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ABSTRACT: In vitro selection technologies are important
tools for identifying high affinity peptides to proteins of broad
medical and biological interest. However, the technological
advances that have made it possible to generate long lists of
candidate peptides have far outpaced our ability to characterize
the binding properties of individual peptides. Here, we
describe a low cost strategy to rapidly synthesize, purify,
screen, and characterize peptides for high binding affinity.
Peptides are assayed in a 96-well dot blot apparatus using
membranes that enable partitioning of bound and unbound
peptide−protein complexes. We have validated the binding affinity constants produced by this method using known peptide
ligands and applied this process to discover five new peptides with nanomolar affinity to human α-thrombin. Given the need for
new analytical tools that can accelerate peptide discovery and characterization, we feel that this approach would be useful to a
wide range of technologies that utilize high affinity peptides.

In vitro selection technologies have become indispensible
tools for identifying high affinity peptides to proteins of

broad medical and biological interest.1 However, the techno-
logical advances that have made it possible to generate long lists
of candidate peptides have far outpaced our ability to
characterize the binding properties of individual peptides.
This disparity is due, in part, to recent advances in DNA
sequencing technology, which have made it possible to generate
millions of peptide sequences from a single in vitro selection
experiment.2 Other factors that have contributed to the rise in
peptide sequence discovery include the use of bar coded
libraries and liquid handling robots in selection protocols.3

Countering these advances is the slow pace at which
individual peptides are characterized. In many cases, peptides
identified by in vitro selection are produced by solid-phase
synthesis, purified by HPLC chromatography, and assayed for
function using analytical techniques, such as surface plasmon
resonance (SPR), that require large amounts of highly pure
peptide or protein. Because this process is both time-
consuming and costly, many researchers have turned to column
binding assays as a way to quickly screen in vitro selected
peptides for high affinity binding.4 Although such assays are
relatively easy to perform and use only small amounts of
peptide, the data produced is not quantitative. These assays also
suffer from high background and problems caused by
differential peptide expression, which can make it difficult to
compare different peptides analyzed in side-by-side assays.4b

Even when high affinity peptides are discovered, additional
experiments are needed to obtain quantitative metrics, such as

equilibrium binding affinity constants (Kd) that help describe
the physical properties of the peptide−protein interaction.
Recognizing the limitations of traditional methods, we

sought to develop a new analytical technique to identify high
affinity peptides from enriched pools of in vitro selected
sequences. Our goal was to develop a rapid and inexpensive
method that would make it possible to rank selected peptides
based on their relative binding affinity and, in a second step,
determine the Kd value for the subset of high affinity ligands.
The challenge was to design a system that would require
minimal amounts of peptide and protein, was amenable to
diverse protein classes, and allowed individual assays to be
performed in a parallel format.
We envisioned an overall system in which peptides generated

by cell-free expression would be brought to equilibrium with
their cognate protein, and bound peptide−protein complexes
would be separated from the unbound peptide using a double-
filter binding assay (Figure 1). We felt that this strategy has a
number of key advantages over existing methods. First, cell-free
peptide synthesis makes it possible to synthesize large numbers
of different peptide sequences in a fraction of the time that it
would take to obtain the same constructs by solid-phase
synthesis (hours vs days).5 Second, peptides made by cell-free
synthesis can be engineered to carry a protein affinity tag, which
allows for purification by affinity chromatography. Third,
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peptides produced by cell-free synthesis can be labeled with
35S-methionine, a radioisotope that allows for accurate
detection at low concentrations without altering the physical
properties of the peptide. Fourth, filter-binding assays provide a
useful method for determining Kd values, as binding can be
measured across a range of protein concentrations.6 Last, the
entire process can be performed in parallel, which makes it
possible to simultaneously analyze the binding properties of
many different peptides.
To test this strategy, we designed a custom peptide

expression vector that would encode our peptide of interest
followed by a TEV protease cleavage site and the amino acid
sequence for the streptavidin binding peptide (SBP).7,8 We
anticipated that the SBP tag would provide a convenient
positive control for subsequent binding assays, since the SBP−
streptavidin interaction is well-known.9 In our peptide
expression assays, we found that peptides generated in rabbit
reticulocyte lysate could be purified from the crude lysate by
affinity capture on streptavidin-coated agarose beads. We
developed two elution strategies to recover the peptide from
the beads. The first strategy involved eluting the beads with
deionized water, which allowed us to obtain the peptide of
interest as an SBP fusion peptide for control assays with
streptavidin. The second strategy involved eluting the peptide
of interest as a free peptide by incubating the beads with TEV
protease, which separated the peptide of interest from the SBP
portion of the fusion.
While the synthesis and purification of SBP-tagged peptides

proceeded without problem, developing a two-membrane
system that could efficiently partition bound peptide−protein
complexes from the unbound peptide proved more challenging.
Although filter-binding assays represent an established method
for studying the binding properties of protein−DNA
interactions7,10 and more recently have been extended to
include protein−XNA complexes,11 such systems have not
been developed for protein−peptide interactions. This is
presumably due to the fact that nitrocellulose has a general
nonspecific affinity for amino acids, which precludes its ability
to distinguish peptides from proteins.
To identify a suitable membrane pair, we evaluated the

binding properties of several common laboratory membranes
with different surface compositions and pore sizes in a dot blot
apparatus. We tested nitrocellulose, PVDF, nylon, and cellulose
membranes with various pore sizes. However, reproducible
results were only observed using a double filter membrane
setup with a top layer composed of regenerated cellulose and a
bottom layer composed of nylon. Using this membrane
configuration, peptide−protein complexes were retained on

the top cellulose membrane and unbound peptides that passed
through the top membrane were captured on the lower nylon
membrane.
We tested the reproducibility of the cellulose−nylon

membrane system by performing a 96-well dot-blot assay
using SBP and streptavidin to represent a model peptide−
protein complex. In this binding assay, SBP-tagged peptides
labeled with 35S-methionine were equilibrated in phosphate
buffered saline (PBS, pH 7) solutions that either lack or contain
streptavidin (50 nM). After 1 h of incubation at 25 °C, the
solutions were loaded into the dot blot apparatus and passed
through cellulose and nylon membranes. The membranes were
removed, dried, and quantified by phosphorimaging (Figure
2a). Analysis of the individual spots allowed us to quantify the

amount of SBP peptide present on the cellulose and nylon
membranes. We found that 89 ± 2% of the 35S-labeled peptide
was retained on the cellulose membrane when streptavidin was
present in the PBS buffer. By contrast, only 19 ± 6% of the 35S-
labeled peptide remained on the cellulose membrane when
streptavidin is absent from the buffer. While some variability
was observed across the members, this result suggested to us
that the cellulose−nylon double-filter system should be
sufficient to distinguish the binding properties of different
peptides.
For the cellulose−nylon system to function as an accurate

predictor of peptide binding affinity, it was necessary to confirm
that equilibrium was maintained during the filtration step. If
equilibrium were disrupted as the peptide−protein complexes
passed through the membranes, then the observed binding
values would underestimate the true binding affinity of the

Figure 1. General strategy to identify and validate high affinity peptides isolated by in vitro selection. (a) DNA sequences encoding peptides with
ligand binding affinity are inserted into a custom peptide expression vector, expressed in a coupled cell-free transcription−translation system as 35S-
labeled peptides and purified by affinity chromatography. (b) Peptides are equilibrated in solution with their cognate protein target. (c) Bound and
unbound peptides are separated in a 96-well dot blot apparatus by passing the mixture through a two-membrane system.

Figure 2. Two-membrane double-filtration system for separating
bound and unbound peptide−protein complexes. (a) Analysis of the
streptavidin binding peptide (SBP) on cellulose and nylon membranes
in the absence and presence of streptavidin protein. (b) Equilibrium
dissociation plot measuring the binding interaction of SBP with
streptavidin.
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peptide. To explore this possibility, we measured the binding
affinity constant of the SBP−streptavidin interaction using the
double-filter assay. SBP-tagged peptides labeled with 35S-
methionine were equilibrated for 1 h in PBS solutions that
contained a range of streptavidin protein concentrations. The
solutions were loaded into the dot blot apparatus and passed
through the cellulose−nylon membranes (Figure 2b). Analysis
of the bound fraction at each SBP concentration yielded a
binding isotherm with a Kd of 2.3 ± 1 nM, which is consistent
with the literature value of 2.4 nM.8 On the basis of this result,
we concluded that equilibrium is maintained for high affinity
peptide−protein complexes.
One of the problems facing those that attempt to identify

high affinity peptides to proteins of medical or biological
interest is the challenge of distinguishing the highest affinity
peptides from a list of in vitro selected peptide sequences. In
many cases, the highest affinity peptides are not the most
abundant sequences or even the sequences that share a
common motif.2 Recognizing this problem, we wondered if our
cellulose−nylon membrane system could be used to identify
and characterize high affinity peptides from a set of in vitro
selected sequences. To explore this possibility, we identified an
mRNA display selection in which a random library of 1011

different mRNA−peptide fusions was used to isolate peptides
that could bind to human α-thrombin.12 The authors reported
45 sequences that remained in the pool after 10 successive
rounds of in vitro selection and amplification. Using a column
binding assay, two peptides (T10.39 and T10.11) were
identified with high affinity to the protein target. Both peptides
were synthesized and tested for binding by surface plasmon
resonance. T10.39 was found to bind human α-thrombin with a
Kd of 166 nM, while T10.11 bound with a Kd of 520 nM.12

Considering the possibility that some high affinity peptides
may have been overlooked due to the limitations of the original
column binding assay, we decided to test 24 of the 45
sequences in our cellulose-nylon membrane system. The set of
24 peptides were randomly chosen (Figure 3a), inserted into
our custom peptide expression vector, expressed in rabbit
reticulocyte lysate as 35S-labeled peptide fusions, purified on
streptavidin coated agarose beads, and eluted by TEV protease
cleavage of the fusion peptide. Three of the peptides (T10.35,
T10.46, and T10.57) did not express well and were discarded.
Coincidentally, these three peptides also have high hydrophic
values, indicating that our screen could be an indicator of
peptide solubility. The remaining peptides were each separately
incubated with 250 and 500 nM human α-thrombin for 1 h at
room temperature and analyzed in parallel by passing the
solutions through the cellulose−nylon membrane system.
Control samples lacking thrombin were used to define the
level of background binding to the membrane and the fraction
of bound peptide was compared to T10.39, a high affinity
thrombin-binding peptide (Figure 3b).
From our filter-binding assay, we discovered five previously

uncharacterized sequences (T10.06, T10.13, T10.25, T10.30,
and T10.37) that exhibit at least 25% binding to human α-
thrombin when the protein was poised at a concentration of
250 nM. The remaining sequences showed little or no binding,
indicating that these sequences are all weak affinity ligands. Of
the high affinity peptides, three contain a conserved DPGR
motif that is found in T10.39, while the other two show no
similarity to T10.39 or each other. This could suggest the
peptides bind different sites on the surface of human α-
thrombin, with the DPGR containing peptides targeting the

same epitope as T10.39 and the two unique peptides binding
elsewhere on the surface; however, further experiments are
needed to test this hypothesis.
Given the importance of human α-thrombin as a potential

therapeutic target,13 we sought to determine the binding affinity
of the five novel thrombin-binding peptides. We began by
validating our filter-binding assay using peptide T10.39, which
was previously characterized and found to bind thrombin with a
Kd of 166 nM.12 Peptide T10.39 was expressed and purified as
described above for the SBP peptide. The peptide was then
incubated with a range of thrombin concentrations, and
peptide−protein complexes were separated from the free
peptide by passing the solutions through the cellulose−nylon
membranes. Analysis of the binding isotherm revealed Kd of
170 ± 40 nM, which closely approximates the known literature
value (Figure 4a).12 Moreover, no difference was observed
when the T10.39 was measured as a free peptide or as an SBP
fusion peptide (data not shown).
Next, we measured the equilibrium binding affinity of the five

uncharacterized peptides using the same methodology
described above. In each case, the peptides were expressed
and purified as 35S-labeled free peptide by eluting the peptides
from the beads with TEV protease. The five peptides were
incubated with a range of thrombin concentrations and their Kd
values were determined by quantifying the amount of 35S-label
on the cellulose and nylon membranes. Peptides T10.25,
T10.30, and T10.6, which share the DPGR motif with T10.39,

Figure 3. Screen of in vitro selected thrombin-binding peptides. (a) A
list of 45 thrombin-binding peptides. Peptides selected for dot blot
analysis (gray).12 (b) Membrane-based screen of 24 thrombin-binding
peptides for affinity to human α-thrombin. Stars indicate peptides with
expression levels below the detection limit for dot blot analysis. High
affinity peptides are numbered in blue. Arbitrary threshold (dashed
blue line).
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have Kd values of 200, 360, and 460 nM, respectively (Figure
4a). By contrast, peptides T10.13 and T10.37, which are unique
with respect to the T10.39 sequence, have Kd values of 160 and
310 nM, respectively (Figure 4b).
To further validate our results, we produced peptides T10.13

and T10.37 by solid-phase synthesis, purified both sequences
by HPLC chromatography, and confirmed their binding affinity
by microscale thermophoresis (Figure S2 in the Supporting
Information). This technique measures changes in the
hydration shell (due to conformational changes) along a
temperature gradient, which makes it possible to determine Kd
values using minimal amounts of sample.14 We found that
peptides T10.13 and T10.37 bind thrombin with Kd values of
180 and 290 nM, which closely approximates the Kd values
obtained using our double-filter binding assay.
In addition, we also demonstrated that the high affinity

peptides function in a complex biological medium. In this case,
peptides T10.13 and T10.37 were conjugated to streptavidin-
coated magnetic beads and used to recover recombinant human
α-thrombin that had been doped into HeLa cell lysate. After an
incubation of 1 h at 25 °C, the beads were precipitated, the
supernatant was removed, and the beads were washed with
TBST buffer. The supernatant and bead samples were analyzed
by SDS acrylamide gel electrophoresis. Both peptides pulled-

down human α-thrombin from the cell lysate with efficiencies
similar to peptide T10.39 and no contamination above the
bead-only control was observed (Figure S3 in the Supporting
Information), demonstrating high affinity and high specificity
binding.
The past few years have witnessed an explosion in the

demand for high-quality peptides that can be used to support a
growing industry of peptide-based therapeutic and diagnostic
applications. Unlike antibodies, peptides are amenable to
chemical synthesis, generally nonimmunogenic, and their
small size allows them to penetrate further into soft tissue.15,16

These properties, along with improved strategies for increasing
serum stability, warrant new methods to streamline the peptide
discovery process.17 In line with these efforts, we present a
general approach for characterizing the binding properties of in
vitro selected peptides. This approach provides an inexpensive
method to synthesize, purify, screen, and characterize peptides
for high-affinity binding to their cognate protein target. We
validated the method using peptides with known protein-
binding interactions and applied the strategy to identify five
new peptides that bind to human α-thrombin with nanomolar
affinity and high specificity.
In summary, we provide a new analytic technique to rapidly

screen and characterize in vitro selected peptides with high
protein binding affinity. We have successfully evaluated
peptides that range in size from 22 to 74 amino acids and
exhibit binding affinity constants of 1−500 nM. While it is
likely that subnanomolar binding affinities could be measured
using this approach, we suspect that weaker interactions may
not be possible due to long transit times through the
membrane. During the course of our study, we noticed that
peptides that do not express well by in vitro translation tend to
have high hydrophobic values, suggesting that peptide recovery
after expression and purification could be an indicator of
peptide solubility. This observation could provide a simple way
to determine whether a peptide will be soluble in an aqueous
solution. Relative to more conventional analytical techniques,
like SPR or isothermal titration calorimetry (ITC), the method
presented here allows for rapid screening of multiple peptide
candidates in small sample volumes using cell-free translated
peptides that can be obtained in a cost-effective manner. By
contrast, SPR and ITC generally require large amounts of
purified peptide and/or protein that can be cost prohibitive
when screening large numbers of peptides. While our approach
is ideal for peptide screening and characterization, high affinity
ligands discovered using this method may require further
characterization in order to obtain a complete kinetic and
thermodynamic profile of the peptide−protein interaction.
Recognizing the advantages of small sample volumes, low cost,
and high throughput, we suggest that this strategy could be
used to accelerate the pace of peptide characterization and help
advance the development of peptide-based affinity reagents.18
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