison of theoretical and numerical spectral transmittance and reflectance

of nanoporous TiO2 with cylindrical nanopores and nanowires of diameter D = 10 nm and

porosity φ 0.2146 over the wavelength range between 400 and 900 nm and film thickness L

= 150 D.
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Figure 7: Comparison between the VAT model and numerically retrieved effective index

of refraction and absorption index of dielectric medium (mc = 1.4 − i0.0) with embedded

metallic nanowires (md = 1.66− i1.96) for various volume fractions and nanowire diameter.
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